文登考研数学--线性代数--习题集及其答案
线代参考答案(完整版)
线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 行列式的定义一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A D ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ B ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。
(完整版)线性代数试题及答案
线性代数习题和答案第一部分 选择题 (共 28 分)、单项选择题(本大题共 14 小题,每小题 2 分,共 28 分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
C. 3D. 46.设两个向量组 α1,α2,⋯, αs 和β 1,β2,⋯, βs 均线性相关,则()A. 有不全为 0 的数λ 1,λ2,⋯,λs 使λ1α1+λ2α2+⋯+λs αs =0 和λ 1β 1+λ 2β 2+⋯λ s βs =0B. 有不全为 0 的数λ 1,λ 2,⋯,λ s 使λ 1(α1+β1)+λ2(α2+β2)+⋯+λs ( α s + β s )=0C. 有不全为 0 的数λ 1,λ 2,⋯,λ s 使λ1(α 1- β1)+λ2(α2- β2)+⋯+λs (αs - βs )=0D.有不全为 0的数λ 1,λ 2,⋯,λ s 和不全为 0的数μ 1,μ 2,⋯,μ s 使λ1α1+λ2α2+⋯+ λ s α s =0 和μ 1β1+μ2β2+⋯+μ s βs =07.设矩阵 A 的秩为 r ,则 A 中( )A. 所有 r- 1阶子式都不为 0B.所有 r- 1阶子式全为 0C.至少有一个 r 阶子式不等于 0D.所有 r 阶子式都不为 08. 设 Ax=b 是一非齐次线性方程组, η1,η2是其任意 2 个解,则下列结论错误的是( )A. m+n C. n- m a 11a 12a 13 a 11=m ,a 21a 22a 23 a 21a 11 a 12 a 13等于(2.设矩阵 A=0 ,则 A - 1 等于( 3A. 0 1 3C. 03.设矩阵 A=a 21 a 22 a 23B. - (m+n) D. m- nB.D.21 ,A *是 A 的伴随矩阵,则 A *中位于 41,2)的元素是(A. –6 C. 2 4.设 A 是方阵,如有矩阵关系式 AB=AC ,则必有( A. A =0 C. A 0 时 B=C 5.已知 3×4 矩阵 A 的行向量组线性无关,则秩( A. 1B. 6 D. –2 ) B. B D. |A| 0 时 B=C C 时 A=0 A T )等于( )B. 21.设行列式 =n ,则行列式10.设 A 是一个 n (≥3)阶方阵,下列陈述中正确的是( )A. 如存在数λ和向量 α使 A α=λα,则α是 A 的属于特征值λ的特征向量B. 如存在数λ和非零向量 α,使(λE- A )α=0,则λ是 A 的特征值C. A 的 2 个不同的特征值可以有同一个特征向量D. 如λ 1,λ 2,λ 3是A 的 3个互不相同的特征值, α1,α2,α3依次是 A 的属于λ 1,λ2, λ3的特征向量,则 α 1,α 2, α 3有可能线性相关 11. 设λ 0是矩阵 A 的特征方程的 3重根, A 的属于λ 0的线性无关的特征向量的个数为 k ,则必有( )222(a 11A 21+a 12A 22+a 13A 23) +(a 21A 21+a 22A 22+a 23A 23) +(a 31A 21+a 32A 22+a 33A 23) =.18. 设向量( 2, -3, 5)与向量( -4, 6, a )线性相关,则 a= .19. 设A 是 3×4矩阵,其秩为 3,若η1,η2为非齐次线性方程组 Ax=b 的 2个不同的解,则它 的通解为 .20. 设 A 是 m ×n 矩阵, A 的秩为 r (<n ) ,则齐次线性方程组 Ax=0 的一个基础解系中含有解的个A. η1+η2 是 Ax=0 的一个解 C. η 1-η 2是 Ax=0 的一个解 9. 设 n 阶方阵 A 不可逆,则必有(A. 秩 (A )<n C.A=0 11B.η1+ η2是 Ax=b 的一个解22D. 2 η 1-η 2 是 Ax=b 的一个解 ) B. 秩 (A)=n- 1D. 方程组 Ax=0 只有零解A. k ≤ 3C. k=312. 设 A 是正交矩阵,则下列结论错误的是(A.| A| 2必为 1 C. A - 1=A T 13. 设 A 是实对称矩阵, C 是实可逆矩阵,A.A 与 B 相似B. A 与 B 不等价C. A 与 B 有相同的特征值D. A 与 B 合同 14.下列矩阵中是正定矩阵的为()23 A.34 1 0 0C. 0 2 30 3 5第二部分B. k<3 D. k>3 )B.|A|必为 1D.A 的行(列)向量组是正交单位向量组 B=C T AC .则( ) 34 B. 26 1 1 1 D. 1 2 0102 非选择题(共 72 分)2 分,共 20 分)不写解答过程,将正确的答案写在每1 1 115. 3 569 25 361 111 2 316.设 A=B=.则 A+2B=1 111 2 417. 设 A =(a ij )3 × 3 , |A|=2 , A ij 表示 |A|中 元 素a ij 的 代 数 余 子 式 ( i,j=1,2,3 ) , 则数为.21. 设向量α、β的长度依次为2和3,则向量α+β与α-β的内积(α+β,α- β)=22.设 3阶矩阵 A 的行列式 |A |=8,已知 A 有 2个特征值 -1和 4,则另一特征值为 .0 10 6223.设矩阵 A=1 3 3 ,已知 α = 1 是它的一个特征向量,则α 所对应的特征值2 10 82为24.设实二次型 f (x 1,x 2,x 3,x 4,x 5)的秩为 4,正惯性指数为 3,则其规范形为 三、计算题(本大题共 7 小题,每小题 6分,共 42分)26.试计算行列式4 2 327.设矩阵 A= 110, 求矩阵 B 使其满足矩阵方程AB=A+2B.12321 3 028.给定向量组α 1=1,3 α2=, α=, α10 2 2 =4.3419试判断 α 4 是否为 α 1, α2,α3 的线性组合;若是, 则求出组合系数。
线性代数试题及答案
线性代数试题及答案一、选择题(每题5分,共20分)1. 下列矩阵中,哪个是可逆矩阵?A. \(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\)B. \(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\)C. \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)D. \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\)答案:C2. 矩阵\(A\)的行列式为0,那么\(A\)的秩是:A. 0B. 1C. 2D. 3答案:A3. 向量\(\vec{a} = (1, 2, 3)\)和向量\(\vec{b} = (4, 5, 6)\)的点积为:A. 14B. 32C. 8D. 22答案:A4. 矩阵\(A\)的转置矩阵记作\(A^T\),那么\((A^T)^T\)等于:A. \(A^T\)B. \(A\)C. \(A^{-1}\)D. \(A^2\)答案:B二、填空题(每题5分,共20分)1. 若矩阵\(A\)的行列式为-5,则\(A^{-1}\)的行列式为______。
答案:\(\frac{1}{5}\)2. 矩阵\(A\)的秩为2,那么\(A\)的零空间的维数为\(\_\_\_\_\)。
答案:\(n-2\)(其中n为\(A\)的列数)3. 向量\(\vec{a} = (1, 2)\)和向量\(\vec{b} = (3, 4)\)的叉积为______。
答案:\(-2\)4. 若\(\vec{a} = (1, 0, 0)\),\(\vec{b} = (0, 1, 0)\),\(\vec{c} = (0, 0, 1)\),则\(\vec{a} \times \vec{b} =\_\_\_\_\_\)。
线性代数练习题及答案10套
1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2
)
1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2
线性代数试题(完整试题与详细答案)
线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数习题及解答完整版
线性代数习题及解答 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】线性代数习题一说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=( ) A .-6 B .-3 C .3D .62.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =( ) A .E +A -1B .E -AC .E +AD .E -A -13.设矩阵A ,B 均为可逆方阵,则以下结论正确的是( )A .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B B .⎛⎫⎪⎝⎭A B 不可逆 C .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫ ⎪⎝⎭B AD .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是( )A .向量组α1,α2,…,αk 中任意两个向量线性无关B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示5.已知向量2(1,2,2,1),32(1,4,3,0),T T+=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)TB .(-2,0,-1,1)TC .(1,-1,-2,0)TD .(2,-6,-5,-1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( ) A .1B .2C .3D .47.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是( )A .α+β是Ax =0的解B .α+β是Ax =b 的解C .β-α是Ax =b 的解D .α-β是Ax =0的解8.设三阶方阵A 的特征值分别为11,,324,则A -1的特征值为( ) A .12,4,3 B .111,,243C .11,,324D .2,4,39.设矩阵A =121-,则与矩阵A 相似的矩阵是( )A .11123--B .01102C .211- D .121-10.以下关于正定矩阵叙述正确的是( ) A .正定矩阵的乘积一定是正定矩阵 B .正定矩阵的行列式一定小于零 C .正定矩阵的行列式一定大于零D .正定矩阵的差一定是正定矩阵二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。
线性代数习题册(答案)
线性代数习题册答案第一章行列式练习一班级学号1.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)τ(3421)= 5 ;(2)τ(135642)= 6 ;(3)τ(13…(2n-1)(2n)…42) = 2+4+6+…+(2 n-2)= n(n-1).2.由数字1到9组成的排列1274i56j9为偶排列,则i=8 、j= 3 .3.在四阶行列式中,项12233441a a a a的符号为负.4.003042215=-24 .5.计算下列行列式:(1)122212221-----= -1+(-8)+(-8)-(-4)-(-4)―(-4)= -5或(2)111111λλλ---= -3λ+1+1-(-λ)-(-λ)―(-λ)= -3λ+3λ+2=2(2)(1)λλ-+练习 二班级 学号1.已知3阶行列式det()ij a =1,则行列式det()ij a -= -1 . 3(1)11-⋅=-2. 1112344916= 2 .3.已知D=1012110311101254--,则41424344A A A A +++= —1 .用1,1,1,1替换第4行4. 计算下列行列式:(1)111ab c a b c abc +++ = 13233110110011,0110111111r r r r c c a b c b ca b ca b c-----+-==++++++(2)xy x y y x y x x yxy+++(3) 1306 0212 1476----(4) 1214 0121 1013 0131-5.计算下列n阶行列式:(1)n x a a a x aDa a x=(每行都加到第一行,并提公因式。
)(2)131111n +(3)123123123nn n a b a a a a a b a a a a a a b+++练习 三班级 学号1.设线性方程组123123123111x x x x x x x x x λλλ--=⎧⎪++=⎨⎪-++=⎩有惟一解,则λ满足的条件是什么?1,0,1λλλ≠-≠≠2. 求解线性方程组12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩3.已知齐次线性方程组123123123000x x x x x x x x x λλλ--=⎧⎪-++=⎨⎪--+=⎩有非零解,求λ的值。
考研线性代数习题及答案(二)
习题二 (A )1.设矩阵232121a b a c A b c a b c +--⎡⎤=⎢⎥+--+-⎣⎦,且A O =,求a ,b ,c 的值.解: A =0时2302102100a b a c b c a b c +=⎧⎪--=⎪⎨+-=⎪⎪-++=⎩,则3,2,5a b c ==-=2.设201312A -⎡⎤=⎢⎥⎣⎦,112215B -⎡⎤=⎢⎥-⎣⎦求(1)2A B +,(2)3A B -.解: 20111231022312215431A B --⎛⎫⎛⎫⎛⎫+=+=⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ 201112537333122159217A B ----⎛⎫⎛⎫⎛⎫-=-=⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭3.如果矩阵X 满足2X A B X -=-,其中2112A -⎡⎤=⎢⎥-⎣⎦,0220B -⎡⎤=⎢⎥-⎣⎦求X .解:2X A B X -=- 22X A B =+ 12X A B =+ 21022211220222---⎛⎫⎛⎫⎛⎫=+=⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭4.某石油公司所属的三个炼油厂A 1,A 2,A 3在2003年和2004年所生产的四种油品B 1,B 2,B 3,B 4的数量如下表(单位:104t ):(1)作矩阵34A ⨯和34B ⨯分别表示2003年、2004年工厂A i 产油品B j 的数量; (2)计算A B +和B A -,分别说明其经济意义;(3)计算1()2A B +,并说明其经济意义.解: 1) 582715472201856525143A ⎛⎫⎪= ⎪ ⎪⎝⎭ 632513590302078028185B ⎛⎫⎪= ⎪ ⎪⎝⎭ 2) 1215228916260381214553328A B ⎛⎫⎪+= ⎪ ⎪⎝⎭上式表明:123,,A A A 三个在2003年,2004年生产1234,,,B B B B 四种油品的总产量.52211802215342B A --⎛⎫⎪-= ⎪ ⎪⎝⎭上式表明:123,,A A A 三厂在2004年生产的1234,,,B B B B 四种与2003年相比的增加量.3) 12192614221()813019621455316422A B ⎛⎫ ⎪ ⎪+= ⎪ ⎪ ⎪⎝⎭上式表明123,,A A A 三厂在2003年、2004年生产1234,,,B B B B 四种油品的平均产量.5.计算下列矩阵的乘积:(1)01121043⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦; (2)5112207432-⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦⎢⎥⎣⎦; (3)(-1,3,2)304⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (4)213⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(-1,2); (5)112120124305--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(6)(1,-1,2)120201013112-⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦解:1) 4312⎛⎫=⎪⎝⎭2) 126241114⎛⎫⎪=-- ⎪ ⎪-⎝⎭ 3) =54) 241236-⎛⎫⎪=- ⎪ ⎪⎝⎭5) 1332⎛⎫ ⎪= ⎪ ⎪⎝⎭6) =156.设311212123A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦111210111B -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦求(1)AB 和BA ;(2)AB-BA .解:1) 612610842AB -⎛⎫⎪=- ⎪ ⎪-⎝⎭ 400410222AB ⎛⎫⎪= ⎪ ⎪⎝⎭2) 212220660AB BA -⎛⎫⎪-=- ⎪ ⎪-⎝⎭7.求所有与A 可交换的矩阵: (1)1011A ⎡⎤=⎢⎥⎣⎦; (2)11001101A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.解:1) 设ab Xcd ⎛⎫=⎪⎝⎭,则 XA =AX 得 a =d b =0 0a X c a ⎛⎫∴=⎪⎝⎭2) 设111222ab c Y a b c a b c ⎛⎫⎪= ⎪ ⎪⎝⎭,则 YA AY =得 1220a a b === 12b c a == 1c b =00a b c Y a b a ⎛⎫⎪∴= ⎪ ⎪⎝⎭8.设矩阵A 与B 可交换.证明:(1)22()()A B A B A B +-=-;(2)222()2A B A AB B ±=±+.解:1) 2222()()A B A B A AB BA B A B +-=-+-=- 2) 22222()2A B A AB BA B A AB B ±=±±+=±+9.计算(1)31111⎡⎤⎢⎥--⎣⎦; (2)1301n⎡⎤⎢⎥⎣⎦; (3)2212301111⎡⎤⎢⎥⎢⎥⎢⎥--⎣⎦; (4)000000na b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (5)311110111001101⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (6)1111111111111111n---⎡⎤⎢⎥---⎢⎥⎢⎥---⎢⎥---⎣⎦解:1) 0000⎛⎫=⎪⎝⎭ 2) 1301n ⎛⎫=⎪⎝⎭3) 507527622⎛⎫⎪= ⎪ ⎪---⎝⎭4) 000000n n n a b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭5) 13610013600130001⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭6) 2,1,nE n n A n ⎧⎪=⎨-⎪⎩为偶数2为奇数10.设2210()f x a x a x a =++,A 是n 阶矩阵,定义2210()f A a A a A a E =++. (1)如果2()1f x x x =-+211312110A ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦求()f A .(2)如果35)(2+-=x x x f⎥⎦⎤⎢⎣⎡--=3312A 求)(A f .解:1) 2713()823210f A A A E ⎛⎫⎪=-+= ⎪ ⎪-⎝⎭2) 200()5300f A A A E ⎛⎫=-+= ⎪⎝⎭11.设521341A -⎡⎤=⎢⎥-⎣⎦,320201B -⎡⎤=⎢⎥-⎣⎦, 计算(1)AB T ;(2)B T A ;(3)A T A .解:1) 32521199203411701TAB --⎛⎫---⎛⎫⎛⎫⎪== ⎪⎪ ⎪---⎝⎭⎝⎭⎪⎝⎭2) 21211042341TB A ---⎛⎫ ⎪=- ⎪ ⎪-⎝⎭ 3) 34222206262TA A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭12.设某港口在一月份出口到三个地区的两种货物的数量以及两种货物的单位价格、重量、体积如下表:(1)利用矩阵乘法计算经该港口出口到三个地区的货物总价值、总重量、总体积各为多少? (2)利用(1)的结果计算经该港口出口的货物总价值、总重量、总体积为多少?解:1) 0.20.35820655335200010008000.0110.05827633.8120013005000.120.5840770346⎛⎫⎛⎫⎛⎫ ⎪⎪=⎪ ⎪ ⎪⎝⎭ ⎪⎪⎝⎭⎝⎭2) 82065533511810827633.81191.884077034611956⎛⎫⎛⎫⎛⎫⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭总价值为1810,总重量为191.8,总体积为195613.设A 为n 阵对称矩阵,k 为常数.试证kA 仍为对称矩阵.证明: 设111212122212n n n n nn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪ ⎪⎪⎝⎭,则 111212122212()n n T n n nn ka ka ka ka ka ka kA kA ka ka ka ⎛⎫⎪ ⎪== ⎪ ⎪ ⎪⎝⎭则kA 为对称矩阵14.(1)证明:对任意的m ×n 矩阵A ,A T A 和AA T 都是对称矩阵.(2)证明;对任意的n 阶矩阵A ,A +A T 为对称矩阵,而A -A T 为反对称矩阵. 解:1) 证明: ()()T T T T T TA A A A A A == ()()T T T T T TAA A A AA == ,T TA A AA ∴都是对称矩阵2) ()(),T T T T T T TA A A A A A A A A A +=+=+=++为对称矩阵 ()()()T T T T T TA A A A A A A A -=-=-=-- 则TA A -为对称矩阵15.设A 、B 是同阶对称矩阵,则AB 是对称矩阵的充分必要条件是AB =BA .解:()TTTAB AB B A AB BA AB =⇔=⇔=16.判断下列矩阵是否可逆.若可逆,利用伴随矩阵法求其逆矩阵:(1)5432⎡⎤⎢⎥⎣⎦; (2)1326-⎡⎤⎢⎥-⎣⎦; (3)021111312⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦; (4)100120123⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦.解:1) 1123522A --⎛⎫ ⎪= ⎪- ⎪⎝⎭2)不可逆3) 1153444131444131222A -⎛⎫- ⎪⎪⎪=- ⎪ ⎪⎪- ⎪⎝⎭4) 11001102211033A -⎛⎫⎪⎪⎪=-⎪ ⎪⎪- ⎪⎝⎭17.设n 阶矩阵A 可逆,且det A =a ,求1det A -,det *A .解:1AA E -= 111det det AA a-==∴ *det AA A E =⋅∴*11det (det )n n A A a --==18.设A 为n 阶矩阵,A ≠O 且存在正整数k ≥2,使k A O =.求证:E A -可逆,且121()k E A E A A A ---=++++证明: 21()()k E A E A A A--+++2121()k k k E A A A A A A E A E E A --=++++----=-=- 21K E A A A -=+++19.已知n 阶阵A 满足232A A E O --=.求证:A 可逆,并求A -1。
线性代数习题及解答
线性代数习题一说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT 表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式。
一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=( ) A .—6 B .-3 C .3D .62.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =( ) A .E +A —1B .E -AC .E +AD .E —A —13.设矩阵A ,B 均为可逆方阵,则以下结论正确的是( )A .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B B .⎛⎫⎪⎝⎭A B 不可逆 C .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫ ⎪⎝⎭B AD .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是( )A .向量组α1,α2,…,αk 中任意两个向量线性无关B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示5.已知向量2(1,2,2,1),32(1,4,3,0),T T+=---+=--αβαβ则+αβ=( ) A .(0,—2,-1,1)TB .(—2,0,-1,1)TC .(1,—1,—2,0)TD .(2,-6,—5,—1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( ) A .1B .2C.3 D.47.设α是非齐次线性方程组Ax=b的解,β是其导出组Ax=0的解,则以下结论正确的是( ) A.α+β是Ax=0的解B.α+β是Ax=b的解C.β-α是Ax=b的解D.α-β是Ax=0的解8.设三阶方阵A的特征值分别为11,,324,则A—1的特征值为()A.12,4,3B.111,,243C.11,,324D.2,4,39.设矩阵A=121-,则与矩阵A相似的矩阵是()A.11123--B.01102C.211-D.121-10.以下关于正定矩阵叙述正确的是( )A.正定矩阵的乘积一定是正定矩阵B.正定矩阵的行列式一定小于零C.正定矩阵的行列式一定大于零D.正定矩阵的差一定是正定矩阵二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。
文登考研数学--线性代数--习题集及其答案
