微机原理与接口存储器RAM及

合集下载

微机原理与接口技术pdf

微机原理与接口技术pdf

微机原理与接口技术pdf微机原理与接口技术是计算机专业的一门重要课程,它涉及到计算机硬件的基本原理和接口技术的应用。

本文将从微机原理和接口技术两个方面进行介绍和讨论,希望能够对读者有所帮助。

首先,我们来谈谈微机原理。

微机原理是指微型计算机的基本工作原理,包括中央处理器(CPU)、存储器、输入输出设备等各个部分的工作原理。

CPU是微型计算机的核心部件,它负责执行指令、进行运算和控制数据传输。

存储器用于存储数据和程序,包括随机存储器(RAM)和只读存储器(ROM)等。

输入输出设备用于与外部环境进行信息交换,包括键盘、鼠标、显示器、打印机等。

了解微机原理对于理解计算机的工作原理和进行系统调试都非常重要。

其次,我们来谈谈接口技术。

接口技术是指计算机与外部设备进行数据交换的技术,包括串行接口、并行接口、通信接口等。

串行接口是一种逐位传输数据的接口,适用于远距离传输和低速设备。

并行接口是一种同时传输多位数据的接口,适用于短距离传输和高速设备。

通信接口是一种用于计算机与通信设备进行数据交换的接口,包括网卡、调制解调器等。

了解接口技术对于设计外部设备、进行通信协议的开发都非常重要。

在实际应用中,微机原理和接口技术经常是相互结合的。

例如,我们在设计一个外部设备时,需要了解计算机的工作原理,选择合适的接口技术进行数据交换。

又如,在进行系统调试时,需要了解接口技术,进行数据的采集和分析。

因此,微机原理与接口技术的学习是非常重要的。

总之,微机原理与接口技术是计算机专业的一门重要课程,它涉及到计算机硬件的基本原理和接口技术的应用。

通过本文的介绍,希望读者能够对微机原理和接口技术有所了解,并能够在实际应用中灵活运用。

希望本文能够对读者有所帮助。

微机原理与接口技术填空

微机原理与接口技术填空

计算机基础知识1.系统总线由地址总线数据总线控制总线三类传输线组成。

2.微型计算机由中央处理器存储器输入/输出接口和系统总线组成。

3.计算机的硬件结构通常由五大部分组成。

即运算器控制器存储器输入设备和输出设备组成。

4.一个完整的微机系统应包括硬件系统和软件系统两大功能部分5.微处理器由运算器控制器和少量寄存器组成。

6.以_微型计算机____为主体,配上系统软件和外设之后,就构成了__微型计算机系统____。

7.8位二进制整数,其补码所能表示的范围为 -128—127,-1的补码为OFFH 。

8.一带符号数的8位补码为11110111B,它所表示的真值为-9D。

9.将二进制数101101.101转换为十进制数为45.625。

10.8位二进制补码10110110代表的十进制负数是-74D。

11.将压缩BCD码01111001转换成二进制数为01001111B。

12.将压缩BCD码01111001转换成十进制数为79D。

13.X、Y的字长均为12位,已知[X]反=A3CH,原码为0DC3H,[Y]反=03CH,则X-Y的补码为0A01H。

14.带符号数在机器中以补码表示,十进制数-78表示为FFB2H。

15.已知X的补码是11101011B,Y的补码是01001010B,则X-Y的补码是10100001B。

16.ASCII码由 7 位二进制数码构成,可为 128 个字符编码。

17.在计算机中,用二进制表示实数的方法有两种,分别是定点法浮点法18.将二进制数1011011.1转换为十六进制数为__5B.8H_____。

19.将十进制数199转换为二进制数为____ 11000111____B。

20.BCD码表示的数,加减时逢__10____进一,ASCII码用来表示数值时,是一种非压缩的BCD码。

21.十进制数36.875转换成二进制是___100100.111____________。

22.十进制数98.45转换成二进制为__1100010.0111_B、八进制__142.3463________Q、十六进制__62.7333________H。

微机原理和接口技术(第三版)课本习题答案解析

微机原理和接口技术(第三版)课本习题答案解析

第二章 8086 体系结构与80x86CPU1.8086CPU 由哪两部份构成?它们的主要功能是什么?答:8086CPU 由两部份组成:指令执行部件<EU,Execution Unit>和总线接口部件<BIU,Bus Interface Unit>。

指令执行部件〔EU 主要由算术逻辑运算单元<ALU>、标志寄存器F R、通用寄存器组和E U 控制器等4个部件组成,其主要功能是执行指令。

总线接口部件<BIU>主要由地址加法器、专用寄存器组、指令队列和总线控制电路等4个部件组成,其主要功能是形成访问存储器的物理地址、访问存储器并取指令暂存到指令队列中等待执行,访问存储器或者I/O 端口读取操作数参加E U 运算或者存放运算结果等。

2.8086CPU 预取指令队列有什么好处? 8086CPU 内部的并行操作体现在哪里?答: 8086CPU 的预取指令队列由6个字节组成,按照8086CPU 的设计要求, 指令执行部件〔EU 在执行指令时,不是直接通过访问存储器取指令,而是从指令队列中取得指令代码,并分析执行它。

从速度上看,该指令队列是在C PU 内部,EU 从指令队列中获得指令的速度会远远超过直接从内存中读取指令。

8086CPU 内部的并行操作体现在指令执行的同时,待执行的指令也同时从内存中读取,并送到指令队列。

5.简述8086 系统中物理地址的形成过程。

8086 系统中的物理地址最多有多少个?逻辑地址呢?答: 8086 系统中的物理地址是由20 根地址总线形成的。

8086 系统采用分段并附以地址偏移量办法形成20 位的物理地址。

采用分段结构的存储器中,任何一个逻辑地址都由段基址和偏移地址两部份构成,都是16 位二进制数。

通过一个20 位的地址加法器将这两个地址相加形成物理地址。

具体做法是16 位的段基址左移4位<相当于在段基址最低位后添4个"0">,然后与偏移地址相加获得物理地址。

《微机原理与接口技术》教学课件 第6章

《微机原理与接口技术》教学课件 第6章

6.2 随机存取存储器
2 动态RAM 2164的工作过程
① 将要读出单元的行地 址送到地址线A0~A7上, RAS 信号有效时,在下 降沿将地址锁存在行地 址锁存器中。
② 将要读出单元的列地 址 送 到 地 址 线 A0 ~ A7 上 , CAS 信号有效时,在下降 沿将地址锁存在列地址 锁存器中。
目录 CONTENTS
存储器入门 随机存取存储器
只读存储器 高速缓冲存储器
外部存储器
3
引子
计算机之所以能自动、连续地工作,是因为采用了存储程序的原理。计算机中的所有程序和数 据都存放在存储器中,存储器是计算机必不可少的组成部件之一。存储器的性能对整个计算机 系统的性能起着至关重要的作用。本章主要介绍存储器的分类、结构和主要性能指标,并通过 典型的存储器芯片来介绍存储器的工作原理及与CPU的连接方法。
6.1 存储器入门
连续两次读写操作之间所需的最短时间间隔称为存储周期。存储器每秒钟可读写的 数据量称为存储器带宽或数据传输速率,单位为bps(或bit/s)。存取周期和存储器带宽 也常作为存储器的性能指标。
提示
6.2 随机存取存储器
随机存取存储器(Random Access Memory,RAM)也称随机读/写存储器或随机存储器,它既可以直接 从任何一个指定的存储单元中读出数据,也可以将数据写入任何一个指定的存储单元中。
6.1.2 存储器的性能指标
存储器容量:存储器中所包含存储单元的总数,单位是字节(B)。存储 器容量越大,存储的信息越多,计算机的性能也就越强。
01
02
存取时间:存储器完成一次读写操作所需的时间,单位为ns(纳秒,
1 ns=10-9 sБайду номын сангаас。

微机原理与接口技术复习资料(概念背诵)

微机原理与接口技术复习资料(概念背诵)

1、微处理器(CPU)由运算器、控制器、寄存器组三部分组成。

2、运算器由算术逻辑单元ALU、通用或专用寄存器组及内部总线三部分组成。

3、控制器的功能有指令控制、时序控制、操作控制,控制器内部由程序计数器PC、指令寄存器IR、指令译码器ID、时序控制部件以及微操作控制部件(核心)组成。

4、8088与存储器和I/O接口进行数据传输的外部数据总线宽度为8位,而8086的数据总线空度为16位。

除此之外,两者几乎没有任何差别。

5、在程序执行过程中,CPU总是有规律的执行以下步骤:a从存储器中取出下一条指令b指令译码c如果指令需要,从存储器中读取操作数d执行指令e如果需要,将结果写入存储器。

