数学必修三随机事件的概率(1)

合集下载

高中数学 第三章 概率 3-1-1随机事件的概率 新人教A版必修3

高中数学 第三章 概率 3-1-1随机事件的概率  新人教A版必修3

________,称事件A出现的比例fn(A)=
nA n
为事件A出现的
________.
(2)由于事件A发生的次数至少为0,至多为n,因此事件A
的频率范围为________.
ቤተ መጻሕፍቲ ባይዱ
(3)对于给定的随机事件A,如果随着试验次数的增加,事 件A发生的频率fn(A)稳定在某一常数上,把这个常数记作 P(A),称为事件A的________,即用________估计________.
(4)技术充分发达后,不需要任何能量的“永动机”将会 出现;
(5)标准大气压下,水加热到100 ℃沸腾; (6)平面三角形的内角和是180°; (7)骑车到十字路口遇到红灯; (8)某人购买福利彩票5注,均未中奖;
(9)没有水分种子发芽; (10)在标准大气压下,温度低于0 ℃时,冰融化. 【分析】 判定事件是一定发生,还是不一定发生,还是 一定不发生.
2.正确理解“频率”与“概率”之间的关系 随机事件的频率,指此事件在同一条件下发生的次数与试 验总次数的比值,它具有一定的稳定性,总在某个常数附近摆 动,且随着试验次数的不断增多,这种摆动幅度一般越来越 小.我们给这个常数取一个名字,叫做这个随机事件的概 率.概率可看作频率在理论上的期望值,它从数量上反映了随 机事件发生的可能性的大小.频率在大量重复试验的前提下可 近似地作为这个事件的概率.
二 对试验结果的判断
【例2】 某人做试验,从一个装有标号为1,2,3,4的小球的 盒子中,无放回地取两个小球,每次取一个,先取的小球的标 号为x,后取的小球的标号为y,这样构成有序实数对(x,y).
(1)写出这个试验的所有结果; (2)写出“第一次取出的小球上的标号为2”这一事件. 【分析】 无放回地取小球两次,所以抽取的两个小球的 号码不同,即x≠y.

人教版 数学 必修3 3.1.1随机事件的概率(共14张ppt)

人教版 数学 必修3   3.1.1随机事件的概率(共14张ppt)

100个,必有10件次品;
(2)做7次抛硬币试验,结果3次出现正面,因此,出现
正面的概率是 3/7;
A. (3)随机事件发生的频率就是这个随机事件发生的概

B. A . 0
B. 1
C. 2
D. 3
懂得如何避开问题的人,胜过知道怎样解决问题的人。在这个世界上,不知道怎么办的时候,就选择学习,也许是最佳选择。胜出者往往不是能力而是观念!在 永远是家,走出去看到的才是世界。把钱放在眼前,看到的永远是钱,把钱放在有用的地方,看到的是金钱的世界。给人金钱是下策,给人能力是中策,给人观 财富买不来好观念,好观念能换来亿万财富。世界上最大的市场,是在人的脑海里!要用行动控制情绪,不要让情绪控制行动;要让心灵启迪智慧,不能让耳朵 人与人之间的差别,主要差在两耳之间的那块地方!人无远虑,必有近忧。人好的时候要找一条备胎,人不好的时候要找一条退路;人得意的时候要找一条退路 时候要找一条出路!孩子贫穷是与父母的有一定的关系,因为他小的时候,父母没给他足够正确的人生观。家长的观念是孩子人生的起跑线!有什么信念,就选 有什么态度,就会有什么行为;有什么行为,就产生什么结果。要想结果变得好,必须选择好的信念。播下一个行动,收获一种习惯;播下一种习惯,收获一种 一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性格会影响人生!习惯不加以抑制,会变成生活的必需品, 随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你到哪里去。当你在埋头工作 定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失 永远不会失去自己!这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断 是智慧!世上本无移山之术,惟一能移山的方法就是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!学一分退让 宜;增一分享受,减一分福泽。念头端正,福星临,念头不正,善人行善,从乐入乐,从明入明;行恶,从苦入苦,骨宜刚,气宜柔,志宜大,胆宜小,心宜虚 慧宜增,福宜惜,虑不远,忧亦近。人之所以痛苦,在于追求错误的东西。你目前拥有的,都将随着你的而成为他人的。那为何不现在就给真正需要的人呢?如 往,凡做事应有余步。我们最值得自豪的不在于从不跌倒,而在于每次跌倒之后都爬得起来。见己不是,万善之门。见人不是,诸恶之根。为了向别人、向世界 努力拼搏,而一旦你真的取得了成绩,才会明白:人无须向别人证明什么,只要你能超越自己。没有哪种教育能及得上逆境。如果你想成功,那么请记住:遗产 第一、学习第二、礼貌第三、刻苦第四、精明第五。任何的限制,都是从自己的内心开始的。失败只是暂时停止成功,假如我不能,我就一定要;假如我要,我 无论你如何为他人着想,烦你的人眼里,你就是居心叵测;不管你怎样据理力争,不懂你的人心里,你就是胡搅蛮缠。最后你会发现,有些事不是你做错了,而 人;有些人不是不理解你,而是根本不想懂你。不管怎样,生活还是要继续向前走去。有的时候伤害和失败不见得是一件坏事,它会让你变得更好,孤单和失落 每件事到最后一定会变成一件好事,只要你能够走到最后。工资是发给日常工作的人,高薪是发给承担责任的人,奖金是发给做出成绩的人,股权是分给能干忠 誉是颁给有理想抱负的人,辞退信将送给没结果还耍个性的人,这里一定有个你。内心想成为什么样的人,就会努力成为这样的人,做你想做的那种人。与其指 谁,不如指望自己能够吸引那样的人;与其指望每次失落的时候会有正能量出现温暖自己,不如指望自己变成一个正能量满满的人;与其担心未来,不如现在好 虹绚烂多姿,是在与狂风暴雨争斗之后;枫叶似火燃烧,是在与秋叶的寒霜争斗之后;雄鹰的展翅高飞,是在与坠崖的危险争斗之后。他们保持着奋斗的姿态

