计量经济学简单回归模型

合集下载

最新《计量经济学》第二章-简单线性回归模型PPT课件

最新《计量经济学》第二章-简单线性回归模型PPT课件

总体线性相关系数:
Cov(X,Y)
Var(X)Var(Y)
其中:Var( X ) ——X 的方差;V ar (Y ) ——Y的方差
Cov(X,Y) ——X和Y的协方差
样本线性相关系数:
__Байду номын сангаас
__
XY
(Xi X)(Yi Y)
__
__
(Xi X)2 (Yi Y)2
其中:X
Y 和
i
_ _i
分别是变量 X
E(Y Xi)f(Xi) 这个函数称为回归函数。 回归函数分为:总体回归函数和样本回归函数
举例:假如已知60个家庭构成的总体。
13
二、总体回归函数(PRF)
1. 总体回归函数的概念
前提:假如已知所研究的经济现象的总体应变
量 Y 和解释变量 X 的每个观测值, 可以计算出总体 应变量 Y 的条件均值 E (Y X i ) ,并将其表现为解释 变量 X 的某种函数
●回归线:
对于每一个 X
的取值, Y
都有 Y 的条件期望
E (Y X i ) 与之对应,
代表这些 Y 的条件期
望的点的轨迹所形成
的直线或曲线,称为
回归线。
Xi
X
12
回归线与回归函数
回归函数:应变量 Y 的条件期望 E (Y X i ) 随解 释变量 X 的的变化而有规律的变化,如果把 Y 的条件期望 E (Y X i ) 表现为 X 的某种函数
因素对 Y 的影响。

u

Xi
X
◆性质:u i 是期望为0有一定分布的随机变量
重要性:随机扰动项的性质决定着计量经济方
法的选择
18

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第2章 简单回归模型【圣才出品】

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第2章 简单回归模型【圣才出品】

第2章简单回归模型2.1复习笔记一、简单回归模型的定义1.简单线性回归模型一个简单的方程是:01y x uββ=++假定方程在所关注的总体中成立,它便定义了一个简单线性回归模型。

因为它把两个变量x 和y 联系起来,所以又把它称为两变量或者双变量线性回归模型。

变量u 称为误差项或者干扰项,表示除x 之外其他影响y 的因素。

1β就是y 与x 的关系式中的斜率参数,表示在其他条件不变的情况下,x 变化一个单位y 平均变化。

0β被称为截距参数,在一般的模型中除非有很强的理论依据说明模型没有截距项,否则一般情况下都要带上截距项。

2.回归术语表2-1简单回归的术语3.零条件均值假定(1)零条件均值u 的平均值与x 值无关。

可以把它写作:()()|E u x E u =当方程成立时,就说u 的均值独立于x。

(2)零条件均值假定的意义①零条件均值假定给出1β的另一种非常有用的解释。

以x 为条件取期望值,并利用()|0E u x =,便得到:()01|E y x xββ=+方程表明,总体回归函数(PRF)()|E y x 是x 的一个线性函数,线性意味着x 变化一个单位,将使y 的期望值改变1β。

对任何给定的x 值,y 的分布都以()|E y x 为中心。

1β就是斜率参数。

②给定零条件均值假定()|0E u x =,把方程中的y 看成两个部分是比较有用的。

一部分是表示()|E y x 的01x ββ+,被称为y 的系统部分,即由x 解释的那一部分,另一个部分是被称为非系统部分的u,即不能由x 解释的那一部分。

二、普通最小二乘法的推导1.最小二乘估计值从总体中找一个样本。

令(){} 1 i i x y i n =,:,…,表示从总体中抽取的一个容量为n 的随机样本。

01i i iy x u ββ=++在总体中,u 与x 不相关。

因此有:()()()0cov 0E u x u E xu ===,和用可观测变量x 和y 以及未知参数0β和1β表示为:()010E y x ββ--=()010E x y x ββ--=⎡⎤⎣⎦得到()0111ˆˆ0ni ii y x n ββ=--=∑和()0111ˆˆ0ni i ii x y x n ββ=--=∑这两个方程可用来解出0ˆβ和1ˆβ01ˆˆy x ββ=+则01ˆˆy x ββ=-一旦得到斜率估计值1ˆβ,则有:()111ˆˆ0niiii x y y x x ββ=⎡⎤---=⎣⎦∑整理后便得到:()()111ˆnniii i i i x yy x x x β==-=-∑∑根据求和运算的基本性质,有:()()211n ni i i i i x x x x x ==-=-∑∑()()()11nniii i i i x yy x x y y==-=--∑∑因此,只要有()21nii x x =->∑估计的斜率就为:()()()1121ˆnii i ni i xx y yx x β==--=-∑∑所给出的估计值称为0β和1β的普通最小二乘(OLS)估计值。

计量经济学作业——简单线性回归模型

计量经济学作业——简单线性回归模型

计量经济学作业姓名:***班级:08级数学一班学号:***********简单线性回归模型一、建立模型为了研究四川省城镇具名消费支出以及可支配收入之间的关系,又经济理论分析可知,收入是影响居民消费支出的主要因素,居民消费支出Y与可支配收入X之间存在密切的关系,消费支出随着收入的增加而增加,但变动的幅度相比较低,即边际消费倾向MPC有0<MPC<1。