第一章 行列式一. 填空题1. 四阶行列式中带有负号且包含a 12和a 21的项为______.解. a 12a 21a 33a 44中行标的排列为1234, 逆序为0; 列标排列为2134, 逆序为1. 该项符号为“-”, 所以答案为a 12a 21a 33a 44.2. 排列i 1i 2…i n 可经______次对换后变为排列i n i n -1…i 2i 1.解. 排列i 1i 2…i n 可经过1 + 2 + … + (n -1) = n(n -1)/2 次对换后变成排列i n i n -1…i 2i 1. 3. 在五阶行列式中3524415312)23145()15423()1(a a a a a ττ+-=______3524415312a a a a a .解. 15423的逆序为5, 23145的逆序为2, 所以该项的符号为“-”. 4. 在函数xx x xxx f 21112)(---=中, x 3的系数是______. 解. x 3的系数只要考察234222x x xx x x+-=--. 所以x 3前的系数为2.5. 设a , b 为实数, 则当a = ______, 且b = ______时, 010100=---abb a.解. 0)(11010022=+-=--=---b a ab ba abb a. 所以a = b = 0.6. 在n 阶行列式D = |a ij |中, 当i < j 时a ij = 0 (i , j =1, 2, …, n ), 则D = ______.解.nn n n a a a a a a a a 2211212221110=7. 设A 为3×3矩阵, |A | =-2, 把A 按行分块为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321A A A A , 其中A j (j = 1, 2, 3)是A 的第j 行, 则行列式=-121332A A A A ______.解.=-121332A A A A 6||33233211213=-=-=-A A A A A A A A .二.计算证明题1. 设4322321143113151||-=A计算A 41 + A 42 + A 43 + A 44 = ?, 其中A 4j (j= 1, 2, 3, 4)是|A |中元素a 4j 的代数余子式.解. A 41 + A 42 + A 43 + A 44 1111321143113151-=210320206)1(000121013201206114--=-=+ =62103202061=-- 2. 计算元素为a ij = | i -j |的n 阶行列式.解. 111111110021201110||--------=n n n n n A 每行减前一行由最后一行起,)1(2)1(1201201121--=--------n n n n n n n列每列加第 3. 计算n 阶行列式nx x x nx x x nx x x D n n n n +++++++++=212121222111(n ≥ 2).解. 当2>nn x x x n x x x nx x x D n n n n ++++++=222222111+n x x nx x nx x n n ++++++ 2121212211=nx x x x n x x x x nx x x x n n nn++++++33322221111+nx x x nx x x nx x x n n n++++++ 323232222111+n x x x n x x x nx x x n n n ++++++313131222111+n x x nx x nx x n n ++++++ 3213213212211=-n x x x nx x x n x x x n n n ++++++ 313131222111=-nx x x n x x x nx x x n n n+++ 111222111-nx x nx x n x x n n+++ 3131312211= 0当2=n2122112121x x x x x x -=++++4. 证明:奇数阶反对称矩阵的行列式为零.证明: ||||)1(||||||,A A A A A A A nTT-=-=-==-=(n 为奇数). 所以|A | = 0.5. 试证: 如果n 次多项式nn x C x C C x f ++=10)(对n + 1个不同的x 值都是零, 则此多项式恒等于零. (提示: 用范德蒙行列式证明)证明: 假设多项式的n + 1个不同的零点为x 0, x 1, …, x n . 将它们代入多项式, 得关于C i 方程组 00010=++nn x C x C C 01110=++n n x C x C C …………010=++n n n n x C x C C系数行列式为x 0, x 1, …, x n 的范德蒙行列式, 不为0. 所以010====n C C C6. 设).(',62321)(232x F xx x x x xx F 求=解. x x x x x x x F 620321)(232==x x x x x x 3103211222=x x x x x x 310201222=xx x x x 3102101222=32220021012x xx x x x =26)('x x F =第二章 矩阵一. 填空题1. 设α1, α2, α3, α, β均为4维向量, A = [α1, α2, α3, α], B = [α1, α2, α3, β], 且|A | = 2, |B | = 3, 则|A -3B | = ______. 解. βαααα3222|3|321----=-B A =βαααα38321-⨯-=αααα321(8⨯-56|)|3|(|8)3321=--=-B A βααα2. 若对任意n ×1矩阵X , 均有AX = 0, 则A = ______.解. 假设[]m A αα 1=, αi 是A 的列向量. 对于j = 1, 2, …, m , 令⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=010 j X , 第j 个元素不为0. 所以[]m αα 10010==⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡j α (j = 1, 2, …, m ). 所以A = 0.3. 设A 为m 阶方阵, 存在非零的m ×n 矩阵B , 使AB = 0的充分必要条件是______.解. 由AB = 0, 而且B 为非零矩阵, 所以存在B 的某个列向量b j 为非零列向量, 满足Ab j = 0. 即方程组AX = 0有非零解. 所以|A | = 0;反之: 若|A | = 0, 则AX = 0有非零解. 则存在非零矩阵B , 满足AB = 0. 所以, AB = 0的充分必要条件是|A | = 0.4. 设A 为n 阶矩阵, 存在两个不相等的n 阶矩阵B , C , 使AB = AC 的充分条件是______. 解. 0||0)(=⇔-=-⇔=≠A C B C B A AC AB C B 非零且且5. []42121b b b a a a n ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ = ______.解. []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n n n n b a b a b a b a b a b a b a b a b a b b b a a a212221212111421216. 设矩阵12,23,3211-+-=⎥⎦⎤⎢⎣⎡-=B E A A B A 则= ______. 解. =2A ⎥⎦⎤⎢⎣⎡-3211⎥⎦⎤⎢⎣⎡-3211=⎥⎦⎤⎢⎣⎡--7841E A A B 232+-==⎥⎦⎤⎢⎣⎡--7841-⎥⎦⎤⎢⎣⎡-9633 + ⎥⎦⎤⎢⎣⎡2002=⎥⎦⎤⎢⎣⎡--0212 21||*1==-B B B⎥⎦⎤⎢⎣⎡--2210=⎥⎥⎦⎤⎢⎢⎣⎡--11210 7. 设n 阶矩阵A 满足12,032-=++A E A A 则= ______.解. 由,0322=++E A A 得E E A A 3)2(-=+. 所以0|3||2|||≠-=+E E A A , 于是A 可逆. 由,0322=++E A A 得)2(31,03211E A A A E A +-==++--8. 设)9()3(,10002010121E A E A A -+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-则=______.解. =2A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100020101⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100020101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100040201=-E A 92⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---800050208, =+E A 3⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡400050104 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001400050104 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4100010001100050104 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-41000104101100050004 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-41000510161041100010001 , ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=+-4100510161041)3(1E A)9()3(21E A E A -+-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-4100051161041⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---800050208=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---200010102 9. 设.______])2[(______,)(_______,,3342122111*1*1=-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=---A A A A 则解. |A| = -3-12 + 8 + 8 + 6-6 = 1→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----100010001334212211 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----104012001570230211 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------104031320015703210211 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----137320313203131310032103401→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----137322524933100010001 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------372252493100010001 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=-3722524931A====---||)(,||,||1*1**1A AA A A A A A A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----3342122111131*4)2(||)2()2(|2|)2(---=--=--=-A A A A A A414)4(])2[(111*===----A A A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----33421221110. 设矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=3111522100110012A , 则A 的逆矩阵1-A = ______.解. ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-211111121, ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-215331521使用分块求逆公式⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-----1111100B CAB A BC A -⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--11212153⎥⎦⎤⎢⎣⎡--2111=⎥⎦⎤⎢⎣⎡--1173019 所以 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=-21117533019002100111A二. 单项选择题1. 设A 、B 为同阶可逆矩阵, 则(A) AB = BA (B) 存在可逆矩阵P , 使B AP P =-1 (C) 存在可逆矩阵C , 使B AC C T= (D) 存在可逆矩阵P 和Q , 使B PAQ = 解. 因为A 可逆, 存在可逆E AQ P Q P A A A A =使,. 因为B 可逆, 存在可逆E BQ P Q P B B B B =使,.所以 A A AQ P = B B BQ P . 于是B Q AQ P P B A A B =--11令 A B P P P 1-=, 1-=B A Q Q Q . (D)是答案.2. 设A 、B 都是n 阶可逆矩阵, 则⎥⎦⎤⎢⎣⎡--1002B A T等于 (A) 12||||)2(--B A n(B) 1||||)2(--B A n (C) ||||2B A T - (D) 1||||2--B A解. 121||||)2(002---=⎥⎦⎤⎢⎣⎡-B A B A n T. (A)是答案. 3. 设A 、B 都是n 阶方阵, 下面结论正确的是(A) 若A 、B 均可逆, 则A + B 可逆. (B) 若A 、B 均可逆, 则AB 可逆. (C) 若A + B 可逆, 则A -B 可逆. (D) 若A + B 可逆, 则A , B 均可逆. 解. 若A 、B 均可逆, 则111)(---=A B AB . (B)是答案.4. 设n 维向量)21,0,,0,21( =α, 矩阵ααTE A -=, ααTE B 2+=其中E 为n 阶单位矩阵, 则AB =(A) 0 (B) -E (C) E (D) ααTE +解. AB =)(ααTE -)2(ααT E +=ααT E - + 2ααT -2ααT ααT= E . )21(=ααT(C)是答案.5. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=233322322131131211232221a a a a a a a a a a a a B , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000010101P , 设有P 2P 1A = B , 则P 2 =(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010001 (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101010001 (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010101 (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100010101 解. P 1A 表示互换A 的第一、二行. B 表示A 先互换第一、二行, 然后将互换后的矩阵的第一行乘以(-1)加到第三行. 所以P 2 = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101010001.(B)是答案. 6. 设A 为n 阶可逆矩阵, 则(-A )*等于(A) -A * (B) A * (C) (-1)n A * (D) (-1)n -1A * 解. (-A )* =*111)1()1(1||)1()(||A A A A A n n ----=--=--. (D)是答案. 7. 设n 阶矩阵A 非奇异(n ≥ 2), A *是A 的伴随矩阵, 则 (A) A A A n 1**||)(-= (B) A A A n 1**||)(+= (C) A A A n 2**||)(-= (D) A A A n 2**||)(+=解. 1*||-=A A AA A A A A A A A A A A A A n n 211111*1**||||||||)|(|||||)|(|)(-------====(C)是答案.8. 设A 为m ×n 矩阵, C 是n 阶可逆矩阵, 矩阵A 的秩为r 1, 矩阵B = AC 的秩为r , 则 (A) r > r 1 (B) r < r 1 (C) r = r 1 (D) r 与r 1的关系依C 而定 解. n C r C A B n n n m ==⨯⨯)(,, 所以1)()()(r n C r A r AC r r =-+≥= 又因为 1-=BC A , 于是r n C r B r BC r r =-+≥=--)()()(111 所以 r r =1. (C)是答案.9. 设A 、B 都是n 阶非零矩阵, 且AB = 0, 则A 和B 的秩(A) 必有一个等于零 (B) 都小于n (C) 一个小于n , 一个等于n (D) 都等于n解. 若0,0.,)(1===-B AB A n A r 得由存在则, 矛盾. 所以 n A r <)(. 同理n B r <)(. (B)是答案.三. 计算证明题1. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=243121013A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=143522011B . 求: i. AB -BA ii. A 2-B 2 iii. B T A T 解. =-BA AB ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1618931717641, =-22B A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1326391515649=T T A B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--2211531517652. 求下列矩阵的逆矩阵i. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------111111*********1 ii. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1000cos sin 0sin cos αααα iii. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0001001001001000 iv .⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-1100210000120025解. i.→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------10000100001000011111111111111111 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------10010101001100010220202022001111 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------1001001102102100010220220010101111 →⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------110000110210210*********2200110011→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡----11000021210210210210212200110010100101→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-----1111002121021021021210400110010101001→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-----41414141002121021021021210100110010101001⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------414141414141414141414141414141411000010000100001 , ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------=-414141414141414141414141414141411A ii. ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--ααααααααcos sin sin cos cos sin sin cos 1. 由矩阵分块求逆公式:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---111000B A B A 得到: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-100cos sin 0sin cos 1ααααA iii. ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-011001101. 由矩阵分块求逆公式: ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---0000111A B B A 所以 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-00010010010010001Aiv . 由矩阵分块求逆公式:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---1110000B A B A得到: ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---=-313100323100005200211A 3. 已知三阶矩阵A 满足)3,2,1(==i i A i i αα. 其中T)2,2,1(1=α, T )1,2,2(2-=α, T )2,1,2(3--=α. 试求矩阵A .解. 由本题的条件知: =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---212122221A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---622342641 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---100010001212122221 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----102012001630360221 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----0313231032001120210221 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----3231323103232031300210201→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----9291923103232031100210201 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---929192919292929291100010001 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=232323235032037929192919292929291622342641A 4. k 取什么值时, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=11100001k A 可逆, 并求其逆. 解. 011100001||≠=-=k kA→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10011101000001001 k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--101110010010001001 k→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-111100010010001001k k 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1110100011kkA 5. 设A 是n 阶方阵, 且有自然数m , 使(E + A )m = 0, 则A 可逆. 解. 因为 0)(1=+==+∑∑==mi i im mi iimmA c E A cA E 所以 ∑=-=-mi i imE A cA 11)(. 所以A 可逆.6. 设B 为可逆矩阵, A 是与B 同阶方阵, 且满足A 2 + AB + B 2 = 0, 证明A 和A + B 都是可逆矩阵. 解. 因为022=++B AB A , 所以2)(B B A A -=+. 因为B 可逆, 所以0||)1(||22≠-=-B B n所以 0|||)(|2≠-=+B B A A . 所以B A A +,都可逆. 7. 若A , B 都是n 阶方阵, 且E + AB 可逆, 则E + BA 也可逆, 且 A AB E B E BA E 11)()(--+-=+解. A AB E B BA E BA E A AB E B E BA E 11)()())()((--++-+=+-+ =A AB E AB E B BA E A AB E BAB B BA E 11))(())((--++-+=++-+ =E BA BA E =-+ 所以 A AB E B E BA E 11)()(--+-=+.8. 设A , B 都是n 阶方阵, 已知|B | ≠ 0, A -E 可逆, 且(A -E )-1 = (B -E )T , 求证A 可逆.解. 因为(A -E )-1 = (B -E )T , 所以(A -E )(B -E )T = E所以 E E B E B A TT=+--)(, TT B E B A =-)(由 |B | ≠ 0 知11)(--T B B ,存在. 所以 E B E B A TT=--1))((. 所以A 可逆.9. 设A , B , A + B 为n 阶正交矩阵, 试证: (A + B )-1 = A -1 + B -1.解. 因为A , B , A + B 为正交矩阵, 所以111,,)()(---==+=+B B A A B A B A TTT所以 111)()(---+=+=+=+B A B A B A B A T T T10. 设A , B 都是n 阶方阵, 试证明:||E AB BEE A -=. 解. 因为 ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡AB E BE B E E A E A E E E 0000所以ABE B E B E E A E A E EE -=-0000||)1(01)1(2E AB AB E B E B EE A n n --=-=⋅⋅-因为 n n )1()1(2-=-, 所以||E AB BEE A -=11. 设A 为主对角线元素均为零的四阶实对称可逆矩阵, E 为四阶单位矩阵)0,0(00000000000000>>⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=l k l k Bi. 试计算|E +AB |, 并指出A 中元素满足什么条件时, E + AB 可逆;ii. 当E + AB 可逆时, 试证明(E + AB )-1A 为对称矩阵.解. i. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=44342414342313242312141312000a a a a a a a a a a a a a A , ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=l k a a a a a a a a a a a a a AB 0000000000000000044342414342313242312141312⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0000000000343424231413ka la la ka la ka AB E +⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1001001001343424231413ka la la ka la ka , 2341||kla AB E -=+ 所以当 2341a kl≠时, E + AB 可逆. ii. 11111)()]([)(-----+=+=+B A AB E A A AB E因为A , B 为实对称矩阵, 所以B A +-1为实对称矩阵, 所以(E + AB )-1A 为对称矩阵.12. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=λλλ100100A , 求A n . 解. 使用数学归纳法.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=222221020010100100100λλλλλλλλλλλA =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=λλλλλλλλ1001002102002223A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+323233)21(0300λλλλλλ 假设 k A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++---k k k k k k k k k λλλλλλ121)11(000则 1+k A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++---k k k k k k k k k λλλλλλ121)11(000⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡λλλ100100=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++++-++1111)1()1(0)1(00k kk k kk k k k λλλλλλ 所以 n A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++---n n n n n nn n n λλλλλλ121)11(000=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----n n n n n nn n n n λλλλλλ1212)1(00013. A 是n 阶方阵, 满足A m = E , 其中m 是正整数, E 为n 阶单位矩阵. 