(完整版)高中数学第三章第1节随机事件的概率(理)知识精讲人教新课标A版必修3

(完整版)高中数学第三章第1节随机事件的概率(理)知识精讲人教新课标A版必修3

选项 B ,由于射击 10 次,中 8 次,能说明击中靶心的概率为 0.8,选项 B 的说法正确。
选项 C,由直线方程我们可以知道这是直线的点斜式方程,过定点(- 观的事实,因此是必然事件。故选项 C 的说法正确。
1, 0),这是客
选项 D ,根据先后抛掷两枚硬币,共出现四种情况:两面都正,两面都反,一个正面一
用心 爱心 专心
射击次数 n
10
20
50
100
200
500
击中靶心次数 m
8
19
44
92
178
455
m
击中靶心的频率
n
( 1)填写表中击中靶心的频率;
( 2)这个射手射击一次,击中靶心的概率约是多少?
【思路分析】
题意分析: 本题考查事件的频率这一基本概念,及频率与概率的关系的运用。
解题思路: 事件 A 出现的频数 nA 与试验次数 n 的比值即为事件 A 的频率,当事件 A
个反面, 一个反面一个正面, 那么出现两枚硬币都是反面的概率为 故答案为 D 。
1/4。选项 D 的说法错误。
【题后思考】 通过这几个选项, 我们充分认识到概率的基本概念及其性质的重要性,

此要熟练理解和掌握这些概念和性质。
例 6: 下列说法:( 1)频率反映的是事件发生的频繁程度,概率反映的是事件发生的可能
性的大小;( 2)做 n 次随机试验,事件 A 发生的频率 m 就是事件的概率; ( 3)百分率是频 n
率,但不是概率; (4)频率是不能脱离具体的 n 次试验的实验值,而概率是具有确定性的不
依赖于试验次数的理论值; ( 5)频率是概率的近似值,概率是频率的稳定值。 其中正确的是

人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率 课件.(共29张PPT)

