图像处理综述
图像处理技术综述
图像处理技术综述图像处理是指对数字图像进行计算机处理的一系列技术。
其目的是识别、理解和改善图像的质量、更好地表示图像中的信息。
图像处理技术通过对图像进行数字处理,对图像进行增强、去燥、去模糊、变形、特征提取等操作,使得图像可以被更好地利用。
图像处理技术的应用广泛,包括医学、航空航天、军事、计算机视觉、娱乐等诸多领域。
下面将简要介绍图像处理技术的几个关键方面。
图像增强图像增强是一种通过对图像进行计算机处理来提高其质量的技术。
增强可以包括调整图像的亮度、对比度或色彩饱和度,或应用锐化技术。
增强可以明显提高图像的质量,以便于人类或计算机视觉系统更好地分析图像。
图像去燥图像去燥是通过对图像进行滤波以减少噪声的技术。
噪声可能是由于图像传感器、图像采集过程或图像处理造成的。
去噪可以提高图像质量,使得信息更加清晰。
图像去模糊是通过计算从模糊的图像中恢复尽可能多的信息的技术。
模糊可能是由于摄像机移动、光照不足、散焦模糊等造成的。
去模糊可以使得模糊的图像清晰化,以便于人类或计算机视觉系统更好地分析图像。
图像变形图像变形是一种改变图像形状、大小、方向等的技术。
变形技术可以用于图像增强、建模、图像贴合等应用中。
特征提取特征提取是从图像中提取关键信息的技术。
这些信息可以包括对象形状、边缘、纹理、颜色等。
经过特征提取处理的图像可以更好地用于对象检测、跟踪、分类等应用。
特征提取是计算机视觉领域中广泛应用的一项技术。
总之,图像处理技术在很多应用领域中都具有重要的作用。
随着计算机技术的发展,图像处理技术的应用将会越来越广泛,对于提高人们的生活质量、推动人类社会进步都将有着重要的意义。
生物医学工程中的图像处理技术综述
生物医学工程中的图像处理技术综述生物医学工程 (Biomedical Engineering) 是一门结合生物学和工程学原理的跨学科领域,其目标是开发新的技术和解决医学问题。
图像处理技术在生物医学工程中起到了至关重要的作用,能够帮助医学专业人士分析和解释医学图像数据,从而改善诊断、监控和治疗过程。
医学图像处理技术是一种针对医学图像数据进行数字处理和分析的技术。
医学图像数据主要包括CT扫描、MRI扫描、X光成像、超声成像和核磁共振成像等。
这些图像数据包含着丰富的信息,但由于其复杂性和噪音等因素,需要通过图像处理技术进行预处理和分析。
预处理是图像处理的重要环节之一,它主要通过去除图像中的噪音、增强图像的对比度和清晰度、校正图像的畸变等方式来提高图像的质量。
常见的预处理方法包括滤波、边缘检测、直方图均衡化等。
滤波可以去除图像中的高频噪音,例如使用中值滤波器可以减少图像中的椒盐噪声。
边缘检测可以帮助医学专业人士找到图像中的物体边缘,从而更好地理解图像的结构。
直方图均衡化能够增强图像的对比度,使图像更易于观察和分析。
图像分割是生物医学工程中另一个重要的任务,其目标是将图像中的目标区域从背景中分离出来。
常见的图像分割方法包括阈值分割、区域生长、边缘检测等。
阈值分割是将图像中灰度值超过或低于某个阈值的像素分类到不同的区域,从而实现目标分割。
区域生长是从一个种子点开始,逐步生长出与种子点相连的像素,直至满足预定义的停止条件。
边缘检测可以找到图像中物体的边缘,帮助医学专业人士更好地分割图像。
除了预处理和图像分割,图像特征提取也是生物医学工程中的重要任务之一。
图像特征是从图像中提取的可区分目标的属性或特性,可以帮助医学专业人士区分不同的组织或病变。
常见的图像特征包括形状、纹理、颜色等。
形状特征描述了物体的几何形状,例如面积、周长、圆度等。
纹理特征描述了物体的细节信息,例如灰度共生矩阵、Gabor滤波器等。
颜色特征描述了物体的颜色属性,可以通过颜色直方图、颜色矩本等方式进行提取。
图像处理中的图像复原算法综述与比较
图像处理中的图像复原算法综述与比较图像复原是图像处理中一个重要的领域,主要目标是通过一系列的数学和算法方法来恢复损坏、模糊、噪声干扰等情况下的图像。
图像复原算法旨在提高图像质量,使图像在视觉上更加清晰、可辨识。
本文将综述图像处理中的图像复原算法,并对这些算法进行比较。
1. 经典算法1.1 均值滤波均值滤波是一种最简单的图像复原算法,其基本原理是用一个滑动窗口在图像上进行平均值计算,然后用平均值代替原像素值。
均值滤波的优点是简单易实现,但对于噪声较多的图像效果较差。
1.2 中值滤波中值滤波是一种非线性滤波算法,常用于去除椒盐噪声。
其基本原理是用滑动窗口中像素的中值代替原像素值。
中值滤波适用于去除随机噪声,但对于模糊图像的复原效果不佳。
1.3 Sobel算子Sobel算子是基于图像边缘检测的算法,常用于图像增强。
Sobel算子通过计算像素点的梯度值来检测边缘。
边缘检测可以使图像的边缘更加清晰,但对于图像的整体复原效果有限。
2. 基于模型的方法2.1 傅里叶变换傅里叶变换是一种基于频域的图像处理方法,将图像从空间域转换到频域,通过频域滤波降低噪声。
傅里叶变换适用于周期性噪声的去除,但对于非周期性噪声和复杂噪声的去除效果有限。
2.2 小波变换小波变换是一种多尺度分析方法,将图像分解为不同尺度的频率成分。
通过舍弃高频噪声成分,然后将分解后的图像重构,实现图像复原。
小波变换适用于复杂噪声的去除,但对于图像的细节保留较差。
2.3 倒谱法倒谱法是一种基于线性预测的图像复原算法,通过分析图像的高阶统计特性实现噪声的去除。
倒谱法适用于高斯噪声的去噪,但对于非高斯噪声的复原效果有限。
3. 基于深度学习的方法3.1 卷积神经网络(CNN)卷积神经网络是一种广泛应用于图像处理的深度学习方法,通过多层卷积和池化操作提取图像的特征,进而实现图像的复原和增强。
CNN适用于各种噪声和模糊情况下的图像复原,但需要大量的训练数据和计算资源。
遥感图像处理与分析算法综述
遥感图像处理与分析算法综述随着遥感技术的发展,遥感图像处理与分析算法在各个领域中得到了广泛的应用。
遥感图像处理与分析算法是指通过对遥感图像进行数字处理和分析,来提取和解释图像中的信息。
本文将综述一些常见的遥感图像处理与分析算法,包括图像增强、分类与分割等。