今将A 中n 2个元素a ij 用其代数余子式A ij 代替,得到的矩阵记为A 0. 证明E A m=0.解. 因为A m = E , 所以1||=mA , 所以A 可逆.11*0)(||]|[|)(--===T T T A A A A A A所以 E E A A A A A A m T m m m T m ====---1110||])[(||])(|[|14. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=010101001A i. 证明: n ≥ 3时, E A A A n n-+=-22(E 为三阶单位矩阵)ii. 求A 100.解. i. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=010*******A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010101001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101011001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010110013A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010101001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=011102001+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-+010*******E A A -⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101011001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0111020013A = 所以 E A A A -+=-2233 假设 E A A A k k -+=-22则 =-+=-+A A A A k k 311A E A A A k --++-21=E A A k -+-+221)(所以 E A A A n n -+=-22 ii. =-+=E A A A 298100E A E A A4950222296-==-+-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=50050050500050⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡490004900049⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10500150001 15. 当⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=21232321A 时, A 6 = E . 求A 11. 解. 121232321||=-=A , 所以 ==-||*1A AA ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-21232321因为 1112116--===EA A A A E A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=2123232116. 已知A , B 是n 阶方阵, 且满足A 2 = A , B 2 = B , 与(A -B )2 = A + B , 试证: AB = BA = 0. 解. 因为(A -B )2 = A + B , 所以 ))(())(()(3B A B A B A B A B A -+=+-=- 于是 2222B AB BA A B AB BA A --+=-+-, 所以 BA AB =B A B BA AB A B A B A +=+--+=-222,)(因为 A 2 = A , B 2 = B , 所以 2AB = 0, 所以0==BA AB .第三章 向量一. 填空题1. 设)1,2,0,1(),,1,0,1(),0,3,2,4(),5,0,1,2(4321-=-=--=-=ααααk , 则k = ______时, α1, α2, α3, α4线性相关. 解. 考察行列式110213118110521300001118215213000211142kkk-----=-----=-----316102038++-+--=k k = 13k +5 = 0. 135-=k 2. 设)0,,3,1(),4,3,5,0(),2,0,2,1(),0,3,1,2(4321t -=-=-=-=αααα, 则t = ______时, α1, α2, α3, α4线性相关. 解. 考察行列式424335550424333555100004230335211012---=----=----t t t t 0603020306020=--+++-=t t . 所以对任何t , α1, α2, α3, α4线性相关.3. 当k = ______时, 向量β = (1, k , 5)能由向量),1,1,2(),2,3,2(21-=-=αα 线性表示. 解. 考察行列式,012513211=--k 得k =-8. 当k =-8时, 三个向量的行列式为0, 于是21,,ααβ线性相关. 显然21,αα线性无关,所以β可用21,αα线性表示.4. 已知)1,4,0,1,1(),3,1,3,0,2(),10,5,1,2,0(),1,2,2,1,1(4321-=-=-==αααα, 则秩(α1, α2, α3, α4) = ______. 解. 将α1, α2, α3, α4表示成矩阵→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---13114152031210211201→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------21102550211002201201⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------211052110211001101201⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---→2052000200001101201. 所以 r (α1, α2, α3, α4) = 3 5. 设⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=3224211631092114047116A , 则秩(A) = ______.解. →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=3224211631092114047116A →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----3224211631711614040921⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------3408012550755110140800921 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---------→3510151011751015100921⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------→4100040300045000815100921所以 r (A ) = 3.6. 已知),2,0,1,0(,)2,1,0,1(=-=βαT矩阵A = α·β, 则秩(A ) = ______.解. A = α·β = ()→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-402020100000201020102101⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0020000000002010所以 r (A ) = 1.7. 已知向量),6,5,4(),6,5,4,3(),5,4,3,2(),4,3,2,1(4321t ====αααα, 且秩(α1, α2, α3, α4) = 2, 则t = ______.解. A = (α1, α2, α3, α4)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=t 654654354324321 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=16630642032104321t ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=7000000032104321t所以当t = 7时, r (A ) = 2.二. 单项选择题1. 设向量组α1, α2, α3线性无关, 则下列向量组线性相关的是 (A) α1 + α2, α2 + α3, α3 + α1 (B) α1, α1 + α2, α1+ α2 + α3 (C) α1-α2, α2-α3, α3-α1 (D) α1 + α2, 2α2 + α3, 3α3 + α1解. 由 0)()()(133322211=-+-+-ααααααk k k 得 0)()()(323212131=-+-+-αααk k k k k k因为向量组α1, α2, α3线性无关, 所以得关于321,,k k k 的方程组⎪⎩⎪⎨⎧=+-=+-=-000322131k k k k k k321,,k k k 的系数行列式为 01111011101=-=---. 所以321,,k k k 有非零解, 所以α1-α2, α2-α3, α3-α1线性相关. (C)是答案.2. 设矩阵A m ×n 的秩为R (A ) = m < n , E m 为m 阶单位矩阵, 下列结论正确的是 (A) A 的任意m 个列向量必线性无关 (B) A 的任意一个m 阶子式不等于零(C) 若矩阵B 满足BA = 0, 则B = 0 (D) A 通过行初等变换, 必可以化为(E m , 0)的形式解. (A), (B)都错在“任意”; (D)不正确是因为只通过行初等变换不一定能将A 变成(E m , 0)的形式; (C)是正确答案. 理由如下:因为 BA = 0, 所以 0)()()()()(B r m m B r m A r B r BA r =-+=-+≥=. 所以)(B r = 0. 于是B = 0.3. 设向量组 (I): TT T a a a a a a a a a ),,(,),,(,),,(332313332221223121111===ααα;设向量组 (II):T T T a a a a a a a a a a a a ),,,(,),,,(,),,,(433323133423222122413121111===βββ, 则(A) (I)相关⇒(II)相关 (B) (I)无关⇒(II)无关 (C) (II)无关⇒(I)无关 (B) (I)无关⇔ (II)无关解. 由定理: 若原向量组线性无关, 则由原向量组加长后的向量组也线性无关. 所以(B)是答案. 4. 设β, α1, α2线性相关, β, α2, α3线性无关, 则(A) α1, α2, α3线性相关 (B) α1, α2, α3线性无关 (C) α1可用β, α2, α3线性表示 (D) β可用α1, α2 线性表示解. 因为β, α1, α2线性相关, 所以β, α1, α2, α3线性相关. 又因为β, α2, α3线性无关, 所以α1可用β, α2, α3线性表示. (C)是答案.5. 设A , B 是n 阶方阵, 且秩(A ) = 秩(B ), 则(A) 秩(A -B ) = 0 (B) 秩(A + B ) = 2秩(A) (C) 秩(A -B ) = 2秩(A) (D) 秩(A + B ) ≤秩(A ) + 秩(B )解. (A) 取B A ≠且|A | ≠ 0, |B | ≠ 0则A -B ≠ 0, 则r (A -B ) ≠ 0. 排除(A);(B) 取A =-B ≠ 0, 则秩(A + B ) ≠ 2秩(A); (C) 取A = B ≠ 0, 则秩(A -B ) ≠ 2秩(A). 有如下定理: 秩(A + B ) ≤秩(A ) + 秩(B ). 所以(D)是答案.三. 计算证明题1. 设有三维向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111k α, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112k α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2113α, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=21k k β问k 取何值时i. β可由α1, α2, α3线性表示, 且表达式唯一; ii. β可由α1, α2, α3线性表示, 但表达式不唯一; iii. β不能由α1, α2, α3线性表示.解. )1(22221111112-=-=k k k k kki. 10≠≠k k 且时, α1, α2, α3线性无关, 四个三维向量一定线性相关, 所以β可由α1, α2, α3线性表示, 由克莱姆法则知表达式唯一; ii. 当k = 1 时→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡121111111111 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010********* . 系数矩阵的秩等于增广矩阵的秩为2. 所以所以β可由α1, α2, α3线性表示, 但表示不惟一; iii. 当0=k 时→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡021********* ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡021********* ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→011011100101 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→100011100101 .系数矩阵的秩等于2, 增广矩阵的秩为3, 所以所以β不能由α1, α2, α3线性表示.2. 设向量组α1, α2, α3线性相关, 向量组α2, α3, α4线性无关, 问 i. α1能否由α2, α3线性表出? 证明你的结论; ii. α4能否由α1, α2, α3线性表出? 证明你的结论解. i. α1不一定能由α2, α3线性表出. 反例: T)1,1(1=α, T )0,1(2=α, T )0,2(3=α. 向量组α1, α2, α3线性相关, 但α1不能由α2, α3线性表出;ii. α4不一定能由α1, α2, α3线性表出. 反例: T )0,0,2(1=α, T )0,0,1(2=α, T )0,1,0(3=α, T)1,0,0(4=α. α1, α2, α3线性相关, α2, α3, α4线性无关, α4不能由α1, α2, α3线性表出.3. 已知m 个向量α1, α2, …αm 线性相关, 但其中任意m -1个都线性无关, 证明: i. 如果存在等式k 1α1 + k 2α2 + … + k m αm = 0则这些系数k 1, k 2, …k m 或者全为零, 或者全不为零; ii. 如果存在两个等式k 1α1 + k 2α2 + … + k m αm = 0 l 1α1 + l 2α2 + … + l m αm = 0 其中l 1 ≠ 0, 则mm l k l k l k === 2211. 解. i. 假设k 1α1 + k 2α2 + … + k m αm = 0, 如果某个k i = 0. 则k 1α1 +…+ k i -1αi -1 + k i+1αi+1 … + k m αm = 0因为任意m -1个都线性无关, 所以k 1, k 2, …k i -1, k i+1, …, k m 都等于0, 即这些系数k 1, k 2, …k m 或者全为零, 或者全不为零;ii. 因为l 1 ≠ 0, 所以l 1, l 2, …l m 全不为零. 所以 m m l l l l ααα12121---= .代入第一式得: 0)(2212121=+++---m m m m k k l l l l k αααα 即 0)()(1122112=+-+++-m m m k k l l k k l l αα 所以 02112=+-k k l l , …, 011=+-m m k k l l 即mm l k l k l k === 2211 4. 设向量组α1, α2, α3线性无关, 问常数a , b , c 满足什么条件a α1-α2, b α2-α3, c α3-α1线性相关. 解. 假设 0)()()(133322211=-+-+-ααααααc k b k a k 得 0)()()(323212131=-+-+-αααk c k k b k k a k因为 α1, α2, α3线性无关, 得方程组 ⎪⎩⎪⎨⎧=+-=+-=-000322131ck k bk k k ak当行列式 010110=---cb a时, 321,k k k 有非零解. 所以 1=abc 时, a α1-α2, b α2-α3, c α3-α1线性相关.5. 设A 是n 阶矩阵, 若存在正整数k , 使线性方程组A k x = 0有解向量α, 且A k -1α ≠ 0, 证明: 向量组α, A α, ⋯, A k -1α是线性无关的.解. 假设 01110=+++--αααk k A a A a a . 二边乘以1-k A 得 010=-αk A a , 00=a由 0111=++--ααk k A a A a . 二边乘以1-k A 得011=-αk A a , 01=a ………………………………最后可得 011=--αk k A a , 01=-k a所以向量组α, A α, ⋯, A k -1α是线性无关.6. 求下列向量组的一个极大线性无关组, 并把其余向量用极大线性无关组线性表示.i. )3,2,1,2(),7,4,3,1(),6,5,1,4(),3,1,2,1(4321=----=---==αααα.ii. ).10,5,1,2(),0,2,2,1(),14,7,0,3(),2,1,3,0(),4,2,1,1(54321=-===-=ααααα解. 解. i. →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------3763245113122141→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------34180039031902141⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---3200320031902141⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→000032003192141所以 321,,ααα是极大线性无关组. 由 3322114ααααk k k ++= 得方程组⎪⎩⎪⎨⎧-==+=-+323924332321k k k k k k 解得 2331-==k k , 212=k所以 3214232123αααα-+-= ii. →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--1001424527121203121301→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--24220101103133021301⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--24220313301011021301⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→04000010001011021301所以 421,,ααα是极大线性无关组. 由 4322115ααααk k k ++= 得方程组⎪⎪⎩⎪⎪⎨⎧=-=-==+0401233231k k k k k 解得 21=k , 12=k , 03=k所以 421502αααα++= 由 4322113ααααk k k ++= 得方程组⎪⎪⎩⎪⎪⎨⎧=-=-==+0401333231k k k k k 解得 31=k , 12=k , 03=k所以 421303αααα++=7. 已知三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=x yyy x y y y x A , 讨论秩(A)的情形. 解. i. 0==y x , 0)(=A rii. 0,00,0=≠≠=y x y x 或, 3)(=A r iii. 0≠=y x , 1)(=A r iv . 0≠-=y x , 3)(=A r iv . y x y x ±≠≠≠,0,0⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=x y y y x yy y xA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→2222x xyxy xy x xy y y xy ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→2222222200y x y xy y xy y x y y xy ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++→y x yy y x y y x00⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++→)2(00y x x yy x yy x 所以, 当 y x 2-=时, 2)(=A r ; 当y x 2-≠时, 3)(=A r 8. 设三阶矩阵A 满足A 2 = E(E 为单位矩阵), 但A ≠ ± E , 试证明:(秩(A -E )-1)(秩(A + E )-1) = 0 解. 由第十一题知3)()(=-++E A r E A r又因为 A ≠ ± E , 所以 0)(≠+E A r , 0)(≠-E A r 所以 )(E A r +, )(E A r -中有一个为1所以 (秩(A -E )-1)(秩(A + E )-1) = 09. 设A 为n 阶方阵, 且A 2 = A , 证明: 若A 的秩为r , 则A -E 的秩为n -r , 其中E 是n 阶单位矩阵. 解. 因为 A 2 = A , 所以 0)(=-E A A 所以 n E A r A r E A A r --+≥-=)()())((0 所以 n E A r A r ≤-+)()(又因为 n E r A E A r A E r A r E A r A r ==-+≥-+=-+)()()()()()( 所以 n E A r A r =-+)()(. 所以 r n E A r -=-)(10. 设A 为n 阶方阵, 证明: 如果A 2 = E , 则秩(A + E ) + 秩(A -E ) = n.解. 因为 A 2 = E , 所以 ))((0E A E A +-=所以 n E A r E A r E A E A r --++≥-+=)()()))(((0 所以 n E A r E A r ≤-++)()(又因为 n E r A E E A r A E r E A r E A r E A r ==-++≥-++=-++)2()()()()()( 所以 n E A r E A r =-++)()(.第四章 线性方程组一. 填空题1. 在齐次线性方程组A m ×n x = 0中, 若秩(A) = k 且η1, η2, …, ηr 是它的一个基础解系, 则r = _____; 当k = ______时, 此方程组只有零解.解. k n r -=, 当n k =时, 方程组只有零解.2. 若n 元线性方程组有解, 且其系数矩阵的秩为r , 则当______时, 方程组有唯一解; 当______时, 方程组有无穷多解.解. 假设该方程组为A m ×n x = b, 矩阵的秩r A r =)(.当n r =, 方程组有惟一解; 当n r <, 方程组有无穷多解.3. 齐次线性方程组⎪⎩⎪⎨⎧=+=++=++0302032321321x kx x x x x kx x 只有零解, 则k 应满足的条件是______.解. 03011211≠k k , 53,0623≠≠--+k k k k 时, 方程组只有零解.4. 设A 为四阶方阵, 且秩(A) = 2, 则齐次线性方程组A *x = 0(A *是A 的伴随矩阵)的基础解系所包含的解向量的个数为______.解. 因为矩阵A 的秩31412)(=-=-<=n A r , 所以0)(*=A r , A *x = 0的基础解系所含解向量的个数为4-0 = 4.5. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=112011121A , 则A x = 0的通解为______. 解. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=000110101110110121112011121A 2)(=A r , 基础解系所含解向量个数为3-2=1.⎩⎨⎧=-=-003231x x x x , 取1,1123===x x x 则. 基础解系为(1, 1, 1)T .A x = 0的通解为k (1, 1, 1)T , k 为任意常数.6. 设α1, α2, …αs 是非齐次线性方程组A x = b 的解, 若C 1α1 + C 2α2 + … + C s αs 也是A x = b 的一个解, 则C 1 + C 2 + … + C s = ______.解. 因为A b A i 且,=α(C 1α1 + C 2α2 + … + C s αs ) = b, 所以b b C C s =++)(1 , 11=++s C C . 7. 方程组A x = 0以TT)1,1,0(,)2,0,1(21-==ηη为其基础解系,则该方程的系数矩阵为___.解. 方程组A x = 0的基础解系为TT)1,1,0(,)2,0,1(21-==ηη, 所以2)(=-A r n , 即2)(3=-A r , )(A r = 1.所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=22111αααk k A , 假设),,(1312111a a a =α. 由 01=ηA , 得02201),,(1311131211=+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡a a a a a 由 02=ηA , 得0110),,(1312131211=-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-a a a a a 取 2,1,0111213-===a a a 得. 所以)1,1,2(1-=α, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=22111αααk k A (其中2,1k k 为任意常数). 8. 设A x = b, 其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=112210321A , 则使方程组有解的所有b 是______. 解. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=112210321A , 0511221321||≠=-=A , 所以)(A r = 3.因为 A x = b 有解, 所以⎪⎪⎪⎭⎫⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-b r r 112210321112210321 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=123112201321k k k b , 其中321,,k k k 为任意常数.9. 设A, B 为三阶方阵, 其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=110121211A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=11202314k B , 且已知存在三阶方阵X , 使得B AX =, 则k = ___________.解. 由题设 B X A =⨯⨯3333, 又因为0110121211||=-=A , 所以0||||||==X A B , 即0266411202314=+--=--k k k, 2-=k .二. 单项选择题1. 要使ξ1 = (1, 0, 1)T , ξ2 = (-2, 0, 1)T 都是线性方程组0=Ax 的解, 只要系数矩阵A 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡112213321 (B)⎥⎦⎤⎢⎣⎡-211121 (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡123020010 (D) ⎥⎦⎤⎢⎣⎡-020010 解. 因为21,ξξ的对应分量不成比例, 所以21,ξξ线性无关. 所以方程组0=Ax 的基础解系所含解向量个数大于2.(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112213321A , 3)(,0112213321||=≠=A r A . 因为A 是三阶矩阵, 所以0=Ax 只有零解, 排除(A);(B) 2)(,211121=⎥⎦⎤⎢⎣⎡-=A r A . 所以方程组0=Ax 的基础解系所含解向量个数: 3-1)(=A r . 排除(B);(C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=123020010A , 2)(=A r .所以方程组0=Ax 的基础解系所含解向量个数:3-1)(=A r . 排除(C); (D) ⎥⎦⎤⎢⎣⎡-=020010A , 1)(=A r .所以方程组0=Ax 的基础解系所含解向量个数: 3-2)(=A r , (D)是答案.2. 设0,,321=Ax 是ξξξ的基础解系, 则该方程组的基础解系还可以表成 (A) 321,,ξξξ的一个等阶向量组 (B) 321,,ξξξ的一个等秩向量组(C) 321211,,ξξξξξξ+++ (C) 133221,,ξξξξξξ--- 解. 由 0)()(321321211=+++++ξξξξξξk k k , 得0)()(332321321=+++++k k k k k k ξξξ. 因为0,,321=Ax 是ξξξ的基础解系, 所以321,,ξξξ线性无关. 于是⎪⎩⎪⎨⎧==+=++000332321k k k k k k , 所以0321===k k k , 则321211,,ξξξξξξ+++线性无关. 它也可以是方程组的基础解系. (C)是答案.(A) 不是答案. 例如321,,ξξξ和21321,,,ξξξξξ+等价, 但21321,,,ξξξξξ+不是基础解系. 3. n 阶矩阵A 可逆的充分必要条件是(A) 任一行向量都是非零向量 (B) 任一列向量都是非零向量(C) b Ax =有解 (D) 当0≠x 时, 0≠Ax , 其中Tn x x x ),,(1 = 解. 对(A), (B): 反例 ⎥⎦⎤⎢⎣⎡=2121A , 不可逆; 对于(C) 假设A 为n ×n 矩阵, A 为A 的增广矩阵. 当n A r A r <=)()(时, b Ax =有无穷多解, 但A 不可逆; (D) 是答案, 证明如下: 当0≠x 时, 0≠Ax , 说明0=Ax 只有零解. 所以1,0||-≠A A 存在. 4. 设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r , 则0=Ax 有非零解的充分必要条件是 ( A ) n r = ( B ) n r ≥ ( C ) n r < ( D ) n r > 解. ( C )为答案.5. 设n m A ⨯为矩阵, m n B ⨯为矩阵, 则线性方程组0)(=x AB ( A ) 当m n >时仅有零解. ( B ) 当m n >时必有非零解. ( C ) 当n m >时仅有零解. ( D ) 当n m >时必有非零解.解. 因为AB 矩阵为m m ⨯方阵, 所以未知数个数为m 个. 又因为n A r AB r ≤≤)()(, 所以,当n m >时,m n A r AB r <≤≤)()(, 即系数矩阵的秩小于未知数个数, 所以方程组有非零解. ( D )为答案.6. 设n 阶矩阵A 的伴随矩阵0*≠A , 若4321,,,ξξξξ是非齐次线性方程组b Ax =的互不相等的解, 则对应的齐次线性方程组0=Ax 的基础解系( A ) 不存在 ( B ) 仅含一个非零解向量( C ) 含有二个线性无关解向量 ( D ) 含有三个线性无关解向量解. 因为 ⎪⎩⎪⎨⎧-<-===1)(,01)(,1)(,*)(n A r n A r n A r n A r 因为 0*≠A , 所以 1)(-≥n A r ; 又因为4321,,,ξξξξ是非齐次线性方程组b Ax =的互不相等的解, 所以 bAx =。
