六年级奥数综合测试及答案
小学六年级奥数题100道及答案_小学六年级奥数练习题及答案【五篇】
小学六年级奥数题100道及答案_小学六年级奥数练习题及答案【五篇】【第一篇:桥长】一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?求解:火车过桥所用的时间就是2分后5秒=125秒,共行的路程就是(8×125)米,这段路程就是(200米+桥长),所以,桥长为8×125-200=800(米)请问:大桥的长度就是800米。
【第二篇:列车长】一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开到桥至车尾返回桥共须要3分钟。
这列于火车短多少米?解:火车3分钟所行的路程,就是桥长与火车车身长度的和。
(1)火车3分钟行多少米?900×3=2700(米)(2)这列火车长多少米?2700-2400=300(米)highcut综合算式900×3-2400=300(米)答:这列火车长300米。
【第三篇:街道长度】甲、乙、丙三人步行的速度分别是:每分钟甲走90米,乙走75米,丙走60米。
甲、丙从某长街的西头、乙从该长街的东头同时出发相向而行,甲、乙相遇后恰好4分钟乙、丙相遇,那麽这条长街的长度是多少米?答案与解析:甲、乙碰面后4分钟乙、丙碰面,表明甲、乙碰面时乙、丙还差4分钟的路程,即为还差4×(75+60)=540米;而这540米也就是甲、乙碰面时间里甲、丙的路程高,所以甲、乙碰面=540÷(90-60)=18分钟,所以长街短=18×(90+75)=2970米。
【第四篇:相遇次数】甲,乙两人在一条长100米的直路上往复跑步,甲的速度3米/秒,乙的速度2米/秒。
如果他们同时分别从直路的两端启程,当他们走了10分钟后,共碰面多少次?答案与解析:10分钟两人共跑了(3+2)×60×10=3000米3000÷100=30个全程。
我们知道两人同时从两地相向而行,他们总是在奇数个全程时相遇(不包括追上)1、3、5、7。
小学六年级奥数题100道及答案
小学六年级奥数题100道及答案1. 有两组数列,第一组数列是:2, 4, 6, 8, ..., 100;第二组数列是:1, 3, 5, 7, ..., 99。
问两组数列中所有数的和是多少?答案:第一组数列是一个等差数列,首项为2,公差为2,共有50项。
第二组数列也是一个等差数列,首项为1,公差为2,共有50项。
两组数列的和可以通过求和公式计算得出:\[ S_1 = 2 \times 50 + 50 \times 49 / 2 = 2550 \];\[ S_2 = 1 \times 50 + 50 \times 49/ 2 = 1225 \]。
所以,两组数列的和是:\[ S_1 + S_2 = 2550 + 1225 = 3775 \]。
2. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米。
如果把这个长方体切割成两个大小相等的正方体,那么切割后的每个正方体的体积是多少?答案:首先计算长方体的体积,\[ V_{长方体} = 10 \times 8\times 6 = 480 \] 立方厘米。
切割成两个正方体后,每个正方体的体积是原长方体体积的一半,即\[ V_{正方体} = 480 / 2 = 240 \]立方厘米。
3. 一个数列的前5项是:1, 1, 2, 3, 5。
这个数列的第6项是多少?答案:这是一个斐波那契数列,每一项都是前两项的和。
所以第6项是\[ 3 + 5 = 8 \]。
4. 有一个数字,如果把它乘以3然后加上10,得到的结果是这个数字的5倍。
这个数字是多少?答案:设这个数字为x,根据题意,我们有\[ 3x + 10 = 5x \]。
解这个方程,我们得到\[ 2x = 10 \],所以\[ x = 5 \]。
5. 一个班级有40名学生,其中20名男生和20名女生。
如果随机选择一名学生,那么选择到男生的概率是多少?答案:从40名学生中随机选择一名,选择到男生的概率是男生人数除以总人数,即\[ P(男生) = 20 / 40 = 1 / 2 \]。
六年级奥数题及答案(五篇)
六年级奥数题及答案(五篇)六年级奥数题及答案 1某造纸厂在100天里共生产2024吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天?中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天六年级奥数题及答案 2从花城到太阳城的公路长12公里.在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的.还有在第4千米及第6千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?答案与解析:画出反映交通灯红绿情况的s-t图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是0.5千米/分钟,此时恰好经过第6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要24分钟.六年级奥数题及答案 3分母不大于60,分子小于6的'最简真分数有____个?答案与解析:分类讨论:(1)分子是1,分母是2~60的最简真分数有59个:(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5―44(个).这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个).六年级奥数题及答案 4甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?答案与解析:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.⑴乙追上丙需:280(80-72)=35(分钟).⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的*均值,即(80+72)2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+2802)(90-76)=30(分钟).经比较,甲第一次与乙、丙的距离相等需经过30分钟.六年级奥数题及答案 5王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?答案与解析:本题相当于去的时候速度为每小时50千米,而整个行程的*均速度为每小时60千米,求回来的时候的速度.根据例题中的分析,可以假设甲地到乙地的路程为300千米,那么往返一次需时间__*2=10(小时),现在从甲地到乙地花费了时间__=6(小时),所以从乙地返回到甲地时所用的时间是10-6=4(小时).如果他想按时返回甲地,他应以3004=75(千米/时)的速度往回开.。
六年级奥数题100道及答案
六年级奥数题100道及答案题目1计算 2+3 的结果。
答案:5题目2计算 6-2 的结果。
答案:4题目3计算 4*5 的结果。
答案:20题目4计算 10/2 的结果。
答案:5题目5计算 8+2*4 的结果。
答案:16题目6计算 (6+2)*3 的结果。
答案:24题目7计算 12/3-2 的结果。
答案:2题目8计算 4*5+6 的结果。
答案:26题目9计算 18/3/2 的结果。
答案:3题目10计算 10-3+5 的结果。
答案:12计算 2^3 的结果。
答案:8题目12计算 5^2 的结果。
答案:25题目13计算 4^0 的结果。
答案:1题目14计算 16^(1/2) 的结果。
答案:4题目15将 3/8 化成小数。
答案:0.375题目16将 0.75 化成分数。
答案:3/4题目17计算 1/4+2/3 的结果。
答案:11/12题目18计算 2/3-1/6 的结果。
答案:1/2题目19计算 1/3*2/5 的结果。
答案:2/15题目20计算 3/4÷1/2 的结果。
答案:3/2题目21计算 \(\sqrt{9} - \sqrt{4}\) 的结果。
答案:1计算 \(\sqrt{16} + \sqrt{25}\) 的结果。
答案:9题目23计算 \(\sqrt{144}\) 的结果。
答案:12题目24计算 \(\sqrt{81} \times \sqrt{49}\) 的结果。