6、8088/8086将上述步骤分配给了两个独立的部件:执行单元EU、总线接口单元BIU。

EU作用:负责分析指令(指令译码)和执行指令、暂存中间运算结果并保留结果的特征,它由算数逻辑单元(运算器)ALU、通用寄存器、标志寄存器、EU控制电路组成。

BIU作用:负责取指令、取操作、写结果,它由段寄存器、指令指针寄存器、指令队列、地址加法器、总线控制逻辑组成。

7、8088/8086CPU的内部结构都是16位的,即内部寄存器只能存放16位二进制码,内部总线也只能传送16位二进制码。

8、为了尽可能地提高系统管理(寻址)内存的能力,8088/8086采用了分段管理的方法,将内存地址空间分为了多个逻辑段,每个逻辑段最大为64K个单元,段内每个单元的地址长度为16位。

9、8088/8086系统中,内存每个单元的地址都有两部分组成,即段地址和段内偏移地址。

10、8088/8086CPU都是具有40条引出线的集成电路芯片,采用双列直插式封装,当MN/MX=1时,8088/8086工作在最小模式,当MN/MX=0时,8088/8086工作在最大模式。

11、8088/8086 CPU内部共有14个16位寄存器。

按其功能可分为三大类,即通用寄存器(8个)、段寄存器(4个)、控制寄存器(2个)。

#微型计算机原理与接口技术答案

#微型计算机原理与接口技术答案
2019年5月18日星期六
P237 2.答:掩膜型ROM中信息是厂家根据用户给定的程序或数
据,对芯片图形掩膜进行两次光刻而写入的,用户对这类芯片 无法进行任何修改。
PROM出厂时,里面没有信息,用户采用一些设备可以将 内容写入PROM,一旦写入,就不能再改变了,即只允许编程 一次。
EPROM可编程固化程序,且在程序固化后可通过紫外光 照擦除,以便重新固化新数据。
2019年5月18日星期六
微机原理与接口技术
第七章作业习题课
杭州电子科技大学自动化学院
2019年5月18日星期六
P302 1. 【答】:当CPU正常运行程序时,由于微处理器内部事件或外设请求,
引起CPU中断正在运行的程序,转去执行请求中断的外设(或内部事件)的中断 服务子程序,中断服务程序执行完毕,再返回被中止的程序,这一过程称为中 断。
2019年5月18日星期六
3.答: CPU与外设通信时,传送的信息主要包括数据信息、 状态信息和控制信息。在接口电路中,这些信息分别进入不同 的寄存器,通常将这些寄存器和它们的控制逻辑统称为I/O端口, CPU可对端口中的信息直接进行读写。在一般的接口电路中都 要设置以下几种端口:
⑴数据端口:用来存放外设送往CPU的数据以及CPU要输 出到外设去的数据。数据端口主要起数据缓冲的作用。
DMA方式:也要利用系统的数据总线、地址总线和控制总 线来传送数据。原先,这些总线是由CPU管理的,但当外设需 要利用DMA方式进行数据传送时,接口电路可以向CPU提出请 求,要求CPU让出对总线的控制权,用DMA控制器来取代CPU, 临时接管总线,控制外设和存储器之间直接进行高速的数据传 送。这种控制器能给出访问内存所需要的地址信息,并能自动 修改地址指针,也能设定和修改传送的字节数,还能向存储器 和外设发出相应的读/写控制信号。在DMA传送结束后,它能释 放总线,把对总线的控制权又交还给CPU。

微机原理与接口技术(楼顺天第二版)第六章习题解答

微机原理与接口技术(楼顺天第二版)第六章习题解答

微机原理与接口技术(楼顺天第二版)第六章习题解答微机原理与接口技术(楼顺天第二版)习题解答第6章总线及其形成6.1答:内存储器按其工作方式的不同,可以分为随机存取存储器(简称随机存储器或RAM)和只读存储器(简称ROM)。

随机存储器。

随机存储器允许随机的按任意指定地址向内存单元存入或从该单元取出信息,对任一地址的存取时间都是相同的。

由于信息是通过电信号写入存储器的,所以断电时RAM中的信息就会消失。

计算机工作时使用的程序和数据等都存储在RAM中,如果对程序或数据进行了修改之后,应该将它存储到外存储器中,否则关机后信息将丢失。

通常所说的内存大小就是指RAM 的大小,一般以KB或MB为单位。

只读存储器。

只读存储器是只能读出而不能随意写入信息的存储器。

ROM中的内容是由厂家制造时用特殊方法写入的,或者要利用特殊的写入器才能写入。

当计算机断电后,ROM中的信息不会丢失。

当计算机重新被加电后,其中的信息保持原来的不变,仍可被读出。

ROM适宜存放计算机启动的引导程序、启动后的检测程序、系统最基本的输入输出程序、时钟控制程序以及计算机的系统配置和磁盘参数等重要信息。

6.2 答:存储器的主要技术指标有:存储容量、读写速度、非易失性、可靠性等。

6.3答:在选择存储器芯片时应注意是否与微处理器的总线周期时序匹配。

作为一种保守的估计,在存储器芯片的手册中可以查得最小读出周(R)(Read Cycle Time)和最小写周期期tcyct(W)(Write Cycle Time)。

如果根据计算,微cyc处理器对存储器的读写周期都比存储器芯片手册中的最小读写周期大,那么我们认为该存储器芯片是符合要求的,否则要另选速度更高的存储器芯片。

8086CPU对存储器的读写周期需要4个时钟周期(一个基本的总线周期)。

因此,作为一种保守的工程估计,存储器芯片的最小读出时间应满足如下表达式:t cyc(R)<4T-t da-t D-T其中:T为8086微处理器的时钟周期;t da 为8086微处理器的地址总线延时时间;t D为各种因素引起的总线附加延时。

《微机原理与接口技术》教案

《微机原理与接口技术》教案

《微机原理与接口技术》教案一、教学目标1. 了解微机原理的基本概念,掌握微处理器、存储器、输入输出接口等的基本工作原理。

2. 熟悉接口技术的应用,学会使用接口电路实现微机与外部设备的数据传输和控制。

3. 能够分析微机系统中的信号转换、中断处理、定时与控制等问题,为后续的实际应用打下基础。

二、教学内容1. 微机原理概述:微处理器、存储器、输入输出接口的基本概念和工作原理。

2. 接口技术:接口电路的分类、功能、工作原理和应用实例。

3. 信号转换:模拟信号与数字信号的转换、数字信号与模拟信号的转换。

4. 中断处理:中断的概念、中断源、中断响应过程和中断处理程序的编写。

5. 定时与控制:定时器/计数器的工作原理及其在微机系统中的应用。

三、教学方法1. 采用讲授与实验相结合的方式,让学生在理论学习和实践操作中掌握微机原理与接口技术。

2. 通过案例分析、讨论等形式,激发学生的学习兴趣,提高解决问题的能力。

3. 注重实践操作,培养学生的动手能力和实际应用能力。

四、教学安排1. 课时:本课程共计32课时,每个课时45分钟。

2. 教学进度安排:第1-8课时:微机原理概述第9-16课时:接口技术第17-24课时:信号转换第25-32课时:中断处理与定时控制五、教学评价1. 平时成绩:包括课堂表现、作业完成情况、实验报告等,占总成绩的30%。