线性代数考研测试题及答案
线性代数考研测试题及答案线性代数是数学中的一个重要分支,广泛应用于科学、工程和经济学等领域。
下面提供一套考研线性代数测试题及答案,供参考。
### 线性代数考研测试题一、选择题(每题2分,共10分)1. 矩阵的秩是指:A. 矩阵中非零行的最大数目B. 矩阵中非零列的最大数目C. 矩阵中线性无关行的最大数目D. 矩阵中线性无关列的最大数目2. 方程组 \( Ax = b \) 有唯一解的充分必要条件是:A. \( A \) 是方阵B. \( A \) 是可逆矩阵C. \( b \) 不为零向量D. \( A \) 的列向量线性无关3. 向量空间 \( V \) 的基具有以下性质:A. 基是唯一的B. 基向量的数量是固定的C. 基向量可以任意选取D. 基向量可以进行线性组合4. 线性变换 \( T \) 的核是指:A. \( T \) 的值域B. \( T \) 的零空间C. \( T \) 的逆映射D. \( T \) 的特征向量5. 特征值和特征向量的概念在以下哪个矩阵中不适用:A. 可逆矩阵B. 对角矩阵C. 零矩阵D. 单位矩阵二、填空题(每题2分,共10分)6. 若矩阵 \( A \) 可逆,则 \( A \) 的伴随矩阵 \( \text{adj}(A) \) 与 \( A \) 的乘积等于______。
7. 向量 \( \mathbf{v} = (1, 2, 3) \) 在基 \( \{\mathbf{b}_1,\mathbf{b}_2, \mathbf{b}_3\} \) 下的坐标表示为 \( (x, y, z) \),若 \( \mathbf{b}_1 = (1, 0, 1) \),\( \mathbf{b}_2 = (0, 1, 1) \),则 \( x + z = ______ \)。
8. 若 \( A \) 是一个 \( n \times n \) 矩阵,且 \( A^2 = A \),则称 \( A \) 为______。
线性代数(含全部课后题详细答案)1第一章一元多项式习题及解答.docx
A 组1.判别Q (厉)二{0 +勿亦|0,处0}是否为数域?解是.2.设/(x) = x3 4-x2 4-x+l, g(兀)=兀2+3兀+ 2,求 /(兀)+ g(x),/(x)-g(x), f(x)g(x). 解/(x) + g (x) = x3 4- 2x2 + 4x + 3 ,/(兀)-g(x)"-2x-l,f(x)g(x) = x5 +4x4 +6兀'+6兀$ +5x + 2 .3.设/(%) = (5x-4),993(4x2 -2x-l),994 (8x3 -1 lx+2)'995,求 /(%)的展开式中各项系数的和.解由于/(兀)的各项系数的和等于/⑴,所以/(I) = (5-4严3(4-2- 1尸94(8-11 + 2)1995 =-1.4.求g(兀)除以/(兀)的商q(x)与余式心).(1)f (x) —— 3%2— x — 1, g(兀)=3F - 2兀+1 ;(2)/(x) = x4 -2x4-5, g(x) = x2 -x + 2 .解(1)用多项式除法得到x 73x~ — 2x +13_93X + 3—x —x-i3 37 ° 14 7-- 无_+ —x --3 9 926 2-- X ---9 9所以'恥)十岭心)W(2)用多项式除法得到x4— 2x + 5兀4 —”丫" + 2 兀2— 2x~ — 2 兀+5 jy?—兀~ + 2 兀-x2-4x4-5-兀? + X - 2—5x + 7所以,q(x) = x2 +x-l, r(x) = -5x + 7 .5.设是两个不相等的常数,证明多项式/(兀)除以(x-a)(x-b)所得余式为af(b)_bg)a-b a-h证明依题意可设/(x) = (x - a)(x - b)q(x) + cx+d,则”(a) = ca + d,[f(b) = cb + d.解得F=(/a) --,\d = (af(b)-bf(a))/(a-b).故所得余式为a-b a-b6.问m,p,q适合什么条件时,/(兀)能被g(x)整除?(1) /(x) = x3 + px + q , g(x) = x2 + nvc-1;(2) f(x) = x4 + px2 +q , g(兀)=x2 + mx+l.解(1)由整除的定义知,要求余式r(x) = 0 .所以先做多项式除法,3x2 + mx -1x-in“+ “X + q3 2x + mx^ - x-mx1 +(〃 + l)x + g2 2一 mx_ — m^x + m°(# +1 + 加〜)兀 + (g —m)要求厂(x) = (/? + l +加2)兀+ (§ —加)=0 ,所以(“ + 1 +加2) = 0, q-m = 0.即p = -l-m2, q - m时, 可以整除.(2)方法同上.先做多项式除法,所得余式为厂(兀)=加(2 — ”一nr )兀+ (1 + @ —卩一加〜),所以 m (2-p-/772) = 0, 1 + ^ - p - m 2= 0 ,即 m = 0, p = q + \ 或“二 2— 加[q = l 时,可以整除.7. 求/(兀)与gCr )的最大公因式:(1) f (x) — x 4 + — 3%2 — 4x — 1, g (x)=兀彳 + — x — 1 ; (2) f(x) = x 4— 4x 3+ 1, g(x) = x 3— 3x 2+1 ;(3) /(x) = x 4 -10x 2 +1, g(x) = x 4 -4A /2X 3 +6X 2 +4A /2X +1 .解(1)用辗转相除法得到用等式写出來,就是所以(/(x),g(x)) = x + l ・(2)同样地,<8 4 / 3 3= -X + — — -X-—(3 344-2x 2-3x-l1 1 --- X 4——2 -- 4 X 3+ X 2- X - 1 x 4 + x 3- 3x 2- 4x- 11 2 3 , -2x 2 — 3兀—12 21 2 3 1 -- X ----- X ---—2兀~ — 2兀2 4 433-- X ----X -144一丄 184—X H - 3 3 0心宀丄兀2 24 3 2牙+牙-X - Xf(x) = xg(x)^(-2x 2-3x-l),g(x) =所以(/⑴,g (兀)) = 1.⑶ 同样用辗转相除法,可得(/(x),g(x)) = F —2血兀一1.8.求 w(x),仄兀)使 w(x) f\x) + v(x)g(ji) = (/(x), g(%)):(1) f (x) = %4 4- 2x^ — %2 — 4x — 2, (x) = %4 + x — x~ — 2x — 2 : (2) /(x) = 4x 4-2x 3-16x 2+5x4-9, g(x) = 2兀3-x 2-5x+4:(3) /(x) = x A-x 3-4x 2 +4x + l, g (兀)=x 2 -x-l.解(1)利用辗转相除法,可以得到/(x) = g (A :) + (x 3-2x)'g (兀)=(x+l)(x 3 - 2x) + (x 2 -2),x — 2兀=x(^x~ — 2).因而,(/(x),g(x)) = x 2-2,并且(/(兀),g (兀))=/ 一 2 = g (兀)_ (兀+1)(疋 _ 2兀) =g (兀)一(X +1) (f(x) -g (兀))=(一兀 一 1)/(兀)+ (兀+2)g(x),所以 u(x) = -x-\, v(x) = x + 21 10 -- X H --- 3 9x 3 - 3x 2x-13 1 2 2X H —X X 3 3 10 2 2~~'- ---- X H 兀+ 13 -- 3 10 ° 10 20 X --- 兀 3 9 916~~1T —X ------ 9 927 441 --------- X ---------------16 256-3x 2+—x1649一一539 兀+ --- 27 256(2)利用辗转相除法,可以得到/(x) = 2xg(x)-(6x 2 +3兀-9),(\ 1Ag(x) = —(6x_ + 3兀一9) ——% + — — (% — 1), —(6x - + 3x — 9) = —(x —1)(6% + 9).因而,(/⑴,g(Q) = x-1,并且(1 1 …厶— —X + _ f (x) + _兀_—x~\ I 3 3丿 (3 3丿] 1 2 7 2fi/f 以 W (X )= X H —, V (X )= — --- X — \ •3 3 3 3(3) 利用辗转相除法,可以得到fM = X —3)g(x) + (x — 2),g(x) = (x+l)(x-2) + l ・因而( f(x), g(x)) = 1 ,并且(/(兀),g(x)) = 1 = g(x) - (x+1)(兀一 2)=g (兀)-(兀+1)(/(兀)-(x 2 一3)gCr))—(—兀―1) f (x) + (兀'+ 兀2 — 3兀—2)g(x),所以u (兀)= -x-l, v(x) = x 3 +x 2 -3x-2.9.设/(x) = %3+ (14-t)x 2+ 2x + 2w, g(x)二F+zx + u 的最大公因式是一个二次多项式,求/,凤的值.解利用辗转相除法,可以得到/(%) = g(x) + (l + /)兀2 +(2-/)兀 + « ,(/(x), g(x)) = x-l = -(6x 2+ 3x-9)+ | _g(x)I d J J(I ] \= (/(x)-2xg(x)) --x+- -g(x)\ 3丿 <2 o 2 d ,、 U 3 广—---- 兀+ (1 + r t-2(l +r)2(尸 + r—w)(i+r) + (t— 2)~u[(l + t)2 — (r —2)]由题意,/(x)与g(Q的最大公因式是一个二次多项式,所以(广 + / —w)(l + /) + (f— 2)~(T H?皿(l + r)2-(r-2)] A ;=0,(l + O2解得u = o^t = -4.10.设(x —I)[(A/+ B F+I),求A和B.由题意要求知解用(兀一1)2 去除f\x) = Ar4 + Bx2 +1 ,得余式”(x) = (4A + 2B)兀+1 -3人一B,斤(兀)=0,即4A + 2B = 0,1-3A-B = O,解得A = l,B = -2.11.证明:如果(/(x),g(x)) = l, (/(x),/z(x)) = l,那么(/(x), g(x)/z(x)) = l. 证明由条件可知,存在络(兀)和片⑴ 使得旳(兀)/(兀)+岭⑴g(x) = l,存在如(兀)和卩2(兀)使得u2(x)f(x) + v2(x)h(x) = 1.用/?(兀)乘以第一式得坷(x)f(x)h(x) + V, (x)g(x)h(x) = h(x),代入第二式得u2(x)f(x) + v2 (x) [u t (x)f(x)h(x) 4-Vj (x)g(x)/z(x)] = 1, 即[w2(兀)+ u\ (x)v2(x)h(x)]f(x) + [v, (x)v2(x)]g(x)h(x) = 1,所以(/(x),g(x)/z(x)) = l.12.证明:如果/(x)与g(x)不全为零,且/心)/(兀)+ 咻)g(兀)=(/(%), g(Q),证明由于w(x)/(x) + v(x)g(x) = (/(x),g(x)), /(X )与 g(x)不全为零,所以(/(x),g(x))HO.两 边同时除以(/(Hg(Q)HO,有所以(弘(兀),咻)) = 1 .13.证明:如果〃(兀)|/(兀),〃(兀)|g(x),且〃(兀)为/(兀)与g(x)的一个组合,那么〃(兀)是/G)与 g(x)的一个最大公因式.证明由题意知d(x)是/(X )与g(x)的公因式.再由条件设d(x) = w(x)/(x) + v(x)^(x) •又设h(x) 为/(x)与g(x)的任一公因式,即/z(x)|/(x), h(x)\g(x),则由上式有h(x)\d(x).故而”(兀)是/(兀)与 g(x)的一个最大公因式.14.证明:(.fO)/2(X ), gO)/2(X )) = (.f(X ), g(x))〃(x),其中力(兀)的首项系数为 1.证明显然(/(x), g(x))/?(x)是f{x)h{x)与g(x)h(x)的一个公因式.下面來证明它是最大公因式. 设 /心),v(x)满足 w(x)/(x) + v(x)g(x) = (/(x), g(X>),贝iJu(x)f(x)h(x) + v(x)g(x)h(x) = (/(x),g(x))/z(x).由上题结果知,(/(兀),g(X ))/7(X )是/(X )/?(X )与g(JC”7(X )的一个最大公因式,又首项系数为1,所以(/(x)A(x), ^(%)/?(%)) = (/(x), ^(x))/i(x)・/⑴ g (兀)、(/(兀),g (兀))’(f(x),g(x))丿证明设〃(兀)=(/(兀),g(x)),则存在多项式M (x), v(x),使d(x) = u(x)f(x) + v(x)g(x)・因为/(X )与g (尢)不全为零,所以d(x)HO.上式两边同时除以〃(兀),有故 /(兀) _____________ g (x)l (/(x),g(x))‘(/(x),g(x))‘u(x) /(X ) (/(%), g(x)) + v(x) g(x) (y (x ),^(x ))15.设多项式/(x)与gS)不全为零,证明1 = u(x)/(兀)(/(兀),g(x))+咻)g(x) (/(兀),g(x))=1成立.16. 分别在复数域、实数域和有理数域上分解兀4+ 1为不可约因式之积.在有理数域上兀°+1是不可约多项式.否则,若+ +1可约,有以下两种可能.(1) 兀4+1有一次因式,从而它有有理根,但/(±1)工0,所以卍+1无有理根.(2) x 4+ 1 无一次因式,设x 4+1 = (x 2+处 +方)(F +cx + d),其中 a,b y c,cl 为整数.于是a + c = O, b+ 〃 + ac = O, cut + be = 0 , bd = \,又分两种情况:① b = d = \,又 a = —c,从而由 b + 〃 + ac = O,得 a 2=2,矛盾; ② b = d = — \,则 a 2= —2 ,矛盾.综合以上情况,即证.17. 求下列多项式的有理根: (1) /(x) = x 3-6x 2+15兀一 14 ;(2) ^(X ) = 4X 4-7X 2-5X -1;(3) /z(x) = x 5+ %4— 6x^ — 14x~ — 1 lx — 3 ・解(1)由于/(x)是首项系数为1的整系数多项式,所以有理根必为整数根,且为-14的因数.-14的 因数有:±1, ±2, ±7, ±14,计算得到:/(D = -4, /(-1) = -36, /(2) = 0, /(-2) = -72,/(7) = 140, /(-7) = -756, /(14) = 1764, /(一 14) = —4144,故x = 2是/(兀)的有理根.再由多项式除法可知,x = 2是于(兀)的单根.⑵ 类似(1)的讨论可知,g(x)的可能的有理根为:故x = --是巩兀)的有理根.再由多项式除法可知,兀二-丄是/(劝的2重根.2 2⑶ 类似地,加兀)的可能的有理根为:±1,±3,计算得到解在实数域上的分解式为X4+ 1 = (X 2 + 1)2-2X 2 =(X 2+V2X + 1)(X 2-V2X +1).在复数域上的分解式为x + ----------1 2 2%4+ 1 = f亠迈亠近、X ---------- 12 2/±1, ±1 ±?计算得到g(l) = -9,g(-1) = 1, g(]、r 、171=-5, g —=0, g — 一 —‘ g —〔2< 264 ,4丿11A(l) = -28, /?(-l) = 0,(3) = 0,加一3) = -96.故x = -l, x = 3是//(兀)的有理根.再由多项式除法可知,x = -\是/z(x)的4重根,兀=3是//(兀)的单根.18.若实系数方程x34- px + q = 0有一根a + bi (a,b为实数,/?工0),则方程x3 + px-q = 0有实根2—证明设原方程有三个根不失一般性,令=a + bi,从而有a2 =a-bi,由根与系数的关系可知0 = $ + 冬 + 他=(° + 勿)+ (a - bi) + ,所以冬二-2d,即(-2a)‘ + /?(-2a) + g = 0,故(2a)' + p(2a)-q = 0.这说明x3 + /zr-g = 0有实根2a .19.证明:如果(%-i)|/(r),那么证明因为u-i)|/(z),所以/(r)= /(i)= 0.因此,令y(x)=(x-i)g(x),则有E =(*-i)g(;),即(伙-1)|/(疋).20.下列多项式在有理数域上是否可约?(1)土 (%) = F+1;(2)/;(X)= X4-8?+12X2+2;(3)人(x) = x" +『+1 ;(4)厶(无)=* + "; + 1,门为奇素数;(5)厶(兀)=兀°+4尬+ 1, A为整数.解(1) ./;(兀)的可能的有理根为:±1,而/(±1) = 2,所以它在有理数域上不可约.(2)由Eisenstein判别法,取素数p = 2,则2不能整除1,而2|(-8), 2|12, 2|2,但是2?不能整除2,所以该多项式在有理数域上不可约.(3)令x=y + l,代入厶(x) = P+x'+l有^(y) = ^(y + l) = / + 6/+15/+21/+18y24-9y4-3.取素数0 = 3,由Eisenstein判别法知,g(y)在有理数域上不可约,所以/(兀)在有理数域上不可约.(4)令兀= y_l,代入f4(x) = x p 4-px + 1,得g(y)=厶(y j) = -+ cy~2——C;-2y2 + (Cf* + p)y-p,取素数p,由Eisenstein判别法知,g(y)在有理数域上不可约,所以£(兀)在有理数域上不可约.(5)令x=y + l,代入农(兀)=兀4+4Ax+l,得g(.y)=厶(y +1) = y" + 4y‘ + 6y2 + (4k + 4)y + 4R + 2 ,収素数p = 2,由Eisenstein判别法知,g(y)在有理数域上不可约,所以点(兀)在有理数域上不可约.1•设/(X),g(X),加兀)是实数域上的多项式,(1)若/2U) = xg2(x) + x/z2(x),则/(x) = g(x) = h{x) = 0 .(2)在复数域上,上述命题是否成立?证明(1)当g(兀)=/2(兀)=0时,有严⑴=0,所以/(%) = 0 ,命题成立.如果g(x), /z(x)不全为零,不妨设g(x)H0・当h(x) = 0时,a(xg2(x) + x/i2U)) = l + 2a^(x)为奇数;当加兀)工0时,因为g(x),瓜兀)都是实系数多项式,所以Xg2(x)与兀胪(兀)都是首项系数为正实数的奇次多项式,于是也有d(xg2(x) + x/『(x))为奇数.而这时均有/2(x)^0 ,且df\x) = 2df(x)为偶数,矛盾.因此有g(兀)=力(兀) = 0,从而有f(x) = 0 .(2)在复数域上,上述命题不成立.例如,设f(x) = 0 , g(x) = x\ h(x) = ix,1,其中斤为自然数, 有/2 (x) = xg2 (x)xh2 (x),但g(x) / 0 ,力(兀)工0.2.设/(x), g(x)9 h(x)e P[x],满足(x2 4-l)h(x)4-(x-l)/(x) + (x+2)g(x) = 0,(x2 + l)/?(x) + (x+ l)/(x) + (x - 2)^(%) = 0.证明(X2+1)|(/U), g(X))・证明两式相加得到2(x2 + l)h(x) + 2x(/(x) + g(兀))=0.由(x2+l,兀)=1可知(x2 + l)|(/(x) + g(x)).两式相减得到-2f(x) + 4g(x) = 0, f(x) = 2g(x).故(x2 + l)|/(x), (x2+l)|g(x), BP(X2+1)|(/(X),g(x)).3・设gi(x)g2(x)\f{(x)f2(x),证明(1)若/(x)|g](x),/(X)H0,则g2(x)\f2(x);(2)若g2(x)|/;(x)/;(x),是否有g2(x)\f2(x)?解(1)因为gi(兀)g2(兀)庞(兀)£(兀),/O)|gi(X),故存在多项式h(x), h}(x)使得fl(x)f 2(x) = g](x)g 2(x)h(x\ g](兀)=Z (x)h }(x).于是/;(兀)£(兀)=/(兀)人(兀)g2(x)力(兀)•由于 土(兀)工0,故有 f 2(x) = h l (x)g 2(x)h(x),即g 2(x)\f 2(x).(2)否•例如取 g {(x) = x-2 , ^2(X ) = X 2-1 , (x) = (x-l)(x-2), (x) = (x + l)(x4-2).虽 然 gSx)g 2(x)\f^x)f 2(x)且 g 2(x)\f {(x)f 2(x),但 g 2(x)不能整除 f 2(x).4.当R 为何值时,/(x) = X 2 +伙+ 6)x + 4k + 2和g(x) = F+(£ + 2)x + 2R 的最大公因式是一次 的?并求出此吋的最大公因式.解 显然 g(x) = (x + £)(x+2).当(/(x),g(Q) = x + 2时'/(一2) = 4 — 2伙+ 6) + 4£ + 2 = 0‘ 则k = 3.当(于(兀),g(Q )=兀 + £ 时’/(一灯=k 2 - k(k + 6) + 4Z: + 2 = 0 ‘ 则 k = l.这时(/(x), g(x))=兀+1. 5.证明:对于任意正整数斤,都有(/(x),g(Q)"=(/"(x),g"(x))・证明 由题意可知/(%)与&(兀)不全为零.令(/(x), g(x)) = d(x),Z 、” g(x) 、d(x)丿/心)/"(兀)+ 咚)g"(兀)=d\x).又由 d(x)\f(x), d(x)|g(x),有 d n (x) f l \x), d"(x) g"(x),因此 d"(x)是厂(x)与 g"(x)的首项系数为1的最大公因式,从而有(广(x),g"(x))= 〃"(兀)=(/(x),g(x))" •6.设 / (x) = af(x) + bg(x), g[ (x) = c/(x) + dg(x),且 ad - be H 0 ,证明(/(x),g(x)) = (/](x), g](X ))・证明设(/(x), g(x)) = d(x),则 d(x)\f(x\d(x)\g(x).由于 “所以对任意正整如,有爲J 寫〕"卜 于是有u{x) +咻) 则〃(兀)工0,从而fi (兀)=妙(x) + bg(x) , g] (x) = (x) + dg (x),故d (x)| (x), d (x)|g t (x).又设h(x)\ (x), /z(x)|(x),由上式及ad-bc^O ,可得从而/?(x)|/(x), h(x)\g(x),于是h(x)\d(x),即〃(兀)也是/;(兀)和g|(x)的最大公因式,即(/(x), g(x)) = (/;(x),&(兀))・7.设 /(x) = t/(x)/(x), g(Q 二 dCr)g](x),且/O)与 gd)不全为零,证明〃(兀)是/O)与 gCO的一个最大公因式的充分必要条件是(/(劝,g|(x)) = 1.证明必要性.若〃(x)是/(兀)与g (兀)的一个最大公因式,则存在多项式w(x),v(x)使W (x)/(x) +v(x)g(x) = d(x),于是u(x)d(x)f t (x) + v(x)d(x)g l (x) = d(x).由/(力与g (兀)不全为零知如工0,因此有u(x)f l (x) + v(x)g l (x) = l f 即(土(兀),g©))i •充分性.若(f l (x),g l (x)) = l ,则存在多项式u(x),v(x),使 u(x)f l (x)+ v(x)g l (x) = l. 两边同吋乘〃(兀)有u(x)f(x) + v(x)g(x) = d(x)・由d(x)是/(x)与g(x)的一个公因式知,d(x)是f(x)与g(x)的一个最大公因式.8.设于(兀)和g(x)是两个多项式,证明(f(x), g(x)) = l 当且仅当(f(x)-l-g(x), f(x)g(x)) = l. 证明 必要性.设(f(x)9g(x)) = l,若f(x) + g(x)与/⑴g(x)不互素,则有不可约公因式p(x), 使p(x)lf(x)g(x)f所以 p(x)| /(X )或 0(x)|g(x).不妨设 p(x)\ /(x),由 P (x)|(/(x) + g (兀))可知 p(x)|g(x),因此 P (兀)是 /(兀)和g“)的公因式,与/(%), g (x)互素矛盾,故 蚀+g (兀)与蚀g (兀)互素.充分性.设(/(兀)+ gO) J(x)g (兀)) = 1,则存在w(x), v(x)使(/(兀)+ g (兀))心)+ /(x)g(x)v(x) = 1 , f(x)u(x) + g (兀)(臥兀)+d ad-be zw- h ad 一gi (兀), g(x) -c ad -be a ad -be g](x),/(x)v(x)) = 1, 上式说明(/(兀),g(兀)) = 1.9.如果(x2 +x + l)|/j(x3) + x/^(x3),那么(x-l)|/;(x), 0 — 1)|/;(兀)・T;®所以,^3=£23 = 1.证明X2+X + l的两个根为£\= 士护和£2=因为U2+x+l)|(/;(^3) + x/;(^3)),所以(兀一£|)(x - £2)|/;(X')+/(F),故有y 窗)+ £/(郃)=0,[爪哥)+ £2£(哥)=0,即解得/(l) = /;(l) = o,从而(兀—1)|久(兀),(x-1)|/;(%).10.若f(x)\f(x H),则/(x)的根只能是零或单位根.证明因为f(x)\f(x n),故存在多项式g(x),使/(x n) = /(x)^(x).设。
线性代数同步习题及答案
c21 c c2源自1 d d2 d4a4
b4
c4
= (a − b)(a − c)(a − d )(b − c)(b − d )(c − d )(a + b + c + d )
5.试求一个 2 次多项式 f ( x ) ,满足 f (1) = 0, f ( −1) = 1, f ( 2) = −1 .