答案:63题目25已知一个正方形的面积为64平方厘米,求其边长。
答案:8厘米题目26已知一个长方形的长为10厘米,宽为5厘米,求其面积。
答案:50平方厘米题目27已知一个长方体的底面积为20平方厘米,高为5厘米,求其体积。
答案:100立方厘米题目28已知一个圆的半径为6厘米,求其周长。
答案:12π厘米题目29已知三角形的底边长为8厘米,高为4厘米,求其面积。
答案:16平方厘米题目30已知一个正方体的边长为5厘米,求其表面积。
小学六年级数学奥数题100题附答案(完整版)
小学六年级数学奥数题100题附答案(完整版)题目1甲、乙两车分别从A、B 两地同时相向而行,在距A 地80 千米处相遇,相遇后两车继续前进,甲车到达B 地、乙车到达A 地后均立即按原路返回,第二次在距B 地60 千米处相遇。
A、B 两地相距多少千米?答案:第一次相遇时,甲、乙两车共行了A、B 两地的距离,其中甲行了80 千米。
第二次相遇时,甲、乙两车共行了A、B 两地距离的3 倍,则甲车行了80×3 = 240 千米。
此时甲行的路程是一个A、B 两地的距离加上60 千米,所以A、B 两地相距240 - 60 = 180 千米。
题目2一项工程,甲单独做12 天完成,乙单独做18 天完成。
两人合作多少天可以完成这项工程的2/3 ?答案:甲的工作效率为1/12,乙的工作效率为1/18,两人合作的工作效率为1/12 + 1/18 = 5/36 。
完成工程的2/3 需要的时间为2/3 ÷5/36 = 24/5 = 4.8 天。
题目3一个分数,分子与分母的和是68,约分后是8/9,原来这个分数是多少?答案:设分子为8x,分母为9x,则8x + 9x = 68,17x = 68,x = 4 。
分子为8×4 = 32,分母为9×4 = 36,原来的分数是32/36 。
题目4在一个周长为62.8 米的圆形花坛周围铺一条 2 米宽的小路,这条小路的面积是多少平方米?答案:花坛的半径:62.8÷3.14÷2 = 10 米加上小路后的半径:10 + 2 = 12 米小路的面积:3.14×(12²- 10²) = 138.16 平方米题目5有浓度为20%的糖水300 克,要使其浓度变为40%,需要加糖多少克?答案:原来糖水中糖的质量:300×20% = 60 克设加糖x 克,(60 + x)÷(300 + x) = 40% ,解得x = 100 克题目6一本书,第一天看了全书的1/4,第二天看了120 页,这时已看的页数与未看的页数比是2:3,这本书共有多少页?答案:已看的页数占全书的2/(2 + 3) = 2/5第二天看的占全书的2/5 - 1/4 = 3/20全书页数:120÷3/20 = 800 页题目7一个长方体的棱长总和是120 厘米,长、宽、高的比是5:3:2,这个长方体的体积是多少立方厘米?答案:一组长、宽、高的和:120÷4 = 30 厘米长:30×5/(5 + 3 + 2) = 15 厘米宽:30×3/(5 + 3 + 2) = 9 厘米高:30×2/(5 + 3 + 2) = 6 厘米体积:15×9×6 = 810 立方厘米题目8甲、乙两个仓库共存粮90 吨,其中甲仓库的存粮是乙仓库的4/5。
小学六年级奥数题及答案【5篇】
小学六年级奥数题及答案【5篇】1.小学六年级奥数题及答案1.有两组数字。
第一组9个数之和是63,第二组的平均数是11,两组所有数的平均数是8。
问:第二组有多少个数字?解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。
2.小明参加了六次测试,第三次和第四次测试的平均分比前两次高2分,比后两次低2分。
如果最后三次平均分比前三次平均分高3分,那么第四次比第三次高多少分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。
因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
3.妈妈每四天去一次杂货店,每五天去一次百货商店。
妈妈平均每周去这两家店几次?(用十进制表示)解:每20天去9次,9÷20×7=3.15(次)。
2.小学六年级奥数题及答案1、学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人。
如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?解:只做对两道题的人数为(10+13+15)-25-2×1=11(人),只做对一道题的人数为25-11-1=13(人)。
2.从五年级的六个班级中选出一个学习、体育、健康先进集体。
有多少种不同的选择结果?解:6*6*6=216种3.大林和小林的漫画不超过50本。
他们每个人拥有漫画书有多少种可能的情况?解:他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n本,也就是说这n本书在两人之间的分配情况共有(n+1)种。
所以不超过50本书的所有可能的分配情况共有1+2+3…+51=1326(种)。
3.小学六年级奥数题及答案1.六年级学生参加学校数学竞赛。
有50道测试题。
评分标准是:答对一题给3分,答错一题给1分,答错一题给1分。
小学六年级奥数题100道及答案
小学六年级奥数题100道及答案Part 1 warm up1.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
2. 小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。
这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。
总路程就是=100×30=3000米。
3. 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5×3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了3.5×7=24.5(千米),24.5=8.5+8.5+7.5(千米).就知道第四次相遇处,离乙村8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米.4. 哥哥有12枚5分硬币,妹妹有10枚2分硬币,哥哥给妹妹几枚5分硬币,两人的钱数相等?解答:5×12=60(分) 2×10=20(分) (60-20)÷2=20(分) 20÷5=4(枚)5.阿香去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个,他准备找一家餐厅吃饭,一共有多少种不同的选择?解答:9+3+2=14(种)6.用400个棋子摆放了5层空心方阵,最内层每边有几个棋子?解答:400÷5=80(个) 80-8-8=64(个) 64÷4+1=17(个)7.用棋子摆方阵恰好摆成每边为20的实心方阵,若改为4层空心方阵,最外层每边应放几枚?解答:20×20=400(个) 400+8×(1+2+3)=448(个)448÷4=112(个) 112÷4+1=29(个)8.一把钥匙只能开一把锁,现有10把钥匙和10把锁,最少要试验多少次就一定能使全部的钥匙和锁相匹配?解答:从最不利的情形考虑。
六年级奥数试题及解析(精选12篇)
六年级奥数试题及解析〔精选12篇〕假设干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去.再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?分析^p :设原来小球数最少的盒子里装有a只小球,如今增加了b只,由于小聪没有发现有人动过小球和盒子,这说明如今又有了一只装有a个小球的'盒子,而这只盒子里原来装有(a+1)个小球.同样,如今另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.所以将42分拆成假设干个连续整数的和,一共有多少种分法,每一种分法有多少个加数,据此解答.解:设原来小球数最少的盒子里装有a只小球,如今增加了b只,由于小聪没有发现有人动过小球和盒子,这说明如今又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.同样,如今另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.将42分拆成假设干个连续整数的和,因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;又因为42=14×3,故可将42:13+14+15,一共有3个加数;又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子.答:一共有7只、4只或3只盒子.点评:解答此题的关键是将问题归结为把42分拆成假设干个连续整数的和.篇8:六年级奥数模拟试题六年级奥数模拟试题一、填空题。
