管壳式换热器传热计算示例终 用于合并
管壳式换热器的建模、换热计算和CFD模拟

毕业设计(论文)管壳式换热器的建模、换热计算和CFD模拟专业年级2007级热能与动力工程专业学号姓名******** 杨郭指导教师刘巍评阅人刘庆君二零一一年六月中国南京任务书课题名称:管壳式换热器的建模、换热计算与CFD模拟课题类型:毕业论文任务书内容:1、英文资料的翻译5千个汉字字符以上(要求和热动、空调、能源、环境、新能源等本专业有关的内容,可以是英文著作、设备使用手册、英文文献检索、英文专利文献、网上专题介绍等实用性的、将来工作中可遇到的相关题材的文章,最好不要是科普类、教学类的英文)2、使用的原始资料(数据)及设计技术要求:2.1.管壳式换热器,热交换功率100kW,200kW。
2.2.温度进口350~500℃,出口温度150~200℃,流速可变;温度进口100~150℃,出口温度300~450℃,流速可变。
其总流阻损失应在满足规定要求。
2.3.换热器材料可选,几何尺寸可变;工作介质可选择(空气、水、氟利昂) 2.4.换热器外壁面绝热保温; 2.5.采用CFD模拟计算与能量分析,对系统进行相关工况的模拟;3、设计内容:3.1. 学习和消化设计任务书,按照设计任务书的设计内容,拟定工作内容和计划,拟定出设计和计算的每个过程中应该遵循设计要求与规定。
3.2.查找和收集有关管壳式换热器的历史和现状资料,查找相关管壳式换热器的运用案例,及其相关的技术条件和运行要求。
3.3.以科技文献检索,包括期刊、专利、设计标准、产品标准、设计手册、产品样本,寻找和熟悉相关的分析计算软件;熟悉设计工具软件、电脑等;3.4.根据已知参数,用ProE设计出符合要求的管壳式换热器,并学习如何导入相关软件进行网格设计;3.5.进行管壳式换热器CFD网格设计,用fluent软件对管壳式换热器进行变工况运行能量分析;3.5.分析计算换热器的流阻损失,其结果的合理性,分析提高换热效率主要手段和改进的方向。
3.6.输出的计算文件包括:3.6.1.完整的毕业设计任务书3.6.2.符合要求的算模型的结构、尺寸; 3.6.3.换热计算的过程、表格,计算结果的结论等等; 3.6.4.规定状态的CFD模拟结果和能量分析图; 3.6.5.毕业设计论文; 3.7.把所作的工作、学习的体会、方案的选择过程、计算方案过程等写在过程手册中,写好毕业设计论文。
孙兰义教授新作《换热器工艺设计》第3章 管壳式换热器ppt

特性
适用范围
ϕ25×2.5
325~1Байду номын сангаас00
2,4
3,6
ϕ19×2 ϕ25×2.5
△
浮头 式
GB/T 28712.1 —2012
325~1900
2,4, 3, 4.5, 6, ϕ19×2 6 9
◇
ϕ25×2.5
3.1 管壳式换热器的特点
管壳式换热器的主要组合部件
TEMA标准中规定的管壳式换热器的主要组合
图3-3 GB/T 151-1999 管壳式 换热器中的主要部件和部件代号图
⑤ F型壳体用于需要多壳体的工况,它可起到两台或多 台串联换热器的作用,并允许换热器温度交叉的出现。
3.1 管壳式换热器的特点
前端管箱和后端管箱
前端管箱有封头管箱和平盖管箱两种基本型式。封头管箱(B)最常用,一 般是在管侧流体较清洁的情况下使用。平盖管箱可以是可拆式(A)也可以与 管板做成一个整体(C)。对于水冷却器,当管侧需要定期清洗且管侧设计压 力小于1 MPa时,前封头可选A型,对于高压换热器前封头宜选择D型。各管箱 详细介绍见书p6~p7。 可参考的一般选型指导:
(a)竖缺形折流板
(b)横缺形折流板
图3-11 折流板缺口方向
3.2 管壳式换热器结构参数选择
折流板换热器间隙 折流板管孔与管壁之间的间隙 根据TEMA标准,对于未受支承的管子的最大长度为36 in(914.4 mm)
或更小,或者对于外径大于1.25 in(31.8 mm)的管子,该孔隙为1/32 in (0.80 mm);对于未受支承的长度超过36 in,外径为1.25 in或更小的 管子,该孔隙为1/62 in(0.40 mm)。
多管程管壳式换热器隔板槽面积计算

多管程管壳式换热器隔板槽面积计算丁满福【摘要】针对换热器设计中转角正三角形排列及转角正方形排列的多管程管壳式换热器管板的隔板槽面积难以精确计算的问题,给出了一种隔板槽面积的计算方法.该方法可以方便地获得多管程管壳式换热器管板的隔板槽面积,从而提高了管板厚度计算的精确性.【期刊名称】《山西化工》【年(卷),期】2010(030)006【总页数】3页(P60-61,68)【关键词】多管程管壳式换热器;隔板槽;面积计算【作者】丁满福【作者单位】山西丰喜化工设备有限公司,山西,永济,044500【正文语种】中文【中图分类】TQ051.5石油化工及化肥工业中,换热器作为流程中的重要设备,得到了十分广泛的应用。
多管程管壳式换热器的管板作为主要受压元件之一,其设计计算的精确性对确保换热器的安全运行、节约金属材料及降低制造成本至关重要。
由于管板结构复杂,影响其强度的因素很多。
其中,管板布管区就是影响因素之一,而隔板槽面积则是管板布管区面积中不可缺少的一部分。
因此,精确地计算出隔板槽面积,对于多管程换热器的管板计算非常重要。
1.1 双管程正三角形排列双管程正三角形排列见图1中阴影部分,面积计算公式见式(1):1.2 双管程正方形排列双管程正方形排列见图2阴影部分,面积计算公式见式(2):1.3 双管程转角三角形排列双管程转角三角形排列见第61页图3。
对于管孔为三角形排列的布管,每根管子对管板的支撑面积是以管间距S为内切圆直径的等边六角形的面积,即0.866S2。
根据图3,隔板槽面积计算公式为式(3):1.4 双管程转角正方形排列对于管孔为正方形排列的布管,每根管子对管板的支撑面积是以管孔圆心为中心,S 为边长的正方形面积,即S2。
双管程转角正方形排列见图4。
根据图4,隔板槽面积计算公式为式(4)或式(5): 2.1 四管程正三角形排列四管程正三角形排列见图5,计算公式见式(6):2.2 四管程转角三角形排列四管程转角三角形排列见图6,计算公式见式(7):2.3 四管程正方形排列四管程正方形排列见图7,计算公式见式(8):2.4 四管程转角正方形排列四管程转角正方形排列见图8,计算公式见式(9):双管程管壳式换热器管板的隔板槽面积的计算公式在GB151-1999中第1节~第3节已详细给出[1]。
管壳式换热器的设计及计算