一、图像增强图像增强是指通过一系列的操作,提高图像的质量和可视化效果。
常见的图像增强算法包括直方图均衡化、滤波和增强函数等。
直方图均衡化是一种常用的图像增强方法,它通过对图像的直方图进行变换,来增加图像的对比度。
该方法通过将图像的像素值映射到一个新的分布上,从而改变图像的亮度分布。
滤波是另一种常见的图像增强方法,通过在图像的空域或频域中对像素进行处理,来减少噪声和增强图像细节。
常见的滤波算法包括高通滤波和低通滤波等。
高通滤波可以增强图像的边缘和细节,而低通滤波则能够平滑图像并去除噪声。
增强函数是一种通过对图像的像素值进行非线性映射,来增强图像的方法。
常见的增强函数包括对数变换、幂次变换和伽马变换等。
对数变换可以扩展暗部像素的动态范围,而幂次变换则能够增强图像的对比度。
二、分类与分割分类与分割是遥感图像处理与分析的重要内容,它们能够将图像中的不同对象进行区分和提取。
常见的分类与分割算法包括聚类分析、最大似然分类和支持向量机等。
聚类分析是一种通过将像素划分到不同的类别中,来实现图像分类和分割的方法。
常见的聚类分析算法包括K均值聚类和自适应聚类等。
K均值聚类将图像像素划分为K个簇,每个簇代表一个类别,而自适应聚类则能够根据像素的分布进行不同权重的划分。
最大似然分类是一种基于概率统计的图像分类方法,它通过计算像素在每个类别中的概率,并选择概率最大的类别作为最终的分类结果。
最大似然分类算法能够准确地对图像中的不同对象进行分类,并且具有较强的鲁棒性。
支持向量机是一种通过构建一个最优决策边界,来实现图像分类和分割的方法。
支持向量机利用训练样本,通过最大化分类边界与样本之间的距离,来找到一个最优的分类超平面。
医学图像处理综述
医学图像处理综述墨南-初夏 2010-07-24 23:51:56医学图像处理的对象是各种不同成像机理的医学影像。
广泛使用的医学成像模式主要分为X射线成像 (X—CT) ,核磁共振成像(MRI),核医学成像 (NMI)和超声波成像(UI) 这四类。
(1)x射线成像:传统x射线成像基于人体不同器官和组织密度不同。
对x射线的吸收衰减不同形成x射线影像。
(例如人体中骨组织密度最大,在图像上呈白影,肺是软组织并且含有气体,密度最低,在照片上的图像通常是黑影。
)常用于对人体骨骼和内脏器官的疾病或损伤进行诊断和定位。
现代的x射线断层成像(x—cT) 发明于20世纪70年代,是传统影像技术中最为成熟的成像模式之一,其速度已经快到可以对心脏实现动态成像。
其缺点是医生要在病人接收剂量和片厚之间进行折衷选择,空间分辨率和对比度的还需进一步提高。
(2)核磁共振成像(MIR) 发展于20世纪70年代,到80年代才进入市场,这种成像设备具有在任意方向上的多切片成像、多参数和多核素成像、可实现整个空问的真三维数据采集、结构和功能成像,无放射性等优点。
目前MRI的功能成像(fMRI) 是MIR设备应用的前沿领域,广泛应用于大脑功能性疾病的诊断,并为肿瘤等占位性病变提供功能信息。
MRI 受到世人的广泛重视,其技术尚在迅速发展过程中。
(3)核医学成像(NMI ) ,目前以单光子计算机断层成像(SPECT) 和正电子断层成像(PET) 为主,其基本原理是向人体注射放射性核素示踪剂,使带有放射性核素的示踪原子进入人体内要成像的脏器或组织通过测量其在人体内的分布来成像。
NMI不仅可以提供静态图像,而且可提供动态图像。
(4)超声波成像(Ultrasonic Imaging ) ,属于非电离辐射的成像模态,以二维平面成像的功能为主,加上血液流动的彩色杜普勒超声成像功能在内,在市场上已经广泛使用。
超声成像的缺点是图像对比度差、信噪比不好、图像的重复性依赖于操作人员。
图像处理技术综述
图像处理技术综述图像处理技术是应用于计算机视觉、计算机图形学、人工智能等领域的一种技术,用于改善或增强图像的质量、可视性、信息含量或拟合特定需求。
在当今信息技术快速发展的时代,图像处理技术已被越来越广泛地应用于医学、军事、安全监控、遥感、交通、广告等领域。
一、图像处理的基本流程1、获取图像首先需要获得图像,其方式很多。
例如,用专业摄像机或手机或扫描仪捕获图像。
另外,从互联网或其他共享资源中获取的图像也可以作为处理对象。
2、预处理图像在采集到图像数据后,需要对图像进行预处理。
这主要是为了去除噪声和畸变,以便更好地处理图像数据。
一些常见的操作包括滤波、均衡化、归一化和旋转等。
3、分割图像将图像分成若干个区域,通过分析这些区域来获取有用的信息。
分割可以基于颜色、亮度、纹理、图像特征、形状等进行。
4、提取特征提取图像中的特征是使用智能算法和其他技术来描述图像中重要的信息。
这些特征可以是纹理、边缘、角点或其他模式,并且可以用来判断图片是否满足特定要求。
5、抽取结构信息对于一些需要对图像进行量化和分析的应用,可以从图像中提取出具有代表性的结构信息。
应用某些算法,通过获取的特征和结构信息来分析图像。
根据分析的结果,可以识别物体、建立模型、人机交互等等。
图像滤波是一种常用的基本方法,它主要用于去除图像中的噪声。
常见的滤波方法有平均滤波、高斯滤波、中值滤波等。
图像增强技术是指通过算法将低质量的图像improved以获得更高质量的图像,例如提高对比度、清晰度、亮度等。
图像压缩是将数字图像压缩到尽可能小的空间,使其更容易存储和传输。
最常用的压缩方式是JPEG和PNG。
图像分割是将图像分割成不同的部分,每个部分对应相应的特征,这些部分组成面向目标识别和跟踪的区域。
常用而有效的算法包括K均值聚类、分水岭算法等。
特征提取是将图像中的信息抽象化作为特定可识别模式。
从图像中提取特征通常需要使用泛函分析和模式识别技术。
6、目标识别目标识别即在图像中找到和辨识特定目标,它应用于许多领域,例如医疗图像识别、移动机器人、军事目标等重要领域。
数字图像处理算法综述
数字图像处理算法综述数字图像处理是一种基于计算机技术的图像处理方法,其目的是通过对数字图像进行处理和分析,从中提取有用的信息,实现对图像的优化、增强和识别等功能。
数字图像处理算法是数字图像处理的核心,包括图像采集、预处理、图像变换、过滤与增强、分割与识别等方面。
本文将对数字图像处理算法进行综述。