a 0 0 b
b a 0 0
0 ⋯ b ⋯ 0 ⋯ 0 ⋯
0 0 a 0
0 0 b a
a a
(6) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯
习 题 1.3
1. 解下列方程组
x1 + x 2 + x3 + x 4 = 5 5 x1 + 2 x 2 + 3x3 = −2 x + 2 x − x + 4 x = −2 1 2 3 4 (1) 2 x1 − 2 x 2 + 5 x3 = 0 (2) 2 x − 3 x − x − 5 x 2 3 4 = −2 3x + 4 x + 2 x = −10 1 2 3 1 3 x1 + x 2 + 2 x3 + 11x 4 = 0 2. k 取何值时,下列齐次线性方程组可能有非零:
3 2 − 1 − 3 − 2 (2) 2 − 1 3 1 − 3 7 0 5 − 1 8
1 1 (4) 0 0 0
0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1
2.问能否适当选取矩阵
1 − 2 − 1 3 A= 3 − 6 − 3 9 4 2 k − 2
考研数学——线性代数——习题及解答
第一部分 矩阵本部分是全课程的基础,特别是计算的基础. 本部分概念多,因此考点也多.关键性概念:矩阵的初等变换,矩阵的乘法,可逆矩阵.一. n 阶行列式的计算计算n 阶行列式不一定用递推法或数学归纳法,一些简单的n 阶行列式可对某行(列)展开直接求得值;有些可化为三角行列式;还有的可用特征值计算.例1 1 0 0 … … tt 1 0 … … 0 0 t 1 … … 0 . … … … … 0 0 0 … t 1例2 证明 a 1 a 2 a 3 … a n-1 a n b 1 c 2 0 … 0 0 0 b 2 c 3 0 0 =11111(1)ni i i i n i b b a c c --+=-∑ .… … … …0 0 0 … b n-1 c n(就是要证明M 1i=b 1…b i-1 c i+1…c n .)例3 证明 a 0 a 1 a 2 … a n-1 a nb 1c 1 0 … 0 0b 2 0c 2 … 0 0 =011111n nii i i i n i i a c c ca b c c -+==-∑∏ .… … … … b n … 0 c n例4 ① 2 a a a a ② 1+x 1 1 1 ③ 1+a 1 1 1 a 2 a a a 1 1+x 1 1 2 2+a 2 2a a 2 a a . 1 1 1+x 1 . 3 3 3+a 3 .a a a 2 a 1 1 1 1+x 4 4 4 4+aa a a a 2这些行列式都可以先求出相应矩阵的特征值来求值.例5 计算444342414433332313423222212413121111x b a b a b a b a b a x b a b a b a b a b a x b a b a b a b a b a x b a ++++ ,其中12340x x x x ≠.解444342414433332313423222212413121111x b a b a b a b a b a x b a b a b a b a b a x b a b a b a b a b a x b a ++++13111214123423212224123412343132333412344341424412341111a b a b a b a b x x x x a b a b a b a b x x x x x x x x a b a b a b a b x x x x a b a b a b a b x x x x ++=++矩阵⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛++++1111444334224114443333223113442332222112441331221111x b a x b a x b a x b a x b a x b a x b a x b a x b a x b a x b a x b a x b a x b a x b a x b a E x b x b x b x b a a a a +⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=),,,(443322114321 特征值为4443332221111,1,1,1x b a x b a x b a x b a ++++相应行列式为4443332221111x b a x b a x b a x b a ++++原行列式的值43122432114321x x x b a x x x b a x x x x ++=3214442133x x x b a x x x b a ++例6 证明2222121212a a a a a a a()1n n a =+证明 222222121321012221122aa a a aa a a a A aaa a==2130124034(1)2(1)3231(1)0n a a aa a n a a n a nn a n+ ==⋅⋅⋅=++二. 矩阵的初等变换和初等变换法问题:①什么时候可用列变换?②如果两类变换都可以用,能否交替使用?1.初等变换的作用除了计算行列式,矩阵的初等变换应用在两个方面: (1) 用在线性方程组类问题上对线性方程组的增广矩阵作初等行变换反映了方程组的同解变换. 这方面的应用只可用行变换,决不可用列变换. (2) 计算矩阵和向量组的秩初等行变换和初等列变换都保持矩阵的秩.因此两类变换都可以用,并且可交替使用. (但是如果要求极大无关组,则只可用行变换) 每一种应用都要用到下面的基本运算:用初等(行)变换把一个矩阵化为阶梯形矩阵或简单阶梯形矩阵. 用初等行变换把可逆矩阵化为单位矩阵.2. 初等变换法(1)求方程组的唯一解当A 是可逆矩阵时, AX =β唯一解,求解的初等变换法:对增广矩阵(A |β)作初等行变换,使得A 变为单位矩阵:(A |β)→(E |η), 则η 就是解.(2) 解矩阵方程有两种基本矩阵方程:(I) AX =B . (II) XA =B .在A 是可逆矩阵这两个方程都是且唯一解.(I) AX =B 是线性方程组的推广,求解方法:将A 和B 并列作矩阵(A |B ),对它作初等行变换,使得A 变为单位矩阵,此时B 变为解X :(A |B )→(E |X )(II)的解法:对两边转置化为(I)的形式:A T X T =B T .再用解(I)的方法求出X T.. (A T |B T )→(E |X T )(3) 当A 可逆时, A -1是矩阵方程AX =E 的解,于是可用初等行变换求A -1:(A |E )→(E |A -1)近几年考题中常见的一类求矩阵的题, 可利用矩阵方程求解:给定了3阶矩阵A 的3个线性无关的特征向量α1,α2,α3,和它们的特征值,求A ,(给定6个3维列向量α1,α2,α3,β1,β2,β3,求一个3阶矩阵A ,使得A α1=β1, A α2=β2, A α3=β3.)例7 A 是3阶矩阵的向量α1=(-1,2,-1)T ,α2=(0,-1,1)T 都是齐次线性方程组AX =0的解, (1) A 的各行元素之和都为3, 求A .(06) (2) A 是3阶实对称矩阵,求A .解 根据题意有100020101010A A -⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭,.(1)A 的各行元素之和都为3,则 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛333111A .建立矩阵方程 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---000000333110121111A再用初等变换法求出111111111A ⎛⎫⎪= ⎪ ⎪⎝⎭.(2)0=Ax 有两个线性无关的解,,21αα则 32r A -()≥. ()1r A ≤. 再由()3()1tr A r A =⇒=. 所以A 的特征值为0,0,3.由于A 是实对称矩阵,属于3的特征向量与21,αα都相交,即满足⎩⎨⎧=+-=-+-00232321x x x x x 求得一个非零解,1113⎪⎪⎪⎭⎫ ⎝⎛=α即333αα=A建立矩阵方程 )0,0,3(),,(3213αααα=A .例8二次型f(x 1,x 2,x 3)= X T AX 在正交变换X =QY 下化为y 12+y 22, Q 的第3列为(22,0,22)T.求A . 解 有⎪⎪⎪⎭⎫ ⎝⎛=000010001AQ Q T . 即⎪⎪⎪⎭⎫⎝⎛=-0000100011AQ Q .则A 的特征值为0,1,1.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛22022是A 的特征向量,特征值为0,从而⎪⎪⎪⎭⎫ ⎝⎛101也是A 的特征向量,特征值为0.求A 的属于1的两个无关特征向量,即()0A E x -=的非零解它们都与⎪⎪⎪⎭⎫ ⎝⎛101相交,即满足方程组 031=+x x .(实际上它和()0A E x -=同解),求出两个无关解 ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛101,010.建立矩阵方程 ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-000101010101101010A⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-010001010110001110A ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--100010100201010001010001010110001110⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--→2102101021021100010001 ⎪⎪⎪⎭⎫⎝⎛--=10102010121A*设3阶实对称矩阵A 的特征值为1,1,-1,(0,1,1)T是属于-1的特征向量,求A .(1995).*设3阶实对称矩阵A 的特征值为1,2,3,(1,1,-1)T 和(-1,2,1)T分别是属于1和2的特征向量,求A .(1997)*设3阶实对称矩阵A 的秩为2,又6是它的二重特征值,向量(1,1,0)T 和(2,1,1)T和(-1,2,-3)T都是属于6的特征向量.求A .(2004).*3阶实对称矩阵A 的特征值为1,2,-2, (1,-1,1)T是A 的属于1的特征向量.记 B =A 5-4A 3+E .(1) 求B 的特征值和特征向量. (2) 求B .(07)三.矩阵乘法的两个规律,矩阵分解① A (α1, α2,…, αs )= (Aα1,Aα2,…,Aαs ).② 若A =(α1, α2,…, αn ), B =(β1, β2,…, βn )T ,则A B =α1β1 +α2β2 +…+αn βn .乘积矩阵AB 的第i 个列向量是A 的列向量组的线性组合,组合系数就是B 的第i 个列向量的各分量.(从而AB 的列向量组可以用A 的列向量组线性表示.)乘积矩阵AB 的第i 个行向量是B 的行向量组的线性组合,组合系数就是A 的第i 个行向量的各分量. (AB 的行向量组可以用B 的行向量组线性表示.)近几年考题中常见的又一类求矩阵的题是利用矩阵分解求解.设A 为3阶矩阵, α1, α2, α3是3维列向量组,知道了A α1,A α2,A α3对α1, α2, α3的分解,求矩阵B ,使得A P =P B . P =(α1, α2, α3).例9(2005) 设A 为3阶矩阵, α1, α2, α3是线性无关的3维列向量组,满足A α1=α1+ α2+ α3, A α2=2α2+α3, A α3=2α2+3α3.求作矩阵B ,使得A (α1, α2, α3)=( α1, α2, α3)B .解:三种方法对照方法一:设,332313322212312111⎪⎪⎪⎭⎫⎝⎛=b b b b b b bb b B 则 B A ),,(),,(321321αααααα=可化为)32,2,(3232321ααααααα++++),,,(333223113332222112331221111αααααααααb b b b b b b b b +++++=得,331221111321ααααααb b b ++=++ 由于321,,ααα无关,得1,1,1312111===b b b .用同样方法求得1222320,2,1b b b ===, 3,2,0332313===b b b .⎪⎪⎪⎭⎫ ⎝⎛=320120111B方法二:AP P B 1-=.⎪⎪⎪⎭⎫⎝⎛==----100010001),,(,3121111αααP P P E P P 有得1111231000,1,0001P P P ααα---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭于是,)32,2,(32323211ααααααα++++=-P B)32,2,31213121312111ααααααα-------++++=P P P P P P P ⎪⎪⎪⎭⎫⎝⎛=320120111.方法三(矩阵分解法)B A ),,(),,(321321αααααα=.)32,2,(3232321ααααααα++++⎪⎪⎪⎭⎫⎝⎛=320120111),,(321ααα.⎪⎪⎪⎭⎫⎝⎛=320120111B .方法三是直接求出了B ,并且不必要求321ααα线性无关!例10(2008)已知α1,α2,都是3阶矩阵A 的特征向量,特征值分别为-1和1,又3维向量 α3满足A α3=α2+α3.(1) 证明α1, α2, α3线性无关.(2) 记P =(α1, α2, α3),求P -1A P . (3) 证明A 不相似于对角矩阵. (4) 求A 的所有特征向量.例11(2001)设A 是3阶矩阵, α是3维列向量,使得P =(α,A α,A 2α)可逆,并且A 3α=3A α-2A 2α. (1)求3阶矩阵B 使得A =P B P -1.(2)计算|A +E |.(3)求A 的特征值.用矩阵分解求行列式用矩阵分解估计秩和判断向量组的相关性(C 矩阵法)四. 可逆矩阵的充分必要条件n 阶矩阵A 可逆⇔ A 的行列式|A |≠0⇔ r(A )=n⇔ A 的列(行)向量组线性无关. ⇔ AX =0只有零解(AX =β有唯一解) ⇔ 0不是A 的特征值.(A -c E 可逆⇔c 不是A 的特征值.)例12 设n 阶矩阵A 满足A 2+3A -2E =0.对任何有理数c, 证明A -c E 可逆. 解:方法一:令cE A B -=,即cE B A +=,则02)(3)(2=-+++E cE B cE B 0)23()32(22=-++++E c c B c B . E c c E c B B )23(])32([2-+-=++.0232=-+x x 的两根为21732893±-=+±-, 因此当c 是有理数时,0232≠-+c c . 则E c c )23(2-+-可逆,从而B 可逆. 方法二:只用说明有理数c 不是A 的特征值.由0232=-+E A A ,A 的特征值满足 0232=-+λλ.而有理数c 不满足此式,因此不是A 的特征值.例13 设n 阶矩阵A ,B 满足AB =a A +b B +c E ,其中0ab c +≠,证明A -b E 和B -a E 都可逆.解 方法一:只用证))((aE B bE A --可逆.abE bB aA AB aE B bE A +--=--))((=E c ab )(+∵0ab c +≠,E c ab )(+∴可逆,得)(),(aE B bE A --都可逆. 方法二:先证a 不是B 的特征值,从而aE B -可逆. 用反证法,若有向量0≠η,值得,ηηa B =则ηηηηc bB aA AB ++=, ηηηηc ab aA aA ++=得0)(=+ηc ab ,与条件0≠+c ab 矛盾要证b 不是A 的特征值,只用证b 不是TA 的特征值. 对cE bB aA AB ++=两侧转置,得cE bB aA A B T T T T ++=,用上法可证b 不是TA 的特征值,从而不是A 的特征值.例14 设α是n 维非零列向量,记A =E -Tαα.证明1Tαα=⇔ A 不可逆. (96) 证明 Tαα的特征值为0,,0,T αα .A 不可逆⇔1是T αα的特征值⇔1T αα=.例15 已知n 阶矩阵A ,B 满足E -AB 可逆,证明E -BA 也可逆,并且(E -BA )-1=E +B (E -AB )-1A . 证明 1()[()]E BA E B E AB A --+-1()()E BA E BA B E AB A -=-+--1()()E BA B BAB E AB A -=-+-- 1()()E BA B E AB E AB A -=-+--.E BA BA E =-+=例16 设A ,B 都是n 阶矩阵,证明c E -AB 可逆⇔ c E -BA 可逆. 证明 当0=c 时,即AB -可逆BA -⇔可逆. 而||||||)1(||BA B A AB n-=-=-.结论显然下设0≠c .方法一:左⇒右,即设AB cE -可逆,证BA cE -可逆.构选BA cE -的逆矩阵11[()]E B cE AB A c-+-11[][()]cE BA E B cE AB A c--+-])()([11A AB cE B BA cE BA cE c ---+-= 11[()()]cE BA B cE AB cE AB A c-=-+--E =. 方法二:用特征值,要证的是c 不是AB 的特征值⇔c 不是BA 的特征值逆否为c 是AB 的特征值c ⇔是BA 的特征值. “⇒”设ηηηc AB =≠,0. 则ηηcB BAB =.0,0,0≠⇒≠≠ηηB c .于是ηB 是BA 的特征向量,特征值为c .第二部分 向量组和线性方程组本部分全课程的理论基础,理论制高点, 特点是概念性强,抽象,因此是最难的部分,也是考试的重点和难点.关键性概念:线性表示,线性相关性,向量组和矩阵的的秩.齐次线性方程组的基础解系. 对这些概念要准确理解,并熟悉有关的性质,并且注意它们的联系,以及和其他章节的概念的联系.应该特别充分注意秩的作用.一.线性表示1. 线性表示的意义(1)一个向量β可用α1,α2,…,αs 线性表示,即n 维向量β是α1,α2,…,αs 的一个线性组合. 也就是:线性方程组AX =β有解,其中A =(α1, α2,…,αs ).一个向量是齐次方程组AX =0的解⇔它可以用AX =0的基础解系线性表示.(2) β1,β2,…,βt 可以用α1,α2,…,αs 线性表示,即每个βi 都可以用α1,α2,…,αs 线性表示. 这个概念和矩阵乘积有联系: 当AB =C 时 , C 的列向量组可以用A 的列向量组线性表示, C 的行向量组可以用B 的行向量组线性表示.反之,当 β1,β2,…,βt 可用α1,α2,…,αs 线性表示时,存在矩阵C (称为表示矩阵)使得:( β1,β2,…,βt )=(α1,α2,…,αs )C .(3) 向量组α1,α2,…,αs 和β1,β2,…,βt 等价,即它们互相都可以表示,记作{α1,α2,…,αs }≅{β1,β2,…,βt }.如果A 用初等行变换化为B ,则A 和B 的行向量组等价; 如果A 用初等列变换化为B ,则A 和B 的列向量组等价.向量组和它的每个极大无关组都等价;因此它的任何两个极大无关组等价. 一个齐次方程组AX =0的任何两个基础解系等价.2.用秩判断线性表示(1) β可用α1,α2,…,αs 线性表示⇔r(α1,α2,…,αs ,β)=r(α1,α2,…,αs ).(2) β可用α1,α2,…,αs 唯一线性表示⇔r(α1,α2,…,αs ,β)=r(α1,α2,…,αs )= s. (3) β1,β2,…,βt 可以用α1,α2,…,αs 线性表示⇔r(α1,α2,…,αs ,β1,β2,…,βt )=r(α1,α2,…,αs ). (4) α1,α2,…,αs 和β1,β2,…,βt 等价⇔r(α1,α2,…,αs )= r(α1,α2,…,αs , β1,β2,…,βt )= r(β1,β2,…,βt ).例1设α1=(1,2,0,1) , α2 =(1,1,-1,0), α3=(0,1,a,1),γ1=(1,0,1,0),γ2=(0,1,0,2).a 和k 取什么值时, γ1+k γ2可用α1,α2,α3线性表示?解),,(),,,(32121321αααγγγαααγ=+k)|,,(21321γγαααk +⎪⎪⎪⎪⎪⎭⎫⎝⎛-=k k a 21111001111021行⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1212111011110001k k a 行⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+----1321011000110001k kk a 1,1≠-=a k例2 已知r(α1,…,αs )=r(α1,…,αs , β)=k,r(α1,…,αs , β,γ)=k+1,求r(α1,…,αs , β-γ ). 解 看γβ-是否可用s αα,,1 线性表示.β可以用s αα,,1 线性表示,γ不可用βαα,,,1s 表示,因此也不可用s αα,,1 表示.于是γβ-不可用s αα,,1 线性表示.11(,,,)(,,)11s s k γααβγγαα-=+=+例3设(1,2,3)T ,(2,3,5)T 和(1,a,b-1)T ,(2,a 2,b)T都是AX =0的基础解系,求a,b.解 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛b a b a 22,11532,321与等价,即221121153232122=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-b a b a b a b a γγ. 222121212122301243510022a a a a b b b a b a ⎛⎫⎛⎫ ⎪ ⎪→--- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭ 得⎩⎨⎧=--=--02022a b a b 即⎩⎨⎧+==22a b a a ⎩⎨⎧==3210或或b a .当2,0==b a 时⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-2022,101112b a b a 秩为1,不合要求当3,1==b a 时⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-3122,211112b a b a ,秩为2,此时这两个向量组等价,符合题目要求.例4设AX=β的通解为 (1,-1,1,-1)T +c 1(1,-3,1,,0)T +c 2(-2,1,-1,2)T, c 1,c 2任意.(a,1,b,3)T是AX=β的解, 求a,b.解 的解是的解是011113131=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⇔=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛Ax b a Ax b a β线性表示可用⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--⇔2112,01314121b a 221120131412121120131=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----⇔γγb a . ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+--→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----2932100120001213111520001412121120131a b a a a b a a b a 则1,302093-=-=⎩⎨⎧=--=+b a a b a .例5 α1=(1,1,0,-1)T , α2=(0,2,1,1)T . 求β=(c 1, c 2, c 3, c 4)T可用α1,α2线性表示的条件. 解 2),(,,2121==)(ααγβααγ.⎪⎪⎪⎪⎪⎭⎫⎝⎛-+--→⎪⎪⎪⎪⎪⎭⎫⎝⎛-=3143123143212120010000111201011),,(c c c c c c c c c c c c βαα得:β可用⎩⎨⎧=-+=--⇔02,31431221c c c c c c 线性表示αα⎩⎨⎧=-+=--⇔002314312x x x x x x 是β的解. (即⎩⎨⎧=+-=+-002431321x x x x x x 是β的解).说明⎩⎨⎧=+-=+-002431321x x x x x x 以21,αα为基础解系.例6设α1,α2 ,…,αs 是n 维向量组.证明r(α1,α2 ,…,αs )= n 的充分必要条件为:任何n 维向量都可用α1,α2,…,αs 线性表示.解 必要性:对任何n 维向量β,,),,,()(11n n s s ≤≤=βααγααγ得),,,(),,,(11s s ααγβααγ =从而β可用s αα 1表示充分性:当任何n 维向量都可用s αα 1表示时,任何n 维向量组都可用s ααα,,,21 表示.取n ηηη,,,21 是一个线性无关的n 维向量组(如一个n 阶可逆矩阵的列向量组),则n n s n ≤≤=)()(11ααγηηγ .得n s =)(1ααγ .例7 设A 是m ⨯n 矩阵, C 是m ⨯s 矩阵.证明矩阵方程AX =C 有解⇔r(A |C )=r(A ). 证明 记),(),,,(11s n C A γγαα ==则AX C =有解⇔存在s n ⨯矩阵H 使得 C AH =⇔n s ααγγ 11可用线性表示⇔)(),(111n s n ααγγγααγ =即)()|(A C A γγ=.例8 设(Ⅰ)和(Ⅱ)都是3元非齐次线性方程组,(Ⅰ)有通解ξ1+c 1η1+c 2η2,其中ξ1= (1,0,1)T ,η1=(1,1,0)T ,η2=(1,2,1)T ;(Ⅱ)有通解ξ2+c η, ξ2=(0,1,2)T ,η=(1,1,2)T.求(Ⅰ)和(Ⅱ)的公共解.解 公共解都可写成ηξc +2,我们来求当c 取什么值时它又是(I )的解?ηξc +2是(I )的解⇔是12ξηξ-+c (I )的导出组的解 ⇔12ξηξ-+c ,可用21,ηη线性表示.⎪⎪⎪⎭⎫ ⎝⎛++-=-+1211121011),,(1221c c c c ξηξηη⎪⎪⎪⎭⎫ ⎝⎛--→1221011001c c得21=c ,公共解为:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=+32321212ηξ二. 向量组的线性相关性1.定义和意义意义 线性无关就是每个 αI 都不能用其它向量线性表示; 线性相关就是有向量(不必每个)可以用其它向量线性表示.定义 设α1,α2,…,αs 是n 维向量组,如果存在不全为0的一组数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0,则说α1,α2,…,αs 线性相关,否则(即要使得c 1α1+c 2α2+…+c s αs =0,必须c 1,c 2,…,c s 全为0)就说它们线性无关.和齐次线性方程组的关系 记A =(α1,α2,…,αs ),则:α1,α2,…,αs 线性相关(无关) ⇔齐次线性方程组AX =0有(没有)非零解.2.线性相关性的判别在考试真题中,相关性的判别是常见的,许多情形可用一些简单性质完成,甚至直接可用定义判别.因此熟记有关的性质是重要的.例如α1-α2,α2-α3,α3-α1线性相关,(2,1,a+4),(2,1,a+6)无关. 对考场上也出现过一些证明题,常用的思路有3个:① 定义法:用定义证明一个向量组α1,α2,…,αs 线性无关,就是由c 1α1+c 2α2+…+c s αs =0推出c i 都为0.② 扩大法:利用性质:如果α1,α2,…,αs 线性无关, 则α1,α2,…,αs ,β线性无关⇔β不能用α1,α2,…,αs 线性表示.推论 如果αi ≠0,并且每个αi 都不能用前面的i-1个向量线性表示,则α1,α2,…,αs 线性无关.③ 秩法:α1,α2,…,αs 线性无关⇔ r(α1,α2,…,αs )=s.例9 设A 为n 阶矩阵, α为n 维列向量,正整数k 使得A k α=0,但是A k-1α≠0,证明α, A α,…, A k-1α线性无关.证明 方法一:用定义证设0121=+++-αααk k A c A c c (1) 用1-k A乘(1)式得00111=⇒=-c A c k α 再用2-k A乘(1)式,得0,0212=⇒=-c A c k α这样逐个得出i c 都为0.方法二:用扩大法的推论,这个向量组是: 最后一个01≠-αk A .每一个都不能用后边的线性表示,如α1-i A 不可用αα1,,-k i A A 表示,因为αα1,,-k i A A 用i k A -乘都为0,即它们都是0=-αi k A 的解,而αi k A -不是:0)(1≠=---ααk i i i k A A A .由推论,得ααα1,,,-k A A 无关.例10设α1,α2,…,αs ,β1,β2,…,βt 线性无关,其中α1,α2,…,αs 是齐次方程组AX =0的基础解系.证明A β1,A β2,…,A βt 线性无关.证明 用定义法设,02211=+++t t A c A c A c βββ 而,0)(2211=+++t t c c c A βββ于是t t c c ββ++ 11是0=Ax 的解,从而可用0=Ax 的基础解系s αα,,1 线性表示,即有 s s t t k k c c c ααβββ++=+++ 112211但是11,,,,,s t ααββ 线性无关,得)(11s t k k c c 和都为0.例11 设α1,α2,…,αs 和β1,β2,…,βt 是两个线性无关的n 维实向量组,并且每个αi 和βj 都正交,证明α1,α2,…,αs ,β1,β2,…,βt 线性无关.证明 用定义法,设,01111=+++++t t s s k k c c ββαα记)(1111t t s s k k c c ββααγ++-=++= 则0))(,(),(1111=++-++=t t s s k k c c ββααγγ 即0=γ,于是s s k k c c 11和全都为0.例12 设α1,α2,…,αs 和β1,β2,…,βt 都是线性无关的n 维向量组,证明α1,α2,…,αs ,β1, β2,…,βt 线性相关⇔存在非零向量η,它既可用α1,α2,…,αs 线性表示,又可用β1,β2,…,βt 线性表示.证明 “⇒”存在t s k k c c 11,不全为0使得01111=+++++t t s s k k c c ββαα .令t t s s k k c c ββααη---=++= 1111, 则0≠η(∵t s k k c c 11和不能全为0!) 且η既可用s αα 1表示,又可用t ββ 1表示.“⇐”设0≠η,既可用s αα 1表示,又可用t ββ 1表示, 证s s s c c c c 111,ααη++=不全为0,t t t p p p p ,,,111 ββη++=-也不全为0,则,01111=++++t t s s p p c c ββαα ∴t s ββαα 11,相关.例13 已知n 元非齐次方程组AX =β有解, n-r(A )=3. (1)证明AX =β有4个线性无关的解. (2)证明AX =β的任何5个解都线性相关.(n 元非齐次方程组AX =β有解时,解集合的秩= n-r(A )+1.) 证明 (1)设0ξ是β=Ax 的一个解321,,ηηη是0=Ax 的基础的解系,321,,ηηη线性无关,而0ξ不可用321,,ηηη线性表示,从而这个向量线性无关.易见,,,,,,32103020100ηηηξηξηξηξξ≅+++,它们的秩相等,为4,从而3020100,,ηξηξηξξ+++,也无关,它们都是β=Ax 的解.(2)设54321,,,,ξξξξξ都是β=Ax 的解,则它们都可用(1)中的4210,,,ηηηξ这4个向量表示,所以必相关.三. 秩的有关等式与不等式秩是讨论向量组线性相关性的深入,它把抽象的概念数量化了, 从而可用数量的形式来处理线性表示和线性相关性问题,显得简单化了.譬如, 有一个性质:如果β1,β2,…,βt 可用α1,α2,…,αs 线性表示,并且t>s,则β1,β2,…,βt线性相关.从秩看,r(β1,β2,…,βt )≤ r(α1,α2,…,αs )≤s<t,从而β1,β2,…,βt 线性相关.例14 n 维向量组(I) α1,α2,…,αr 可以用n 维向量组(II) β1, β2,⋯, βs 线性表示. (A) 如果(I)线性无关,则r ≤s. (B) 如果(I)线性相关,则r>s. (C) 如果(II)线性无关,则r ≤s. (D) 如果(II)线性相关,则r>s. 这题可以用上面那个性质解决: (A)是它的逆否命题, (B)是否命题. 如果用秩做: r=r(α1,α2,…,αr )≤r(β1, β2,⋯, βs )≤s.例15 已知β可用α1,α2,…,αs 线性表示,但不可用α1,α2,…,αs-1线性表示.证明 ⑪ αs 不可用α1,α2,…,αs-1线性表示; ⑫ αs 可用α1,α2,…,αs-1, β线性表示.这题可以用定义做,叙述起来有点罗嗦. 下面用秩做:r(α1,α2,…,αr-1)+1=r(α1,α2,…,αr-1,β)≤r(α1,α2,…,αr ,β)=r(α1,α2,…,αr ) ≤ r(α1,α2,…,αr-1)+1于是r(α1,α2,…,αr-1,β)=r(α1,α2,…,αr ,β), r(α1,α2,…,αr )=r(α1,α2,…,αr-1)+1.例16 已知α1,α2,α3线性相关,而α2,α3,α4线性无关,则α1,α2,α3,α4中, 能用另外3个向量线性表示,而 不能用另外3个向量线性表示.r(α1,α2,α3)<3, r(α2,α3,α4)=3, r(α1,α2,α3,α4)=3.① 如果α1,α2,…,αs 是n 维向量组, 0≤r(α1,α2,…,αs )≤ Min{s,n}. 如果A 是m ⨯n 矩阵,则0≤r(A )≤Min{m,n}.② r(α1,α2,…,αs )+1.若β不可用α1,α2,…,αs 线性表示. r(α1,α2,…,αs ,β)=r(α1,α2,…,αs ).若β可用α1,α2,…,αs 线性表示. ③ 如果 β1,β2,…,βt 可以用α1,α2,…,αs 线性表示,则 r(β1,β2,…,βt )≤r(α1, α2,⋯ ,αs ). ④ r(A ±B )≤r(A )+r(B ).