管壳式换热器的设计及计算管壳式换热器是常见的一种热交换设备,用于在流体之间进行热量传递。
它由一个外壳和多个热交换管组成。
在设计和计算管壳式换热器时,需要考虑以下几个方面:选择换热器类型、确定换热器尺寸、确定流体特性、计算热量传递量和压降等。
下面将详细介绍管壳式换热器的设计及计算过程。
首先,选择适合的换热器类型。
根据具体的应用和流体特性,可以选择不同类型的管壳式换热器,如定压式、定温式、冷凝器和蒸发器等。
每种类型的换热器都有特定的性能和适用范围,需根据实际需求确定。
接下来,确定换热器的尺寸。
首先要确定传热面积,这取决于所需的传热量和两种流体间的温度差。
一般来说,换热器的传热面积越大,传热效果越好。
然后确定换热器的外壳直径和长度,这取决于流体的流速、流量和压降要求。
根据流体速度和流量计算出流道的横截面积,再确定壳程内的流道数量,最后通过换热器的设计公式计算出外壳直径和长度。
确定流体特性是设计换热器的关键一步。
需要收集并分析流体的物性数据,如温度、压力、流速、密度、热容等。
这些参数将用于计算热量传递量和压降。
此外,还需要考虑流体的腐蚀性、粘度和污染物含量等因素,在选择材料时要注意其耐腐蚀性能和抗堵塞能力。
计算热量传递量是设计换热器的核心任务。
可以使用传热计算公式,如奥兹逊公式、Nusselt数公式等,根据流体的特性参数计算出传热系数。
传热系数与换热器的结构、流体速度和物性参数有关。
通过计算热传导、对流和辐射等传热机制,可以得到热量传递量的准确数值。
最后,要计算管壳式换热器的压降。
压降是流体通过换热器时产生的能量损失。
为了保证流体的正常流动和换热效果,需要控制良好的压降。
可以通过实验或计算公式,如达西公式和克尔文公式,预测换热器内的压降情况。
根据流体的流速、流量和物性参数,计算出壳程和管程内的压降,并进行整体的能量平衡计算。
综上所述,管壳式换热器的设计和计算包括选择换热器类型、确定尺寸、确定流体特性、计算热量传递量和压降等步骤。
管壳式换热器的设计及计算

第一章换热器简介及发展趋势1.1 概述在化工生产中,为了工艺流程的需要,常常把低温流体加热或把高温流体冷却,把液态汽化或把蒸汽冷凝程液体,这些工艺过程都是通过热量传递来实现的。
进行热量传递的设备称为换热设备或换热器。
换热器是通用的一种工艺设备,他不仅可以单独使用,同时又是很多化工装置的组成部分。
在化工厂中,换热器的投资约占总投资的10%——20%,质量约为设备总质量的40%左右,检修工作量可达总检修工作量的60%以上。
由此可见,换热器在化工生产中的应用是十分广泛的,任何化工生产工艺几乎都离不开它。
在其他方面如动力、原子能、冶金、轻工、制造、食品、交通、家电等行业也有着广泛的应用。
70年代的世界能源危机,有力地促进了传热强化技术的发展,为了节能降耗,提高工业生产经济效益,要求开发适用于不同工业过程要求的高效能换热设备[1]。
这是因为,随着能源的短缺(从长远来看,这是世界的总趋势),可利用热源的温度越来越低,换热允许温差将变得更小,当然,对换热技术的发展和换热器性能的要求也就更高[2]。
所以,这些年来,换热器的开发与研究成为人们关注的课题,最近,随着工艺装置的大型化和高效率化,换热器也趋于大型化,向低温差设计和低压力损失设计的方向发展。
同时,对其一方面要求成本适宜,另一方面要求高精度的设计技术。
当今换热器技术的发展以CFD(Computational Fluid Dynamics)、模型化技术、强化传热技术及新型换热器开发等形成了一个高技术体系[3]。
当前换热器发展的基本趋势是:继续提高设备的传热效率,促进设备结构的紧凑性,加强生产制造的标准化系列化和专业化,并在广泛的范围内继续向大型化的方向发展。
各种新型高效紧凑式换热器的应用范围将得到进一步扩大。
在压力、温度和流量的许可范围内,尤其是处理强腐蚀性介质而需要使用贵重金属材料的场合下,新型紧凑式换热器将进一步取代管壳式换热器。
总之,为了适应工艺发展的需要,今后在强化传热过程和换热设备方面,还将继续探索新的途径。
列管式-管壳式换热器换热面积计算软件-表格大全