一、图像采集与预处理图像采集是数字图像处理的第一步,其目的是从现实世界中捕获数字图像,并将其转化为计算机可以处理的数字形式。
图像预处理则是在采集后对图像进行预处理,包括噪声去除、图像增强等。
1.1 相机成像在数字图像处理中,相机成像是最基本的图像采集方法。
相机通过镜头将物体投射成图像,并通过感光元件(例如CCD、CMOS)将光信号转化为电信号。
然后,这些电信号经过模拟数字转换,最终转化为计算机可以处理的数字信号。
1.2 图像去噪图像噪声是数字图像处理中的常见问题,影响图像质量和识别效果。
去噪算法可以大幅提高图像质量。
常见的算法包括Wiener 滤波器、中值滤波器、均值滤波器、高斯滤波器等。
1.3 图像增强图像增强是数字图像处理中最常用的技术,通过增加图像的对比度、清晰度和亮度等方面,使图像更加清晰易读。
常用的算法包括直方图均衡化、灰度拉伸、锐化等。
二、图像变换图像变换指将图像在时域或频域上的变换,以提高图像的质量或方便后续的分析和处理。
常见的图像变换包括傅里叶变换、小波变换、离散余弦变换等。
2.1 傅里叶变换傅里叶变换是最为常见的图像变换算法之一,能够将图像转换到频域,分析图像的频率成分。
在数字图像处理中常用于滤波、去噪、特征提取等方面,尤其是在图像识别中有广泛应用。
2.2 小波变换小波变换是一种新型的图像变换方法,它能够将图像分解成不同频率不同尺度的小波基函数。
这种方法能有效地提取图像的局部特征,利用不同的小波基函数进行图像处理,能够准确地定位图像中有用信息所在位置。
三、图像过滤与增强图像过滤和增强是数字图像处理中的重要环节,可以帮助用户强化图像质量,提高图像处理和识别效果。
无人机拍摄图像处理技术综述
无人机拍摄图像处理技术综述无人机在摄影、测绘、灾害监测等领域中的应用逐渐增多,而图像处理技术在无人机拍摄图像中的应用也变得越来越重要。
本文将对无人机拍摄图像处理技术进行综述,包括图像获取、图像校正、图像增强、图像分析以及图像识别等方面的内容。
无人机通过搭载摄像头或相机,能够高空俯瞰、低空侦察,获取地面的图像信息。
但是,由于无人机飞行时的姿态变化、光照条件、测绘区域的地形等因素的影响,获取的图像可能会存在失真、模糊、光照不均匀等问题。
因此,图像校正是无人机拍摄图像处理的首要任务之一。
图像校正是指通过计算机图像处理技术对无人机拍摄的图像进行校正处理,使其更加符合实际地面情况。
常用的图像校正方法包括几何校正、辐射校正和光照校正。
几何校正主要通过图像配准、去畸变等手段,消除图像中的几何失真。
辐射校正主要是根据光谱信息对图像进行校正,提高其准确性和可靠性。
光照校正主要是调整图像中的亮度和对比度,使其更加清晰、真实。
在图像校正之后,图像的细节和信息可能仍然不够清晰,因此需要进行图像增强。
图像增强是指通过图像处理技术对图像进行改进,以增加图像的对比度、增强细节、减少噪声等。
常用的图像增强方法包括直方图均衡化、滤波和锐化等。
直方图均衡化通过调整图像的亮度分布,提高图像的对比度。
滤波主要通过滤波器对图像进行平滑处理,减少噪声。
锐化则是增强图像的轮廓和细节,使其更加清晰。
在图像增强之后,可以进行图像分析和图像识别。
图像分析是指通过计算机图像处理技术对图像进行分析和解释,提取出其中的特征。
无人机拍摄图像具有空间分辨率高、时间分辨率快的优势,因此特别适合用于测绘、农业、环境监测等领域的图像分析。
常用的图像分析方法包括目标检测、目标追踪、遥感图像分类等。
图像识别则是在图像分析的基础上,将图像中的目标或物体进行识别和分类。
常用的图像识别方法包括机器学习、深度学习和神经网络等。
总之,无人机拍摄图像处理技术在各个领域中都发挥着重要的作用。
电子信息工程中的图像处理与模式识别技术研究综述
电子信息工程中的图像处理与模式识别技术研究综述1. 引言图像处理与模式识别技术是电子信息工程中一项重要的研究领域。
随着科技的不断进步,图像处理与模式识别技术在各个领域都得到了广泛应用。
本文将对电子信息工程中的图像处理与模式识别技术进行综述,探讨其研究现状和未来发展方向。
2. 图像处理技术2.1 数字图像的获取与存储数字图像的获取是图像处理的前提,本节将介绍各种数字图像获取的方法以及图像的存储方式。
2.2 图像增强与滤波图像增强是提高图像质量的关键步骤,本节将介绍图像增强的常见方法以及滤波技术在图像处理中的应用。
2.3 图像分割与特征提取图像分割是将图像划分为不同区域的过程,本节将介绍图像分割的常用算法以及特征提取的方法。
2.4 图像压缩与编码图像压缩与编码是降低图像数据量的关键技术,本节将介绍常用的图像压缩与编码算法。
3. 模式识别技术3.1 模式识别的基本概念本节将介绍模式识别的基本概念,包括模式识别的定义、分类以及模式识别系统的一般框架。
3.2 特征提取与选择特征是模式识别中的关键要素,本节将介绍特征提取的方法以及特征选择的技术。
3.3 模式分类与识别模式分类与识别是模式识别技术的核心,本节将介绍常用的模式分类与识别算法。
3.4 监督学习与无监督学习监督学习和无监督学习是模式识别中常用的学习方法,本节将介绍监督学习和无监督学习的原理及应用。
4. 图像处理与模式识别在电子信息工程中的应用4.1 视觉传感技术图像处理与模式识别技术在视觉传感技术中得到了广泛应用,本节将介绍视觉传感技术在机器视觉、无人驾驶等领域的应用。
4.2 医学影像处理医学影像处理是电子信息工程中的重要应用领域,本节将介绍医学影像处理中图像处理和模式识别技术的应用。
4.3 安防监控与人脸识别安防监控和人脸识别是电子信息工程中常见的应用场景,本节将介绍图像处理和模式识别技术在安防监控和人脸识别中的应用。
5. 图像处理与模式识别技术的挑战与展望虽然图像处理与模式识别技术在各个领域都得到了广泛应用,但仍面临着一些挑战。
图像处理中的图像增强算法综述与比较
图像处理中的图像增强算法综述与比较概述:图像增强是数字图像处理领域的一个重要研究方向,目的是通过改善图像的视觉效果或提取出对应的有效信息。
在现实应用中,图像增强算法被广泛应用于医学图像处理、安防监控、遥感图像分析、电视视频处理等多个领域。