2. 期末考试:包括理论知识测试和实验操作考核,占总成绩的70%。

3. 期末考试不合格者需参加补考,补考不合格则需重修。

4. 鼓励学生参加相关竞赛和实践活动,提高自身综合素质。

六、教学资源1. 教材:《微机原理与接口技术》教材,选用国内知名出版社出版的最新版教材。

2. 实验设备:微机原理实验箱、接口电路实验设备、信号发生器、示波器等。

3. 网络资源:利用校园网,为学生提供相关学术论文、技术文档、在线课程等资源。

4. 教学软件:选用适合教学的微机原理与接口技术相关软件,如模拟器、编程工具等。

微机原理与接口技术课后习题有答案

微机原理与接口技术课后习题有答案

第一章解:五代,详细见书解:微型计算机:以大规模、超大规模集成电路为主要部件,以集成了计算机主要部件——控制器和运算器的微处理器为核心,所构造出的计算机系统 ;PC机:PCPersonal Computer机就是面向个人单独使用的一类微机 ;单片机:用于控制的微处理器芯片,内部除CPU外还集成了计算机的其他一些主要部件,如:ROM、RAM、定时器、并行接口、串行接口,有的芯片还集成了A/D、D/A转换电路等;数字信号处理器DSP:主要面向大流量数字信号的实时处理,在宿主系统中充当数据处理中心,在网络通信、多媒体应用等领域正得到越来越多的应用解:微机主要有存储器、I/O设备和I/O接口、CPU、系统总线、操作系统和应用软件组成,各部分功能如下:CPU:统一协调和控制系统中的各个部件系统总线:传送信息存储器:存放程序和数据I/O设备:实现微机的输入输出功能I/O接口:I/O设备与CPU的桥梁操作系统:管理系统所有的软硬件资源解:系统总线:传递信息的一组公用导线,CPU通过它们与存储器和I/O设备进行信息交换 ;好处:组态灵活、扩展方便三组信号线:数据总线、地址总线和控制总线 ;其使用特点是:在某一时刻,只能由一个总线主控设备来控制系统总线,只能有一个发送者向总线发送信号;但可以有多个设备从总线上同时获得信号;解:1用于数值计算、数据处理及信息管理方向;采用通用微机,要求有较快的工作速度、较高的运算精度、较大的内存容量和较完备的输入输出设备,为用户提供方便友好的操作界面和简便快捷的维护、扩充手段;2用于过程控制及嵌人应用方向;采用控制类微机,要求能抵抗各种干扰、适应现场的恶劣环境、确保长时间稳定地工作,要求其实时性要好、强调其体积要小、便携式应用强调其省电;解:解:I/O通道:位于CPU和设备控制器之间,其目的是承担一些原来由CPU处理的I/O任务,从而把CPU 从繁杂的I/O任务中解脱出来;由10根信号线组成A9-A0;解:BIOS:基本输入输出系统;主要功能:用来驱动和管理诸如键盘、显示器、打印机、磁盘、时钟、串行通信接口等基本的输入输出设备解:基本RAM区:640KB保留RAM区:128KB扩展ROM区:128KB基本ROM区:128KB解:1、数—用来直接表征量的大小,包括:定点数、浮点数;2、码—用来指代某个事物或事物的某种状态属性,包括:二进制、八进制、十进制、十六进制;区别:使用场合不同,详见P16.解:123解:原码反码补码+37 00100101/25H 00100101/25H 00100101/25H解:解:无符号数:70D补码有符号数:70DBCD码:46DASCII:F解:1、相加后若出现和大于9,则将和减去10后再向高位进12、若出现组间进位,则将低位加6解:详见课本16页;解:C3 40 20 00D:44Hd:64HCR:0DHLF:0AH0:30HSP:20HNUL:00H解:国标码:36 50H机内码:B6 B0H第3章解:1完整的汇编语言源程序由段组成2一个汇编语言源程序可以包含若干个代码段、数据段、附加段或堆栈段,段与段之间的顺序可随意排列3需独立运行的程序必须包含一个代码段,并指示程序执行的起始点,一个程序只有一个起始点4所有的可执行性语句必须位于某一个代码段内,说明性语句可根据需要位于任一段内5通常,程序还需要一个堆栈段开始位置:用标号指明返回DOS:利用DOS功能调用的4CH子功能来实现汇编停止:执行到一条END伪指令时,停止汇编解:段定位、段组合和段类型;解:stack segment stackdb 10240stack endsdata segmentstring db 'Hello,Assembly',0dH,0aH,‘$’data endscode segment 'code'assume cs:code,ds:data,ss:stackstart: mov dx,offset stringmov ah,9int 21hcode endsend start解:1. EXE程序程序可以有多个代码段和多个数据段,程序长度可以超过64KB通常生成EXE结构的可执行程序2. COM程序只有一个逻辑段,程序长度不超过64KB需要满足一定条件才能生成COM结构的可执行程序MASM 需要采用TINY模式解:符号定义伪指令有“等价EQU”和“等号=”:符号名 EQU 数值表达式符号名 EQU <字符串>符号名=数值表达式EQU用于数值等价时不能重复定义符号名,但“=”允许有重复赋值;例如:X= 7 ;等效于:X equ 7X= X+5 ;“X EQU X+5”是错误的解:1 al=67h2 ax=133h,dx=4h3 ax=0230h4 al=41h4 ax=7654h解:my1b db 'Personal Computer'my2b db 20my3b db 14hmy4b db 00010100bmy5w dw 20 dupmy6c = 100my7c = <'Personal Computer'>解:利用定位伪指令控制,如org,even,align解:包括逻辑地址和类型两种属性;解:;数据段org 100hvarw dw 1234h , 5678hvarb db 3 , 4buff dd 10 dupmess db 'Hello';代码段mov ax , offset varb + offset messmov ax , type buff + type mess + type vard mov ax , sizeof varw+ sizeof buff+ sizeof messmov ax , lengthof varw+ lengthof vard解:1 1000超过一个字节所能表达的最大整数2SI应为偶数3两个内存单元不能直接运算4应改为al+15条件转移指令后面应接标号,而不是变量解:mov ah,1 ;只允许输入小写字母int 21hsub al,20h ;转换为大写字母mov dl,almov ah,2int 21h ;显示解:mov bx,offset LEDtablemov al,lednumxlat解:mov ax, bufXcmp ax, bufYjae donemov ax, bufYdone: mov bufZ, ax解:.model small.stack.databufX dw -7signX db.code.startupcmp bufX,0 ;test bufX,80hjl next ;jnz nextmov signX,0jmp donenext: mov signX,-1done: .exit 0end解:mov dl,’2’mov ax,bufXcmp ax,bufYje next1dec dlnext1: cmp ax,bufZje next2dec dlnext2: mov ah,2int 21h解:;代码段mov al,numbermov bx,0 ;BX←记录为1的位数restart: cmp al,0 ;AL=0结束jz doneagain: shr al,1 ;最低位右移进入CFjc next ;为1,转移inc bx ;不为1,继续jmp againnext: push axpush bxshl bx,1 ;位数乘以2偏移地址要用2个字节单元jmp addrsbx ;间接转移:IP←table+BX;以下是各个处理程序段fun0: mov dl,'0'jmp dispfun1: mov dl,'1'jmp dispfun2: mov dl,'2'jmp dispfun3: mov dl,'3'jmp dispfun4: mov dl,'4'jmp dispfun5: mov dl,'5'jmp dispfun6: mov dl,'6'jmp dispfun7: mov dl,'7'jmp disp;disp: mov ah,2 ;显示一个字符int 21hpop bxpop axjmp restartdone: …编制程序完成12H、45H、0F3H、6AH、20H、0FEH、90H、0C8H、57H和34H等10个字节数据之和,并将结果存入字节变量SUM中不考虑溢出和进位;;.model small.stack.datab_data db 12h,45h,0f3h,6ah,20h,0feh,90h,0c8h,57h,34h ;原始数据num equ 10 ;数据个数sum db ;预留结果单元.code.startupxor si, si ;位移量清零xor al, al ;取第一个数mov cx, num ;累加次数again: add al, b_datasi ;累加inc si ;指向下一个数loop again ;如未完,继续累加mov sum, al ;完了,存结果.exit 0end求主存0040h:0开始的一个64KB物理段中共有多少个空格;.model small.codestart: mov ax,0040h ;送段地址mov ds, axmov si, 0 ;偏移地址mov cx, si ;计数循环次数xor ax, ax ;空格计数器清零again: cmp byte ptr si, 20h ;与空格的ASCII码比较jne next ;不是空格,转inc ax ;是空格,空格数加1next: inc si ;修改地址指针loop again ;cx=cx-1,如cx=0 退出循环.exit 0end start编写计算100个16位正整数之和的程序;如果和不超过16位字的范围65535,则保存其和到wordsum,如超过则显示‘overflow’;答:;数据段count equ 100parray dw count dup ;假设有100个数据wordsum dw 0msg db ‘overflow’,’$’;代码段mov cx,countmov ax,0mov bx,offset parrayagain: add ax,bxjnc nextmov dx,offset msgmov ah,9int 21h ;显示溢出信息jmp done ;然后,跳出循环体next: add bx,2loop againmov wordsum,axdone: …编程把—个16位无符号二进制数转换成为用8421BCD码表示的5位十进制数;转换算法可以是:用二进制数除以10000,商为“万位”,再用余数除以1000,得到“千位”;依次用余数除以l00、10和l,得到“百位”、“十位”和“个位”; ;.model small.stack 256.dataarray dw ;源字数据dbcd db 5 dup ;五位bcd结果,高对高低对低.code.startupmov dx, array ;取源数据余数mov bx, 10000 ;除数mov cx, 10 ;除数系数mov si, 4 ;目的数据高位位移量again: mov ax, dx ;中存放被除数mov dx, 0div bx ;除于bx,商ax,余数dxmov dbcdsi, al ;商<10,存结果push dx ;暂存余数mov ax, bx ;除数除于10mov dx,0div cx ;除于cx,商ax、余数0存在dxmov bx, ax ;bx是除数pop dxdec si ;目的数据位移量减1jnz againmov dbcd, dl ;存个位数 < 10.exit 0end解:1汇编语言中,子程序要用一对过程伪指令PROC和ENDP声明,格式如下:过程名PROC NEAR|FAR……;过程体过程名ENDP2保护用到的寄存器内容,以便子程序返回时进行相应的恢复;3改错:crazy procpish bxpush cxxor ax,axxor dx,dxagain:add a,bxadc dx,0inc bxinc bxloop againpop cxpop bx解不需调用HTOASC子程序:again: mov ah,1int 21hcmp al,1bh ;ESC的ASCII码是1bhje donemov dl,almov ah,2int 21h ;是大写字母则转换为小写字母jmp againdone: …解答:asctob procpush cxand dh,0fh ;先转换十位数shl dh,1 ;十位数乘以10采用移位指令mov ch,dhshl dh,1shl dh,1add dh,chand dl,0fh ;转换个位数add dh,dl ;十位数加个位数mov al,dh ;设置出口参数pop cxretasctob endp解:DIPASC proc ;入口参数:AL=要显示的一个16进制数push cxpush dxpush axmov cl,4 ;转换高位shr al,clcall HTOASCmov dl,al ;显示mov ah,2int 21hpop ax ;转换低位call HTOASCmov dl,al ;显示mov ah,2int 21hmov dl,’H’;显示一个字母“H”mov ah,2int 21hpop dxpop cxretDIPASC endpHTOASC proc ;将AL低4位表达的一位16进制数转换为ASCII码and al,0fhcmp al,9jbe htoasc1add al,37h ;是0AH~0FH,加37H转换为ASCII码ret ;子程序返回htoasc1: add al,30h ;是0~9,加30H转换为ASCII码ret ;子程序返回HTOASC endp解:lucase procpush bxmov bx,offset stringcmp al,0je case0cmp al,1jz case1cmp al,2jz case2jmp donecase0: cmp byte ptr bx,0je donecmp byte ptr bx,’A’jb next0cmp byte ptr bx,’Z’ja next0add byte ptr bx,20hnext0: inc bxjmp case0case1: cmp byte ptr bx,0je donecmp byte ptr bx,’a’jb next1cmp byte ptr bx,’z’ja next1sub byte ptr bx,20hnext1: inc bxjmp case1case2: cmp byte ptr bx,0je donecmp byte ptr bx,’A’jb next2cmp byte ptr bx,’Z’ja next20add byte ptr bx,20hjmp next2next20: cmp byte ptr bx,’a’jb next2cmp byte ptr bx,’z’ja next2sub byte ptr bx,20hnext2: inc bxjmp case2done: pop bxretlucase endp解:1用寄存器传递参数:最简单和常用的参数传递方法是通过寄存器,只要把参数存于约定的寄存器中就可以了由于通用寄存器个数有限,这种方法对少量数据可以直接传递数值,而对大量数据只能传递地址采用寄存器传递参数,注意带有出口参数的寄存器不能保护和恢复,带有入口参数的寄存器可以保护、也可以不保护,但最好能够保持一致2用共享变量传递参数子程序和主程序使用同一个变量名存取数据就是利用共享变量全局变量进行参数传递如果变量定义和使用不在同一个源程序中,需要利用PUBLIC、EXTREN声明如果主程序还要利用原来的变量值,则需要保护和恢复利用共享变量传递参数,子程序的通用性较差,但特别适合在多个程序段间、尤其在不同的程序模块间传递数据3用堆栈传递参数参数传递还可以通过堆栈这个临时存储区;主程序将入口参数压入堆栈,子程序从堆栈中取出参数;子程序将出口参数压入堆栈,主程序弹出堆栈取得它们采用堆栈传递参数是程式化的,它是编译程序处理参数传递、以及汇编语言与高级语言混合编程时的常规方法解:方法:主程序将入口参数压入堆栈,子程序从堆栈中取出参数;子程序将出口参数压入堆栈,主程序弹出堆栈取得它们注意:压栈与弹栈必须要一一对应;解:方法1:neg32 proc ;入口参数:=32位有符号数neg ax ;实现0-功能neg dxsbb dx,0 ;这条指令也可以用dec dx代替retneg32 endp ;出口参数:=32位有符号数的补码方法2:neg32 proc ;入口参数:=32位有符号数not ax ;实现求反加1not dxadd ax,1adc dx,0retneg32 endp ;出口参数:=32位有符号数的补码解:;数据段array db 12h,25h,0f0h,0a3h,3,68h,71h,0cah,0ffh,90h ;数组count equ $-array ;数组元素个数result db ;校验和;代码段mov bx,offset array ;BX←数组的偏移地址mov cx,count ;CX←数组的元素个数call checksum ;调用求和过程mov result,al ;处理出口参数mov ax,4c00hint 21h;计算字节校验和的通用过程;入口参数:DS:BX=数组的段地址:偏移地址,CX=元素个数;出口参数:AL=校验和;说明:除AX/BX/CX外,不影响其他寄存器checksum procxor al,al ;累加器清0sum: add al,bx ;求和inc bx ;指向下一个字节loop sumretchecksum endpend解:⑴.model small.stack.datawdata dw 34abh.code.startupmov ax,wdatacall dispa.exit 0;dispa procpush cxpush dxmov cl,4mov dl,ahshr dl,clcall dldispmov dl,ahand dl,0fhcall dldispmov dl,alshr dl,clcall dldispmov dl,aland dl,0fhcall dldisppop dxpop cxretdispa endp;dldisp procpush axor dl,30hcmp dl,39hjbe dldisp1add dl,7dldisp1: mov ah,2int 21hpop axretdldisp endpend⑵.model small.stack.datawdata dw 34abhwordtemp dw.code.startupmov ax,wdatamov wordtemp,axcall dispa.exit 0;dispa procpush cxpush dxmov cl,4mov dl,byte ptr wordtemp+1shr dl,clcall dldispmov dl,byte ptr wordtemp+1and dl,0fhcall dldispmov dl,byte ptr wordtempshr dl,clcall dldispmov dl,byte ptr wordtempand dl,0fhcall dldisppop dxpop cxretdispa endp;dldisp procpush axor dl,30hcmp dl,39hjbe dldisp1add dl,7dldisp1: mov ah,2int 21hpop axretdldisp endpend⑶.model small.stack.datawdata dw 34abh.code.startuppush wdatacall dispapop ax ;add sp,2.exit 0;dispa procpush bpmov bp,sppush axpush cxpush dxmov ax,bp+4mov cl,4mov dl,ahshr dl,clcall dldispmov dl,ahand dl,0fhcall dldispmov dl,alshr dl,clcall dldispmov dl,aland dl,0fhcall dldisppop dxpop cxpop axpop bpretdispa endp;dldisp procpush axor dl,30hcmp dl,39hjbe dldisp1add dl,7dldisp1: mov ah,2int 21hpop axretdldisp endpend解:如果利用共享变量传递函数,且变量定义和使用不在同一个源程序中,需要利用PUBLIC、EXTERN 声明;解:1宏定义由一对宏汇编伪指令MACRO和ENDM来完成,格式如下:宏名MACRO 形参表……;宏定义体ENDM宏定义之后就可以使用它,即宏调用:宏名实参表2宏调用的格式同一般指令一样:在使用宏指令的位置写下宏名,后跟实体参数;如果有多个参数,应按形参顺序填入实参,也用逗号分隔3宏展开:在汇编时,宏指令被汇编程序用对应的代码序列替代,这就是宏展开宏展开的具体过程是:当汇编程序扫描源程序遇到已有定义的宏调用时,即用相应的宏定义体完全替代源程序的宏指令,同时用位置匹配的实参对形参进行取代解:宏调用的参数通过形参、实参结合实现传递,简捷直观、灵活多变;宏汇编的一大特色是它的参数;宏定义时既可以无参数,也可以有一个或多个参数;宏调用时实参的形式也非常灵活,可以是常数、变量、存储单元、指令操作码或它们的一部分,也可以是表达式;只要宏展开后符合汇编语言的语法规则即可;解:宏:仅是源程序级的简化:宏调用在汇编时进行程序语句的展开,不需要返回;不减小目标程序,执行速度没有改变通过形参、实参结合实现参数传递,简捷直观、灵活多变子程序:还是目标程序级的简化:子程序调用在执行时由CALL指令转向、RET指令返回;形成的目标代码较短,执行速度减慢需要利用寄存器、存储单元或堆栈等传递参数选择:宏与子程序具有各自的特点,程序员应该根据具体问题选择使用那种方法;通常,当程序段较短或要求较快执行时,应选用宏;当程序段较长或为减小目标代码时,要选用子程序编写一个宏指令move