Q=KAΔtm 式中: Q-热负荷,W
K-总传热系数,W/(m2.℃) A-换热器传热面积,m2 Δtm-进行换热的两流体之间的平均温度差,℃
其中总传热系数K的计算公式如下:
热负荷Q的计算热流体进口Βιβλιοθήκη 度T1= 100℃
热流体出口温度 热流体定性温度
1.0050
假设K时换热面积
设备选型
壳径 mm 管程数 公称面积m2
管子总数
管长 m
管子尺寸 mm
K=
25 W/(m2.℃) K=
35.36617552 W/(m2.℃) 0.00017197 (m2.℃)/W
0.027151893 m
11.49286461 800
52.67507917 W/(m2.℃) 60
3.21E-06 5.27E-08 2.30E-07 6.34E-07
0.0048 0.0000 0.0023
0.0006
7.250E-04 994.0000
0.6260
设备选型 450 2
103 1.5 25 25.31
F600Ⅱ-3.2-45
2
0.021
20
11.33 计算总换热系数Ko= 管程压降核算
℃
Δt1/Δt2= 0.14286
3、确定平均温度差
(3)当Δt1/Δt2 >2 时且逆向流动时 Δtm= 30.83
4、确定温度修正系数 (1)对于单壳程、双管程或者2n管程的管壳
P= 0.0666667
R= 13 5、根据P、R值查图,确定对应温度
温度修正系数
FT=
0.98 Δtm= #####
管壳式热交换器的热力计算

3. 壳程流通截面积的确定
a. 纵向隔板,要确定其长度。
采用连续性方程。
标准: 使流体在纵向隔板转弯时的流速与各流程中顺管束流动时速度基本相等。 问题: 怎么确定壳程流速?
b. 弓形折流板,要确定其缺口高度。
标准: 流体在缺口处的流通截面积与流体在两折流板间错流的流通截面积 相接近,以免因流动速度变化引起压降。
b) 回弯阻力
Pi 4
wt2
2
Zt
Pa,
Z t 管程数
c) 进、出口连接管阻力
Pi 1.5
2 wn
2
Pa
2. 壳程阻力计算
a) 无折流板 可直接利用直管中沿程阻力计算公式 4A 当量直径 d 自由流通面积和湿周 U b) 弓形折流板 包括了顺流和叉流的复杂流动,有间隙泄漏、旁路等,所以很难准确地计 算阻力 贝尔-台华法 具体方法见课本
四、管壳式热交换器的合理设计
1.流体在热交换器内流动空间的选择原则:
1)提高传热系数小的一侧的换热系数 2)省材料,降低成本 3)便于清洗检修 4)减少和环境的热量交换 5)减少受热不匀造成的热应力 管内:容积流量小的,不清洁易结垢的,压力高的、有腐蚀性的,加热设备 中的高温流体或低温设备中的低温流体 壳体:容量大尤其是气体,刚性结构换热器中对流传热系数较大的流体,饱 和蒸汽等
山东大学· Βιβλιοθήκη 源与动力工程学院 杜文静第二章 管壳式换热器
一.管壳式热交换器的结构计算
结构计算的目的在于确定设备的主要结构参数和尺寸,包括: (1) 计算管程流通截面积,包括确定管子尺寸、数目、管程数,并选择管 子的排列方式等; (2) 确定壳体直径; (3) 计算壳程流通截面积,包括折流板类型; (4) 计算进出口连接管尺寸。
管壳式换热器总传热系数的大致范围

管侧流体
K
W∕(㎡· ℃)
液 体 - 液 体 介 质 稀释沥青(溶于石油馏出物中) 水 57~110 植物油、妥尔油等 水 110~280 乙醇胺(单乙醇胺或二乙醇胺)10%~20% 水或单乙醇胺或二乙醇胺 800~1100 软化水 水 1700~2800 燃料油 水 85~140 燃料油 油 57~85 汽油 水 340~910 重油 重油 45~280 重油(热) 水(冷) 60~280 富氢重整油 富氢重整油 510~880 煤油或瓦斯油 水 140~280 煤油或瓦斯油 油 110~200 煤油或喷气发动机燃料 三氯乙烯 230~280 润滑油(低粘度) 水 140~280 润滑油 油 60~110 石脑油 水 280~400 石脑油 油 140~200 有机溶剂(热) 盐水(冷) 170~510 有机溶剂 有机溶剂 110~340 水 烧碱溶液(10%~30%) 570~1420 蜡馏出液 水 85~140 蜡馏出液 油 74~130 水 水 1100~1420 道生油 重油 45~340 冷 凝 蒸 气 - 液 体 介 质 酒精蒸气 水 570~1100 沥青 道生油蒸气 230~340 道生油蒸气 道生油 460~680 煤气厂焦油 水蒸气 230~280 高沸点烃类(真空) 水 60~170 低沸点烃类(大气压) 水 460~1100 烃类蒸气(分凝器) 油 140~230 有机蒸气 水 570~1100 有机蒸气(大气压下) 盐水 490~980 有机蒸气(减压下且含少量不凝气) 盐水 240~490 有机蒸气(传热面塑料衬里) 水 230~900 有机蒸气(传热面不透性石墨) 水 300~1100 水(u=1~1.5) 汽油蒸气 520 原油(u=0.6) 汽油蒸气 110~170 煤油蒸气 水 170~370 煤油或石脑油蒸气 油 110~170 石脑油蒸气 水 280~430 水蒸气 供给水 2300~5700
换热器、热网加热器计算示例