本文将综述与比较目前常用的图像增强算法,包括直方图均衡化、滤波器、Retinex 与算法、小波变换以及深度学习方法。
直方图均衡化:直方图均衡化是一种基本且被广泛使用的图像增强方法。
它通过对图像像素的灰度值分布进行调整,使得图像的像素灰度值能够均匀分布在整个灰度级范围内,从而改善图像的对比度和亮度。
传统的直方图均衡化算法可以有效地增强图像的整体对比度,但往往过度增强细节,导致图像出现失真。
滤波器:滤波器分为线性滤波器和非线性滤波器两种类型。
线性滤波器通常通过卷积运算来修改图像的空间频率特征,常用的线性滤波器包括均值滤波器、高斯滤波器和中值滤波器等。
非线性滤波器如边缘增强滤波器可以通过检测图像的边缘信息来增强图像的细节。
滤波器方法简单直观,但在处理图像噪声、复杂纹理、低对比度等问题时,效果有一定限制。
Retinex 算法:Retinex 算法是一种模拟人眼感知机制的图像增强方法,它主要专注于提高图像的亮度、对比度和颜色鲜艳度。
该算法基于假设,认为图像的亮度和颜色信息可以被分离开来,并通过增强亮度的同时保持颜色信息的稳定性。
Retinex 算法具有较好的图像局部细节增强效果,但对于整体对比度改善不够显著,且在对比度较低的图像上效果不佳。
小波变换:小波变换是一种基于时间-频率分析的图像增强方法,它将图像分解为多个不同频率的子带图像,然后对每个子带图像进行增强处理,并通过逆变换得到最终增强后的图像。
小波变换方法可以有效地增强图像的对比度和细节,能够提取出不同尺度的细节信息,并具有很好的图像重构能力。
但小波变换方法需要选择合适的小波基和阈值参数,且对图像处理时间较长。
深度学习方法:深度学习方法在图像增强领域取得了显著的成果。
图像处理文献综述【范本模板】
信息工程学院毕业设计文献综述姓名:学号:专业:班级:此栏为论文题目作者姓名:(塔里木大学信息工程学院**系**班,电话号码)摘要:在图像处理中,图像滤波起着重要作用。
它可以有效地抑制(平滑)各种噪声、保持边缘信息,从而改善后续处理工作的质量(如提高图像分割精度等)。
图像滤波的方法有很多,比如说中值滤波、均值滤波、高斯滤波、维纳滤波等,中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,均值滤波是把每个像素都用周围的8个像素来做均值操作,高斯滤波实质上是一种信号的滤波器,其用途是信号的平滑处理,本文着重对中值滤波、均值滤波和高斯滤波进行分析,进一步了解它们的原理、特点、改进的算法及其应用.关键词:图像;滤波;中值滤波;均值滤波;高斯滤波一、引言图像滤波就是采用一定的算法对数字图像进行处理,以获得人眼视觉或者某种接受系统所需要的图像处理过程。
[1]对图像滤波的要求是,既能滤除图像中的噪声又能保持图像的细节。
[2]由于噪声和图像细节的混叠,所以在图像滤波中,图像的去噪与细节的保留往往是一对矛盾。
数字图像滤波技术是20世纪60年代发展起来的一门新兴学科,随着图像滤波理论和方法的进一步完善,[3]使得数字图像滤波技术在各个领域得到了广泛应用,并显示出广阔的应用前景。
面对数字化时代的来临,图像滤波知识显得越来越重要,实际上图像滤波已经渗透到计算机、电子、地质、气象、医学等诸多领域.二、正文1、**的发展状况图像滤波的发展大致经历了初创期、发展期、普及期和实用化期4个阶段.初创期开始于20世纪60年代,当时的图像采用像素型光栅进行少秒显示,大多采用中、大型机对其处理.[5]在这一时期,由于图像存储成本高、处理设备昂贵,其应用面很窄。
进入20世纪70年代的发展期,开始大量采用中、小型机进行处理,图像处理也逐渐改用光栅扫描方式,特别是CT和卫星遥感图像的出现,对图像处理技术的发展起到了很好的推动作用。
医学图像处理技术综述
医学图像处理技术综述一、背景介绍医学图像处理技术是指将医学图像数据进行数字化,并通过计算机技术对其进行处理、分析和展示的一种技术。
自20世纪60年代开始,医学图像处理技术就已经开始应用于医学领域,如今已成为医学领域研究和临床诊断中不可或缺的重要技术之一。
二、医学图像处理技术的分类医学图像处理技术主要可分为预处理、分割、配准、重建、识别与分析等几个方面。
下面将一一进行介绍。
1. 预处理预处理是医学图像处理技术中非常重要的一个环节。
预处理主要是针对图像进行预处理,以提高图像的质量和精度。
常见的预处理方法包括滤波、增强、去噪等。
滤波是对图像进行平滑处理,以去除图像中的噪声。
滤波方法较多,如均值滤波、高斯滤波、中值滤波等。
而图像增强则是对图像进行亮度、对比度、色彩等方面进行调整,以增强图像的信息内容。
常见的增强方法包括直方图均衡化、Wiener滤波等。
2. 分割分割是指对医学图像中代表不同组织和器官的像素进行区分,以便对不同的组织或器官进行分析和诊断。
常见的分割方法包括阈值分割、区域生长方法等。
阈值分割是指在图像中设定阈值,将像素根据其灰度值的高低分为不同的区域。
而区域生长方法则是根据像素之间的相似性,将图像分为多个区域。
3. 配准配准是指将不同的医学图像进行对齐,以实现不同图像之间的比较和分析。
常见的配准方法包括刚体变换、非刚体变换、弹性变形等。
刚体变换是指通过旋转、平移、缩放等变换方式,将不同图像进行对齐。
而非刚体变换和弹性变形则更适合对不同形状、尺寸差异较大的图像进行对齐。
4. 重建重建是指将2D的医学图像转化为3D的模型,以更好地进行分析和诊断。
常见的重建方法包括层次重建、投影重建等。
层次重建是通过对2D图像进行横向和纵向的重叠拼接,将其重建为3D模型。
而投影重建则是通过CT等技术,将多个2D图像进行堆叠并投影,最终重建为3D模型。
5. 识别和分析医学图像处理技术的最终目的是对不同的组织和器官进行诊断和分析。
图像处理中的图像特征提取算法综述
图像处理中的图像特征提取算法综述图像处理是计算机视觉领域的一个重要研究方向,而图像特征提取算法则是图像处理的核心之一。
图像特征提取是从图像中提取出有用信息的过程,可以用于图像分类、目标检测、图像检索等各种任务。
本文将综述图像处理中的图像特征提取算法,并对各种算法的优缺点进行评述。