doprnd,soprnd,它实现任意寻址方式的字量源操作数soprnd送到目的操作数doprnd,包括存储单元到存储单元的传送功能;答:move macro doprnd,soprndmov ax,soprndmov doprnd,axendm定义一个宏logical,用它代表4条逻辑运算指令:and/or/xor/test;注意需要利用3个形式参数,并给出一个宏调用以及对应宏展开的例子;答:logical macro lcode,dopd,sopdlcode dopd,sopdendm例如,如果使用“and ax,bx”指令,可以利用该宏定义,写出宏指令如下:logical and,ax,bx解:utol macrolocal nextcmp al,’A’;小于“A”不转换jb nextcmp al,’Z’;大于“A”不转换ja nextadd al,20h ;是大写字母则转换为小写字母next:endm定义一个宏movestr strn,dstr,sstr,它将strn个字符从一个字符区sstr传送到另一个字符区dstr解:假设它们都在数据段movestr macro strn,dstr,sstrmov cx,dsmov es,cxmov cx,strnmov di,offset dstrmov si,offset sstrcldrep movsb ;;重复传送ES:DI←DS:SIendm第五章解:主存的作用:保存正在使用的、处于活动状态的程序和数据;辅存的作用:长期保存程序文件和数据文件,在需要时将这些文件调入RAM内存并激活使用;cache的作用:提高对存储器的访问速度;虚拟存储:由容量较小的主存和容量较大的辅存构成,其目标是扩大程序员眼中的主存容量;区别:通过存储器访问指令用户可对主存进行随机访问;用户利用操作系统提供的用户命令和功能调用对辅存进行访问;在半导体存储器中,RAM指的是随机存取存储器 ,他可读可写,但断电后信息一般会丢失;而ROM指的是只读存储器 ,正常工作时只能从中读取信息,但断电后信息不会丢失 ;以EPROM芯片2764为例,其存储容量为8K×8位,共有 8 条数据线和 13 条地址线;用它组成64KB的ROM存储区共需 8 片2764芯片; 解:双译码方式使得地址译码器的输出线的数目大为减少,使得芯片设计得时候复杂度就低了;地址线A9~A4根数据线I/O4~I/O1片选CS读写WE解:假想的RAM有12根地址线、4根数据线片选端CS或CE:有效时,可以对该芯片进行读写操作,通过对系统高位地址线的译码来选中各个存储芯片输出OE:控制读操作;有效时,芯片内数据输出,该控制端对应系统的读控制线MEMRMRDC写WE:控制写操作;有效时,数据进入芯片中,该控制端对应系统的写控制线MEMWMWTC解:位片结构:每个存储单元具有一个唯一的地址,可存储1位;4116字片结构:每个存储单元具有一个唯一的地址,可存储多位;2114解:组成单元速度集成度应用SRAM 触发器快低小容量系统DRAM 极间电容慢高大容量系统NVRAM 带微型电池慢低小容量非易失掩膜ROM:信息制作在芯片中,不可更改PROM:允许一次编程,此后不可更改EPROM:用紫外光擦除,擦除后可编程;并允许用户多次擦除和编程EEPROME2PROM:采用加电方法在线进行擦除和编程,也可多次擦写Flash Memory闪存:能够快速擦写的EEPROM,但只能按块Block擦除解:位扩充——存储器芯片数据位数小于主机数据线数时,利用多个存储器芯片在数据“位”方向的扩充;地址扩充字扩充——当一个存储器芯片不能满足系统存储容量时,利用多个存储器芯片在“地址”方向的扩充组成32KB存储空间,用SRAM 21141K×4需要64个芯片;组成32KB存储空间,用DRAM 411616K×1需要16个芯片;它们都需要进行位扩充和地址扩充解:片选信号说明该存储器芯片是否被选中正常工作,设置它可以比较方便地实现多个存储器芯片组成大容量的存储空间存储器片选信号通常与CPU地址总线的高位地址线相关联,可以采用“全译码”、“部分译码”、“线选译码”方式采用全译码方式可以避免地址重复采用部分或线选译码可以节省译码硬件解:24=16解:解:解:解:解:动态随机存取存储器 DRAM 的存储单元电路动态存储单元是由 MOS 管的栅极电容 C 和门控管组成的;数据以电荷的形式存储在栅极电容上,电容上的电压高表示存储数据 1 ;电容没有储存电荷,电压为 0 ,表明存储数据 0 ;因存在漏电,使电容存储的信息不能长久保持,为防止信息丢失,就必须定时地给电容补充电荷,这种操作称为“ 刷新” 由于要不断地刷新,所以称为动态存储;方法:采用“仅行地址有效”方法刷新;刷新周期:15μs刷新次数:128解:4 256KB A19-A16 4解:访问的局部性原理:在一个较短的时间间隔内,由程序产生的地址往往集中在存储器逻辑地址空间的很小范围内;指令地址的分布本来就是连续的,再加上循环程序段和子程序段要重复执行多次;因此,对这些地址的访问就自然地具有时间上集中分布的倾向;数据分布的这种集中倾向不如指令明显,但对数组的存储和访问以及工作单元的选择都可以使存储器地址相对集中;这种对局部范围的存储器地址频繁访问,而对此范围以外的地址则访问甚少的现象,就称为程序访问的局部性;cache的作用:提高对存储器的访问速度;虚拟存储:其目标是扩大程序员眼中的主存容量;第七章解:总线:指可以由多个信息处理单元所共享的信息通道;使用特点:⑴在某一时刻,只能由一个主设备控制总线,其他主设备此时可作为从设备出现⑵在某一时刻,只能有一个设备向总线上发送数据,但可以有多个设备从总线上接收数据在各种微机总线中,根据总线连接对象的不同可将它们分为以下几类,它们是:片内总线、芯片总线、板级总线、设备总线和互连总线_;例如,ISA总线属于板级总线,USB总线属于设备总线,I2C总线属于芯片总线;总线中除电源和地线外的信号线,也可按传输信息的不同分为以下3类,即:数据总线、地址总线、控制总线 ;解:分时复用就是一个引脚在不同的时刻具有两个甚至多个作用总线复用的目的是为了减少对外引脚个数在访问存储器或外设的总线操作周期中,这些引脚在第一个时钟周期输出存储器或I/O端口的低8位地址A7 ~ A0,其他时间用于传送8位数据D7 ~ D0 解:并行总线:多维数据通过多根信号线同时进行传递;并行同步传输、并行异步传输见P174;解:见P174.解:总线的性能指标包括:总线宽度、标准传输、时钟同步/异步、总线复用、信号线数、总线控制方式总线宽度:它是指数据总线的根数, 用bit位表示,如8位、16位、32位、64位;解:D0~D7:8位双向数据总线A0~A19:20位输出地址总线ALE:地址锁存允许,每个CPU 总线周期有效IOR:I/O读,输出IOW:I/O写,输出IO CH RDY:I/O通道准备好,输入第九章解:软件延时、不可编程的硬件定时、可编程的硬件定时解:CLK时钟输入信号——在计数过程中,此引脚上每输入一个时钟信号下降沿,计数器的计数值减1GATE门控输入信号——控制计数器工作,可分成电平控制和上升沿控制两种类型OUT计数器输出信号——当一次计数过程结束计数值减为0,OUT引脚上将产生一个输出信号解:8253每个通道有 6 种工作方式可供选择;若设定某通道为方式0后,其输出引脚为低电平;当写入计数初值并进入减1计数器后通道开始计数, CLK 信号端每来一个脉冲减1计数器就减1;当计数器减为0 ,则输出引脚输出高电平,表示计数结束;8253的CLK0接的时钟,欲使OUT0产生频率为300KHz的方波信号,则8253的计数值应为 5=÷300KHz ,应选用的工作方式是 3解:1 mov al,50hmov dx,207hout dx,almov al,128 ;80hmov dx,205hout dx,al2 mov al,33hmov dx,207hout dx,almov ax,3000h ;不是3000mov dx,204hout dx,almov al,ahout dx,al3 mov al,0b4hmov dx,207hout dx,almov al,02f0hmov dx,206hout dx,almov al,ahout dx,al解:mov al,33hout 0fbh,al ;写入计数器0地址:0fbhmov al,80h ;out 0f8h,al ;写入低字节计数初值mov al,50hout 0f8h,al ;写入高字节计数初值作用:计数器0的计数初值为5080h解计数器0——每隔55ms产生一个IRQ0中断请求计数器1——每隔15μs产生一个DRAM刷新请求计数器2——控制扬声器音调解101个下降沿,还可以采用方式4GATE0接外部启动计数器的控制信号,可以选用方式1或方式5 mov dx,203hmov al,12h ;方式5为1ahout dx,almov dx,200hmov al,64hout dx,al解:计数器0的计数值:5M/1K=5000=1388H方式控制字:00100101=25H、2DH、35H、3DH十进制计数00100100=24H、2CH、34H、3CH二进制计数计数器1的计数值:1000方式控制字:01101001=69H、79H十进制计数 01101000=68H、78H二进制计数MOV DX,0FFF3HMOV AL,25H ;通道0,只写高字节,方式2,十进制OUT DX,ALMOV DX, 0FFF0HMOV AL,50H ;计数初值5000OUT DX,ALMOV DX,0FFF3HMOV AL,69H ;通道1,方式4OUT DX,ALMOV DX, 0FFF1HMOV AL,10H ;计数初值1000OUT DX,AL解:stack segment stackdw 1024 dupstack endsdata segmentfreq dw 8,,,,,,,,data endscode segment 'code'assume cs:code, ds:data,ss:stack start: mov ax,datamov ds,axagain:mov ah,01hin 21hcmp al,1BHjz nextcmp al,31Hjb next1cmp al,38Hja next1and al,0fhmov ah,00hmov si,axmov bx,offset freqmov ax,BX+SIcall speakercall speakonjmp againnext1: call speakoffjmp againnext: mov ax,4c00hint 21hspeaker procpush axmov al,0b6hout 43h,alpop axout 42h,almov al,ahout 42h,alretspeaker endp speakon procpush axin al,61hor al,03hout 61h,alpop axretspeakon endp speakoff procpush axin al,61hand al,0fchout 61h,alpop axretspeakoff endpcode endsend starts 解:1 f 1162f。