管壳式换热器选型计算书编写:张景富西安协力动力科技有限公司二零一零年九月十三日一、换热器的工艺计算及工艺条件现在从一台管壳式换热器工艺计算过程来体现工艺条件内容: 1.设计参数 壳程:工作介质:蒸汽、水 Ps=0.2Mpa 蒸汽流量135m 3/h 进口温度:135℃ 出口温度:90℃ 管程:工作介质:含碱水 Pt=0.3Mpa 水流量300m 3/h 进口温度:80℃ 出口温度:110℃ 液体比重:1.25 比热:0.85~0.86 2.工艺计算冷源:q=300m 3 比重:γ=1.25g/cm 3 比热c=0.86J/kg ·℃ T1=135℃ T2=135℃ t1=80℃ t2=110℃ 取a c =2000kcal/㎡·h ·℃ a h =10000kcal/㎡·h ·℃ 换热管规格:φ19×1 其内径d1=0.017m 外径d2=0.019m 中径dm=0.018m 壁厚δ=0.001m金属导热系数λ=17.0 w/m ·h ·℃=17.0/1.16222=14.6 kcal/㎡·h ·℃ (1)传热系数K取传热系数K=1400kcal/㎡·h ·℃ (2)平均温差Δt m (按逆流状态计算)(3)传热面积FC 4.1680-90110-135ln 80)-90(110)-135(1221ln )12()21(lnt 2121︒=-=-----=∆∆∆-∆=∆t T t T t T t T t t t t m 2m 42116.4140080)-(11086.01250300tm K t1)-(t2c q F =⨯⨯⨯⨯=∆⨯⨯⨯⨯=γC h m kcal d dm d dm K h c ︒=+⨯+⨯=++=2/7.14436.14001.010000019.0018.02000017.0018.012111λδαα(4)管子根数n (管长L=6m )(5)程数N 单程流速管壳换热器中换热管内水的流速为0.7~1.5m/s N=1.5/0.313=4.79,可以选择Ⅳ程标准DN1000 Ⅳ程换热器,φ19×1的管子,n=1186根,L=6000mm 传热面积F=425㎡推荐设备材质:管程316L 壳程16MnR (6)换热器壁温的计算a.壳程的壁温:由于有保温,可以取蒸汽的平均温度 Tm=1/2(135+90)=112.5℃b.换热管的壁温估算:热流侧Tm=112.5℃ 冷流侧tm=1/2(80+110)=95℃ 换热管的壁温:(7)换热器接管的计算 (a )壳程蒸汽进口 蒸汽流速一般取15~20m/s进蒸汽截面A=135/(15×3600)=2.5×10-3㎡ 接管内径进汽管取φ76×4(DN65) (b )管程进出管管程流动的是含微量碱的水溶液,当P ≤0.6Mpa 时,其流速为1.5~2.5m/s11736019.04212F n =⨯⨯=⨯⨯=ππL d sm nd /313.01173017.04300/36004q221=⨯⨯=⨯⨯=ππωCa a t t c c m t ︒=+⨯+⨯=++=6.10920001000020009510000112.5a a T n n m mAd 564.0105.2443=⨯⨯==-ππ进出管流通截面A=300/(2.5×3600)=0.0333㎡ 接管内径取φ219×6(DN200) 3.提条件设计参数表及管口表设计数据注:管程材质为不锈钢316L ,管板材质为16MnR/316L ,φ1130,b=52。
管壳换热器 传热系数

管壳换热器传热系数摘要:一、引言二、管壳式换热器的传热系数概述三、影响管壳式换热器传热系数的因素四、管壳式换热器传热系数的计算方法五、经验公式和试验数据在传热系数计算中的应用六、结论正文:一、引言管壳式换热器是一种广泛应用于工业领域的热交换设备,其传热系数的高低直接影响到换热器的工作效率。
因此,了解管壳式换热器的传热系数并掌握其计算方法具有重要意义。
二、管壳式换热器的传热系数概述管壳式换热器的传热系数是指在单位时间内,通过单位面积的换热器壁面所传递的热量。
传热系数包括热传导系数、对流换热系数和热辐射系数三部分。
三、影响管壳式换热器传热系数的因素影响管壳式换热器传热系数的因素主要有以下几点:1.管壳材料:材料的导热性能直接影响传热系数;2.管径和管间距:管径和管间距的大小会影响流体的流动状态,从而影响对流换热系数;3.流速:流速的快慢会影响对流换热系数;4.换热器的结构形式:不同的结构形式会影响传热系数;5.工况条件:如温度、压力等。
四、管壳式换热器传热系数的计算方法管壳式换热器传热系数的计算方法通常采用努塞尔数(Nu)法或雷诺数(Re)法。
努塞尔数法主要适用于气液换热,雷诺数法适用于气气或液液换热。
五、经验公式和试验数据在传热系数计算中的应用在实际工程中,为了简化计算过程,通常会使用经验公式或试验数据来估算传热系数。
例如,《柴油机设计手册》中提供了柴油机和内燃机车散热器的传热系数试验数据,可作为参考。
六、结论管壳式换热器的传热系数受多种因素影响,计算方法有多种,实际应用中可根据具体情况选择合适的方法。
管壳式换热器

弓形折流板的排列
弓形折流板尺寸:缺口大小(高度h)和板间距B
管壳式换热器的类型、标准与结构
缺口大小:按切去弓形弦高占壳体内径百分比(h/Di)来确定
单相换热:h/Di=(20-25)% 壳程蒸发:h/Di=45% 壳程冷凝:h/Di=(25-45)%。
等边三角形法
同心圆法
正方形法
管壳式换热器的类型、标准与结构
等边三角形排列:传热性能好,但流动阻力大; 同心圆排列:紧凑,布管均匀,但制造和装配比较困难;
正方形排列:清洗方便,流动阻力小,但传热性能差。
组合排列:用于多管程换热器中,每一程都采用等边三角形排列,而 在各程相邻管排间,为便于安装隔板,则采用正方形排列。 转角排列:(1)流体流动方向与三角形一边平行的转角等边三角形排 列;(2)流体的流动方向与正方形一条对角线垂直的转角正方形排列
管壳式换热器
管壳式换热器的类型、标准与结构
1) 固定管板式换热器
结构:将管子两端固定在位于壳体两端的固定管板上,管板与 壳体固定在一起。
特点:
(1)结构比较简单、重量轻,成本低,在壳程程数相同的条件 下可排的管数多; (2)壳程不能检修和清洗,因此,宜于不易结垢和清洁的流体 换热; (3)当管束与壳体的温差太大而产生不同的热膨胀时,常会使 管子与管板的接口脱开,从而发生流体的泄漏。
安装:焊接在管箱上,在管板上设分程隔板槽,槽的宽度、深度
及拐角处的倒角等均有具体规定。
管壳式换热器的类型、标准与结构
常见管板分程布置
管壳式换热器的类型、标准与结构
折流板和支持板
作用:(1)使流体横掠管束,增大传热系数;(2)支撑管束;
换热器的计算举例