奥数比赛六年级试题及答案
奥数比赛六年级试题及答案1. 计算题问题:计算 \((2^3 + 3^2) \times 5\) 的值。
答案:首先计算括号内的值,\(2^3 = 8\),\(3^2 = 9\),然后将它们相加得到 \(8 + 9 = 17\)。
最后,将结果乘以5,即 \(17\times 5 = 85\)。
2. 应用题问题:一个班级有48名学生,其中男生人数是女生人数的两倍。
问这个班级有多少男生和女生?答案:设女生人数为 \(x\),则男生人数为 \(2x\)。
根据题意,\(x + 2x = 48\),解得 \(3x = 48\),所以 \(x = 16\)。
因此,女生有16人,男生有 \(2 \times 16 = 32\) 人。
3. 几何题问题:一个直角三角形,两条直角边分别为3厘米和4厘米,求斜边的长度。
答案:根据勾股定理,斜边的长度 \(c\) 可以通过公式 \(c =\sqrt{a^2 + b^2}\) 计算,其中 \(a\) 和 \(b\) 分别是两条直角边的长度。
将3厘米和4厘米代入公式,得到 \(c = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5\) 厘米。
4. 逻辑推理题问题:如果一个数的个位数是6,那么这个数的两倍的个位数是什么?答案:设这个数为 \(10a + 6\),其中 \(a\) 是十位数。
那么这个数的两倍就是 \(2(10a + 6) = 20a + 12\)。
个位数是2,因为\(20a\) 是10的倍数,不影响个位数。
5. 组合计数题问题:有5个不同的球和3个不同的盒子,将球放入盒子中,每个盒子至少有一个球,有多少种不同的放法?答案:首先,从5个球中选择2个球放入一个盒子,有 \(C_5^2 = 10\) 种选择方式。
剩下的3个球分别放入另外两个盒子,有 \(3! = 6\) 种排列方式。
但是,由于盒子是不同的,所以需要考虑盒子的排列,因此总的放法是 \(10 \times 6 = 60\) 种。
小学数学六年级奥数竞赛综合试题(含答案)
小学数学六年级奥数竞赛综合试题(含答案)(时间:90分钟)姓名:成绩一、填空题:1.11111111 1357911131517612203042567290++++++++=()2.“趣味数学”表示四个不同的数字:则“趣味数学”为()3.某钢厂四月份产钢8400吨,五月份比四月份多产17,两个月产量和正好是第二季度计划产量的75%,则第二季度计划产钢()吨.4.把17化为小数,则小数点后的第100个数字是(),小数点后100个数字的和是()5.水结成冰的时候,体积增加了原来的111,那么,冰再化成水时,体积会减少()6.两只同样大的量杯,甲杯装着半杯纯酒精,乙杯装半杯水.从甲杯倒出一些酒精到乙杯内.混合均匀后,再从乙杯倒同样的体积混合液到甲杯中,则这时甲杯中含水和乙杯中含酒精的体积()大7.加工一批零件,甲、乙二人合作需12天完成;现由甲先工作3天,然后由乙工作2天还剩这批零件的45没完成.已知甲每天比乙少加工4个则这批零件共有()个8.一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图所示.它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米,瓶子倒放时,空余部分的高为2厘米,则瓶内酒精体积是()立方厘米.9.有一个算式,上边方格里都是整数,右边答案只写出了四舍五入后 1.16357++≈的近似值.则算式上边三个方格中的数依次分别是()10.一个四位数xxyy,使它恰好等于两个相同自然数的乘积,则这个四位数是()二、解答题:11.如图,阴影部分是正方形,则最大长方形的周长是多少厘米?9厘米12.如图为两互相咬合的齿轮.大的是主动轮,小的是从动轮.大轮半径为105,小轮半径为90,现两轮标志线在同一直线上,问大轮至少转了多少圈后,两条标志线又在同一直线上?13.请你用1,2,3,4,5,6,7,8,9这九个数字,每个只能用一次,拼凑出五个自然数.让第二个是第一个的2倍,第3个是第一个的3倍,第四个是第一个的4倍,第五个是第一个的5倍.求这五个自然数分别为多少?14.有一列数2,9,8,2,6,…从第3个数起,每个数都是前面两个数乘积的个位数字.例如第四个数就是第二、第三两数乘积9×8=72的个位数字2.问这一列数第1997个数是几?15.甲、乙两个工程队分别负责两项工程.晴天,甲完成工程需要10天,乙完成工程需要16天;雨天,甲和乙的工作效率分别是晴天时的30%和80%.实际情况是两队同时开工、同时完工.那么在施工期间,下雨的天数是多少天?小学数学六年级奥数竞赛综合试题答案一、填空题: 1. 答案:81.4解析:原式()111111111357911131517612203042567290⎛⎫=++++++++++++++++ ⎪⎝⎭111111118123344556677889910⎛⎫=++++++++ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭11111111111111118123344556677889910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-+-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1181210=+- 81.4= 2. 答案:3201解析:根据算式进位乘积前两位数字是1和0.“趣味数学”ד趣”的千位数字是9,就有“趣”=3,显然,“数”=0.而味“味”ד趣”不能有进位,“味”ד趣”+ “味”ד趣”向百万位进1,所以“味”=2,同理,“学”=1.所以答案为32013. 答案:24000解析:四、五月产量和1840011180007⎛⎫⨯++= ⎪⎝⎭(吨),第二季度产量18000÷75%=24000(吨). 4. 答案:8,447解析:讲17化成小数,得到10.1428577••=,由周期性可得:(1)100=16×6+4,所以小数点后第100个数字与小数点后第4个数字一样即为8; (2)小数点后前100个数字的和是:16×(1+4+2+8+5+7)+1+4+2+8=447.5. 答案:112解析:设水为11升,结成冰有12升,化成水当然是11升,但此时问题是:冰化成水时比并减少的量,因此减少了()112111212-÷=. 6. 答案:一样大解析:甲、乙两杯中液体的体积,最后与开始一样多,所以有多大体积纯酒精从甲杯转到乙杯,就有多大体积的水从乙杯转入了甲杯,即甲杯中含水和乙杯中含酒精体积相同.7. 答案:240个解析:甲每天完成这批零件的:()11123251230⎛⎫-⨯÷-= ⎪⎝⎭,乙每天完成这批零件的:111123020-=,这批零件共有:1142402030⎛⎫÷-= ⎪⎝⎭(个). 8. 答案:62.172,取π=3.14)解析:液体体积不变,瓶内空余部分的体积也是不变的,因此可知液体体积是空余部分体积的6÷2=3倍,()3326.462.172cm 31π⨯=+.9. 答案:1,2,3解析:利用估值的办法,得1.155 1.164357≤++≤,通分得:3521151.155 1.164105⨯+⨯+⨯≤≤扩大105倍得:121.275352115122.22≤⨯+⨯+⨯≤由每个方格中是一个整数,所以352115122⨯+⨯+⨯=,由奇偶性可以看出三个方格中数是2奇1偶.试验得35×1+21×2+15×3=122.10. 答案:7744解析:利用筛选法()xxyy 1000x 100x 10y y 11100x y =+++=+,可知所求数是11的倍数,又因为它是两相同自然数乘积,从而xxyy 必为211121=的倍数.先从11到9999中找出121的倍数,共73个,即121×10,121×11,121×12,…,121×81,121×82,再由xxyy 121k =⨯是完成平方数,k 也为两相同自然数乘积,只能取16,25,36,49,64,81经验算所求四位数为7744=121×64.