《微机原理与接口技术》习题4解答

《微机原理与接口技术》习题4解答

《微机原理与接⼝技术》习题4解答习题44.1 半导体存储器有哪些优点?SRAM、DRAM各⾃有何特点?【解答】特点是容量⼤、存取速度快、体积⼩、功耗低、集成度⾼、价格便宜。

SRAM存放的信息在不停电的情况下能长时间保留不变,只要不掉电所保存的信息就不会丢失。

⽽DRAM保存的内容即使在不掉电的情况下隔⼀定时间后也会⾃动消失,因此要定时对其进⾏刷新。

4.2 ROM、PROM、EPROM、E2PROM、Flash Memory各有何特点?⽤于何种场合?【解答】掩膜式ROM中的信息是在⽣产⼚家制造时写⼊的。

制成后,信息只能读出不能改写。

PROM中晶体管的集电极接V CC,基极连接⾏线,发射极通过⼀个熔丝与列线相连。

出⼚时,晶体管阵列的熔丝完好。

写⼊信息时,选中某个晶体管,输⼊⾼低电平保留或烧断熔丝对应1和0。

烧断熔丝不能再复原,因此只能进⾏⼀次编程。

EPROM芯⽚的顶部开有⼀⽯英窗⼝,通过紫外线的照射可擦除⽚内原有信息,⼀块芯⽚可多次使⽤,缺点是只能进⾏整⽚写。

E2PROM是可⽤电擦除和编程的只读存储器,能在线读写,断电情况信息不丢失,能随机改写;其擦写次数可达1万次以上,数据可保存10年以上。

可作为系统中可靠保存数据的存储器。

Flash Memory是新型的半导体存储器,可实现⼤规模电擦除,擦除功能可迅速清除整个存储器的所有内容;可⾼速编程;闪速存储器可重复使⽤,适⽤于⽂件需要经常更新的可重复编程应⽤中。

对于需要实施代码或数据更新的嵌⼊性应⽤是⼀种理想的存储器。

4.3 动态RAM为什么需要经常刷新?微机系统如何进⾏动态RAM的刷新?【解答】动态RAM是利⽤电容存储电荷的原理来保存信息的,由于电容会泄漏放电,所以,为保持电容中的电荷不丢失,必须对动态RAM不断进⾏刷新。

DRAM的刷新常采⽤两种⽅法:⼀是利⽤专门的DRAM控制器实现刷新控制,如Intel 8203控制器;⼆是在每个DRAM芯⽚上集成刷新控制电路,使存储器件⾃⾝完成刷新,如Intel 2186/2187。

微机原理与接口技术复习资料(概念)

微机原理与接口技术复习资料(概念)

微机原理与接口技术复习资料(概念)填空1、计算机中采用二进制数,尾符用 B 表示。

2、西文字符的编码是 ASCII 码,用 1 个字节表示。

3、10111B用十六进制数表示为 H,八进制数表示为 O。

4、带符号的二进制数称为真值;如果把其符号位也数字化,称为原码。

5、已知一组二进制数为-1011B,其反码为 10100B ,其补码为 10101B 。

6、二进制码最小单位是位,基本单位是字节。

7、一个字节由 8 位二进制数构成,一个字节简记为 1B ,一个字节可以表示 256个信息。

8、用二进制数表示的十进制编码,简称为 BCD 码。

9、8421码是一种有权BCD 码,余3码是一种无权BCD 码。

第二章微型机系统概述1、计算机的发展经历了时代,微型机属于第代计算机。

2、计算机的发展以集成电路的更新为标志,而微型机的发展是以 CPU 的发展为特征。

3、微处理器又称为 CPU ,是微型机的核心部件。

4、把CPU、存储器、I/O接口等集成在一块芯片上,称为单片机。

5、把CPU、存储器、I/O接口等通过总线装配在一块印刷板上,称为单板机。

6、微机的系统总线是连接CPU、存储器及I/O的总线,AB表示地址总线,DB表示数据总线,CB表示控制总线。

7、软件按功能可分为系统软件和应用软件。

8、操作系统属于系统软件,Word属于应用软件。

9、只配有硬件的计算机称为裸机。

10、衡量存储容量的基本单位是 B ,1kB= 1024 B,1MB= 1024 kB,1GB= 1024 MB,1TB= 1024 GB。

11、一个完整的计算机系统包括硬件系统和软件系统两大部分。

12、微型机中具有记忆能力的部件是存储器,其中用户使用的是外存储器,其存储内容在断电以后将保留。

13、微型机的运算速度一般可以用CPU的主频表示,其单位是 MHz 或GHz 。

14、微机硬件系统一般是由五部分组成,包括运算器、控制器、存储器、输入设备和输入设备。

微机原理与接口技术第五章课后答案

微机原理与接口技术第五章课后答案

微机原理与接⼝技术第五章课后答案第五章参考答案1.简述SRAM 芯⽚与DRAM 芯⽚的共同点与不同点。

答:SRAM 与DRAM 的共同点:都属于随机存取存储器,具有易失性。

SRAM 与DRAM 的共同点:SRAM 利⽤双稳态触发器电路保存信息,集成度⽐DRAM 低,功耗⽐DRAM ⼤;DRAM 利⽤MOS 管栅极和源极之间的极间电容C 保存信息,需要刷新电路保证信息较长时间保存。

2.叙述ROM 芯⽚的常见分类,各种ROM 芯⽚的特点及其适⽤场合。

答:ROM 的常⽤分类结果:掩膜ROM :⽣产完成的芯⽚已保存了信息,保存的信息⽆法修改,适⽤于⼤批量的定型产品中。

PROM :PROM 可以⼀次写⼊信息,⼀旦写⼊⽆法更改,适⽤于⼩批量的定型产品中。

EPROM :紫外线擦除可多次编程的存储器,适⽤于新产品的开发。

EEPROM :电擦除可多次编程的存储器,适⽤于需要在线修改的场合。

3.利⽤4⽚6116(2K ×8位)芯⽚设计连续存储器,采⽤全地址译码。

设起始地址为60000H ,求存储器的最后⼀个单元地址。

答:存储器的最后⼀个单元地址为:61FFFH.4.⽤6264 RAM (8K ×8位)芯⽚构成256K 字节存储器系统,需要多少⽚6264芯⽚20位地址总线中有多少位参与⽚内寻址有多少位可⽤作⽚选控制信号答:需要32⽚6264芯⽚。