换热器的计算举例换热器是一种常见的热交换设备,用于在流体之间传递热量。
它在许多工业过程中发挥着重要的作用,例如化工、石油、食品加工、制药等。
以下是一个计算换热器的例子,以说明如何确定换热器的工作参数和尺寸。
假设我们需要设计一个换热器来将热水从80°C降低到60°C,并且需要将冷水从20°C加热到40°C。
我们已经知道热水的流量为1,000升/小时,冷水流量为800升/小时。
步骤1:确定热水和冷水的进出口温度差首先,我们需要确定热水和冷水的温度差。
在本例中,热水的进口温度为80°C,出口温度为60°C,所以温度差为20°C。
同样,冷水的温度差为20°C。
步骤2:计算热水和冷水的热量热水的热量可以通过以下公式计算:Q=m×c×ΔT其中,Q代表热量,m代表质量,c代表比热容,ΔT代表温度差。
在本例中,热水的质量可以通过以下公式计算:m=流量×密度已知热水的流量为1,000升/小时,那么质量可以通过将流量转换为千克/小时来计算:m=1,000千克/立方米×1立方米/1,000升×1,000升/小时=1千克/小时热水的密度可以通过查找热水的性质表来获取,假设为1千克/立方米。
热水的比热容可以通过查找热水的性质表或使用常见物质的比热容来估计,假设为4.18千焦尔/千克•摄氏度。
因此,热水的热量可以计算为:Q热水=1千克/小时×4.18千焦尔/千克•摄氏度×20°C=83.6千焦尔/小时同样地,可以使用相同的方法计算冷水的热量。
冷水的流量为800升/小时,质量为0.8千克/小时(假设冷水的密度为1千克/立方米),比热容为4.18千焦尔/千克•摄氏度。
因此,冷水的热量为:Q冷水=0.8千克/小时×4.18千焦尔/千克•摄氏度×20°C=66.88千焦尔/小时步骤3:计算换热器的传热面积传热面积是换热器设计中的关键参数,它决定了换热器的尺寸。
管壳式换热器热力计算

管壳式换热器热力计算管壳式换热器是一种常见的换热设备,广泛应用于化工、石油、电力等行业中。
它由管束(包括管子和管板)和壳体组成,并通过管板将管子固定在壳体上。
在换热过程中,热媒流体在管内流动,冷媒流体在壳侧流动,两种流体通过壳体和管道之间的壳壳换热器进行热量传递。
因此,热力计算对于管壳式换热器的设计和运行至关重要。
管壳式换热器的热力计算主要包括确定整个系统的热量传递量和热阻。
其中,热量传递量是指在单位时间内通过换热器的热量,而热阻则是指媒体在传递热量过程中所遇到的阻力。
在进行热力计算时,需要根据具体的工况参数,采用一定的算法和理论来计算热量传递量和热阻。
首先,需要确定管壳式换热器的传热面积。
传热面积是传热的关键因素,它决定了热量传递的效率。
传热面积的计算公式为:A=π*D*L*N其中,A表示传热面积,D表示管子的外径,L表示管子的有效长度,N表示管子的数量。
然后,需要计算传热系数。
传热系数是指在单位时间内传递的热量和温度差之间的比值。
计算传热系数需要考虑媒体的物性参数,包括流体的粘度、导热系数、比热容等。
传热系数的计算公式为:U = 1 / (1 / hi + δ / λ + 1 / ho)其中,U表示传热系数,hi表示内层传热系数,δ表示管道壁厚度,λ表示管道壁材料的导热系数,ho表示外层传热系数。
接下来,需要确定壳侧和管侧流体的温度差。
壳侧流体的温度差可以通过流体的进出口温度差来计算,管侧流体的温度差可以通过管内流体进行热力平衡计算得到。
最后,根据所得的参数,可以计算热量传递量和热阻。
热量传递量的计算公式为:Q = U * A * ΔTlm其中,Q表示热量传递量,ΔTlm 表示对数平均温差。
而热阻的计算公式为:R=1/U*A其中,R表示热阻,U表示传热系数,A表示传热面积。
通过以上的热力计算,可以确定管壳式换热器的传热性能和热力参数,为正确选择和设计换热器提供依据。
在实际应用中,还需要考虑到其他因素,如压力损失、换热器的结构、材料选择等。
螺旋折流板管壳式换热器的传热计算及连接结构改进