⑤ r(AB )≤Min{r(A ),r(B )}.⑥ 当A (或B )可逆时,r(AB )=r(B )(或r(A )).⑦ 如果A 列满秩(r(A )等于列数),则r(AB )=r(B ).⑧ 如果AB =0,n 为A 的列数(B 的行数),则r(A )+r(B )≤n. ⑨ 设A *为n 阶矩阵A 的伴随矩阵,则 n, 若r(A )=n,r(A *)= 1, 若r(A )=n-1,0, 若r(A )<n-1.⑩ r(A |B )≤r(A )+r(B ).例17设A 是n 阶矩阵, α1,α2,⋯,αs 是一组n 维向量,βi =A αi , i=1,2,⋯,s.证明: (1) r(β1, β2,⋯, βs )≤r(α1,α2,⋯,αs ).(2) 如果A 可逆,则r(α1,α2,⋯,αs )=r(β1, β2,⋯, βs ).证明 (1)矩阵),,(),,(11s s A ααββ =∴11(,,)min{(),()}s s r r A r ββαα≤ (2)若A 可逆,则11()()s s r r ββαα=例18设α1,α2,α3,α4都是n 维向量.判断下列命题成立的为① 如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关. ② 如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α2,α3,α4线性无关. ③ 如果存在n 阶矩阵A ,使得A α1,A α2,A α3,A α4线性无关,则α1,α2,α3,α4线性无关. ④ 如果α1=A β1,α2=A β2,α3=A β3,α4=A β4,其中A 可逆,β1,β2,β3,β4线性无关,则α1,α2,α3,α4线性无关.解 ①√.② 不对,例如43αα=.③ 123412344(,,,)(,,,)4r A A A A r αααααααα=≤≤. ④ √. 4),,,(),,,(43214321==ββββααααA .例19,例20 都可用C 矩阵法解.C 矩阵法:若s αα 1无关,t ββ 1可用s αα 1线性表示,表示矩阵为C ,则1()()t r r C ββ= .如果s t =,则t ββ 1无关0||≠⇔C .例19 设 α1,α2,…,αs 是齐次方程组AX =0的基础解系, β1=α1+t α2,β2=α2+t α3,…, βs-1=αs-1+t αs ,βs =αs +t α1.t 取什么值时β1,β2,…,βs 也是AX =0的基础解系?解s ββ,,1 确定都是0=Ax 的解,个数也合要求,看1s ββ 是否无关,由于s αα 1无关,可用C 矩阵法,s βββ 21,对s αα 1的表示矩阵C 为100100000000001t t C t ⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭s s t C 1)1(1||+-+= s s t C )1(0||-≠⇔≠当sst )1(-≠时s ββ,,1 线性无关,从而构成基础解系.例20 设α1,α2,α3是齐次方程组AX =0的基础解系,则( )也是AX =0的基础解系. (A) α1,α2-α3 . (B) α1+α2, α2+α3,α3-α1.(C) α1+α2+α3,α1-α2-2α3,α1+3α2+4α3. (D) α1+2α2-α3,2α1+α2+α3, α2+α3. 解 (A )个数2个,不对.×(B )0)()()(133221=-++-+αααααα相关.×(C )表示矩阵⎪⎪⎪⎭⎫ ⎝⎛--=431211111C111111||1130220124033C =-=-=--,32132132143,2,ααααααααα++--++相关.×(D )√ 此时⎪⎪⎪⎭⎫⎝⎛-=110112121C ,120120||2113006111111C ===---.四. 线性方程组线性方程组是课程的最主要部分,是考试的最大重点,但是考点很集中(解的情况的判别和通解的计算),有关的结论又十分明确,因此从方法上看不困难,大家也比较熟悉.但是近年来考题的发展趋势应该重视:考试重点转向概念化,考题渐渐脱离传统题型,出现许多有新意的题.1. 线性方程组解的情况的判别(1)对于方程组AX =β,判别其解的情况用三个数:未知数的个数n,r(A ),r(A |β).① 无解⇔r(A)<r(A |β).② 有唯一解⇔r(A)=r(A |β)=n.(当A 是方阵时,就推出克莱姆法则.)③ 有无穷多解⇔r(A)=r(A |β)<n.方程的个数m 虽然在判别公式中没有出现,但它是r(A )和r(A |β)的上界,因此当r(A )=m 时, AX =β一定有解. 当m<n 时,一定不是唯一解.(2)对于齐次方程组AX =0,判别解的情况用两个数: n,r(A ).有非零解⇔ r(A )<n(即:只有零解⇔r(A)=n). 2. 基础解系和通解(1) 齐次方程组的基础解系如果齐次方程组AX =0有非零解,则它的解集(全部解的集合)是无穷集,称解集的每个极大无关组为AX =0的基础解系.η1, η2,…,ηs 是AX =0的基础解系的条件为:① η1, η2,…,ηs 是AX =0的一组解. ② η1, η2,…,ηs 线性无关.③ s=n-r(A). (2) 通解当η1, η2,…,ηl 是AX =0的基础解系时, AX =0的通解为: c 1η1+c 2η2+…+c s ηs , c 1,c 2,…,c s 任意.如果ξ0是非齐次方程组AX =β的一个解, η1, η2,…,η s 是AX =0的基础解系时, AX =β的通解为:ξ0+c 1η1+c 2η2+…+c l ηs , c 1,c 2,…,c s 任意.例21 已知 ξ1=(1,-1,0,1)T ,ξ2=(2,0,1,1)T ,ξ3=(3,0,1,2)T都是线性方程组AX=β (β≠0)的解,并且r(A)=2,求通解.解 4,()2,()2n r A n r A ==-=.0=Ax 的基础解系由2个解构成0111201111312=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-Ax 是和ξξξξ两个无关的解,构成基础解系.通解:2121,,111201111011c c c c ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-任意.例22 已知 ξ1,ξ2,ξ3都是线性方程组AX=β (β≠0)的解, ξ1=(1,2,3,4)T , ξ2+ξ3=(0,1,2,3)T,并且r(A)=3,求通解.解 4,()3,()1n r A n r A ==-=.123232()45ξξξ⎛⎫⎪⎪-+= ⎪ ⎪⎝⎭是0=Ax 的一个非零解,通解为c c ,54324321⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛任意例23 已知ξ=(0,1,0)T是方程组123123123322213x x x x bx x ax x cx d+-=⎧⎪-++=⎨⎪++=⎩的解,求通解.解 以ξ代入第2,3两个方程,得⎩⎨⎧==,31d b 不能确定c a 与.系数矩阵⎪⎪⎪⎭⎫ ⎝⎛--=c a A 2131213 ()2r A ≥若()3r A =,此时方程组有唯一解,它就是ξ.若()2r A =,则⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--−→−011010001052051001021012013行A0=Ax 的同解方程组为⎩⎨⎧-==3231x x x x ,得基础解系⎪⎪⎪⎭⎫⎝⎛-111,通解为c c ,111010⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛任意例24有两个3元方程组x 1+x 2+x 3=1, 2x 1+3x 2+ax 3=4,(I) 3x 1+5x 2+x 3=7, (II) 2x 1+4x 2+(a-1)x 3=b+4 (1) 已知它们同解,求a,b.(2) 已知它们有公共解,求a,b ,并求所有公共解. 解 (1)思路:解出(I )的通解,代入(II )求出b a ,.⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛211210014121210171115131 ⎩⎨⎧+=--=2123231x x x x ,通解⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-112021c . 用⎪⎪⎪⎭⎫ ⎝⎛-021代入(II )的第2个方程得2,482=⇒+=+-b b . 取,1=c 得(I )的另一个解⎪⎪⎪⎭⎫ ⎝⎛-133,代入(II )的第1个方程1496=⇒=++-a a .(2)即联立方程组有解:1111111111113517022401122340122001024140110002a a a a b b b ⎛⎫⎛⎫⎛⎫⎪⎪⎪-- ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎪ ⎪ ⎪-+--⎝⎭⎝⎭⎝⎭得a b ,2=任意.i )当2,1==b a 时⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛-=00210012001000010021001100110001公共解为c c ,112021⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-任意.ii )当2,1=≠b a 时 ⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛-→0021010000100010021011100110001,得唯一解⎪⎪⎪⎭⎫⎝⎛-021.例25 设(Ⅰ)和(Ⅱ)是两个齐次线性方程组,(Ⅰ)的一个基础解系(1,-1,0,2)T,(0,1,1,a)T ,(Ⅱ)的一个基础解系为(-2,0,a,-2)T ,(1,1,1,0)T.已知(Ⅰ)和(Ⅱ)有公共非零解,求a,并求出它们的全部公共解.解 (用例12结果)(1)(I )与(II )有公共非零解⇔这4个向量线性相关.⎪⎪⎪⎪⎪⎭⎫⎝⎛--+-+--→⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---a a a a a a a 2222001200221012012201102210120102211010111201 ⎪⎪⎪⎪⎪⎭⎫⎝⎛+---→⎪⎪⎪⎪⎪⎭⎫⎝⎛---+--→2)1(000100221012012200120022101201a a a a 得:1-=a 时,有非零解.(2)此时(I )的基础解系为,1110201121⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=ηη(II )的基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=0111,210221γγ. (II )的解为21121221212211,,2201112102c c c c c c c c c c c c ⎪⎪⎪⎪⎪⎭⎫⎝⎛-+-+-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=+γγ任意 它要成为公共解⇔它可用21,ηη表示.⎪⎪⎪⎪⎪⎭⎫⎝⎛-+-+-+-→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+---212121211212212001012211102011c c c c c c c c c c c c c c 当21c c =时2211γγc c +是公共解,得公共解为1211()02c c γγ-⎛⎫⎪ ⎪+= ⎪ ⎪-⎝⎭,c 任意例26 设(Ⅰ)和(Ⅱ)是两个齐次线性方程组,(Ⅰ)的一个基础解系为(2,-1,-1,0)T,(t,1-t,0,1)T,(Ⅱ)为123412341242023300x x x x x x x x x px x -++=⎧⎪-++=⎨⎪++=⎩已知(Ⅰ)和(Ⅱ)有公共非零解,求p 和t,并求出它们的全部公共解.解 (1)记⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=132********,101,011221p A t t ηη (I )和(II )有公共非零解⇔存在21,c c 不全为0,使得2211ηηc c +也是(II )的解 ⇔存在21,c c 不全为0,使得0)(2211=+ηηc c A ⇔存在21,c c 不全为0,使得02211=+ηηA c A c ⇔21,ηηA A 相关122216,521t A A t p t p pt ηη+⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭21ηηA A 与相关,得3,36)12(35-=+=+=t t t t⎪⎪⎪⎭⎫ ⎝⎛---=241552p A η, 22542p p -=-- 84510,36,2p p p p -=-=-=-(2)⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛=10155,46221ηηA A . 2211ηηc c +也是(II )的解⇔0)(2211=+ηηc c A,520101554622121c c c c =⇔=⎪⎪⎪⎭⎫⎝⎛---+⎪⎪⎪⎭⎫ ⎝⎛ 即当25∶21∶=c c 时,2211ηηc c +是公共解. 整理后:公共解为c c ),25(321ηη+任意.注:关于两个齐次方程组有公共非零解的判断.(1)如果都给出了方程组的具体形式, 有公共非零解就是联立方程组有非零解.(2)如果一个给了系数矩阵A ,另一个给出了基础解系η1, η2,…,ηs ,则有公共非零解⇔ A η1,A η2,…,A ηs 线性相关.(3)两个都给出了基础解系η1, η2,…,ηs 和γ1, γ2,…,γt , 则有公共非零解⇔η1, η2,…, ηs ,γ1, γ2,…,γt 线性相关.第三部分 特征向量与特征值 相似和对角化 二次型本部分包含了线性代数的应用方面的两部分. 特点是:概念多,考点多,但是题型确定,变化小.特征值是本部分的关键, 本部分的各类问题几乎都和特征值有关. 因此特征值的计算是应该关注的重点,还应该总结这部分的各个题型和解法的思路.一. 特征值的计算特征值不仅在这两章中被广泛应用,还可以用来计算行列式和判断n阶矩阵的可逆性: λ1λ2…λn=|A|;λ不是A的特征值⇔|A-λE|≠0⇔A-λE可逆.0不是A的特征值⇔A可逆.因此应该关注特征值的计算方法.除了用定义,一般都会想到用特征多项式|λE-A|来计算特征值,但是这样做不仅计算量大,并且因为一般的多项式求根并不总是可行的,所以不是任何矩阵都可求特征值的.事实上,考试题里都是给出都是特殊的矩阵,或者给了特殊的条件让求特征值.因此应该总结这些特殊方法.1.两类特殊矩阵的特征值①对角矩阵和上下三角矩阵的特征值就是对角线上的元素.②当r(A)=1时,特征值为 0,0,…,0,tr(A).(例如:αβT的特征值为0,0,…,0,βTα.)2.利用相关矩阵的特征值的关系:如果A的特征值为λ1,λ2,…,λn,则①A的多项式f(A)的特征值是f(λ1),f(λ2),…,f(λn).特别地, A+c E的特征值是λ1+c,λ2+c,…,λn+c.②如果A可逆,则A-1的特征值是1/λ1,1/λ2,…,1/λn;A*的特征值是|A|/λ1,|A|/λ2,…,|A|/λn.③A T的特征值也是λ1,λ2,…,λn.④相似于A的特征值也是λ1,λ2,…,λn.3.利用特征值的性质:①λ1+λ2+…+λ n=tr(A).②A的特征值λ的重数≥n-r(A-λE).A是实对称矩阵时, A的特征值λ的重数=n-r(A-λE).③如果f(A)=0,则A的每个特征值λ满足f(λ)=0.例 1 设A=(α1,α2,α3)是3阶矩阵,满足|A|=0,它的各列元素之和都为3, α1-α2=(2,-2,0)T.求A的特征值.解A有3个特征值,||A=0,则0是特征值各列元素之和为3,则1311331131TA⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪==⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,从而3是T A的特征值,也是A的一个特征值又122 2 0αα⎛⎫ ⎪-=- ⎪⎪⎝⎭,而1211Aαα⎛⎫⎪-=- ⎪⎪⎝⎭,则⎪⎪⎪⎭⎫⎝⎛-11是A的特征向量,特征值为2.因此A的特征值为0,3,2。
线性代数考研题库及答案
线性代数考研题库及答案线性代数考研题库及答案线性代数作为数学的一个重要分支,是应用广泛且基础性强的学科。
对于考研学子来说,掌握线性代数的知识是非常重要的。
在备考过程中,做题是必不可少的一环。
本文将为大家介绍一些线性代数考研题库及答案,希望能够对大家的备考有所帮助。
一、基础知识题1. 下列哪个不是向量的性质?A. 加法交换律B. 乘法结合律C. 乘法分配律D. 加法结合律答案:D解析:向量的加法满足交换律、结合律,乘法满足结合律和分配律。
2. 设A为n阶方阵,下列哪个等式成立?A. A^T = -AB. A^T = AC. A^T = A^2D. A^T = A^{-1}答案:B解析:方阵的转置就是将矩阵的行变成列,列变成行,所以A的转置等于A本身。
二、定理证明题1. 证明:矩阵A与B相似的充要条件是存在可逆矩阵P,使得P^{-1}AP = B。
答案:略解析:这是线性代数中的一个重要定理——矩阵相似。
证明的思路是从定义出发,利用矩阵的运算性质和可逆矩阵的性质进行推导。
三、应用题1. 已知向量组v1 = (1, 2, 3)^T,v2 = (2, 3, 4)^T,v3 = (3, 4, 5)^T,求向量组的秩。
答案:2解析:将向量组写成矩阵形式,进行初等行变换,化为阶梯型矩阵,统计非零行的个数即为秩。
2. 设A为n阶方阵,若存在非零向量X,使得AX = X,则矩阵A的特征值为多少?答案:1解析:根据特征向量的定义,AX = λX,其中λ为特征值,X为特征向量。
根据题意可得AX = X,所以特征值λ为1。
四、综合题1. 设A为3阶方阵,已知A的特征值为1,2,3,求A的特征向量。
答案:略解析:根据特征值和特征向量的定义,解线性方程组(A-λI)X = 0,其中λ为特征值,X为特征向量,求解得到特征向量。
总结:线性代数考研题库及答案主要涵盖了基础知识题、定理证明题、应用题和综合题等不同类型的题目。
通过做题可以帮助考生巩固知识、理解概念,并提高解题能力。
线性代数考试题及答案考研
线性代数考试题及答案考研一、选择题1. 设矩阵A的秩为1,矩阵B与矩阵A相抵消,那么矩阵B的秩为:- A. 0- B. 1- C. 2- D. 不确定2. 若矩阵A可逆,且AB=0,则:- A. A可逆,B不可逆- B. B可逆,A不可逆- C. A和B都可逆- D. A和B都不可逆二、填空题1. 若向量组\[a_1, a_2, a_3\]线性相关,则至少存在不全为零的实数\[c_1, c_2, c_3\],使得\[c_1a_1 + c_2a_2 + c_3a_3 =\_\_\_\_\_\_。
2. 设矩阵\[A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\],矩阵\[A\]的特征值是\_\_\_\_\_\_。
三、解答题1. 已知矩阵\[B = \begin{bmatrix} 2 & 1 \\ 4 & 2\end{bmatrix}\],求矩阵\[B\]的逆矩阵。
2. 设\[x\]是\[3 \times 1\]的列向量,\[A\]是\[3 \times 3\]的矩阵,若\[Ax = 0\],证明\[x\]是矩阵\[A\]的零空间的基。
答案一、选择题1. 正确答案:A. 0解析:若矩阵B与矩阵A相抵消,则B的列向量是A的行向量的线性组合,因此B的秩小于等于A的秩。
由于A的秩为1,所以B的秩为0。
2. 正确答案:D. A和B都不可逆解析:若AB=0,则A和B至少有一个是不可逆的。
因为如果A可逆,则AB=I,这与AB=0矛盾。
同理,如果B可逆,则AB=I,也与AB=0矛盾。
二、填空题1. 正确答案:0解析:线性相关意味着存在不全为零的系数使得向量和为零向量。
2. 正确答案:2, -1解析:通过计算特征多项式\[|A - λI| = 0\],解得特征值为2和-1。
三、解答题1. 解:矩阵B的逆矩阵计算如下:\[B^{-1} = \frac{1}{\det(B)} \cdot \text{adj}(B)\]其中,\[\det(B) = 2 \cdot 2 - 1 \cdot 4 = 0\],因此矩阵B 不可逆,没有逆矩阵。
考研线性代数习题集(带答案)
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数10323211112)(x x x xx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ).(A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-0100002000010 n n .7.行列式=--001)1(2211)1(111 n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211 ,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001031002112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a d b a dc ad c b dcbad c b a d c b a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b ----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 210001200000210001210001211.aa a aa a a a aD ---------=1101100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a d c b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
考研线性代数习题及答案(一)
考研线性代数基础习题及答案(一)1.计算下列二阶行列式:.计算下列二阶行列式: (1)3125--; (2)log 11log a b b a )1b ,a 0,¹>且(b a ;(3)x x y x yx+-; (4)21111t t t +-+. 解:1)= (-3)×5-(-1)×2=-132)=log log 10b aa b ×-= 3)=22()()x x y x y y -+-= 4)=(t +1)(t 2-t +1)-1=t 32.计算下列三阶行列式:.计算下列三阶行列式: (1)111101112---; (2)12111516312---; (3)0230ba cbc a-; (4)111c b ca b a---. 解:1) =1×0×(-2)+1×1×(-1)+(-1)×1×1-(-1)×0×(-1)-1×1×1-(-2)×1×1=-1 2) =1×15×(-2)+2×16×3+(-1)×(-1)×1-(-1)×15×3-16×1×1-(-2)×2×(-1)=92 3) =2()30000b c ac a b c abc ´´+-´´+---= 4) =22222211abc abc b a c a b c +-+++=+++3.求下列各排列的逆序数,并说明它们的奇偶性:.求下列各排列的逆序数,并说明它们的奇偶性: (1)264315; (2)542163. 解:1)6G = 偶排列偶排列 2)9G = 奇排列奇排列4.确定i 和j 的值,使得9级排列级排列 (1)1 2 7 4 i 5 6 j 9成偶排列;成偶排列;(2)3 9 7 2 i 1 5 j 4成奇排列. 解:1)当8,3i j ==时成偶排列时成偶排列 2)当8,6i j ==时成奇排列时成奇排列5.利用行列式定义计算下列行列式.利用行列式定义计算下列行列式(1)010010100101001D =; (2)12340000000000a a D a a =. 解:1)(2143)21124334(1)1D a a a a G =-= 2)(2143)142332411234(1)D a a a a a a a a G=-=6.利用行列式性质计算下列行列式:.利用行列式性质计算下列行列式:(1)313023429722203-; (2)3211040220110102;(3)1234234134124123; (4)213131071242115-----. (5)xy x y y x y x x yxy+++; (6)222a b c a b c b c a b cac a b++++++. 解:1) =312103430455223121--=-=--- 2) =10100002602100302=--3) =100010001113110010101601222124411111104-==-------- 4) =10001001138100085521005725401151143==------5) =00x x x y x x y yx y x x y x xx y y x y +++++=0000xyx y y x x y x y y x y x yx y x-++--- 332()x yxyx y x y xy x x y y =+=-+-+-6) =222a b c a bc b c a b c a c a b++++++ =22a b ca b c a b c c b c ab ca c ab ++------++++ 111()22a b c cb c ab cac a b--=++++++=111()022022a b c b c a b c a c c a b --++++++++ 111()0()022a b c a b c a b a cc a b--=++++-++++ =32()a b c ++7.计算下列行列式:.计算下列行列式:(1)1123103230n n nD --=--;(2)111222121212n n n n a a a n a a a nD a a a n++++++=+++(n ≥2);(3)11221110001100011000010011n n n n a a a a D a a a +-----=---;(4)0121111111000101210001n i n na a a D a i n a a +-=¹=(其中0,,,,,).解:1) 10001200!1n D n n-==-2) 1°当n =2时,12n D a a =-2°当n >2时,11111222222122120212n nn n n n a a a n a a na a a n a a n D a a a na a n++++++++=+=++++3) 110000110000110010001000011n D+--==-4) 01211201111110000000010000nn n i i n na a a D a a a a a a a +=-æö==-ç÷èøå8.解方程:.解方程:(1)2212134526032113212x x ---=--+-- (2)11001()01001x y z x x y z y z=其中、、均为实数. 解:1)22(9)(1)0x x --=3x =±或1x =± 2)22211x y z ---=0x y z ===9.用克拉默法则解下列线性方程组:.用克拉默法则解下列线性方程组: (1)123123133243421132411x x x x x x x x x --=ìï+-=íï-+=î(2)1234123423412342513232222420x x x x x x x x x x x x x x x -++=ìï++-=ïí++=-ïï-++=î解:1)1234112412141142311234111124311432113,,1211211211342342342324324324x xx --------====------------2) 12251115112111113121311231032223220222214201422042D D D -----===----34251125111121113243220322211214D D ----==---- 312412341,0,,1DDDDx x x x DDDD\=======-10.k 取何值时,下面的方程组仅有零解?取何值时,下面的方程组仅有零解?(1)320720230x y z kx y z x y z +-=ìï+-=íï-+=î(2)0020kx y z x ky z x y z ++=ìï+-=íï-+=î解:1) ) 当当32163725630,,5213kk k --=-¹¹-即时仅有零解仅有零解2) ) 当当1111(1)(4)0,14,211kk k k k k -=+-¹¹¹-即且时仅有零解仅有零解(B )1.填空题.填空题 (1)设1234134()124123x f x x x=,则方程f (x )=0的根为____________; (2)1111111111111111xx y y +-+-=________________;(3)设行列式3040222207005322--,则第四行各元素余子式之和的值为__________;(4)n 阶行列式阶行列式00010000001n a a D a a==__________ (5)设n 阶行列式阶行列式13521120010301n n D n-=则D n 的第一行各元素的代数余子式之和11121n A A A +++= ______________. 解:1) ()(2)(3)(4)0f x x x x =---= 2,3,4x x x \===2) =22x y 3) -284) 2nn a a--5) 21!(1)nk nk =-å2.选择题.选择题(1)下列行列式中,不等于零的是()下列行列式中,不等于零的是( ). A .1231110.50.50.5---B. 1231110.5 1.5 2.5 C. 1531210.54 2.5D. 111412125---- (2)已知2122231112132122233111321233133132331121122213232223322a a a a a a a a a m a a a a a a a a a a a a a a a =---+++,则=( ). A .6m B .-6m C .12m D .-12m(3)多项式10223()71043173x x x f x x-=--中的常数项是(中的常数项是( ). A .3 B .-3 C .15 D .-15 (4)设行列式1234123412341234()a a a a x a a a x a f x a a xa a a xa a a --=--,则方程()f x =0的根为(的根为(). A .1234,a a a a ++ B .12340,a a a a +++ C .1234,a a a a --D .12340,a a a a ----(5)n 阶行列式D n 为零的充分条件是(为零的充分条件是( ). A .主对角线上的元素全为零.主对角线上的元素全为零B .有(1)2n n -个元素都等于零个元素都等于零 C .至少有一个(n -1)阶子式为零)阶子式为零D .所有(n -1)阶子式均为零)阶子式均为零 解:D 、A 、A 、B 、D 3.证明:32222()22a b c a a b b c a b a b c ccc a b----=+---. 证明证明: : : 左左=111()2222a b c bb c a bc cc a b++---- 33111()00()0a b c b c aa b c c a b=++---=++---4.证明:1111111112222222222a bb cc aa b c a b b c c a a b c a b b c c a a b c ++++++=+++. 解:11111111112222222222ab c c a b b c c a ab c c a b b c c a a b c c a b b c c a ++++=+++++++++左 =1112222ab cab c a b c5.计算下列n 阶行列式:阶行列式:(1)0000100002001000000nD n n=-; (2)123121221321321221n n n n n D n n nn n ---=---- ; (3)210001210000021012n D ---=--;(4)12323413452121n n D n n =-. 解:解: 1) (1)(2)((1),(2)1,)2(1)!(1)!n n n n nnD n n --G --=-=-2) 11111111110222111120022211111nn n n n Dn n n ------------=--=---12(1)2(1)n nn --=-+3) 100000210001200100012n D n ---=--=+-- 4) 1231341(1)145221111n n n n D n +=- =1230111(1)01112111n n n n n-+-(1)12(1)(1)2n n n n n +-+=-×6.用数学归纳法证明.用数学归纳法证明2112122222122122121111n n n n n n na a a a a a a a a a D a a a a a a a a ++==++++12cos sin(1)sin n q qq+=2cos sin 3sin q q q==sin(1)sin k qq=sin(2)sin k qq=又又111x x x =解:211112122212111()1n n i j j i n n nn n a a a a a a D a a a a a --£££-==-Õ123,0n D D D x D ===== 11231,0n D x x x x D \======10.若齐次线性方程且.若齐次线性方程且1234123412341234020300x x x ax x x x x x x x x x x ax bx +++=ìï+++=ïí+-+=ïï+++=î有非零解,则a 、b 应满足什么条件?应满足什么条件?解:当11112110113111a a b =-即2(1)4a b +=时,方程组有非零解方程组有非零解..。
线性代数练习题及答案解析(一)