一、传统图像特征提取算法1. 颜色特征提取算法颜色是图像中最直观的特征之一,许多图像处理任务中都需要考虑颜色特征。
常见的颜色特征提取算法有色彩直方图、颜色矩和颜色熵等。
色彩直方图统计图像中每种颜色的像素个数,可以用于颜色分布的分析;颜色矩则通过计算像素值的均值和方差来描述颜色的分布特征;颜色熵用于衡量图像中颜色的复杂程度,可以区分不同图像的颜色分布情况。
2. 纹理特征提取算法纹理是图像中的重要特征,可以用于图像分类、图像检索等任务。
传统的纹理特征提取算法主要有灰度共生矩阵(Gabor 滤波器和局部二值模式(LBP)等。
灰度共生矩阵基于像素灰度值的概率分布来计算纹理特征,常用的特征包括对比度、能量、熵和相关性等;Gabor滤波器是一种基于频率和方向特征的纹理特征提取方法,可以提取出图像中的边缘和纹理信息;LBP是一种用于描述图像局部纹理的方法,可以通过比较像素值大小来得到二值编码表示。
3. 形状特征提取算法形状是图像中的高级特征,可以表示物体的几何结构。
常见的形状特征提取算法有边缘检测、轮廓匹配和形状上下文等。
边缘检测算法通常利用图像的梯度信息来提取物体的边缘,包括Sobel算子、Canny边缘检测算法等;轮廓匹配算法是通过对比图像边缘的形状特征来进行物体匹配,可以用于目标检测和物体识别;形状上下文是一种基于统计的形状特征提取方法,通过计算物体边缘点之间的关系来描述物体的形状。
二、深度学习在图像特征提取中的应用传统的图像特征提取算法需要手动设计特征提取算子,存在人为主观因素,且很难处理复杂的图像语义信息。
而深度学习通过神经网络自动学习图像的特征表示,正在逐渐改变图像特征提取的方式。
医学影像中的图像处理技术综述
医学影像中的图像处理技术综述医学影像是现代医学中不可或缺的技术手段,它通过非侵入性的方式获取医学图像,帮助医生诊断疾病并制定治疗方案。
而图像处理技术作为医学影像的重要组成部分,为医生提供了更加清晰、准确的图像信息,进一步提高了医学影像的诊断效果和临床应用价值。
一、图像处理技术在医学影像中的应用医学影像的图像处理技术在很多方面都起到了重要作用。
首先,图像增强是一项常用的技术,它可以通过增加图像的对比度、增强细节等方式改善图像质量。
这对于医生在诊断疾病时提供更加清晰的图像信息非常重要。
其次,图像分割是指将医学图像中感兴趣的区域从背景中分离出来,以便进行进一步的分析和处理。
例如,在肿瘤检测中,医生可以使用图像分割技术将肿瘤区域从正常组织中分离出来,有助于准确判断肿瘤的位置和大小。
再次,图像配准是指将多个不同时间点或不同模态的医学图像进行对齐,方便医生进行对比分析。
最后,图像重建是指根据有限的投影数据重建出高质量的图像,这在医学影像中的临床应用非常广泛。
二、常见的医学影像图像处理技术在医学影像中,常见的图像处理技术包括滤波、边缘检测、形态学处理、特征提取等。
滤波是图像处理中常用的一种技术,它可以通过消除图像中的噪声、增加图像的对比度等方式改善图像质量。
边缘检测是指通过计算图像中灰度值的变化来检测图像中物体的边缘。
形态学处理是一种基于图像形态学理论的图像处理技术,它可以通过膨胀、腐蚀等操作改变图像的形状和结构。
特征提取是指从医学图像中提取出与疾病相关的特征信息,这对于医生进一步分析和诊断疾病非常重要。
三、图像处理技术的发展与挑战随着医学影像技术的快速发展,图像处理技术在医学影像中的应用也越来越广泛。
然而,图像处理技术在实际应用中还面临一些挑战。
首先,医学图像的复杂性使得图像处理技术的应用变得更加困难。
尤其是在疾病的早期诊断和子结构的分割等方面,需要更加精确和准确的图像处理技术。
其次,医学图像的数据量庞大,对图像处理技术提出了更高的要求。
高分辨率卫星影像的图像处理方法综述
高分辨率卫星影像的图像处理方法综述随着高分辨率卫星影像获取技术的不断进步,卫星影像的质量得到了极大的提高。
然而,由于高分辨率卫星影像的数据量庞大,传统的图像处理方法往往难以充分利用这些数据,因此需要对高分辨率卫星影像进行专门的图像处理。
本文将对目前常用的高分辨率卫星影像的图像处理方法进行综述。
一、图像预处理图像预处理是高分辨率卫星影像处理的第一步,旨在提高图像的质量和适用性。
常见的图像预处理方法包括图像去噪、图像增强和辐射校正。
1. 图像去噪由于卫星影像获取受到天气、气候等因素的影响,获取的图像常常受到噪声的干扰。
图像去噪的目的是减少噪声对图像的影响,提高图像的清晰度和细节表现。
常用的图像去噪方法有中值滤波、小波去噪和自适应滤波等。
2. 图像增强图像增强旨在改善卫星影像的视觉效果,使图像更易于观察和分析。
常用的图像增强方法包括直方图均衡化、拉普拉斯增强和对比度增强等。
这些方法能够提高图像的亮度、对比度和细节表现。
3. 辐射校正高分辨率卫星影像的获取受到大气影响,导致图像中出现辐射失真。
辐射校正的目的是去除大气散射和大气吸收引起的辐射失真,使图像更符合地物的真实表现。
辐射校正常用的方法有大气校正和模拟光谱等。
二、图像分类与识别图像分类和识别是对高分辨率卫星影像进行有效利用的重要手段。
通过图像分类和识别,可以将卫星影像中的地物进行自动化识别,为遥感应用提供基础数据。
常用的图像分类与识别方法包括遥感图像分类和深度学习等。
1. 遥感图像分类遥感图像分类是指将遥感图像中的像素或像元划分为不同的类别,如水域、植被、建筑等。
常用的遥感图像分类方法有传统的基于像元的分类方法和面向对象的分类方法。
基于像元的分类方法利用像素的光谱信息进行分类,而面向对象的分类方法则将相邻像素组成的对象作为分类的基本单元。
2. 深度学习深度学习是近年来兴起的一种图像分类和识别方法。
通过构建深度神经网络模型,可以实现对图像的自动分类和识别。
计算机图形图像处理技术综述
计算机图形图像处理技术综述一、引言计算机图形图像处理技术的发展可以追溯到1960年代,随着计算机硬件和软件的不断发展,图形图像处理技术的应用越来越广泛,逐渐成为计算机科学中一个重要的研究领域。
本文将综述图形图像处理技术的发展历程和应用领域,重点介绍图像处理算法和技术。
二、图形图像处理技术的发展历程1. 可编程图形处理器(GPU)GPU于20世纪90年代中期推出,其强大的并行运算能力使得其成为计算机图形图像处理领域的重要技术。