L I Y a n , Z HA N G J i n g , F E N G T i e — j u n , Z H A N G X u e — W e D
( L a n z h o u L a n s h i S f i a  ̄ g V e s s e l E q u i p m e n t C o . , L t d , L a n z h o u C . a n s u 7 3 0 0 5 0 , C h i n a )
o f h e a t t r a n s f e r c o e ic f i e n t a n d d e t e r mi n e t h e h e a t t r a n s f e r c o r r e c t i o n f a c t o r o f t h e d i f f e r e n t a n g l e s b a f l f e .I n t r o d u c i n g t h e c o e f f i — c i e n t i n t o t h e f o r mu l a t o c a l c u l a t e t h e h e a t t r a n s f e r r a n d s o l v e t h e h e l i c a l b ff a l e h e a t e x c h a n g e r h e a t t r a n s f e r c a l c u l a t i o n,t h e n s o me h a r mf u l f a c t o r s a r e i mp r o v e d i n c l u d i n g t h e t r a d i t i o n a l l o w c o e ic f i e n t o f h e a t e x c h a n g e r o v e r a l l h e a t t r a n s f e r ,t h e e x i s t i n g d e a d z o n e o f s h e l l l f o w a s w e l l a s t h e r e q u i r e d h e a t t r a n s f e r a r e a a n d S O o n .I n a d d i t i o n,c o n n e c t i n g s t r u c t u r e o f t u b e a n d t u b e s h e e t h a s b e e n o p t i mi z e d ,i t c o u l d r e d u c e t h e d e v i c e l e a k a g e a c c i d e n t . Ke y wo r d s :h e l i c a l b a f l f e ; t u b u l a r h e a t e x c h a n g e r s ; h e a t t r a n s f e r c a l c u l a t i o n ; c o n n e c t i n g s t r u c t u r a l i mp r o v e me n t
管壳式换热器的设计及计算

所谓提高换热器性能,就是提高其传热性能。狭义的强化传热系指提高流体和传热面之间的传热系数。其主要方法归结为下述两个原理,即使温度边界层减薄和调换传热面附近的流体,前者采用各种间断翅片结构,后者采用泡核沸腾传热[2]。最近还兴起一种EHD技术,即电气流体力学技术,又称为电场强化冷凝传热技术,进一步强化了对流、冷凝和沸腾传热,特别适用于强化冷凝传热,并适用于低传热性介质的冷凝,因而引起人们的普遍关注[3]。其原理是,对某些不导电液体的表面施以相垂直的电场,使液体表面变得很不稳定,借冷凝液表面的张力作用和在静电场下液膜的不稳定现象使液膜厚度减薄,从而强化冷凝传热。其所需电场耗用的电力很小。人们想尽各种办法实施强化传热,归结起来不外乎两条途径,即改变传热面的形状和在传热面上或传热流路径内设置各种形状的湍流增进器或插入物。
当前换热器发展的基本趋势是:继续提高设备的传热效率,促进设备结构的紧凑性,加强生产制造的标准化系列化和专业化,并在广泛的范围内继续向大型化的方向发展。各种新型高效紧凑式换热器的应用范围将得到进一步扩大。在压力、温度和流量的许可范围内,尤其是处理强腐蚀性介质而需要使用贵重金属材料的场合下,新型紧凑式换热器将进一步取代管壳式换热器。
第一章
在化工生产中,为了工艺流程的需要,常常把低温流体加热或把高温流体冷却,把液态汽化或把蒸汽冷凝程液体,这些工艺过程都是通过热量传递来实现的。进行热量传递的设备称为换热设备或换热器。换热器是通用的一种工艺设备,他不仅可以单独使用,同时又是很多化工装置的组成部分。
在化工厂中,换热器的投资约占总投资的10%——20%,质量约为设备总质量的40%左右,检修工作量可达总检修工作量的60%以上。由此可见,换热器在化工生产中的应用是十分广泛的,任何化工生产工艺几乎都离不开它。在其他方面如动力、原子能、冶金、轻工、制造、食品、交通、家电等行业也有着广泛的应用。
管壳式换热器传热计算示例(终)