二、解答题: 11. 答案:30解析:由图可知正方形的边长等于长方形的宽边,这样长方形的周长应等于长方形的长边与正方形的边长之和的两倍.(9+6)×2=30(cm ).12. 答案:3圈解析:设大轮转n 圈,则有n 210590⨯π⨯π是整数,(为什么不除以290π⨯,因为标志线在同一直线上,小圆可以转半圈)约分后得n 21057n903⨯π⨯=π,说明n 至少取3,有7n3是整数.13. 答案:9,18,27,36,45解析:第一个数一定是一位数,其余为两位数,为使它的2倍是两位数,这个数必须大于4;由于给出九数中只有四个偶数,所以第一个数只能是奇数;由于没有0,所以这个数不是5,又7×2=14,7×3=21有重复数字1,所以不能是7,由此第一位数是9.其余四个自然数:18,27,36,4514. 答案:6解析:找规律计算,知道这列数为:2,9,8,2,6,2,2,4,8,2,6,2,2,4,8,2…除去前两个数2,9外,后面8,2,6,2,2,4六数一个循环.()1997263323-÷=,余3说明周期中的第三个数即为所求,答案为6.15. 答案:12解析:在晴天,甲、乙两队的工作效率分别为110和116,甲队比乙队的工作效率高113101680-=; 在雨天,甲队、乙队的工作效率分别为1330%10100⨯=和1180%1620⨯=,乙队的工作效率比甲队高1312010050-=.由于两队同时开工、同时完工,完成工程所用的时间相同,所以整个施工期间,晴天与雨天的天数比为13:8:155080=.如果有8个晴天,则甲共完成工程的13815 1.2510100⨯+⨯=而实际的工程量为1,所以在施工期间,共有8 1.25 6.4÷=个晴天,15 1.2512÷=个雨天。
小学六年级奥数题100道及答案解析(完整版)
小学六年级奥数题100道及答案解析(完整版)1. 一种商品先提价10%,再降价10%,现价与原价相比()A. 提高了B. 降低了C. 不变D. 无法确定答案:B解析:假设原价为100 元,提价10%后价格为100×(1 + 10%) = 110 元,再降价10%,价格为110×(1 - 10%) = 99 元,所以现价比原价降低了。
2. 一个圆的半径扩大3 倍,它的面积扩大()倍。
A. 3B. 6C. 9D. 27答案:C解析:圆的面积= π×半径²,半径扩大3 倍,面积扩大3²= 9 倍。
3. 甲数的2/3 等于乙数的3/4,甲数()乙数。
A. 大于B. 小于C. 等于D. 无法比较答案:A解析:设甲数×2/3 = 乙数×3/4 = 1,可得甲数= 3/2,乙数= 4/3,3/2 > 4/3,所以甲数大于乙数。
4. 把20 克盐放入200 克水中,盐和盐水的比是()A. 1:10B. 1:11C. 10:1D. 11:1答案:B解析:盐20 克,盐水= 20 + 200 = 220 克,盐和盐水的比是20:220 = 1:115. 一个三角形三个内角的度数比是1:2:3,这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定答案:B解析:三个内角分别为180×1/(1 + 2 + 3) = 30°,180×2/(1 + 2 + 3) = 60°,180×3/(1 + 2 + 3) = 90°,是直角三角形。
6. 要反映某地气温变化情况,应绘制()统计图。
A. 条形B. 折线C. 扇形D. 以上都可以答案:B解析:折线统计图能清晰反映数据的变化情况。
7. 一个圆柱和一个圆锥等底等高,它们的体积相差18 立方厘米,圆锥的体积是()立方厘米。
(完整word版)小学六年级奥数题50道题及解答(可直接打印)
练习(一)姓名1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?得分5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?答案:奥数题解答参考1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
小学六年级 奥数题及答案100道
小学六年级奥数竞赛100道测试题!附答案解析1、有28位小朋友排成一行.从左边开始数第10位是学豆,从右边开始数他是第几位?2、纽约时间是香港时间减13小时.你与一位在纽约的朋友约定,纽约时间4月1日晚上8时与他通电话,那么在香港你应几月几日几时给他打电话?3、鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?4、请找出下面哪个图形与其他图形不一样.5、四个房间,每个房间里不少于2人,任何三个房间里的人数不少8人,这四个房间至少有多少人?6、在1998的约数(或因数)中有两位数,其中最大的是哪个数?7、英文测验,小明前三次平均分是88分,要想平均分达到90分,他第四次最少要得几分?8、相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗?9、将0, 1, 2, 3, 4, 5, 6, 7, 8, 9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同.□+□□=□□□问算式中的三位数最大是什么数?10、有一个号码是六位数,前四位是2857,后两位记不清,即2857□□但是我记得,它能被11和13整除,请你算出后两位数.11、观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?12、一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.13、一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.14、幼儿园的老师把一些画片分给A, B, C三个班,每人都能分到6张.如果只分给B班,每人能得15张,如果只分给C班,每人能得14张,问只分给A班,每人能得几张?15、两人做一种游戏:轮流报数,报出的数只能是1, 2, 3, 4, 5, 6, 7, 8.把两人报出的数连加起来,谁报数后,加起来的数是123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几?16、四个小动物排座位,一开始,小鼠坐在第1号位子上,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号.以后它们不停地交换位子,第一次上下两排交换.第二次是在第一次交换后左右两列交换,第三次再上下两排交换,第四次再左右两列交换…这样一直换下去.问:第五次交换位子后,小兔坐在第几号位子上?17、狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
小学六年级奥数测试题及答案
小学六年级奥数测试题及答案小学六年级奥数测试题及答案奥数(一)一、填空题:3.一个两位数,其十位与个位上的数字交换以后,所得的两位数比原来小27,则满足条件的两位数共有______个.5.图中空白部分占正方形面积的______分之______.6.甲、乙两条船,在同一条河上相距210千米.若两船相向而行,则2小时相遇;若同向而行,则14小时甲赶上乙,则甲船的速度为______.7.将11至17这七个数字,填入图中的○内,使每条线上的三个数的和相等.8.甲、乙、丙三人,平均体重60千克,甲与乙的平均体重比丙的体重多3千克,甲比丙重3千克,则乙的体重为______千克.9.有一个数,除以3的余数是2,除以4的余数是1,则这个数除以12的余数是______.10.现有七枚硬币均正面(有面值的面)朝上排成一列,若每次翻动其中的六枚,能否经过若干次的翻动,使七枚硬币的反面朝上______(填能或不能).二、解答题:1.浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克,混合后所得到的酒精溶液的浓度是多少?2.数一数图中共有三角形多少个?3.一个四位数,它的第一个数字等于这个数中数字0的个数,第二个数字表示这个数中数字1的个数,第三个数字表示这个数中数字2的个数,第四个数字等于这个数中数字3的个数,求出这个四位数.奥数(一)答案一、填空题:1.(1)3.