GPU主要用于加速渲染和图像处理等领域,其性能已经超越了传统的中央处理器(CPU)。
随着GPU技术的不断提升,GPU已经成为计算机图形图像处理领域的重要技术之一。
2. 数字图像处理技术数字图像处理技术是指用数字计算机对图像进行处理和分析的技术。
随着计算机技术和数字图像技术的不断发展,数字图像处理技术已经广泛应用于医学图像处理、遥感图像处理等领域。
数字图像处理技术的研究成果在不断地推动着图像处理技术的发展。
3. 图像识别技术图像识别技术是指在计算机上对图像进行识别和分类的技术。
这种技术包含了数字图像处理技术、机器学习、统计学等多个领域,而机器学习是其中的重要技术,包括支持向量机(SVM)、神经网络、决策树等算法。
图像识别技术已经被广泛应用于人脸识别、自然语言处理等领域。
4. 视频处理技术视频处理技术是指对视频进行处理和分析的技术,包括视频压缩、视频编解码、视频传输等,这些技术都是实现高质量视频传输的基础。
视频处理技术已经在实时视频会议、视频监控、互联网直播等领域得到广泛应用。
三、图形图像处理技术的应用领域1. 模拟仿真模拟仿真是一种通过计算机图形图像处理技术来模拟真实环境的技术。
它被广泛应用于航空、汽车、航天等领域中,以及军事训练、医疗仿真中等领域,为这些领域的发展做出了巨大贡献。
2. 数字非接触式测量技术数字非接触式测量技术是指通过计算机图形图像处理技术来进行测量的技术。
此技术可广泛应用于多个领域,包括工业、医学、军事等,能够大幅度提高精度和生产效率。
图像处理技术综述
图像处理技术综述图像处理技术是指利用计算机对图像进行处理的一种技术。
图像处理技术广泛应用于电视、摄影、图像识别、医学影像分析等领域。
本文将对图像处理技术进行综述,包括基本概念、常见方法及应用领域。
图像处理技术主要包括图像获取、图像增强、图像恢复、图像编码、图像分割和图像识别等几个方面。
图像获取是指从物理世界中获取图像的过程。
常见的图像获取设备包括摄像机和扫描仪。
摄像机通过感光器将光信号转换为电信号,并经过采样和量化等过程得到数字图像。
扫描仪则通过扫描物体获得图像。
图像获取的质量直接影响后续图像处理结果的准确性。
图像增强是指通过一系列处理方法增强图像的视觉效果。
常见的图像增强方法有直方图均衡化、滤波和锐化等。
直方图均衡化通过调整图像的像素灰度分布来增强图像的对比度。
滤波方法通过去除噪声和平滑图像来增强细节。
锐化方法通过增强图像的边缘和细节来使图像更加清晰。
图像恢复是指通过一系列处理方法恢复损坏或失真的图像。
常见的图像恢复方法有去模糊和去噪声等。
去模糊方法通过估计图像模糊模型来恢复被模糊的图像。
去噪声的方法通过滤波等处理来去除图像中的噪声,从而使图像更加清晰。
图像编码是指将图像数据通过编码压缩算法转换为更小的数据量。
常见的图像编码方法有无损编码和有损编码等。
无损编码方法通过保留所有图像信息来实现压缩,如Huffman和LZW编码。
有损编码方法通过牺牲一定的图像信息来实现更高的压缩率,如JPEG和MPEG编码。
图像分割是指将图像分割为多个子区域的过程。
图像分割可以将图像中的目标物体从背景中分离出来,为后续的图像分析和处理提供基础。
常见的图像分割方法有阈值分割、边缘检测和区域生长等。
图像识别是指根据图像的特征对图像进行分类和识别的过程。
图像识别常用于物体识别、人脸识别和文字识别等领域。
图像识别主要依靠特征提取和分类器来实现。
常见的特征提取方法有SIFT、SURF和HOG等。
常见的分类器有SVM、KNN和神经网络等。
图像处理技术综述
图像处理技术综述图像处理技术是指通过对图像进行采集、处理和分析,来提取有价值的信息或改变图像的质量或特征的一系列技术。
随着计算机视觉的发展和应用的广泛,图像处理技术变得日益重要。
本文将对图像处理技术进行综述。
图像处理技术主要包括图像采集、图像增强、图像复原、图像压缩、图像分析和图像识别等多个方面。
图像采集是图像处理的第一步,是指通过摄像机或其他设备获取图像数据。
图像采集技术包括光学成像、电子成像、红外成像、超声成像等。
光学成像是最常用和最常见的图像采集方式,它通过摄像机的镜头将光信号转换为电信号。
电子成像技术则是通过电子感光元件来转换光信号为电信号。
图像增强是指通过增加图像的对比度、清晰度或改善图像的质量来提高图像的可视化效果。
图像增强技术包括灰度变换、直方图均衡化、滤波等。
灰度变换是一种对图像的亮度或对比度进行变换的方法,常用的方法有线性变换和非线性变换。
直方图均衡化是将输入图像的直方图变换为均匀直方图的过程,以提高图像的对比度。
滤波则是通过对图像进行空间域或频域滤波来增强或去除噪声。
图像复原是指通过恢复图像的原始信息或去除图像中的噪声或模糊,来提高图像的质量和可视化效果。
图像复原技术包括退化模型、滤波器设计、最小二乘估计等。
退化模型是描述图像退化过程的数学模型,常用的模型有模糊模型、噪声模型等。
滤波器设计是通过设计合适的滤波器来恢复图像的原始信息。
最小二乘估计是一种优化方法,通过最小化残差平方和来估计图像的原始信息。
第四,图像压缩是将图像数据进行编码和压缩,以减少存储和传输的数据量。
图像压缩技术包括有损压缩和无损压缩。
有损压缩是指通过去除图像中的冗余信息或者降低图像的质量,以达到压缩数据量的目的。
无损压缩则是通过编码和解码来压缩和解压缩图像数据,以保留原始图像的质量。
图像分析和图像识别是通过对图像进行特征提取和分类来实现图像的自动分析和理解。
图像分析技术包括边缘检测、特征提取、目标检测等。
边缘检测是通过检测图像中的边缘来提取图像的轮廓和形状信息。
超分辨率图像处理算法综述
超分辨率图像处理算法综述随着数码相机、智能手机等数码设备的普及,人们对于图像质量的要求愈发高涨。
而在实际拍摄过程中,由于多种原因,如光线、拍摄距离等,图片分辨率往往无法满足要求。
此时,超分辨率图像处理算法作为一种提升图像质量的有效方法,开始受到越来越多的关注。
本文将对超分辨率图像处理算法进行综述。