管壳式换热器传热设计说明书设计一列管试换热器,主要完成冷却水——过冷水的热量交换设计压力为管程1.5MPa (表压),壳程压力为0.75MPa(表压),壳程冷却水进,出口温度分别为20℃和50℃,管程过冷水进,出口温度分别为90℃和65℃管程冷水的流量为80t/h。
2、设计计算过程:(1)热力计算1)原始数据:过冷却水进口温度t1′=145℃;过冷却水出口温度t1〞=45℃;过冷却水工作压力P1=0.75Mp a(表压)冷水流量G1=80000kg/h;冷却水进口温度t2′=20℃;冷却水出口温度t2〞=50℃;冷却水工作压力P2=0.3 Mp a(表压)。
改为冷却水工作压力P2=2.5 Mp2)定性温度及物性参数:冷却水的定性温度t2=( t1′+ t1〞)/2=(20+50)/2=35℃;冷却水的密度查物性表得ρ2=992.9 kg/m3;冷却水的比热查物性表得C p2=4.174 kJ/kg.℃冷却水的导热系数查物性表得λ2=62.4 W/m.℃冷却水的粘度μ2=727.5×10-6 Pa·s;冷却水的普朗特数查物性表得P r2=4.865;过冷水的定性温度℃;过冷水的密度查物性表得ρ1=976 kg/m3;过冷水的比热查物性表得C p1=4.192kJ/kg.℃;过冷水的导热系数查物性表得λ1=0.672w/m.℃;过冷水的普朗特数查物性表得P r2;过冷水的粘度μ1=0.3704×10-6 Pa·s。
过冷水的工作压力P1=1.5 Mp a(表压)3)传热量与水热流量取定换热器热效率为η=0.98;设计传热量:过冷却水流量:;4)有效平均温差逆流平均温差:根据式(3-20)计算参数p、R:参数P:参数R:换热器按单壳程2管程设计,查图3—8得温差校正系数Ψ=0.83;有效平均温差:5)管程换热系数计算:附录10,初定传热系数K0=400 W/m.℃;初选传热面积:m2;选用φ25×2.5无缝钢管作换热管;管子外径d0=0.025 m;管子径d i=0.025-2×0.0025=0.02 m;管子长度取为l=3 m;管子总数:取720根管程流通截面积:m2管程流速:m/s管程雷诺数:湍流管程传热系数:(式3-33c)6)结构初步设计:布管方式见图所示:管间距s=0.032m(按GB151,取1.25d0);管束中心排管的管数按4.3.1.1所给的公式确定:取20根;壳体径:m 取Di=0.7m;长径比:布管示意图l/D i=3/0.9=3.3 ,合理选定弓形折流板弓形折流板弓高:折流板间距:m折流板数量:折流板上管孔直径由GB151-2014可确定为 0.0254mm折流板直径由GB151-2014可确定为 0.6955m 7)壳程换热系数计算壳程流通面积:根据式(3-61)中流体横过管束时流道截面积046.0032.0025.016.0233.01o i c1=⎪⎪⎭⎫⎝⎛-⨯=⎪⎪⎭⎫ ⎝⎛-=s d BD A m 2壳程流速:m/s ;壳程质量流速:kg m 2/s ;壳程当量直径:m ;壳程雷诺数:; 切去弓形面积所占比例按 h/D i =0.2查图4-32得为0.145壳程传热因子查 图3-24得为j s =20 管外壁温度假定值 t w1′=45℃ 壁温过冷水粘度 Pa.s粘度修正系数:根据式(3-62)计算壳程换热系数:8)传热系数计算:水侧污垢热阻:r 2=0.000344m 2.℃/w 管壁热阻r 忽略 总传热系数:传热系数比值,合理9)管壁温度计算:管外壁热流密度:W/m2.℃根据式(3-94a)计算管外壁温度:℃误差较核:℃,误差不大;10)管程压降计算:根据式(3-94b)计算管壁温度:℃;壁温下水的粘度:Pa·s;粘度修正系数:;查图3-30得管程摩擦系数:管程数:;管沿程压降计算依据式(3-112):Pa (W=w.ρ)回弯压降:Pa;取进出口管处质量流速:W N2=1750 ㎏/㎡·s; (依据ρw2<3300取 w=1.822m/s) 进出口管处压降(依据 3-113):;管程结垢校正系数:;管程压降:11)壳程压降计算:壳程当量直径:m;雷诺数:;查得壳程摩擦系数:λ1=0.08;(图 3-34)管束压降(公式3-129):Pa;取进出口质量流速: kg/m2·s;( ρw2<2200 取W N2=1000 ㎏/㎡·s) 进出口管压降:Pa;取导流板阻力系数:;导流板压降:Pa壳程结垢修正系数:;(表3-12)壳程压降:Pa;管程允许压降:[△P2]=35000 Pa;(见表3-10)壳程允许压降:[△P1]=35000 Pa;△P2<[△P2]△P1<[△P1]即压降符合要求。
管壳式换热器的设计和选用的计算步骤

管壳式换热器的设计和选用的计算步骤设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。
由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力。
根据传热速率基本方程:当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器结构决定的。
可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。
初选换热器的规格尺寸初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式,重新计算。
计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排列。
计算管、壳程阻力在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。
或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。
这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计算,直到合理为止。
核算总传热系数分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。
如果相差较多,应重新估算。
计算传热面积并求裕度根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。
即裕度为20%左右,裕度的计算式为:某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下:表4-18设计条件数据物料流量kg/h 组成(含乙醇量)mol%温度℃操作压力MPa进口出口釜液109779 3.31450.9原料液102680795 1280.53试设计选择适宜的管壳式换热器。
列管式-管壳式换热器换热面积计算软件-表格大全