(6个)设原两位数为10a+b,则交换个位与十位以后,新两位数为10b+a,两者之差为(10a+b)-(10b+a)=9(a-b)=27,即a-b=3,a、b为一位自然数,即96,85,74,63,52,41满足条件.4.(99)5.(二分之一)把原图中靠左边的半圆换成面积与它相等的右半部的半圆,得右图,图6.(60千米/时)两船相向而行,2小时相遇.两船速度和210÷2=105(千米/时);两船同向行,14小时甲赶上乙,所以甲船速-乙船速=210÷14=15(千米/时),由和差问题可得甲:(105+15)÷2=60(千米/时).乙:60-15=45(千米/时).7.11+12+13+14+15+16+17=98.若中心圈内的数用a表示,因三条线的总和中每个数字出现一次,只有a多用3两次,所以98+2a应是3的倍数,a=11,12,…,17代到98+2a中去试,得到a=11,14,17时,98+2a是3的倍数.(1)当a=11时98+2a=120,120÷3=40(2)当a=14时98+2a=126,126÷3=42(3)当a=17时98+2a=132,132÷3=44相应的解见上图.8.(61)甲、乙的平均体重比丙的体重多3千克,即甲与乙的体重比两个丙的体重多3×2=6(千克),已知甲比丙重3千克,得乙比丙多6-3=3千克.又丙的体重+差的平均=三人的平均体重,所以丙的体重=60-(3×2)÷3=58(千克),乙的体重=58+3=61(千克).9.(5)满足条件的最小整数是5,然后,累加3与4的最小公倍数,就得所有满足这个条件的整数,5,17,29,41,…,这一列数中的任何两个的差都是12的倍数,所以它们除以12的余数都相等即都等于5.10.(不能)若使七枚硬币全部反面朝上,七枚硬币被翻动的次数总和应为七个奇数之和,但是又由每次翻动七枚中的六枚硬币,所以无论经过多少次翻动,次数总和仍为若干个偶数之和,所以题目中的要求无法实现。
小学六年级奥数题及答案(可直接打印) 图文百度文库
一、拓展提优试题1.如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.2.王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.3.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?4.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?5.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.6.已知三个分数的和是,并且它们的分母相同,分子的比是2:3:4.那么,这三个分数中最大的是.7.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).8.被11除余7,被7除余5,并且不大于200的所有自然数的和是.9.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.10.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.11.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是%.12.甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.13.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.14.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.15.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.16.如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.17.甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行千米.18.2015减去它的,再减去余下的,再减去余下的,…,最后一次减去余下的,最后得到的数是.19.如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于.20.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.21.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.22.如图,边长为12cm的正方形与直径为16cm的圆部分重叠(圆心是正方形的一个顶点),用S1,S2分别表示两块空白部分的面积,则S1﹣S2=cm2(圆周率π取3).23.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.24.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是数(填“奇”或“偶”).25.A、B、C、D四个箱子中分别装有一些小球,现将A箱中的部分小球按如下要求转移到其他三个箱子中:该箱中原有几个小球,就再放入几个小球,此后,按照同样的方法依次把B、C、D箱中的小球转移到其他箱子中,此时,四个箱子都各有16个小球,那么开始时装有小球最多的是箱,其中装有小球个.26.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.27.(15分)欢欢、乐乐、洋洋参加希望之星决赛,有200位评委为他们投了票,每位评委只投一票.如果欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,那么欢欢、乐乐、洋洋各得多少票?28.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是.29.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.30.认真观察图4中的三幅图,则第三幅图中的阴影部分应填的数字是.31.如图是根据鸡蛋的三个组成部分的质量绘制的扇形统计图,由图可知,蛋壳重量占鸡蛋重量的%,一枚重60克的鸡蛋中,最接近32克的组成部分是.32.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.33.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.34.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.35.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.36.如图所示的“鱼”形图案中共有个三角形.37.已知自然数N的个位数字是0,且有8个约数,则N最小是.38.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.39.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是.40.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.【参考答案】一、拓展提优试题1.解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.2.解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.3.解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)接水口的面积为:10×30=300(平方厘米)接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)所以,图①需要:10×10×30÷(10×10×10)=3(小时)图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)图③需要:2÷2=1(厘米)3.14×1×1×20÷(3.14×1×10)=2(小时)答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.4.