人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率  课件.(共29张PPT)
0.506 0.501 0.5005 0.499 0.501
频率m/n
1
德 . 摩根 蒲 丰 皮尔逊 皮尔逊
维尼 维尼
ቤተ መጻሕፍቲ ባይዱ0.5
2048 4040 12000
24000 30000
抛掷次数n
72088
电脑模拟抛硬币
概率
分析探讨 形成概念
概率
在上面抛硬币 的试验中,正面 朝上的频率是一 个变化的量,但 当试验次数比较 大时,出现正面 朝上的频率都在 0.5附近摆动
❖2、过程与方法目标:
通过数学试验,观察、发现随机事件的统计 规律性,了解通过大量重复试验,用频率估计概 率的方法。
❖3、情感态度与价值观目标:
通过发现随机事件的发生既有随机性,有存 在着统计规律性的过程,体会偶然性和必然性的 对立统一。
重难点分析
概率
重点:概率的意义
难点:通过观察数据图表,总结出在大量重 复试验的情况下,随机事件发生呈现出的 规律性。 重、难点突破:给学生亲自动手操作的机会, 使学生在试验过程中形成对随机事件发生 的随机性以及随机性中表现出的规律性的 直接感知。
3.抛一枚硬币出现正面向上的概率为0.5, 所以抛12000次时,出现正面向上的次数 可能为6000 。
新知演练 深化概念
函数
活动:让学生分组讨论交流,比一比哪一组 的例子最多、最贴切!
[设计意图]学生已经接受了概率概念,区分了频率和概率,
学生自然会问:研究随机事件的概率有何意义?此时教师给出 具体例子(天气预报、保险业、博彩业)组织学生讨论概率的 意义,能加深学生对概念的理解.
作为课堂的延伸,你课后还想作些什么探究?
设计意图:把孤立的知识点变成知识体系.

人教课标版高中数学必修三《随机事件的概率(第1课时)》教案-新版

人教课标版高中数学必修三《随机事件的概率(第1课时)》教案-新版

第三章概率3.1 随机事件的概率第1课时一、教学目标1.核心素养通过随机事件概率的学习.初步形成数据分析能力与抽象概括的能力.2.学习目标(1)了解随机事件发生的不确定性.(2)理解随机事件的规律性.(3)进一步理解概率的意义.(4)利用概率的意义解释生活中的事例.3.学习重点频率与概率的关系,对概率含义正确理解.4.学习难点频率与概率的关系,对概率含义正确理解.二、教学设计(一)课前设计1.预习任务任务1阅读教材P108,思考:如何判定一个事件是必然事件、不可能事件还是随机事件?随机事件说法中“同样的条件下”能否去掉?请举例说明.任务2阅读教材P113—118. 明白概率的意义及其在生活中的指导性作用!2.预习自测1.指出下列事件哪些是必然事件.A.某地1月1日刮西北风;B.当x是实数时,x2≥0;C.手电筒的电池没电,灯泡发亮;D.一个电影院某天的上座率超过50%.解:B2.某种新药在使用的患者中进行调查的结果如下表:请填写表中有效频率一栏,则该药的有效概率是多少?A.84% B.87%C.88% D.90%解:C(二)课堂设计1.知识回顾(1)必然事件:有些事件我们事先能肯定其一定会发生;(2)不可能事件:有些事件我们事先能肯定其一定不会发生;(3)随机事件:有些事件我们事先无法肯定其会不会发生;(4)举出现实生活中随机事件,必然事件,不可能事件的案例.2.问题探究问题探究一创设情景,体会随机事件发生的不确定性(★▲)●活动一“麦蒂的35秒奇迹”在火箭队与马刺队的篮球比赛中,麦蒂在最后几十秒已经连续投进了三个三分球,并且在最后关头抢断成功,推进到前场,在距离比赛结束还有1.7秒时再次投出三分球! 为什么在那个时刻,所有人都紧张的注视着麦蒂和他投出的篮球?你能确定神奇的麦蒂在即将开始的NBA比赛中的下一个三分球投进?●活动二“石头,剪刀,布”再看看我们身边的实例,两名同学想看同一本好书,于是采用“石头,剪刀,步”的方式来决定谁先看,那么能预测这两名同学认赢吗?问题探究二重复实验,体会随机事件的规律性.(★▲)●活动一抛掷硬币试验抛掷硬币试验结果表:当抛掷次数很多时,出现正面的频率值是稳定的,接近于常数0.5,并在它附近摆动●活动二某批乒乓球产品质量检查试验:当抽查的球数很多时,抽到优等品的频率接近于常数0.95,并在它附近摆动.●活动三某种油菜籽在相同条件下的发芽试验结果表:当试验的油菜籽的粒数很多时,油菜籽发芽的频率接近于常数0.9,并在它附近摆动●活动四反思活动,感知随机事件的规律性.通过上述三个大量重复性实验,你能发现随机事件具有什么规律性吗?一般地,在大量重复进行同一试验时,事件A发生的频率mn总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率.问题探究三创设生活实例,深化概率意义的理解.(▲)●活动一彩票中奖问题若某种彩票准备发行1000万张,其中1万张可以中奖,则买一张这种彩票的中奖的概率是多少?买1000张的话是否会中奖?分析:中奖的概率为1/ 1000;不一定中奖,因为买彩票是随机的,每张彩票都可能中奖也可能不中奖,买彩票中奖概率为1/1000是指试验次数相当大,即随着购买彩票的数量增加,大约有1/1000的彩票中奖.●活动二游戏的公平性问题某中学在高一年级的二、三班中任选一个班参加社区服务活动,有人提议用如下方法选班:掷两枚硬币,正面朝上的记作2点,反面向上记作1点,两枚硬币的点数和是几,就选几班,你认为这种方法公平吗?分析:不公平,记(x,y)中的x,y分别代表两枚硬币的点数,则有(1,1),(1,2),(2,1), (2,2)。