T2= 35
℃
T= 67.5
℃
热流体质量流量
mh= 0.13125 kg/s
热负荷Q= 8660
W
冷流体进口温度 t1= 冷流体出口温度 t2= 冷流体定性温度 t= 冷流体质量流量 mc=
平均温差与温度修正系数Δtm的计算
1、当换热器冷热流体逆向流动时
较大端温差 较小端温差
Δt2= 70
℃
Δt1= 10
23.20097945
(5~30) 7.007680946 m/s
0.031 77.34445778 Pa
壳程压降核算
正方形斜转45度排列时
F=
0.4
折流挡板间距
h= 0.3
m
(5`15) 0.009121986 m/s
0.005789793 Pa
1.3kpa)
热容[kj/kg`℃]
2.1 14.7 3.065 1.12 20.8 1.13 1.12 4.1740
1.15~1.25 0.9280392
物料
H2O H2 CH4 N2 Ar CO2 CO 水
高变气在定性温度430℃时的物性数据(101.3kpa)
粘度 Pa`s 4.88E-06
导热系数[w/(m2· 密度 kg/m3 ℃)]
0.0085
4.08E-06 3.45E-08
0.0887 0.0001
0.0071
2.08
H2
3.68E-06
CH4
3.16E-08
0.0797 0.0001
14.5 3.25
N2
2.94E-06
Ar
4.81E-08
CO2
2.11E-07
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pa;
取导流板阻力系数:
;
导流板压降:
壳程结垢修正系数: 壳程压降:
Pa ;(表 3-12)
管程允许压降:[△P2]=35000 Pa;(见表 3-10) 壳程允许压降:[△P1]=35000 Pa;
△P2<[△P2] △P1<[△P1] 即压降符合要求。
Pa;
(2)结构设计(以下数据根据 BG150-2011)
m2; 选用φ25×2、5 无缝钢管作换热管; 管子外径 d0=0、025 m; 管子内径 di=0、025-2×0、0025=0、02 m; 管子长度取为 l=3 m; 管子总数:
管程流通截面积:
取 720 根 m2
管程流速: 管程雷诺数: 管程传热系数:(式 3-33c)
m/s 湍流
6)结构初步设计: 布管方式见图所示: 管间距 s=0、032m(按 GB151,取 1、25d0); 管束中心排管的管数按 4、3、1、1 所给的公式确定:
结构设计的任务就是根据热力计算所决定的初步结构数据,进一步设计全部结构尺寸, 选定材料并进行强度校核。最后绘成图纸,现简要综述如下:
1) 换热器流程设计 采用壳方单程,管方两程的 1-4 型换热器。由于换热器尺寸不太大,可以用一台,未考虑 采用多台组合使用,管程分程隔板采取上图中的丁字型结构,其主要优点就是布管紧密。 2)管子与传热面积 采用 25×2、5 的无缝钢管,材质 20 号钢,长 3m,管长与管径都就是换热器的标准管子 尺寸。 管子总数为 352 根,其传热面积为:
3)传热量与水热流量
取定换热器热效率为η=0、98; 设计传热量:
过冷却水流量:
; 4)有效平均温差 逆流平均温差:
根据式(3-20)计算参数 p、R: 参数 P:
参数 R:
换热器按单壳程 2 管程设计,查图 3—8 得温差校正系数 Ψ=0、83; 有效平均温差:
5)管程换热系数计算: 附录 10,初定传热系数 K0=400 W/m、℃; 初选传热面积:
壳程流通面积: 根据式(3-61)中流体横过管束时流道截面积
布管示意图
Ac1
BDi1
do s
0.233 0.61
0.025 0.032
0.046
m2
壳程流速:
壳程质量流速: 壳程当量直径:
m/s; kg m2/s;
m; 壳程雷诺数:
; 切去弓形面积所占比例按 h/Di=0、2 查图 4-32 得为 0、145 壳程传热因子查 图 3-24 得为 js=20 管外壁温度假定值 tw1′=45℃
实取 5)管板
根据表 5-8 查取 管板上开孔数与孔间距与管排列应一致。
6)折流板 因为无相变,采用通用的弓形折流板。Q235 A 钢板。 拱高:h=140mm; 板间距:B=230mm; 板数:nB=12 块;
壁温过冷水粘度 粘度修正系数:
Pa、s
根据式(3-62)计算壳程换热系数:
8)传热系数计算:
水侧污垢热阻:r2=0、000344m2、℃/w 管壁热阻 r 忽略 总传热系数:
传热系数比值 9)管壁温度计算:
管外壁热流密度:
根据式(3-94a)计算管外壁温度:
,合理 W/m2、℃
误差较核:
10)管程压降计算: 根据式(3-94b)计算管内壁温度:
管壳式换热器传热设计说明书
设计一列管试换热器,主要完成冷却水——过冷水的热量交换设计压力为管程 1、 5MPa(表压),壳程压力为 0、75MPa(表压),壳程冷却水进,出口温度分别为 20℃与 50℃,管 程过冷水进,出口温度分别为 90℃与 65℃管程冷水的流量为 80t/h。
2、 设计计算过程:
w=1、822m/s)
;
管程结垢校正系数:
;
管程压降:
数:
; 查得壳程摩擦系数:λ1=0、08;(图 3-34) 管束压降(公式 3-129):
取进出口质量流速: 进出口管压降:
Pa; kg/m2·s;( ρw2<2200 取 WN2=1000 ㎏/㎡·s)
取 20 根; 壳体内径:
长径比: 选定弓形折流板 弓形折流板弓高:
m 取 Di=0、7m; l/Di=3/0、9=3、3 ,合理
折流板间距:
m
折流板数量: 折流板上管孔直径由 GB151-2014 可确定为 0、0254mm 折流板直径由 GB151-2014 可确定为 0、6955m
7)壳程换热系数计算
过冷水的定性温度
℃;
过冷水的密度查物性表得ρ1=976 kg/m3;
过冷水的比热查物性表得 Cp1=4、192kJ/kg、℃;
过冷水的导热系数查物性表得λ1=0、672w/m、℃;
过冷水的普朗特数查物性表得 Pr2
;
过冷水的粘度μ1=0、3704×10-6 Pa·s。
过冷水的工作压力 P1=1、5 Mpa(表压)
℃,误差不大;
壁温下水的粘度: 粘度修正系数:
Pa·s;
℃ ℃;
;
查图 3-30 得管程摩擦系数:
管程数 :
;
管内沿程压降计算依据式(3-112):
回弯压降:
Pa (W=w、ρ)
Pa; 取进出口管处质量流速:WN2=1750 ㎏/㎡·s; (依据 ρw2<3300 取
进出口管处压降(依据 3-113):
2)定性温度及物性参数:
冷却水的定性温度 t2=( t1′+ t1〞)/2=(20+50)/2=35℃; 冷却水的密度查物性表得ρ2=992、9 kg/m3; 冷却水的比热查物性表得 Cp2=4、174 kJ/kg、℃ 冷却水的导热系数查物性表得λ2=62、4 W/m、℃ 冷却水的粘度μ2=727、5×10-6 Pa·s; 冷却水的普朗特数查物性表得 Pr2=4、865;
(1)热力计算
1)原始数据:
过冷却水进口温度 t1′=145℃; 过冷却水出口温度 t1〞=45℃; 过冷却水工作压力 P1=0、75Mpa(表压) 冷水流量 G1=80000kg/h; 冷却水进口温度 t2′=20℃; 冷却水出口温度 t2〞=50℃; 冷却水工作压力 P2=0、3 Mpa(表压)。改为 冷却水工作压力 P2=2、5 Mp
3)管子排列方式 上图十字形走廊就是为了装设分程隔板,故有壳程流体的泄漏与旁流的问题。共有 356 个管孔,其中 4 个为装设拉杆用。 4)壳体
壳体内径: 壳体厚度(式 6-1):
;材质 Q235 A 钢;
tw<100℃
=0、7 C=2mm(厚度附加量 见 GB150) P=1、2p1(p 为设计压力 要大于工作压力)