解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:3×20+15×6+15×10=300;正好是1倍关系.答:购买玫瑰10枝,康乃馨15枝,百合3枝.5.解:第二次剪求的占全长的:(1)×30%==,0.4÷[(1)]=0.4÷[]==0.4×15=6(米);答:这根绳子原来长6米.故答案为:6.6.解:==,答:这三个分数中最大的一个是.故答案为:.7.解:设所走的时间为x小时.30x=360﹣360x3x+360x=360﹣30x+360390x=360x=小时=55分钟.故答案为:55.8.解:不大于200的所有自然数被11除余7的数是:18,29,40,62,73,84,95,106,117,128,139,150,161,172,183,194;不大于200的所有自然数被7除余5的是:12,19,26,33,40,47,54,61,68,75…;同时被11除余7,被7除余5的最小数是40,[11,7]=77,依次是117、194;满足条件不大于200的所有自然数的和是:40+117+194=351.故答案为:351.9.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.10.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.11.解:依题意可知:设三杯溶液的重量为a.根据浓度=×100%=×100%=20%故答案为:20%12.解:5÷()=5=45(张)答:两人共有邮票 45张.故答案为:45.13.解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.14.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.15.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.16.解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:100017.解:依题意可知:根据甲乙两人的相遇点相同,那么他们的速度比例是不变的.当甲提高时,乙也同样需要提高,而乙提高的是每小时10千米.即10÷=40千米/小时.故答案为:4018.解:2015×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)=2015××××…×=1故答案为:1.19.解:如图,设D的面积为x,9:12=15:x9x=12×15x=x=20答:第4个角上的小长方形的面积等于20.故答案为:20.20.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.21.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.22.解:3×(16÷2)2﹣122=192﹣144,=48(平方厘米);答:S1﹣S2=48cm2.故答案为:48.23.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.24.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;所以一个学生得分是:25+3x+y﹣z,=25+3x+y﹣(20﹣x﹣y),=5+4x+2y;4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;2013个奇数相加的和仍是奇数.所以所有参赛学生得分的总和是奇数.故答案为:奇.25.解:根据最后四个箱子都各有16个小球,所以小球总数为16×4=64个,最后一次分配达到的效果是,从D中拿出一些小球,使A、B、C中的小球数翻倍,则最后一次分配前,A、B、C中各有小球16÷2=8个,由于小球的转移不改变总数,所以最后一次分配前,D中有小球64﹣8﹣8﹣8=40个;于是得到D被分配前的情况:A8,B8,C8,D40;倒数第二次分配达到的效果是,从C中拿出一些小球,使A、B、D中的小球数翻倍,则倒数第二次分配前,A、B中各有小球8÷2=4个,D中有40÷2=20个,总数不变,所以最后一次分配前,C中有小球64﹣4﹣4﹣20=36个,于是得到C被分配前的情况:A4,B4,C36,D20,同样的道理,在B被分配前,A中有小球4÷2=2个,C中有小球36÷2=18个,D中有小球20÷2=10个,B中有小球64﹣2﹣18﹣10=34个,即B被分配前的情况:A2,B34,C18,D10;再推导一次,在A被分配前,B中有小球34÷2=17个,C中有小球18÷2=9个,D中有小球10÷2=5个,B中有小球64﹣17﹣9﹣5=33个,即A被分配前的情况:A33,B17,C9,D5;而A被分配前的情况,就是一开始的情况,所以一开始,A箱子装有最多的小球,数量为33个;答:开始时装有小球最多的是A箱,其中装有33小球个;故答案为:A,33.26.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.27.解:根据欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,可以求出欢欢、乐乐、洋洋所得票数的比9:6:5,200×=90(票)200×=60(票)200×=50(票)答:欢欢所得票数是90票,乐乐所得票数是60票,洋洋所得票数是50票.28.解:商是10,除数最大是9,余数最大是8,9×10+8=98;被除数最大是98.故答案为:98.29.解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:930.解:由每个图形的数字表示该图形所含曲边的数目可得:第三幅图中的阴影部分含有5个曲边,所以阴影部分应填的数字是5,故答案为:5.31.解:(1)1﹣32%﹣53%,=1﹣85%,=15%;答:蛋壳重量占鸡蛋重量的15%.(2)蛋黄重量:60×32%=19.2(克),蛋白重量:60×53%=31.8(克),蛋壳重量:60×15%=9(克),所以最接近32克的组成部分是蛋白.答:最接近32克的组成部分是蛋白.故答案为:15,蛋白.32.解:设计划用x天完成任务,那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,所以,+(185﹣)××=1,+(185﹣)××﹣=1﹣,(185﹣)××=,(185﹣)×÷=÷,185﹣+=x+,x÷=185÷,x=180,答:工程队原计划180天完成任务.故答案为:180.33.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.34.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.35.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.36.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.37.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.38.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.故答案为:21,7.39.解:根据分析,先分解质因数9=3×3,8=2×2×2,6=2×3,故有:9×8×7×6×5×4×3×2×1=(3×3)×(2×2×2)×7×(3×2)×5×(2×2)×3×2×1,所以可变换为:9×8×7÷6×5÷4÷3×2×1=70,此时N最小,为70,故答案是:70.40.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.。
六年级奥数题试题及答案
六年级奥数题试题及答案一、填空题1. 一个数的1/5等于20,这个数是()。
答案:1002. 两个数的和是100,其中一个数是另一个数的3倍,这两个数分别是()和()。
答案:25,753. 一个长方体的长、宽、高分别是10厘米、8厘米、6厘米,它的体积是()立方厘米。
答案:4804. 一个数的1/4比它的1/3少2,这个数是()。
答案:245. 一个数的3/5等于另一个数的3/4,如果这个数是60,另一个数是()。