20位地址总线中有13位参与⽚内寻址;有7位可⽤作⽚选控制信号。

5.某微机系统中ROM 区有⾸地址为9000H ,末地址为FFFFH ,求其ROM 区域的存储容量。

答:其ROM 区域的存储容量为28K 。

6.在8088CPU 的系统中扩展32K 字节的RAM ,其扩充存储空间的起始地址为08000H 。

设系统的地址总线为A 19~A 0,数据总线为D 7~D 0,存储器芯⽚选⽤6264。

利⽤74LS138译码器设计译码电路,并画出扩充的存储器系统的连线图。

《微机原理与接口技术》教案

《微机原理与接口技术》教案

《微机原理与接口技术》教案第一章:微机系统概述1.1 微机的发展历程1.2 微机的组成与工作原理1.3 微机系统的性能指标1.4 微机在我国的应用与发展第二章:微处理器2.1 微处理器的结构与工作原理2.2 微处理器的性能评价2.3 常见微处理器简介2.4 微处理器的编程与应用第三章:存储器3.1 存储器的分类与性能3.2 随机存储器(RAM)3.3 只读存储器(ROM)3.4 存储器扩展与接口技术第四章:输入/输出接口技术4.1 I/O接口的基本概念4.2 I/O接口的编址方式4.3 常见I/O接口芯片介绍4.4 I/O接口的程序设计第五章:中断与DMA控制5.1 中断的概念与原理5.2 中断处理程序的编写5.3 DMA控制原理与实现5.4 中断与DMA在微机系统中的应用第六章:串行通信接口6.1 串行通信的基本概念6.2 串行通信的接口标准6.3 串行通信接口电路设计6.4 串行通信在微机系统中的应用第七章:并行通信接口7.1 并行通信的基本概念7.2 并行通信的接口标准7.3 并行通信接口电路设计7.4 并行通信在微机系统中的应用第八章:总线技术8.1 总线的概念与分类8.2 总线标准与协议8.3 总线接口电路设计8.4 总线在微机系统中的应用第九章:模拟接口技术9.1 模拟接口的基本概念9.2 模拟接口的电路设计9.3 模拟接口的信号转换技术9.4 模拟接口在微机系统中的应用第十章:微机系统的可靠性设计与维护10.1 微机系统的可靠性概述10.2 微机系统的可靠性设计10.3 微机系统的维护与故障诊断10.4 提高微机系统可靠性的措施重点和难点解析重点环节一:微机的发展历程与微机系统的性能指标解析:了解微机的发展历程对于理解微机原理与接口技术具有重要意义。

掌握微机系统的性能指标有助于评估和选择合适的微机系统。

重点环节二:微处理器的结构与工作原理解析:微处理器是微机系统的核心部件,理解其结构与工作原理对于深入学习微机原理与接口技术至关重要。

微机原理与接口技术(楼顺天第二版)第六章习题解答

微机原理与接口技术(楼顺天第二版)第六章习题解答

微机原理与接口技术(楼顺天第二版)习题解答第6章总线及其形成6.1答:内存储器按其工作方式的不同,可以分为随机存取存储器(简称随机存储器或RAM)和只读存储器(简称ROM)。

随机存储器。

随机存储器允许随机的按任意指定地址向内存单元存入或从该单元取出信息,对任一地址的存取时间都是相同的。

由于信息是通过电信号写入存储器的,所以断电时RAM中的信息就会消失。

计算机工作时使用的程序和数据等都存储在RAM中,如果对程序或数据进行了修改之后,应该将它存储到外存储器中,否则关机后信息将丢失。

通常所说的内存大小就是指RAM的大小,一般以KB或MB为单位。

只读存储器。

只读存储器是只能读出而不能随意写入信息的存储器。

ROM中的内容是由厂家制造时用特殊方法写入的,或者要利用特殊的写入器才能写入。

当计算机断电后,ROM 中的信息不会丢失。

当计算机重新被加电后,其中的信息保持原来的不变,仍可被读出。

ROM 适宜存放计算机启动的引导程序、启动后的检测程序、系统最基本的输入输出程序、时钟控制程序以及计算机的系统配置和磁盘参数等重要信息。

6.2 答:存储器的主要技术指标有:存储容量、读写速度、非易失性、可靠性等。

6.3答:在选择存储器芯片时应注意是否与微处理器的总线周期时序匹配。

作为一种保守的估计,在存储器芯片的手册中可以查得最小读出周期t cyc(R)(Read Cycle Time)和最小写周期t cyc(W)(Write Cycle Time)。

如果根据计算,微处理器对存储器的读写周期都比存储器芯片手册中的最小读写周期大,那么我们认为该存储器芯片是符合要求的,否则要另选速度更高的存储器芯片。

8086CPU对存储器的读写周期需要4个时钟周期(一个基本的总线周期)。

因此,作为一种保守的工程估计,存储器芯片的最小读出时间应满足如下表达式:t cyc(R)<4T-t da-t D-T其中:T为8086微处理器的时钟周期;t da为8086微处理器的地址总线延时时间;t D为各种因素引起的总线附加延时。

微机原理与接口技术(第三版)&电子工业出版社&课本习题答案

微机原理与接口技术(第三版)&电子工业出版社&课本习题答案

&电子工业出版社&第二章 8086体系结构与80x86CPU1.8086CPU由哪两部分构成?它们的主要功能是什么?答:8086CPU由两部分组成:指令执行部件(EU,Execution Unit)和总线接口部件(BIU,Bus Interface Unit)。

指令执行部件(EU)主要由算术逻辑运算单元(ALU)、标志寄存器FR、通用寄存器组和EU控制器等4个部件组成,其主要功能是执行指令。

总线接口部件(BIU)主要由地址加法器、专用寄存器组、指令队列和总线控制电路等4个部件组成,其主要功能是形成访问存储器的物理地址、访问存储器并取指令暂存到指令队列中等待执行,访问存储器或I/O端口读取操作数参加EU运算或存放运算结果等。

2.8086CPU预取指令队列有什么好处?8086CPU内部的并行操作体现在哪里?答:8086CPU的预取指令队列由6个字节组成,按照8086CPU的设计要求,指令执行部件(EU)在执行指令时,不是直接通过访问存储器取指令,而是从指令队列中取得指令代码,并分析执行它。

从速度上看,该指令队列是在CPU内部,EU从指令队列中获得指令的速度会远远超过直接从内存中读取指令。

8086CPU内部的并行操作体现在指令执行的同时,待执行的指令也同时从内存中读取,并送到指令队列。

5.简述8086系统中物理地址的形成过程。

8086系统中的物理地址最多有多少个?逻辑地址呢?答:8086系统中的物理地址是由20根地址总线形成的。

8086系统采用分段并附以地址偏移量办法形成20位的物理地址。

采用分段结构的存储器中,任何一个逻辑地址都由段基址和偏移地址两部分构成,都是16位二进制数。

通过一个20位的地址加法器将这两个地址相加形成物理地址。

具体做法是16位的段基址左移4位(相当于在段基址最低位后添4个“0”),然后与偏移地址相加获得物理地址。

由于8086CPU的地址线是20根,所以可寻址的存储空间为1M字节,即8086系统的物理地址空间是1MB。

微机原理与接口技术

微机原理与接口技术

微机原理与接口技术引言微机原理与接口技术是计算机科学与技术专业的一门核心课程,也是了解计算机硬件原理以及设备与外部世界的接口的基础。

本文将介绍微机原理与接口技术的基本概念、原理与应用,并探讨其在计算机科学领域的重要性。

一、微机原理微机原理是指对微型计算机的组成结构和工作原理进行研究的学科。

微机原理研究的内容包括微型计算机的硬件组成、数据传输方式及控制方式、指令系统、中央处理器、存储器、输入输出设备等。

了解微机原理对于掌握计算机的工作原理以及进行系统级的调试和优化非常关键。

微型计算机由中央处理器(Central Processing Unit,简称CPU)、存储器(Memory)、输入设备(Input Device)、输出设备(Output Device)等几个基本部分组成。

中央处理器是计算机的核心,负责执行计算机程序的指令,控制计算机的运行;存储器用于存储程序和数据;输入设备用于将外部信息输入到计算机中;输出设备则是将计算机处理的结果输出给外界。

二、接口技术接口技术是将计算机系统与外围设备、网络或其他系统进行连接和通信的技术。

计算机与外界设备的接口技术包括串行通信接口、并行通信接口、USB接口、网络接口等。

接口技术的发展与进步可以提高计算机的扩展性和连接性,实现计算机与外界的无缝衔接。

2.1 串行通信接口串行通信接口是一种利用串行方式进行数据传输的接口技术。

串行通信接口由发送端和接收端组成,通过使用不同的协议和信号电平进行数据的传输。

串行通信接口的优点是可以通过串行线路同时传输多个数据位,适用于长距离传输。

常见的串行通信接口有RS-232、RS-485等。

2.2 并行通信接口并行通信接口是一种利用并行方式进行数据传输的接口技术。

并行通信接口将数据分成多个位同时传输,速度较快。

常见的并行通信接口有并行打印口(LPT口)、并行接口总线(Parallel Interface Bus,简称PIB)等。

2.3 USB接口USB(Universal Serial Bus,通用串行总线)接口是一种用于连接计算机与外部设备的通信接口标准。

微机原理及接口技术课件第5章 存储器

微机原理及接口技术课件第5章 存储器

引脚号
2764
27128
27256
27512
引脚号
2764
27128
27256
27512
1
VPP
VPP
VPP
A15
15
D3
D3
D3
D3
2
A12
A12
A12
A12
16
D4
D4
D4
D4
3
A7
A7
A7
A7
17
D5
D5
D5
D5
4
A6
A6
A6
A6
18
D6
D6
D6
D6
5
A5
A5
A5
A5
19
D7
D7
D7
D7
6
A4
例如:6264静态RAM的容量为8K x 8bit NMC41257的容量为256K x 1bit
某一芯片有多少个存储单元,每个存储单元存储若干位,由于其数值一般 都比较大,存储容量常以字节(Byte)表示。因此常以K表示210,以M表示 220,G表示230。如256KB等于256×210×8bit,32MB等于32×220×8bit。
A4
行 译
存储器阵列
VCC