高中数学必修三3.1.1 随机事件的概率 课件 (共24张PPT)

高中数学必修三3.1.1 随机事件的概率 课件 (共24张PPT)

1 ,那 1000
2.游戏的公平性 在各类游戏中,如果每人获胜的概率相等, 那么游戏就是公平的.这就是说,是否公平只要 看获胜的概率是否相等. 例:在一场乒乓球比赛前,裁判员利用抽 签器来决定由谁先发球,请用概率的知识解 释其公平性. 解:这个规则是公平的,因为抽签上抛 后,红圈朝上与绿圈朝上的概率均是0.5,因 此任何一名运动员猜中的概率都是0.5,也就 是每个运动员取得先发球权的概率都是0.5。 小结:事实上,只要能使两个运动员取得 先发球权的概率都是0.5的规则都是公平的。
必然事件的概率为1,不可能事件的概 率为0.因此 0 P A 1
概率的定义:
对于给定的随机事件A,如果随着实 验次数的增加,事件A发生的频率fn(A)稳 定在某个常数上,把这个常数记作P(A), 称为事件A的概率,简称为A的概率。
随机事件及其概率
某批乒乓球产品质量检查结果表:
抽取球数 优等品数
注意以下几点:
(1)求一个事件的概率的基本方法是通 过大量的重复试验; (2)只有当频率在某个常数附近摆动时, 这个常数才叫做事件 A的概率; (3)概率是频率的稳定值,而频率是概 率的近似值;
(4)概率反映了随机事件发生的可能性 的大小; (5)必然事件的概率为1,不可能事件的 概率为0.因此 0 P A 1.
随机事件及其概率
二.概率的定义及其理解
对于随机事件,知道它发生的可能性大小 是非常重要的.用概率度量随机事件发生 的可能性大小能为我们的决策提供关键性 的依据.
结论:
随机事件A在每次试验中是否发 生是不能预知的,但是在大量重复实 验后,随着次数的增加,事件A发生 的频率会逐渐稳定在区间[0,1]中的 某个常数上。
一. 必然事件、不可能事件、随机事件

人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率 课件(共21张PPT)

人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率  课件(共21张PPT)