一、超分辨率图像处理算法简介超分辨率图像处理算法(Super Resolution Image Processing Algorithm,简称SR)是一种图像处理技术,可以将低分辨率图像通过某种方法得到比原图更高分辨率的图像。
该算法通常通过图像插值、超分辨率重建、金字塔等技术实现,从而达到提高图像的分辨率、清晰度和细节度的目的。
二、超分辨率图像处理算法分类1. 基于插值的算法最简单、也是最直接的方法是行插值和列插值。
这种方法非常适合将给定图像的大小扩大一个整数倍。
该方法可以轻松地采用基于像素的插值来将图像的大小扩大。
然而,此类算法的缺点是无法保留图像的细节特征和质量。
2. 基于重建的算法基于重建的算法通过学习低分辨率图像与其相对应的高分辨率图像之间的关系,从而实现超分辨率。
这类算法通常可以分为优化方法和非优化方法两种。
其中优化方法中最主要的有最小二乘重建法、Lanczos插值等,利用它们可以实现更好的超分辨率效果。
非优化方法则通常使用复杂的神经网络结构来重构高分辨率图像。
3. 基于金字塔的算法金字塔具有多尺度分析和比较好的计算效率,尤其是在ULI(Unifying Multiscale Image Representation)金字塔算法中,使用了贪心算法,最终实现了逐级上采样,从而获得高质量的超分辨率图像。
三、超分辨率图像处理算法的应用超分辨率图像处理算法被广泛应用在各种领域。
例如,在医疗领域中,可以通过对低分辨率图像处理,从而获得更高的分辨率和细节,从而提高患者治疗、诊断的精度。
在安防领域中,可以通过对低分辨率视频进行处理,从而获得更高清晰、细节更多的视频图像,有利于犯罪侦查等工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理综述摘要:本文主要阐述了数字图像处理的发展以及图像处理的主要方法技术,并系统分析了数字图像处理技术的主要优缺点。
综合地介绍了数字图像处理的应用以及在传统应用领域和热门应用领域的发展。
并提出了图像处理未来的研究方向。
关键词:数字图像处理、图像编码、小波变换,视频压缩,矩阵,现状与展望引言图像处理技术基本可以分成两大类:模拟图像处理(Analog Image Processing)和数字图像处理(Digital Image Processing)。
数字图像处理是指将图像信号转换成数字信号并利用计算机进行处理的过程。
图像是指物体的描述信息。
数字图像则是一个物体的数字表示。
图像处理则是对图像信息进行加工以满足人的视觉心理和应用需求的行为。
数字图像处理是它是一门新兴的应用学科,其发展速度异常迅速,应用领域极为广泛。
数字图像处处理(Digital Image Processing)是将图像信号转换成数字信号并利用计算机对其进行处理。
起源于20世纪20年代,20世纪60年—70年随着计算机技术与数字电视技术的普及和发展而迅速发展。
在80年代——90年代才形成独立的科学体系。
早期数字图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
目前该技术已广泛用于科学研究、工农业生产、生物医学工程、航空航天、军事、工业、机器人产业、政府职能机关文化文艺等多领域。
并在其中发挥着越来越大的作用,已成为一门引人注目、前景广阔的新型学科。
早期数字图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
目前该技术已广泛用于科学研究、工农业生产、生物医学工程、航空航天、军事、工业、机器人产业、政府职能机关文化文艺等多领域。
并在其中发挥着越来越大的作用,已成为一门引人注目、前景广阔的新型学科。
一、数字图像处理的起源及发展数字图像处理起源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。
数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
数字图像处理作为一门学科大约形成于20世纪60年代初期。
早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
首次获得实际成功应用的是美国喷气推进实验室(JPL)。
他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。
随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。
在以后的宇航空间技术,如对火星、土星等星球的探测研究中,数字图像处理技术都发挥了巨大的作用。
数字图像处理取得的另一个巨大成就是在医学上获得的成果。
1972年英国EMI公司工程师Housfield 发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT (Computer Tomograph)。
CT的基本方法是根据人的头部截面的投影,经计算机处理来重建截面图像,称为图像重建。
1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。
1979年,这项无损伤诊断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献。
与此同时,图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注目、前景远大的新型学科。
随着图像处理技术的深入发展,从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。
人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。
很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。
其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉领域其后十多年的主导思想。
图像理解虽然在理论方法研究上已取得不小的进展。
20世纪80年代,可以处理2-D和3-D图像,90年代后图像成立占信息处理的主要地位。