答案:64二、选择题6. 一个数的2/3等于另一个数的3/4,如果这个数是36,另一个数是()。
A. 48B. 32C. 24D. 42答案:A7. 一个数除以1/4等于这个数乘以()。
A. 1/4B. 4C. 3/4D. 1/3答案:B8. 一个数的5/6等于30,这个数是()。
A. 36B. 18C. 24D. 45答案:A9. 一个长方体的长、宽、高分别是8厘米、6厘米、4厘米,它的表面积是()平方厘米。
A. 208B. 224C. 160D. 192答案:B10. 一个数的1/2加上另一个数的1/3等于1,如果这个数是6,另一个数是()。
A. 4B. 6C. 3D. 9答案:C三、解答题11. 一个数的3/4比它的1/2多12,求这个数。
答案:这个数是48。
解题思路:设这个数为x,则3/4x - 1/2x = 12,解得x = 48。
12. 一个长方体的长、宽、高分别是a、b、c,且a > b > c,如果它的体积是120立方厘米,求a、b、c的可能值。
答案:a、b、c的可能值有多种,例如:a=6,b=5,c=4。
解题思路:根据长方体体积公式V=abc,将120分解成三个数的乘积,且满足a > b > c的条件。
13. 一个数的1/3加上另一个数的1/4等于1,如果这个数是9,另一个数是多少?答案:另一个数是12。
解题思路:设另一个数为y,则1/3*9 + 1/4*y = 1,解得y = 12。
六年级下册小升初奥数综合测试卷(含解析)
六年级下册小升初奥数综合测试卷(含解析)一、选择题(每题4分,共20分)1.一个长方体的表面积是33.66平方分米,其中一个面的长是2.3分米,宽是2.1分米,它的体积是()立方分米。
A. 8.4B. 9.66C. 10.08D. 11.342.一个五位数恰好等于它各位数字和的2007倍,则这个五位数是()。
A. 10035B. 20070C. 30105D. 401403.在一只口袋里装着2个红球,3个黄球和4个黑球。
从口袋中任取一个球,这个球是红球的概率是()。
A. 1/9B. 2/9C. 1/3D. 2/34.甲、乙两车分别从A、B两地出发相向而行,甲车先行三小时后乙车从B地出发,乙车出发5小时后两车还相距15千米。
甲车每小时行48千米,乙车每小时行50千米。
求A、B两地间相距多少千米?A. 360B. 400C. 420D. 4505.一个圆柱体的体积是50.24立方厘米,底面半径是2厘米。
将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米?A. 25.12B. 50.24C. 75.36D. 100.48二、填空题(每题5分,共20分)1.已知一个正方体的棱长是6厘米,则它的体积是________立方厘米。
2.一个盛有水的圆柱形容器底面内半径为5厘米,深20厘米,水深15厘米。
今将一个底面半径为2厘米,高为18厘米的铁圆柱垂直放入容器中。
求这时容器的水深是________厘米。
3.一个自然数与自身相乘的结果称为完全平方数。
已知一个完全平方数是四位数,且各位数字均小于7。
如果把组成它的数字都加上3,便得到另外一个完全平方数,求原来的四位数是________。
4.将自然数按从小到大的顺序排列成螺旋形,2处拐一个弯,在3处拐第二个弯,在5处拐第三个弯,问拐第20个弯的地方是________。
三、解答题(每题10分,共60分)1.一艘轮船顺流航行120千米,逆流航行80千米共用16时;顺流航行60千米,逆流航行120千米也用16时。
六年级奥数测试题及答案
六年级奥数测试题及答案一、选择题(每题3分,共15分)1. 一个数的3倍是48,这个数是多少?A. 16B. 12C. 24D. 482. 一个数除以4余2,除以5余3,这个数最小是多少?A. 13B. 17C. 23D. 273. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,它的体积是多少立方厘米?A. 240B. 180C. 120D. 3004. 一个数的5倍减去4等于36,这个数是多少?A. 8B. 7C. 6D. 55. 一个数的3倍加上6等于24,这个数是多少?A. 6B. 8C. 10D. 12二、填空题(每题3分,共15分)1. 一个数的4倍加上5等于35,这个数是______。
2. 一个数的6倍减去7等于42,这个数是______。
3. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,它的表面积是______平方厘米。
4. 一个数的2倍加上3等于19,这个数是______。
5. 一个数的7倍减去8等于56,这个数是______。
三、解答题(每题10分,共70分)1. 一个数的4倍加上8等于52,求这个数。
2. 一个数的5倍减去6等于34,求这个数。
3. 一个长方体的长、宽、高分别是12厘米、10厘米和8厘米,求它的体积和表面积。
4. 一个数的3倍加上5等于35,求这个数。
5. 一个数的6倍减去9等于45,求这个数。
6. 一个长方体的长、宽、高分别是15厘米、12厘米和9厘米,求它的体积和表面积。
7. 一个数的2倍加上4等于26,求这个数。
答案:一、选择题1. B2. B3. B4. A5. B二、填空题1. 72. 73. 3764. 85. 9三、解答题1. 解:设这个数为x,则4x+8=52,解得x=10。
2. 解:设这个数为y,则5y-6=34,解得y=8。
3. 体积:12×10×8=960立方厘米;表面积:(12×10+12×8+10×8)×2=496平方厘米。
六年级奥数试题(含答案)
六年级数奥试题1、华英学校有篮球和足球共64个,借出篮球总数的14和足球总数的13后,还剩下46个球。
问华英学校原有篮球和足球各多少个?2、有甲、乙两项工程,张师傅单独完成甲工程需要9天,单独完成乙工程需要12天;李师傅单独完成甲工程需要3天,单独完成乙工程需要15天。
如果二人合作完成这两项工程,最少需要多少天?3、A、B两桶油的总重量为45千克,现将A桶油的14倒入B桶,这时A桶油的重量是B桶油的12。
求原来A、B两桶油的重量各是多少千克?4、光明小学六(1)班的男生人数比全班总人数的30%多9人,女生人数比全班总人数的3 5少4人,求六(1)班有男生和女生各多少人?5 、去年东风小学参加各种兴趣小组的学生中,女生的人数占小组总人数的15,今年参加各种兴趣小组的学生总数比去年增加了20%,其中女生人数占小组总人数的14,今年和去年东风小学的学生总数相同。
那么今年东风小学参加各种兴趣小组的女生人数比去年增加了百分之几?6、甲书架上书的数量是乙书架上的23,从乙书架上取出180本书放在甲书架上,乙书架上数量是甲书架上的35,求甲书架上原有多少本书?7、三个工人开展劳动竞赛,甲和乙共生产零件145个,乙和丙共生产零件125个。
已知乙工人生产的零件数占三个工人生产总数的35%,求这三个工人一共生产零件多少个?8、甲、乙两仓库共有货物480吨,如果从甲仓库运走40%,而从乙仓库运走160吨后,两仓库剩下货物重量的就一样多了。
求甲、乙两仓库原有货物各多少吨?9、两个相同的瓶子,装满酒精溶液,一个瓶中酒精与水的体积之比是3:1,而另一个瓶中酒精与水的比是4:1,若把两瓶酒精溶液混合,混合液中酒精和水的体积之比是多少?10、甲、乙两车由A、B两地同时出发相向而行,甲、乙两车的速度比是2:3,已知甲走完全程用6小时,求两车出发后几小时候在途中相遇?11、一件羊毛衫,标价150元,结果以九折出售,但对于进货价仍可获利25%,这件羊毛衫的进货价是多少元?12、如右图,其中四个圆的半径均为2厘米,那么阴影部分的面积是多少平方厘米?13、下午5点多钟小玲下学回家,8分钟后到家,小玲发现到家时时针的位置与下学时分针的位置相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 3
六年级奥数综合测试
一、填空。
1、用长16厘米、宽14厘米的长方形木板拼成一个正方形,最少要用( )块。
2、字母x 、y 、A 都表示非0的数,定义x ※y= 45Axy
x y
+并且1※2=1,那么2
※3的值是( )。
3、有一篮苹果,发给幼儿园小朋友吃,第一次拿出全部的
1
2
又1个,第二次拿出剩下的15又4个,第三次拿出剩下的1
4
又3个,第四次拿出剩下的13又1
个,这时篮里只剩下1个苹果。
篮里原来有( )个苹果.