128x128
GND
A10
WE
I/O1



输入数 据控制
列I/O 列译码
OE
I/O8
CE

… …

CE
1
WE
0 0
& 0
A0A1A2A3
0

微机原理与接口技术第五章存储器

微机原理与接口技术第五章存储器

数据只能读出不能写入,断电后数据不丢 失,常用作固定数据存储。
RAM的分类与特点
静态随机存取存储器(SRAM)
动态随机存取存储器(DRAM)
速度快,集成度低,功耗大,常用作高速 缓冲存储器。
速度较慢,集成度高,功耗小,常用作主 存储器。
异步随机存取存储器(DRAM)
只读存储器(ROM)
速度慢,集成度高,功耗小,价格便宜, 常用于大容量存储。
01
02
03
存储器接口是CPU与主 存储器之间的连接桥梁 ,负责数据的传输和控
制。
存储器接口的主要功能 包括地址译码、数据传
输、读写控制等。
存储器接口的信号线包 括地址线、数据线、控 制线等,用于实现CPU 与主存储器之间的信息
交换。
存储器接口的信号线
01
02
03
地址线
用于传输CPU发出的地址 信号,指向主存储器中的 某个单元。
高密度化
随着技术的不断发展,存储器的容量和集成度将不断提高,以满 足不断增长的数据存储需求。
异构存储集成
未来存储器将朝着异构存储集成的方向发展,结合不同类型存储 器的优点,实现更高效、可靠的数据存储。
新型存储技术
新型存储技术如相变存储器、阻变存储器和闪存等将继续得到发 展,并逐渐应用于商业领域。
04
存储器接口
04
存储器接口
存储器接口的基本概念
01
02
03
存储器接口是CPU与主 存储器之间的连接桥梁 ,负责数据的传输和控
制。
存储器接口的主要功能 包括地址译码、数据传
输、读写控制等。
存储器接口的信号线包 括地址线、数据线、控 制线等,用于实现CPU 与主存储器之间的信息
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章 半导体存储器
半导体 存储器
随机读写 存储器RAM
只读存储器 ROM
双极型
MOS型
不可编程掩膜 存储器 MROM
可编程存储器 PROM
可擦除、可再 编程存储器
静态RAM 动态RAM
紫外线擦除的 EPROM电擦除的 E2 PR源自M图6.1 半导体存储器的分类
第6章 半导体存储器
6.1.3 半导体存储器的主要技术指标 1.存储容量
第6章 半导体存储器
6.集成度 集成度指在一块存储芯片内能集成多少个 基本存储电路,每个基本存储电路存放一位二进 制信息,所以集成度常用位/片来表示。 7.性能/价格比 性能/价格比(简称性价比)是衡量存储器经 济性能好坏的综合指标,它关系到存储器的实用 价值。其中性能包括前述的各项指标,而价格是 指存储单元本身和外围电路的总价格。
内存储器 外存储器
第6章 半导体存储器
6.1.2 半导体存储器的分类
从应用角度可将半导体存储器分为两大类: 随机存取存储器RAM(Random Access Memory)和 只读存储器ROM(Read Only Memory)。
RAM是可读、可写的存储器,CPU可以对RAM 的内容随机地读写访问,RAM中的信息断电后即 丢失。
第6章 半导体存储器
6.1.4 半导体存储器芯片的基本结构
… … … …
A0

A1



An

存储矩阵
缓 冲 器
三 态 数 据
D0 D1
DN
控制逻辑
R/W CS
图6.2 半导体存储器组成框图
第6章 半导体存储器
地址译码方式 单译码方式
A0 A1 A2 A3
内存:把通过系统总线直接与CPU相连的存 储器称为内存储器,简称内存。
特点:具有一定容量、存取速度快,且掉电 数据将丢失。
作用:计算机要执行的程序和要处理的数据 等都必须事先调入内存后方可被CPU读取并执行。
第6章 半导体存储器
外存:把通过接口电路与系统相连的存储器称为 外存储器,简称外存,如硬盘、软盘和光盘等。
第6章 半导体存储器
4.功耗 功耗反映了存储器耗电的多少,同时也反 映了其发热的程度。 5.可靠性 可靠性一般指存储器对外界电磁场及温度 等变化的抗干扰能力。存储器的可靠性用平均 故障间隔时间MTBF(Mean Time Between Failures)来衡量。MTBF可以理解为两次故障之 间的平均时间间隔。MTBF越长,可靠性越高, 存储器正常工作能力越强。
(1) 用字数位数表示,以位为单位。常用来表示 存 储 芯 片 的 容 量 , 如 1K4 位 , 表 示 该 芯 片 有 1K 个 单 元 (1K=1024),每个存储单元的长度为4位。
(2) 用字节数表示,以字节为单位,如128B,表示 该芯片有 128个单元,每个存储单元的长度为8位。
其中,1KB=210B=1024B;1MB=220B=1024KB;1GB =230B=l024MB;1TB=240B=1024GB。显然,存储容量 越大,所能存储的信息越多,计算机系统的功能便越强。
特点:存储容量大而存取速度较慢,且掉电数据 不丢失。
作用:外存用来存放当前暂不被CPU处理的程序 或数据,以及一些需要永久性保存的信息。
通常将外存归入计算机外部设备,外存中存放的 信息必须调入内存后才能被CPU使用。
早期的内存使用磁芯。随着大规模集成电路的发 展,半导体存储器集成度大大提高,成本迅速下降,存 取速度大大加快,所以在微型计算机中,目前内存一般 都使用半导体存储器。
ROM的内容只能随机读出而不能写入,断电 后信息不会丢失,常用来存放不需要改变的信息 (如某些系统程序),信息一旦写入就固定不变了。
第6章 半导体存储器
根据制造工艺的不同,随机读写存储器RAM主 要有双极型和MOS型两类。
双极型存储器存取速度快、集成度较低、功 耗较大、成本较高等特点,适用于对速度要求较高 的高速缓冲存储器,低阻抗、电流控制的器件 ;
第6章 半导体存储器
第6章 半导体存储器
主要内容:
– 存储器及半导体存储器的分类 – 随机读写存储器(RAM) – 只读存储器(ROM) – 存储器的扩展
第6章 半导体存储器
6.1 存储器及半导体存储器的分类
存储器是计算机用来存储信息的部件。
6.1.1 存储器的分类
按存取速度和用途可把存储器分为两大类: 内存储器和外存储器。
掩膜式ROM,用户不可对其编程,其内容已由厂家设定 好,不能更改;
可编程ROM(Programmable ROM,简称PROM),用户只能 对其进行一次编程,写入后不能更改;
可擦除的PROM(Erasable PROM,简称EPROM),其内容 可用紫外线擦除,用户可对其进行多次编程;
电擦除的PROM(Electrically Erasable PROM,简称 EEPROM或E2PROM),能以字节为单位擦除和改写。
MOS型存储器具有集成度高、功耗低、价格便 宜等特点,适用于内存储器,高输入阻抗、电压控制
的器件 。
MOS型存储器按信息存放方式又可分为静态 RAM(Static RAM,简称SRAM)和动态RAM(Dynamic RAM,简称DRAM)。
第6章 半导体存储器
只读存储器ROM在使用过程中,只能读出存储的信 息而不能用通常的方法将信息写入存储器。目前常见 的有:
第6章 半导体存储器
存储系统的层次结构
内存平均访问时间ns级
SRAM Cache1~5ns SDRAM内存7~15ns EDO内存60~80ns EPROM存储器100~400ns
寄存器 Cache 主存储器
外存平均访问时间ms级 硬盘9~10ms 光盘80~120ms
辅助存储器(磁盘) 大容量存储器(磁带)
第6章 半导体存储器
2.存取时间 存取时间是指从启动一次存储器操作到完 成该操作所经历的时间。例如,读出时间是指 从CPU向存储器发出有效地址和读命令开始,直 到将被选单元的内容读出为止所用的时间。显 然,存取时间越小,存取速度越快。 3.存储周期 连续启动两次独立的存储器操作(如连续两 次读操作)所需要的最短间隔时间称为存储周期。 它是衡量主存储器工作速度的重要指标。一般 情况下,存储周期略大于存取时间。
相关文档
最新文档