1996年提出图像工程这一新学科。
当前,图像处理面临的主要任务是研究新的处理方法,构造新的处理系统,开拓更广泛的应用领域。
需要进一步研究的问题的如下五个方面:1)在进一步提高精度的同时着重解决处理速度问题。
如,在航天遥感、气象云图处理方面,巨大的数据量和处理速度仍然是主要矛盾之一。
2)加强软件研究、开发新的处理方法,特别要注意移植和借鉴其他学科的技术和研究成果,创造新的处理方法。
3)加强边缘学科的研究工作,促进图像处理技术的发展。
如,人的视觉特性、心理学特性等的研究,如果有所突破,将对图像处理技术的发展起到极大的促进作用。
4)加强理论研究,逐步形成图像处理科学自身的理论体系。
5)图像处理领域的标准化。
图像的信息量大、数据量大,因而图像信息的建库、检索和交流是一个重要的问题。
就现有的情况看,软件、硬件种类繁多,交流和使用极为不便,成为资源共享的严重障碍。
应建立图像信息库,统一存放格式,建立标准子程序,统一检索方法。
二、数字图像处理研究的内容及方法(一)数字图像处理技术的研究内容主要有以下几个方面:(1) 图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理。
小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中有着广泛而有效的应用。
(2) 图像编码压缩图像编码压缩技术可减少描述图像的数据量,以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
(3) 图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。
图像复原要求对图像降质的原因有一定的了解,一般应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
(4) 图像分割图像分割是将图像中有意义的特征部分提取出来,这是进一步进行图像识别、分析和理解的基础。
目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。
因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。
(5) 图像描述图像描述是图像识别和理解的必要前提。
作为最简单的二值图像可采用其几何特性描述物体的特性;一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法;对于特殊的纹理图像可采用二维纹理特征描述。
随着研究的深入发展,已开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。
(6) 图像分妻(识别)图像分类属于模式识别的范畴,主要内容是图像经过某些预处理后,进行图像分割和特征提取,从而进行分类。
图像分类常采用经典的模式识别方法。
近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。
(二)数字图像处理按处理方法分,主要有以下三类,即图像到图像的处理,图像到数据的处理和数据到图像的处理。
(1)图像到图像。
图像到图像的处理,其输入和输出均为图像。
这种处理技术主要有图像增强、图像复原和图像编码。
首先,各类图像系统中图像的传送和转换中,总要造成图像的某些降质。
第一类解决方法不考虑图像降质的原因,只将图像中感兴趣的特征有选择的突出,衰减次要信息,提高图像的可读性,增强图像中某些特征,使处理后的图像更适合人眼观察和机器分析。
这类方法就是图像增强。
例如,对图像的灰度值进行修正,可以增强图像的对比度;对图像进行平滑,可以抑制混入图像的噪声;利用锐化技术可以增强图像的边缘轮廓;利用几何校正技术可以校正遥感图像的几何畸变;将灰度值表示转换为彩色表示,可以使人眼能分更多的图像细节。
通过图像增强处理,使图像比处理前更适合一个应用,如用于显示、打印、印刷、分析、创意等。
第二类解决方法针对图像降质的原因,设法补偿降质因素,使改善后的图像尽可能接近原图像。
这类方法称为图像复原。
图像复原是试图利用图像的退化过程,建立相应的数学模型,沿着图像降质的逆过程.把已经退化的图像加以重建和复原,其目的是去除干扰和模糊,从而恢复图像的本来面目。
其次,大数据量的图像信息会给存储器的存储容量、通信干线的带宽,以及计算机的处理速度增加极大的压力,因此需要对图像进行压缩处理或压缩编码,即是在保持一定图像质量的条件下,以尽可能少的比特数来表示图像,目的是节约图像存储空间、减少传输信道的容量、缩短图像加工处理时间。
在数字图像处理领域中常用的编码有信息保持编码,保真度编码和特征提取编码,具体方法有行程长度编码(RLE)法、LZW编码法、霍夫曼编码法(Huffman encoding)、预测及内插编码法、矢量量化编码法、变换编码法(如K-L 变换编码和DCT编码)、模型法编码等。
近些年来,分形编码和小波变换的技术也越来越多的应用在图像压缩的领域中,但是大多仍处于研究试用阶段,常见的图像压缩方法仍以前面介绍的为主。
当然,在实际的应用中,多种图像压缩方法往往是结合起来使用的,如JPEG等,压缩过程可分为颜色模式转换及采样、DCT 变换、量化、编码几部分。
(2)图像到数据。
图像到数据的处理,其输入为图像,其输出为输入图像内容的各种符号表示。
这类图像处理技术包括图像分割、图像识别、特征提取等。
图像分割的任务是把图像空间按特征分离成互不交叠的有意义的区域,以便进一步对图像进行分析、识别、压缩编码等。
图像分割通常可以按幅度不同、按边缘不同、按形状不同来划分各个区域等。
常用的幅度分割方法是把图像的灰度分成不同的等级,然后用设置灰度值的方法确定有意义的区域或欲分割物体的边界。
图像分割的应用十分广泛,几乎出现在有关图像处理的所有领域。
例如遥感云图中不同云系和背景分布的分割;在医学应用中脑部MR图像分割成灰质、白质等脑组织和其他非脑组织区域;在交通图像分析中,把车辆目标从背景中分割出来等等。
图像识别,也称为模式识别,是数字图像处理的一个新兴的研究方向。