4、现在父亲的年龄比儿子的3倍少2岁,再过10年,父亲的年龄是儿子的2倍,现在父亲( )岁。
5、a 表示一个两位数,b 表示一个四位数,把a 放在b 的左边组成一个六位数,那么这个六位数应表示成( )。
6、如图,半圆S1的面积是14.13平方厘米,
圆S2的面积是19.625平方厘米,图中阴影部分的 面积是( )平方厘米。
(π取3.14)
7、一个水池,池底有泉水不断涌出,要想把水池的水
抽干,10台抽水机需抽8小时;8台抽水机需抽12小时,如果用6台抽水机,那么需抽( )小时。
8、有一堆砖,搬走
1
4
后又运来306块,这时这堆砖比原来还多了15,原来这
堆砖有( )块。
9、甲乙两辆汽车同时从A 、B 两地出发相向而行,第一次相遇地点离A 地100千米,相遇后两车仍以原速继续行驶,分别到达BA 两地后,立刻沿原路返回,这时又在距B 地60千米处相遇。
AB 两地间的距离是( )千米。
10、甲乙两车分别从AB 两地出发相向而行。
出发时,甲乙的速度比是5:4,
相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B 地时,乙离A 地还有10千米。
那么AB 两地相距( )千米。
11、2018名学生排成一排,第一次从左往右1~3报数,第二次从右至左1~5报数,第三次从左到右1~5报数;第三次报的数等于前面报的数之和的学生有( )名。
二、选择
1、当数a=( )时,1
(12)3
a -的值与
2
(31)7
a +值相等。
A 132 B32 C 14 D 1332
2、今天是4月18日是星期日,从今天算起第31993天之后的那一天是( )。
A .星期五 B 星期六 C 星期日 D 星期一
3、右图中阴影部分的面积是25平方厘米,圆环的面积 是( )平方厘米。
A 25π B50π C75π D100π
4、一个六位数19a94b 能被12整除,这样的六位数有 ( )个。
A3 B9 C10 D12
5、甲乙丙丁四位老师分别教数学、物理、化学、英语,甲老师可以教物理、化学;乙老师可以教数学、英语;丙老师可以教数学、物理、化学;丁老师只能教化学,为了使每人都能胜任工作,那么教数学的是( )老师。
A .甲 B 乙 C 丙 D 丁 三、计算
①45
31234666654.32380531
⨯+÷+⨯ ②
267123894531
531531
894124627532
+⨯+÷⨯-
③
5555
5
12233499100 +++
⨯⨯⨯⨯
+?+
④
4444 1019283 (110)
55555555
-⨯+-⨯+-⨯++-⨯
()()()()
四、解决问题。
1、如图,一个正方体,它的棱长为3cm,在它的上下、前后、左右面得正中位置各挖去一个棱长为1cm的正方体,那么这时物体的表面积是多少?
2、有大小两个水池都未注满水,如果从小池抽水将大池灌满,
则小池还剩水10吨;如果从大池抽水将小池灌满,则大池还剩水20吨,已知大池容积是小池的1.2倍,两池中共有水多少吨?
3、育才小学上学期男生女生共有2900人,这学期女生增加1
20
,男生增加
1
25
,
一共增加了130人,学校这学期男、女生各有多少人?
4、森林中,猎狗发现前方20米处有一只奔跑的野兔,立即追赶上去。
猎狗步
子大,它跑5步的路程兔子要跑9步;但兔子动作快,猎狗跑2步的时间兔子却能跑3步,猎狗跑出多远才能追上野兔?
5、有两组数,第一组数的平均数是12.8,第二组数的平均数是10.2.而这两组
数的平均数是12.02.那么第一组数的个数是第二组数的个数的多少倍?
6、学校组织新年游艺晚会,用于奖品的铅笔、圆珠笔和钢笔共232支,共
花了300元,其中铅笔数量是圆珠笔的4倍。
已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元。
问三种笔各有多少支?
7、蓄水池有甲丙两条进水管,和乙丁两条排水管。
要灌满一池水,单开甲管需
要3小时,单开丙管需要5小时,要排光一池水,单开乙管需要4小时,单开丁管需要6小时,现在池内有
1
6
池水。
如果按甲、乙、丙、丁、甲、乙……的顺序,轮流各开一小时,多少时间后开始溢出水池?
2 / 3
答案:
一.填空
1. 56块
2. 42/23
3. 32个
4. 34岁
5.10000a+b
6.5平方厘米
7. 24小时
8.680块
9. 240千米10. 450千米11.269名。
二.选择
1.A
2.B(之后的那一天)
3.B
4.C
5.C 三.计算
①66660 ②
532
1
533
③
19
9
20
④51
四.解决问题
1.78平方厘米
2.70吨
3.男生1560人。
女生1470人
4.120米
5.
1
2
3
倍 6.圆珠笔44支铅笔176支钢笔12支
7.
3
20
4
小时
3 / 3。