线性代数练习题及答案解析(一)一、行列式1、排列25341的逆序数为 7 ;2、排列643125的逆序数是 9 ;3、方程211123049x x =的根为 2,3 ;(范德蒙行列式) 4、行列式D=162021304---中,元素-3的代数余子式是( A )(A )10 (B )2 (C )-10 (D )-2 考点:代数余子式定义5、(1)三阶行列式det()ij D a =中含有因子1322a a 的项为 132231-a a a ,含有因子1223a a 的项为 122331a a a . 考点:行列式展开式的定义规则(2)四阶行列式det()ij D a =中含有因子1123a a 的项为 12233144a a a a 或12233441-a a a a .6、设n 阶行列式60D =,且D 中的每列的元素之和为6,则D 中的第三行的代数余子式之和为 10 .考点:行列式的性质6,行列式按行(列)展开7、(1)设n 阶行列式det()ij D a =,j i A 是D 中元素j i a 的代数余子式,则下列各式中正确的是( C ). 考点:行列式按自己的行(列)展开等于行列式,如行(列)与代数余子式的行(列)不一致则等于零。
A 、10nijij i aA ==∑;B 、10nijij j aA ==∑; C 、1nijij j aA D ==∑; D 、121ni i i aA D==∑(2)若4阶行列式D 中第2行的元素212223242,1,3,0,a a a a ====余子式212M =,2223241,3,0M M M ===则D= -12 .注意:代数余子式与余子式的区别。
行列式的展开只与代数余子式有关。
(3)若3阶行列式D 中第1行的元素1112133,2,5,a a a ===代数余子式114A =,12131,2,A A =-=则D= 20 .8、行列式112233440000000a b a b b a b a =( B )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 行列式一. 填空题1. 四阶行列式中带有负号且包含a 12和a 21的项为______.解. a 12a 21a 33a 44中行标的排列为1234, 逆序为0; 列标排列为2134, 逆序为1. 该项符号为“-”, 所以答案为a 12a 21a 33a 44.2. 排列i 1i 2…i n 可经______次对换后变为排列i n i n -1…i 2i 1.解. 排列i 1i 2…i n 可经过1 + 2 + … + (n -1) = n(n -1)/2 次对换后变成排列i n i n -1…i 2i 1. 3. 在五阶行列式中3524415312)23145()15423()1(a a a a a ττ+-=______3524415312a a a a a .解. 15423的逆序为5, 23145的逆序为2, 所以该项的符号为“-”. 4. 在函数xx x xxx f 21112)(---=中, x 3的系数是______. 解. x 3的系数只要考察234222x x xx x x+-=--. 所以x 3前的系数为2.5. 设a , b 为实数, 则当a = ______, 且b = ______时, 010100=---abb a.解. 0)(11010022=+-=--=---b a ab ba abb a. 所以a = b = 0.6. 在n 阶行列式D = |a ij |中, 当i < j 时a ij = 0 (i , j =1, 2, …, n ), 则D = ______.解.nn n n a a a a a a a a 2211212221110=7. 设A 为3×3矩阵, |A | =-2, 把A 按行分块为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321A A A A , 其中A j (j = 1, 2, 3)是A 的第j 行, 则行列式=-121332A A A A ______.解.=-121332A A A A 6||33233211213=-=-=-A A A A A A A A .二.计算证明题1. 设4322321143113151||-=A计算A 41 + A 42 + A 43 + A 44 = ?, 其中A 4j (j= 1, 2, 3, 4)是|A |中元素a 4j 的代数余子式.解. A 41 + A 42 + A 43 + A 44 1111321143113151-=210320206)1(000121013201206114--=-=+ =62103202061=-- 2. 计算元素为a ij = | i -j |的n 阶行列式.解. 111111110021201110||--------=n n n n n A 每行减前一行由最后一行起,)1(2)1(1201201121--=--------n n n n n n n列每列加第 3. 计算n 阶行列式nx x x nx x x nx x x D n n n n +++++++++=212121222111(n ≥ 2).解. 当2>nn x x x n x x x nx x x D n n n n ++++++=222222111+n x x nx x nx x n n ++++++ 2121212211=nx x x x n x x x x nx x x x n n nn++++++33322221111+nx x x nx x x nx x x n n n++++++ 323232222111+n x x x n x x x nx x x n n n ++++++313131222111+n x x nx x nx x n n ++++++ 3213213212211=-n x x x nx x x n x x x n n n ++++++ 313131222111=-nx x x n x x x nx x x n n n+++ 111222111-nx x nx x n x x n n+++ 3131312211= 0当2=n2122112121x x x x x x -=++++4. 证明:奇数阶反对称矩阵的行列式为零.证明: ||||)1(||||||,A A A A A A A nTT-=-=-==-=(n 为奇数). 所以|A | = 0.5. 试证: 如果n 次多项式nn x C x C C x f ++=10)(对n + 1个不同的x 值都是零, 则此多项式恒等于零. (提示: 用范德蒙行列式证明)证明: 假设多项式的n + 1个不同的零点为x 0, x 1, …, x n . 将它们代入多项式, 得关于C i 方程组 00010=++nn x C x C C 01110=++n n x C x C C …………010=++n n n n x C x C C系数行列式为x 0, x 1, …, x n 的范德蒙行列式, 不为0. 所以010====n C C C6. 设).(',62321)(232x F xx x x x xx F 求=解. x x x x x x x F 620321)(232==x x x x x x 3103211222=x x x x x x 310201222=xx x x x 3102101222=32220021012x xx x x x =26)('x x F =第二章 矩阵一. 填空题1. 设α1, α2, α3, α, β均为4维向量, A = [α1, α2, α3, α], B = [α1, α2, α3, β], 且|A | = 2, |B | = 3, 则|A -3B | = ______. 解. βαααα3222|3|321----=-B A =βαααα38321-⨯-=αααα321(8⨯-56|)|3|(|8)3321=--=-B A βααα2. 若对任意n ×1矩阵X , 均有AX = 0, 则A = ______.解. 假设[]m A αα 1=, αi 是A 的列向量. 对于j = 1, 2, …, m , 令⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=010 j X , 第j 个元素不为0. 所以[]m αα 10010==⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡j α (j = 1, 2, …, m ). 所以A = 0.3. 设A 为m 阶方阵, 存在非零的m ×n 矩阵B , 使AB = 0的充分必要条件是______.解. 由AB = 0, 而且B 为非零矩阵, 所以存在B 的某个列向量b j 为非零列向量, 满足Ab j = 0. 即方程组AX = 0有非零解. 所以|A | = 0;反之: 若|A | = 0, 则AX = 0有非零解. 则存在非零矩阵B , 满足AB = 0. 所以, AB = 0的充分必要条件是|A | = 0.4. 设A 为n 阶矩阵, 存在两个不相等的n 阶矩阵B , C , 使AB = AC 的充分条件是______. 解. 0||0)(=⇔-=-⇔=≠A C B C B A AC AB C B 非零且且5. []42121b b b a a a n ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ = ______.解. []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n n n n b a b a b a b a b a b a b a b a b a b b b a a a212221212111421216. 设矩阵12,23,3211-+-=⎥⎦⎤⎢⎣⎡-=B E A A B A 则= ______. 解. =2A ⎥⎦⎤⎢⎣⎡-3211⎥⎦⎤⎢⎣⎡-3211=⎥⎦⎤⎢⎣⎡--7841E A A B 232+-==⎥⎦⎤⎢⎣⎡--7841-⎥⎦⎤⎢⎣⎡-9633 + ⎥⎦⎤⎢⎣⎡2002=⎥⎦⎤⎢⎣⎡--0212 21||*1==-B B B⎥⎦⎤⎢⎣⎡--2210=⎥⎥⎦⎤⎢⎢⎣⎡--11210 7. 设n 阶矩阵A 满足12,032-=++A E A A 则= ______.解. 由,0322=++E A A 得E E A A 3)2(-=+. 所以0|3||2|||≠-=+E E A A , 于是A 可逆. 由,0322=++E A A 得)2(31,03211E A A A E A +-==++--8. 设)9()3(,10002010121E A E A A -+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-则=______.解. =2A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100020101⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100020101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100040201=-E A 92⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---800050208, =+E A 3⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡400050104 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001400050104 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4100010001100050104 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-41000104101100050004 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-41000510161041100010001 , ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=+-4100510161041)3(1E A)9()3(21E A E A -+-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-4100051161041⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---800050208=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---200010102 9. 设.______])2[(______,)(_______,,3342122111*1*1=-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=---A A A A 则解. |A| = -3-12 + 8 + 8 + 6-6 = 1→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----100010001334212211 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----104012001570230211 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------104031320015703210211 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----137320313203131310032103401→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----137322524933100010001 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------372252493100010001 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=-3722524931A====---||)(,||,||1*1**1A AA A A A A A A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----3342122111131*4)2(||)2()2(|2|)2(---=--=--=-A A A A A A414)4(])2[(111*===----A A A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----33421221110. 设矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=3111522100110012A , 则A 的逆矩阵1-A = ______.解. ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-211111121, ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-215331521使用分块求逆公式⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-----1111100B CAB A BC A -⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--11212153⎥⎦⎤⎢⎣⎡--2111=⎥⎦⎤⎢⎣⎡--1173019 所以 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=-21117533019002100111A二. 单项选择题1. 设A 、B 为同阶可逆矩阵, 则(A) AB = BA (B) 存在可逆矩阵P , 使B AP P =-1 (C) 存在可逆矩阵C , 使B AC C T= (D) 存在可逆矩阵P 和Q , 使B PAQ = 解. 因为A 可逆, 存在可逆E AQ P Q P A A A A =使,. 因为B 可逆, 存在可逆E BQ P Q P B B B B =使,.所以 A A AQ P = B B BQ P . 于是B Q AQ P P B A A B =--11令 A B P P P 1-=, 1-=B A Q Q Q . (D)是答案.2. 设A 、B 都是n 阶可逆矩阵, 则⎥⎦⎤⎢⎣⎡--1002B A T等于 (A) 12||||)2(--B A n(B) 1||||)2(--B A n (C) ||||2B A T - (D) 1||||2--B A解. 121||||)2(002---=⎥⎦⎤⎢⎣⎡-B A B A n T. (A)是答案. 3. 设A 、B 都是n 阶方阵, 下面结论正确的是(A) 若A 、B 均可逆, 则A + B 可逆. (B) 若A 、B 均可逆, 则AB 可逆. (C) 若A + B 可逆, 则A -B 可逆. (D) 若A + B 可逆, 则A , B 均可逆. 解. 若A 、B 均可逆, 则111)(---=A B AB . (B)是答案.4. 设n 维向量)21,0,,0,21( =α, 矩阵ααTE A -=, ααTE B 2+=其中E 为n 阶单位矩阵, 则AB =(A) 0 (B) -E (C) E (D) ααTE +解. AB =)(ααTE -)2(ααT E +=ααT E - + 2ααT -2ααT ααT= E . )21(=ααT(C)是答案.5. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=233322322131131211232221a a a a a a a a a a a a B , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000010101P , 设有P 2P 1A = B , 则P 2 =(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010001 (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101010001 (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010101 (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100010101 解. P 1A 表示互换A 的第一、二行. B 表示A 先互换第一、二行, 然后将互换后的矩阵的第一行乘以(-1)加到第三行. 所以P 2 = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101010001.(B)是答案. 6. 设A 为n 阶可逆矩阵, 则(-A )*等于(A) -A * (B) A * (C) (-1)n A * (D) (-1)n -1A * 解. (-A )* =*111)1()1(1||)1()(||A A A A A n n ----=--=--. (D)是答案. 7. 设n 阶矩阵A 非奇异(n ≥ 2), A *是A 的伴随矩阵, 则 (A) A A A n 1**||)(-= (B) A A A n 1**||)(+= (C) A A A n 2**||)(-= (D) A A A n 2**||)(+=解. 1*||-=A A AA A A A A A A A A A A A A n n 211111*1**||||||||)|(|||||)|(|)(-------====(C)是答案.8. 设A 为m ×n 矩阵, C 是n 阶可逆矩阵, 矩阵A 的秩为r 1, 矩阵B = AC 的秩为r , 则 (A) r > r 1 (B) r < r 1 (C) r = r 1 (D) r 与r 1的关系依C 而定 解. n C r C A B n n n m ==⨯⨯)(,, 所以1)()()(r n C r A r AC r r =-+≥= 又因为 1-=BC A , 于是r n C r B r BC r r =-+≥=--)()()(111 所以 r r =1. (C)是答案.9. 设A 、B 都是n 阶非零矩阵, 且AB = 0, 则A 和B 的秩(A) 必有一个等于零 (B) 都小于n (C) 一个小于n , 一个等于n (D) 都等于n解. 若0,0.,)(1===-B AB A n A r 得由存在则, 矛盾. 所以 n A r <)(. 同理n B r <)(. (B)是答案.三. 计算证明题1. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=243121013A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=143522011B . 求: i. AB -BA ii. A 2-B 2 iii. B T A T 解. =-BA AB ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1618931717641, =-22B A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1326391515649=T T A B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--2211531517652. 求下列矩阵的逆矩阵i. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------111111*********1 ii. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1000cos sin 0sin cos αααα iii. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0001001001001000 iv .⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-1100210000120025解. i.→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------10000100001000011111111111111111 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------10010101001100010220202022001111 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------1001001102102100010220220010101111 →⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------110000110210210*********2200110011→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡----11000021210210210210212200110010100101→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-----1111002121021021021210400110010101001→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-----41414141002121021021021210100110010101001⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------414141414141414141414141414141411000010000100001 , ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------=-414141414141414141414141414141411A ii. ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--ααααααααcos sin sin cos cos sin sin cos 1. 由矩阵分块求逆公式:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---111000B A B A 得到: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-100cos sin 0sin cos 1ααααA iii. ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-011001101. 由矩阵分块求逆公式: ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---0000111A B B A 所以 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-00010010010010001Aiv . 由矩阵分块求逆公式:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---1110000B A B A得到: ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---=-313100323100005200211A 3. 已知三阶矩阵A 满足)3,2,1(==i i A i i αα. 其中T)2,2,1(1=α, T )1,2,2(2-=α, T )2,1,2(3--=α. 试求矩阵A .解. 由本题的条件知: =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---212122221A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---622342641 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---100010001212122221 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----102012001630360221 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----0313231032001120210221 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----3231323103232031300210201→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----9291923103232031100210201 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---929192919292929291100010001 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=232323235032037929192919292929291622342641A 4. k 取什么值时, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=11100001k A 可逆, 并求其逆. 解. 011100001||≠=-=k kA→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10011101000001001 k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--101110010010001001 k→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-111100010010001001k k 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1110100011kkA 5. 设A 是n 阶方阵, 且有自然数m , 使(E + A )m = 0, 则A 可逆. 解. 因为 0)(1=+==+∑∑==mi i im mi iimmA c E A cA E 所以 ∑=-=-mi i imE A cA 11)(. 所以A 可逆.6. 设B 为可逆矩阵, A 是与B 同阶方阵, 且满足A 2 + AB + B 2 = 0, 证明A 和A + B 都是可逆矩阵. 解. 因为022=++B AB A , 所以2)(B B A A -=+. 因为B 可逆, 所以0||)1(||22≠-=-B B n所以 0|||)(|2≠-=+B B A A . 所以B A A +,都可逆. 7. 若A , B 都是n 阶方阵, 且E + AB 可逆, 则E + BA 也可逆, 且 A AB E B E BA E 11)()(--+-=+解. A AB E B BA E BA E A AB E B E BA E 11)()())()((--++-+=+-+ =A AB E AB E B BA E A AB E BAB B BA E 11))(())((--++-+=++-+ =E BA BA E =-+ 所以 A AB E B E BA E 11)()(--+-=+.8. 设A , B 都是n 阶方阵, 已知|B | ≠ 0, A -E 可逆, 且(A -E )-1 = (B -E )T , 求证A 可逆.解. 因为(A -E )-1 = (B -E )T , 所以(A -E )(B -E )T = E所以 E E B E B A TT=+--)(, TT B E B A =-)(由 |B | ≠ 0 知11)(--T B B ,存在. 所以 E B E B A TT=--1))((. 所以A 可逆.9. 设A , B , A + B 为n 阶正交矩阵, 试证: (A + B )-1 = A -1 + B -1.解. 因为A , B , A + B 为正交矩阵, 所以111,,)()(---==+=+B B A A B A B A TTT所以 111)()(---+=+=+=+B A B A B A B A T T T10. 设A , B 都是n 阶方阵, 试证明:||E AB BEE A -=. 解. 因为 ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡AB E BE B E E A E A E E E 0000所以ABE B E B E E A E A E EE -=-0000||)1(01)1(2E AB AB E B E B EE A n n --=-=⋅⋅-因为 n n )1()1(2-=-, 所以||E AB BEE A -=11. 设A 为主对角线元素均为零的四阶实对称可逆矩阵, E 为四阶单位矩阵)0,0(00000000000000>>⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=l k l k Bi. 试计算|E +AB |, 并指出A 中元素满足什么条件时, E + AB 可逆;ii. 当E + AB 可逆时, 试证明(E + AB )-1A 为对称矩阵.解. i. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=44342414342313242312141312000a a a a a a a a a a a a a A , ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=l k a a a a a a a a a a a a a AB 0000000000000000044342414342313242312141312⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0000000000343424231413ka la la ka la ka AB E +⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1001001001343424231413ka la la ka la ka , 2341||kla AB E -=+ 所以当 2341a kl≠时, E + AB 可逆. ii. 11111)()]([)(-----+=+=+B A AB E A A AB E因为A , B 为实对称矩阵, 所以B A +-1为实对称矩阵, 所以(E + AB )-1A 为对称矩阵.12. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=λλλ100100A , 求A n . 解. 使用数学归纳法.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=222221020010100100100λλλλλλλλλλλA =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=λλλλλλλλ1001002102002223A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+323233)21(0300λλλλλλ 假设 k A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++---k k k k k k k k k λλλλλλ121)11(000则 1+k A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++---k k k k k k k k k λλλλλλ121)11(000⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡λλλ100100=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++++-++1111)1()1(0)1(00k kk k kk k k k λλλλλλ 所以 n A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++---n n n n n nn n n λλλλλλ121)11(000=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----n n n n n nn n n n λλλλλλ1212)1(00013. A 是n 阶方阵, 满足A m = E , 其中m 是正整数, E 为n 阶单位矩阵. 