知识运用
判断下列事件哪些是必然事件,哪些是 不可能事件,哪些是随机事件? (1)如果a>b,那么a一b>0; (2)在标准大气压下且温度低于0°C时, 冰融化; (3)从分别标有数字l,2,3,4,5的5 张标签中任取一张,得到4号签; (4)随机选取一个实数x,得|x|≥0 ; 〈5)手电筒的的电池没电,灯泡发亮。
第三章 概率 3.1随机事件的概率
创设情境 引出课题
早上,我起床晚了,急忙去学校上学,在学 校楼梯上遇到了班主任,他批评了我,哎,我 想我今天运气不好,班主任经常在办公室的啊! 我决定明天一定不能迟到了,不然明早我又会 在楼梯上遇到班主任了。
中午放学回家,看了场篮球赛,我想长大后 我会比姚明还高,我将长到100m高。
2048 4040 10000 24000 80640
1061
6930693
4979
0.4979
12012
0.5005
39699
0.492299107
探究新知(二)
概率:对于给定的随机事件A,由于事件 A发生的频率 fn(A) 随着试验次数的增加 稳定于概率 P(A) ,因此可以用频率 fn(A来)
击中靶心的频率 m 0.8 0.95 0.88 0.92 0.89 0.91
n
(1)填写表中击中靶心的频率;
(2)这个射手射击一次,击中靶心的概率约是
多少?
0.90
知识小结
1 随机事件的概念
在条件S下可能发生也可能不发生的事件
2 随机事件的概率
对于给定的随机事件A,由于事件A发生 的频率 fn (A) 随着试验次数的增加稳定
估计概率 P(A), P(A) [0,。1]
这样,抛掷一枚硬币,正面朝上的概率为0.5,即
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年5月13日
缘份让你看到我在这里
18
裁判员拿出一个抽签器,它是-个像大硬币似的均匀塑 料圆板,一面是红圈,一面是绿圈,然后随意指定一名运动员, 要他猜上抛的抽签器落到球台上时,是红圈那面朝上还是绿圈那 面朝上。如果他猜对了,就由他先发球,否则,由另一方先发球. 两个运动员取得发球权的概率都是0.5.
13
【思考】某中学高一年级有12个班,要从中选2个班代表 学校参加某项活动。由于某种原因,一班必须参加,另外 再从二至十二班中选1个班.有人提议用如下的方法:掷两 个骰子得到的点数和是几,就选几班,你认为这种方法公 平吗?哪个班被选中的概率最大?
(1)、(2)、(3)事件不一定会发生
4
【思考】我们把上述事件叫做随机事件,你指出 随机事件的一般含义吗?
随机事件:在条件S下,可能发生也可能不发生 的事件。
【思考】你能列举一些随机事件的实例吗?
例:“从分别标有号数1,2,3,4,5的5张标签中任 选一张,得到4号签”等等
【思考】必然事件和不可能事件统称为确定事件,确
重复试验,结果如下表所示:
抛掷次数 正面向上次数 频率
2 048 4 040 12 000 24 000 30 000 72 088
1 061 2 048 6 019 12 012 14 984 36 124
0.5181 0.5069 0.5016 0.5005 0.4996 0.5011
在上述抛掷硬币的试验中,正面向上发生的频率
不公平,因为各班被选中的概率不全相等, 七班被选中的概率最大.
14
2.决策中的概率思想
【思考】如果连续10次掷一枚骰子,结果都是出 现1点,你认为这枚骰子的质地是均匀的,还是不 均匀的?如何解释这种现象?
这枚骰子的质地不均匀,标有6点的那面比较重,会使出
现1点的概率最大,更有可能连续10次都出现1点. 如果这
【思考】我们把上述事件叫做必然事件,你指
出必然事件的一般含义吗?
2
必然事件:在条件S下,一定会发生的事件。
【思考】你能列举一些必然事件的实例吗?
例:“如果a>b,那么a-b>0”等等
【思考】考察下列事件:
(1)在没有水分的真空中种子发芽; (2)在常温常压下钢铁融化; (3)服用一种药物使人永远年轻. 这些事件就其发生与否有什么共同特点?
的稳定值为多少? 0.5
7
【思考】某农科所对某种油菜籽在相同条件下的
发芽情况进行了大量重复试验,结果如下表所示:
每批粒 2 5 10 70 数
130 310 700 1500 2000 3000
发芽的 2 4 9 60 粒数
116 282 639 1339 1806 2715
发芽的 1 0. 0. 0.85 0.89 0.91 0.91 0.89 0.90 0.90
3. 从A,B,C,D四人中选3名代表,则A入选的 概率为________.
2019年5月13日
缘份让你看到我在这里
16
4. 从52张的一副扑克牌中随机地抽出一张,求 (1)抽出的一张是红桃8的概率; (2)抽出的一张是8的概率; (3)抽出的一张是红桃的概率。
5. 将一枚硬币连掷3次,出现“2个正面,1个 反面”和“1个正面、2个反面”的概率分别 是多少?
定事件和随机事件统称为事件,一般用大写字母A,B, C,…表示.
5
事件A发生的频率与概率
【思考】在相同的条件S下重复n次试验,若某
一事件A出现的次数为nA,则称nA为事件A出现的 频数,事件A出现的比例fn(A)为事件A出现的频率。
fn (A) =
nA n
?
[0, 1]
6
【思考】历史上曾有人作过抛掷硬币的大量
第三章 概 率
3.1.1-3.1.2 随机事件的概率及意义
2019年5月13日
缘份让你看到我在这里
1
必然事件、不可能事件和随机事件
【思考】考察下列事件:
(1)导体通电时发热; (2)向上抛出的石头会下落; (3)在标准大气压下水温升高到100°C会沸腾. 这些事件就其发生与否有什么共同特点? (1)、(2)、(3)事件一定会发生
(1)、(2)、(3)事件一定不会发生
3
【思考】我们把上述事件叫做不可能事件,你指
出不可能事件的一般含义吗?
不可能事件:在条件S下,一定不会发生的事件.
【思考】考察下列事件: (1)某人射击一次命中目标; (2)马林能夺取北京奥运会男子乒乓球单打冠军; (3)抛掷一个骰字出现的点数为偶数. 这些事件 就其发生与否有什么共同特点?
【思考】概率为1的事件是否不一定(将在几何概型中我们会加以说明)
9
例2:某射手在同一条件下进行射击,结果如
下表所示:
射击次数n
10 20 50 100 200 500
击中靶心次数m
击中靶心的频率 m 击中靶心的频率 m
n
n
8 19 44 92 178 455
11
【思考】围棋盒里放有同样大小的9枚白棋子和1枚黑棋子, 每次从中随机摸出1枚棋子后再放回,一共摸10次,你认为 一定有一次会摸到黑子吗?说明你的理由.
不一定.摸10次棋子相当于做10次重复试验,因为每
次试验的结果都是随机的,所以摸10次棋子的结果
也是随机的.可能有两次或两次以上摸到黑子,也可
能没有一次摸到黑子,摸到黑子的概率为1-
2019年5月13日
缘份让你看到我在这里
17
6. 4张扑克牌的牌面分别为方块2、黑桃4、黑 桃5、梅花5.将扑克牌洗匀后放置在桌面上。
(1)若随机抽取1张扑克牌,求牌面数字恰好 为5的概率。
(2)规定游戏规则如下:若同时随机抽取2张 扑克牌,抽到2张的牌面数字之和是偶数为胜; 反之,则为负。你认为这个游戏公平吗?
频率
897
2
0
3
3
3
5
在上述油菜籽发芽的试验中,每批油菜籽发芽的频率的稳
定值为多少? 0.9
对于给定的随机事件A,如果随着试验次数的增加,事件A
发生的频率fn(A)稳定在某个常数附近摆动,并把这个常数 叫做事件A发生的概率,记作P(A).
8
【思考】必然事件、不可能事件发生的概率分别
为多少?概率的取值范围是什么? 必然事件的概率为1,不可能事件的概率0。
枚骰子的质地均匀,那么抛掷一次出现1点的概率为
1 6