今将A 中n 2个元素a ij 用其代数余子式A ij 代替,得到的矩阵记为A 0. 证明E A m=0.解. 因为A m = E , 所以1||=mA , 所以A 可逆.11*0)(||]|[|)(--===T T T A A A A A A所以 E E A A A A A A m T m m m T m ====---1110||])[(||])(|[|14. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=010101001A i. 证明: n ≥ 3时, E A A A n n-+=-22(E 为三阶单位矩阵)ii. 求A 100.解. i. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=010*******A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010101001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101011001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010110013A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010101001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=011102001+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-+010*******E A A -⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101011001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0111020013A = 所以 E A A A -+=-2233 假设 E A A A k k -+=-22则 =-+=-+A A A A k k 311A E A A A k --++-21=E A A k -+-+221)(所以 E A A A n n -+=-22 ii. =-+=E A A A 298100E A E A A4950222296-==-+-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=50050050500050⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡490004900049⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10500150001 15. 当⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=21232321A 时, A 6 = E . 求A 11. 解. 121232321||=-=A , 所以 ==-||*1A AA ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-21232321因为 1112116--===EA A A A E A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=2123232116. 已知A , B 是n 阶方阵, 且满足A 2 = A , B 2 = B , 与(A -B )2 = A + B , 试证: AB = BA = 0. 解. 因为(A -B )2 = A + B , 所以 ))(())(()(3B A B A B A B A B A -+=+-=- 于是 2222B AB BA A B AB BA A --+=-+-, 所以 BA AB =B A B BA AB A B A B A +=+--+=-222,)(因为 A 2 = A , B 2 = B , 所以 2AB = 0, 所以0==BA AB .第三章 向量一. 填空题1. 设)1,2,0,1(),,1,0,1(),0,3,2,4(),5,0,1,2(4321-=-=--=-=ααααk , 则k = ______时, α1, α2, α3, α4线性相关. 解. 考察行列式110213118110521300001118215213000211142kkk-----=-----=-----316102038++-+--=k k = 13k +5 = 0. 135-=k 2. 设)0,,3,1(),4,3,5,0(),2,0,2,1(),0,3,1,2(4321t -=-=-=-=αααα, 则t = ______时, α1, α2, α3, α4线性相关. 解. 考察行列式424335550424333555100004230335211012---=----=----t t t t 0603020306020=--+++-=t t . 所以对任何t , α1, α2, α3, α4线性相关.3. 当k = ______时, 向量β = (1, k , 5)能由向量),1,1,2(),2,3,2(21-=-=αα 线性表示. 解. 考察行列式,012513211=--k 得k =-8. 当k =-8时, 三个向量的行列式为0, 于是21,,ααβ线性相关. 显然21,αα线性无关,所以β可用21,αα线性表示.4. 已知)1,4,0,1,1(),3,1,3,0,2(),10,5,1,2,0(),1,2,2,1,1(4321-=-=-==αααα, 则秩(α1, α2, α3, α4) = ______. 解. 将α1, α2, α3, α4表示成矩阵→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---13114152031210211201→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------21102550211002201201⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------211052110211001101201⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---→2052000200001101201. 所以 r (α1, α2, α3, α4) = 3 5. 设⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=3224211631092114047116A , 则秩(A) = ______.解. →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=3224211631092114047116A →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----3224211631711614040921⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------3408012550755110140800921 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---------→3510151011751015100921⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------→4100040300045000815100921所以 r (A ) = 3.6. 已知),2,0,1,0(,)2,1,0,1(=-=βαT矩阵A = α·β, 则秩(A ) = ______.解. A = α·β = ()→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-402020100000201020102101⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0020000000002010所以 r (A ) = 1.7. 已知向量),6,5,4(),6,5,4,3(),5,4,3,2(),4,3,2,1(4321t ====αααα, 且秩(α1, α2, α3, α4) = 2, 则t = ______.解. A = (α1, α2, α3, α4)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=t 654654354324321 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=16630642032104321t ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=7000000032104321t所以当t = 7时, r (A ) = 2.二. 单项选择题1. 设向量组α1, α2, α3线性无关, 则下列向量组线性相关的是 (A) α1 + α2, α2 + α3, α3 + α1 (B) α1, α1 + α2, α1+ α2 + α3 (C) α1-α2, α2-α3, α3-α1 (D) α1 + α2, 2α2 + α3, 3α3 + α1解. 由 0)()()(133322211=-+-+-ααααααk k k 得 0)()()(323212131=-+-+-αααk k k k k k因为向量组α1, α2, α3线性无关, 所以得关于321,,k k k 的方程组⎪⎩⎪⎨⎧=+-=+-=-000322131k k k k k k321,,k k k 的系数行列式为 01111011101=-=---. 所以321,,k k k 有非零解, 所以α1-α2, α2-α3, α3-α1线性相关. (C)是答案.2. 设矩阵A m ×n 的秩为R (A ) = m < n , E m 为m 阶单位矩阵, 下列结论正确的是 (A) A 的任意m 个列向量必线性无关 (B) A 的任意一个m 阶子式不等于零(C) 若矩阵B 满足BA = 0, 则B = 0 (D) A 通过行初等变换, 必可以化为(E m , 0)的形式解. (A), (B)都错在“任意”; (D)不正确是因为只通过行初等变换不一定能将A 变成(E m , 0)的形式; (C)是正确答案. 理由如下:因为 BA = 0, 所以 0)()()()()(B r m m B r m A r B r BA r =-+=-+≥=. 所以)(B r = 0. 于是B = 0.3. 设向量组 (I): TT T a a a a a a a a a ),,(,),,(,),,(332313332221223121111===ααα;设向量组 (II):T T T a a a a a a a a a a a a ),,,(,),,,(,),,,(433323133423222122413121111===βββ, 则(A) (I)相关⇒(II)相关 (B) (I)无关⇒(II)无关 (C) (II)无关⇒(I)无关 (B) (I)无关⇔ (II)无关解. 由定理: 若原向量组线性无关, 则由原向量组加长后的向量组也线性无关. 所以(B)是答案. 4. 设β, α1, α2线性相关, β, α2, α3线性无关, 则(A) α1, α2, α3线性相关 (B) α1, α2, α3线性无关 (C) α1可用β, α2, α3线性表示 (D) β可用α1, α2 线性表示解. 因为β, α1, α2线性相关, 所以β, α1, α2, α3线性相关. 又因为β, α2, α3线性无关, 所以α1可用β, α2, α3线性表示. (C)是答案.5. 设A , B 是n 阶方阵, 且秩(A ) = 秩(B ), 则(A) 秩(A -B ) = 0 (B) 秩(A + B ) = 2秩(A) (C) 秩(A -B ) = 2秩(A) (D) 秩(A + B ) ≤秩(A ) + 秩(B )解. (A) 取B A ≠且|A | ≠ 0, |B | ≠ 0则A -B ≠ 0, 则r (A -B ) ≠ 0. 排除(A);(B) 取A =-B ≠ 0, 则秩(A + B ) ≠ 2秩(A); (C) 取A = B ≠ 0, 则秩(A -B ) ≠ 2秩(A). 有如下定理: 秩(A + B ) ≤秩(A ) + 秩(B ). 所以(D)是答案.三. 计算证明题1. 设有三维向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111k α, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112k α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2113α, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=21k k β问k 取何值时i. β可由α1, α2, α3线性表示, 且表达式唯一; ii. β可由α1, α2, α3线性表示, 但表达式不唯一; iii. β不能由α1, α2, α3线性表示.解. )1(22221111112-=-=k k k k kki. 10≠≠k k 且时, α1, α2, α3线性无关, 四个三维向量一定线性相关, 所以β可由α1, α2, α3线性表示, 由克莱姆法则知表达式唯一; ii. 当k = 1 时→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡121111111111 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010********* . 系数矩阵的秩等于增广矩阵的秩为2. 所以所以β可由α1, α2, α3线性表示, 但表示不惟一; iii. 当0=k 时→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡021********* ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡021********* ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→011011100101 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→100011100101 .系数矩阵的秩等于2, 增广矩阵的秩为3, 所以所以β不能由α1, α2, α3线性表示.2. 设向量组α1, α2, α3线性相关, 向量组α2, α3, α4线性无关, 问 i. α1能否由α2, α3线性表出? 证明你的结论; ii. α4能否由α1, α2, α3线性表出? 证明你的结论解. i. α1不一定能由α2, α3线性表出. 反例: T)1,1(1=α, T )0,1(2=α, T )0,2(3=α. 向量组α1, α2, α3线性相关, 但α1不能由α2, α3线性表出;ii. α4不一定能由α1, α2, α3线性表出. 反例: T )0,0,2(1=α, T )0,0,1(2=α, T )0,1,0(3=α, T)1,0,0(4=α. α1, α2, α3线性相关, α2, α3, α4线性无关, α4不能由α1, α2, α3线性表出.3. 已知m 个向量α1, α2, …αm 线性相关, 但其中任意m -1个都线性无关, 证明: i. 如果存在等式k 1α1 + k 2α2 + … + k m αm = 0则这些系数k 1, k 2, …k m 或者全为零, 或者全不为零; ii. 如果存在两个等式k 1α1 + k 2α2 + … + k m αm = 0 l 1α1 + l 2α2 + … + l m αm = 0 其中l 1 ≠ 0, 则mm l k l k l k === 2211. 解. i. 假设k 1α1 + k 2α2 + … + k m αm = 0, 如果某个k i = 0. 则k 1α1 +…+ k i -1αi -1 + k i+1αi+1 … + k m αm = 0因为任意m -1个都线性无关, 所以k 1, k 2, …k i -1, k i+1, …, k m 都等于0, 即这些系数k 1, k 2, …k m 或者全为零, 或者全不为零;ii. 因为l 1 ≠ 0, 所以l 1, l 2, …l m 全不为零. 所以 m m l l l l ααα12121---= .代入第一式得: 0)(2212121=+++---m m m m k k l l l l k αααα 即 0)()(1122112=+-+++-m m m k k l l k k l l αα 所以 02112=+-k k l l , …, 011=+-m m k k l l 即mm l k l k l k === 2211 4. 设向量组α1, α2, α3线性无关, 问常数a , b , c 满足什么条件a α1-α2, b α2-α3, c α3-α1线性相关. 解. 假设 0)()()(133322211=-+-+-ααααααc k b k a k 得 0)()()(323212131=-+-+-αααk c k k b k k a k因为 α1, α2, α3线性无关, 得方程组 ⎪⎩⎪⎨⎧=+-=+-=-000322131ck k bk k k ak当行列式 010110=---cb a时, 321,k k k 有非零解. 所以 1=abc 时, a α1-α2, b α2-α3, c α3-α1线性相关.5. 设A 是n 阶矩阵, 若存在正整数k , 使线性方程组A k x = 0有解向量α, 且A k -1α ≠ 0, 证明: 向量组α, A α, ⋯, A k -1α是线性无关的.解. 假设 01110=+++--αααk k A a A a a . 二边乘以1-k A 得 010=-αk A a , 00=a由 0111=++--ααk k A a A a . 二边乘以1-k A 得011=-αk A a , 01=a ………………………………最后可得 011=--αk k A a , 01=-k a所以向量组α, A α, ⋯, A k -1α是线性无关.6. 求下列向量组的一个极大线性无关组, 并把其余向量用极大线性无关组线性表示.i. )3,2,1,2(),7,4,3,1(),6,5,1,4(),3,1,2,1(4321=----=---==αααα.ii. ).10,5,1,2(),0,2,2,1(),14,7,0,3(),2,1,3,0(),4,2,1,1(54321=-===-=ααααα解. 解. i. →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------3763245113122141→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------34180039031902141⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---3200320031902141⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→000032003192141所以 321,,ααα是极大线性无关组. 由 3322114ααααk k k ++= 得方程组⎪⎩⎪⎨⎧-==+=-+323924332321k k k k k k 解得 2331-==k k , 212=k所以 3214232123αααα-+-= ii. →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--1001424527121203121301→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--24220101103133021301⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--24220313301011021301⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→04000010001011021301所以 421,,ααα是极大线性无关组. 由 4322115ααααk k k ++= 得方程组⎪⎪⎩⎪⎪⎨⎧=-=-==+0401233231k k k k k 解得 21=k , 12=k , 03=k所以 421502αααα++= 由 4322113ααααk k k ++= 得方程组⎪⎪⎩⎪⎪⎨⎧=-=-==+0401333231k k k k k 解得 31=k , 12=k , 03=k所以 421303αααα++=7. 已知三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=x yyy x y y y x A , 讨论秩(A)的情形. 解. i. 0==y x , 0)(=A rii. 0,00,0=≠≠=y x y x 或, 3)(=A r iii. 0≠=y x , 1)(=A r iv . 0≠-=y x , 3)(=A r iv . y x y x ±≠≠≠,0,0⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=x y y y x yy y xA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→2222x xyxy xy x xy y y xy ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→2222222200y x y xy y xy y x y y xy ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++→y x yy y x y y x00⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++→)2(00y x x yy x yy x 所以, 当 y x 2-=时, 2)(=A r ; 当y x 2-≠时, 3)(=A r 8. 设三阶矩阵A 满足A 2 = E(E 为单位矩阵), 但A ≠ ± E , 试证明:(秩(A -E )-1)(秩(A + E )-1) = 0 解. 由第十一题知3)()(=-++E A r E A r又因为 A ≠ ± E , 所以 0)(≠+E A r , 0)(≠-E A r 所以 )(E A r +, )(E A r -中有一个为1所以 (秩(A -E )-1)(秩(A + E )-1) = 09. 设A 为n 阶方阵, 且A 2 = A , 证明: 若A 的秩为r , 则A -E 的秩为n -r , 其中E 是n 阶单位矩阵. 解. 因为 A 2 = A , 所以 0)(=-E A A 所以 n E A r A r E A A r --+≥-=)()())((0 所以 n E A r A r ≤-+)()(又因为 n E r A E A r A E r A r E A r A r ==-+≥-+=-+)()()()()()( 所以 n E A r A r =-+)()(. 所以 r n E A r -=-)(10. 设A 为n 阶方阵, 证明: 如果A 2 = E , 则秩(A + E ) + 秩(A -E ) = n.解. 因为 A 2 = E , 所以 ))((0E A E A +-=所以 n E A r E A r E A E A r --++≥-+=)()()))(((0 所以 n E A r E A r ≤-++)()(又因为 n E r A E E A r A E r E A r E A r E A r ==-++≥-++=-++)2()()()()()( 所以 n E A r E A r =-++)()(.第四章 线性方程组一. 填空题1. 在齐次线性方程组A m ×n x = 0中, 若秩(A) = k 且η1, η2, …, ηr 是它的一个基础解系, 则r = _____; 当k = ______时, 此方程组只有零解.解. k n r -=, 当n k =时, 方程组只有零解.2. 若n 元线性方程组有解, 且其系数矩阵的秩为r , 则当______时, 方程组有唯一解; 当______时, 方程组有无穷多解.解. 假设该方程组为A m ×n x = b, 矩阵的秩r A r =)(.当n r =, 方程组有惟一解; 当n r <, 方程组有无穷多解.3. 齐次线性方程组⎪⎩⎪⎨⎧=+=++=++0302032321321x kx x x x x kx x 只有零解, 则k 应满足的条件是______.解. 03011211≠k k , 53,0623≠≠--+k k k k 时, 方程组只有零解.4. 设A 为四阶方阵, 且秩(A) = 2, 则齐次线性方程组A *x = 0(A *是A 的伴随矩阵)的基础解系所包含的解向量的个数为______.解. 因为矩阵A 的秩31412)(=-=-<=n A r , 所以0)(*=A r , A *x = 0的基础解系所含解向量的个数为4-0 = 4.5. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=112011121A , 则A x = 0的通解为______. 解. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=000110101110110121112011121A 2)(=A r , 基础解系所含解向量个数为3-2=1.⎩⎨⎧=-=-003231x x x x , 取1,1123===x x x 则. 基础解系为(1, 1, 1)T .A x = 0的通解为k (1, 1, 1)T , k 为任意常数.6. 设α1, α2, …αs 是非齐次线性方程组A x = b 的解, 若C 1α1 + C 2α2 + … + C s αs 也是A x = b 的一个解, 则C 1 + C 2 + … + C s = ______.解. 因为A b A i 且,=α(C 1α1 + C 2α2 + … + C s αs ) = b, 所以b b C C s =++)(1 , 11=++s C C . 7. 方程组A x = 0以TT)1,1,0(,)2,0,1(21-==ηη为其基础解系,则该方程的系数矩阵为___.解. 方程组A x = 0的基础解系为TT)1,1,0(,)2,0,1(21-==ηη, 所以2)(=-A r n , 即2)(3=-A r , )(A r = 1.所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=22111αααk k A , 假设),,(1312111a a a =α. 由 01=ηA , 得02201),,(1311131211=+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡a a a a a 由 02=ηA , 得0110),,(1312131211=-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-a a a a a 取 2,1,0111213-===a a a 得. 所以)1,1,2(1-=α, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=22111αααk k A (其中2,1k k 为任意常数). 8. 设A x = b, 其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=112210321A , 则使方程组有解的所有b 是______. 解. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=112210321A , 0511221321||≠=-=A , 所以)(A r = 3.因为 A x = b 有解, 所以⎪⎪⎪⎭⎫⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-b r r 112210321112210321 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=123112201321k k k b , 其中321,,k k k 为任意常数.9. 设A, B 为三阶方阵, 其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=110121211A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=11202314k B , 且已知存在三阶方阵X , 使得B AX =, 则k = ___________.解. 由题设 B X A =⨯⨯3333, 又因为0110121211||=-=A , 所以0||||||==X A B , 即0266411202314=+--=--k k k, 2-=k .二. 单项选择题1. 要使ξ1 = (1, 0, 1)T , ξ2 = (-2, 0, 1)T 都是线性方程组0=Ax 的解, 只要系数矩阵A 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡112213321 (B)⎥⎦⎤⎢⎣⎡-211121 (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡123020010 (D) ⎥⎦⎤⎢⎣⎡-020010 解. 因为21,ξξ的对应分量不成比例, 所以21,ξξ线性无关. 所以方程组0=Ax 的基础解系所含解向量个数大于2.(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112213321A , 3)(,0112213321||=≠=A r A . 因为A 是三阶矩阵, 所以0=Ax 只有零解, 排除(A);(B) 2)(,211121=⎥⎦⎤⎢⎣⎡-=A r A . 所以方程组0=Ax 的基础解系所含解向量个数: 3-1)(=A r . 排除(B);(C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=123020010A , 2)(=A r .所以方程组0=Ax 的基础解系所含解向量个数:3-1)(=A r . 排除(C); (D) ⎥⎦⎤⎢⎣⎡-=020010A , 1)(=A r .所以方程组0=Ax 的基础解系所含解向量个数: 3-2)(=A r , (D)是答案.2. 设0,,321=Ax 是ξξξ的基础解系, 则该方程组的基础解系还可以表成 (A) 321,,ξξξ的一个等阶向量组 (B) 321,,ξξξ的一个等秩向量组(C) 321211,,ξξξξξξ+++ (C) 133221,,ξξξξξξ--- 解. 由 0)()(321321211=+++++ξξξξξξk k k , 得0)()(332321321=+++++k k k k k k ξξξ. 因为0,,321=Ax 是ξξξ的基础解系, 所以321,,ξξξ线性无关. 于是⎪⎩⎪⎨⎧==+=++000332321k k k k k k , 所以0321===k k k , 则321211,,ξξξξξξ+++线性无关. 它也可以是方程组的基础解系. (C)是答案.(A) 不是答案. 例如321,,ξξξ和21321,,,ξξξξξ+等价, 但21321,,,ξξξξξ+不是基础解系. 3. n 阶矩阵A 可逆的充分必要条件是(A) 任一行向量都是非零向量 (B) 任一列向量都是非零向量(C) b Ax =有解 (D) 当0≠x 时, 0≠Ax , 其中Tn x x x ),,(1 = 解. 对(A), (B): 反例 ⎥⎦⎤⎢⎣⎡=2121A , 不可逆; 对于(C) 假设A 为n ×n 矩阵, A 为A 的增广矩阵. 当n A r A r <=)()(时, b Ax =有无穷多解, 但A 不可逆; (D) 是答案, 证明如下: 当0≠x 时, 0≠Ax , 说明0=Ax 只有零解. 所以1,0||-≠A A 存在. 4. 设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r , 则0=Ax 有非零解的充分必要条件是 ( A ) n r = ( B ) n r ≥ ( C ) n r < ( D ) n r > 解. ( C )为答案.5. 设n m A ⨯为矩阵, m n B ⨯为矩阵, 则线性方程组0)(=x AB ( A ) 当m n >时仅有零解. ( B ) 当m n >时必有非零解. ( C ) 当n m >时仅有零解. ( D ) 当n m >时必有非零解.解. 因为AB 矩阵为m m ⨯方阵, 所以未知数个数为m 个. 又因为n A r AB r ≤≤)()(, 所以,当n m >时,m n A r AB r <≤≤)()(, 即系数矩阵的秩小于未知数个数, 所以方程组有非零解. ( D )为答案.6. 设n 阶矩阵A 的伴随矩阵0*≠A , 若4321,,,ξξξξ是非齐次线性方程组b Ax =的互不相等的解, 则对应的齐次线性方程组0=Ax 的基础解系( A ) 不存在 ( B ) 仅含一个非零解向量( C ) 含有二个线性无关解向量 ( D ) 含有三个线性无关解向量解. 因为 ⎪⎩⎪⎨⎧-<-===1)(,01)(,1)(,*)(n A r n A r n A r n A r 因为 0*≠A , 所以 1)(-≥n A r ; 又因为4321,,,ξξξξ是非齐次线性方程组b Ax =的互不相等的解, 所以 bAx =。