续10次都出现1点的概率

1 6
10


0.000000016538
这是一个小概率事件,几乎不可能发生.
15
1. 从甲、乙、丙三人中任选两名代表,甲被选中 的概率为______.
2. 有100张卡片(从1号到100号),从中任取1 张,取到的卡号是7的倍数的概率为_____.
0.8 0.95 0.88 0.92 0.89 0.91
(1)填写表中击中靶心的频率; (2)这个射手射击一次,击中靶心的概率约是多少?
0.90
10
概率的意义---概率的正确理解
【思考】连续两次抛掷一枚硬币,可能会出现哪 几种结果? “两次正面朝上”,“两次反面朝上”,“一次 正面朝上,一次反面朝上”. 【思考】抛掷—枚质地均匀的硬币,出现正、反 面的概率都是0.5,那么连续两次抛掷一枚硬币, 一定是出现一次正面和一次反面吗?
0.910≈0.6513.
思考4:如果某种彩票的中奖概率为
,那么买1000张
这种彩票一定能中奖吗?为什么?
不一定,理由同上. 买1 000张这种彩票的中奖概率约

1-0.9991000≈0.632,即有63.2%的可能性中奖,但不能
肯定中奖.
12
概率的意义---概率思想的实际应用
1.游戏的公平性: 【思考】在一场乒乓球比赛前,必须要决定由谁 先发球,并保证具有公平性,你知道裁判员常用 什么方法确定发球权吗?其公平性是如何体现出 来的?
相关文档
最新文档