因此可设定居民消费支出Yi与Xi的关系为:Yi=ß1+ß2Xi+ui,其中ß1表示四川省城镇居民家庭平均每人年生活性消费支出(元);Xi为城镇居民家丁平均没人年可支配收入(元)。

变量采用年度数据,样本期为1978-1998年。

这里的ß1为居民没有收入来源时的最低消费。

二、估计模型中的位置参数假设模型中的随机误差项ui满足古典假定,运用OLS方法估计模型的参数,利用计量经济学计算机软件EViews计算过程如下:简历文档,输入数据首先点击EViews图标,进入EViews主页。

点击File后,在File菜单的New选项中点击Workfile,这时屏幕上出现Workfile Range对话框,在Srart Date里键入1978,在End Date里键入1998,点击OK后屏幕出现Workfile工作框。

在Object菜单栏,点击New Object对话框里选Group并在Name for Object上定义文件名,点击OK,屏幕出现数据编辑框。

也可在光标出直接输入Data Y X,回车后即可出现数据编辑框。

此时可录入数据,首先按上行键,这时对应“obs”字样的空格会自动上跳,在对应第二个“obs”字样,有边框的空格里键入变量名,再按下行键,这时对应变量名下的这一列出现“NA”字样,便可依时间顺序键入相应的数据。

其他变量的数据类似输入。

可以几个变量同时录入数据。

在主页上选Quick菜单,点击Eatimate Equation项,屏幕上出现估计对话框(Equation Spacification),在Easmation Setting中选OLS估计,即Least Squares,键入Y C X或Y X C(C为EViews固定的截距系数)。

计量经济学回归分析模型

计量经济学回归分析模型
共计
表 2.1.1 某社区家庭每月收入与消费支出统计表 每月家庭可支配收入X(元)
800 1100 1400 1700 2000 2300 2600 2900 3200 3500 561 638 869 1023 1254 1408 1650 1969 2090 2299 594 748 913 1100 1309 1452 1738 1991 2134 2321 627 814 924 1144 1364 1551 1749 2046 2178 2530 638 847 979 1155 1397 1595 1804 2068 2266 2629
称i为观察值Yi围绕它旳期望值E(Y|Xi)旳离差
(deviation),是一种不可观察旳随机变量,又称 为随机干扰项(stochastic disturbance)或随机误 差项(stochastic error)。
例2.1中,个别家庭旳消费支出为:
(*)
即,给定收入水平Xi ,个别家庭旳支出可表达为两部分之和: (1)该收入水平下全部家庭旳平均消费支出E(Y|Xi),称为 系统性(systematic)或拟定性(deterministic)部分。
注意: 这里将样本回归线看成总体回归线旳近似替代

样本回归函数旳随机形式/样本回归模型:
一样地,样本回归函数也有如下旳随机形式:
Yi Yˆi ˆ i ˆ0 ˆ1 X i ei
式中, ei 称为(样本)残差(或剩余)项(residual),代表
了其他影响Yi 的随机因素的集合,可看成是 i 的估计量ˆ i 。
相应旳函数:
E(Y | X i ) f ( X i )
称为(双变量)总体回归函数(population regression function, PRF)。

计量经济学第二章 简单线性回归模型公式

计量经济学第二章 简单线性回归模型公式

ˆ 1
x y x
i 2 i
i
E ( k ) k
^
方差
标准误差
Var ( 1 )
SE ( 1 )
^
^
xi

2
2
Var ( 0 ) 2
SE ( 0 )
^
^
n xi
Xi
2 2
2 2
x
2
i
OLS估计式是最佳线性无偏估计式。
X n x
18 16 14 12 10 8 6 4 2 0 50-60 70-80
35% 30% 25% 20%
`
15% 10% 5% 0% 90-100
计量经济学
第 二 章
简单线性回归模型
第二章小结
1、变量间的关系: 函数关系——相关关系。 相关系数——对变量间线性相关程度的度量。 2、现代意义的回归:一个被解释变量对若干个解释变量依存 关系的研究 回归的实质:由固定的解释变量去估计被解释变量的平均 值。 3、总体回归函数(PRF):将总体被解释变量Y的条件均值表 现为解释变量X的某种函数。 E (Yi X i ) 0 1 X i Y X u
i 0 1 i i
样本回归函数(SRF):将被解释变量Y的样本条件均值表 示为解释变量X的某种函数。
ˆ ˆ X e Yi 0 1 i i
ˆ ˆX ˆ Y i 0 1 i
2
总体回归函数与样本回归函数的区别与联系。
4、随机扰动项:被解释变量实际值与条件均值的偏差,代表排
除在模型以外的所有因素对Y的影响。
3
随机扰动与解释变量不相关假定: 正态性假定:
ui ~ N (0, 2 )

学习笔记:伍德里奇《计量经济学》第五版-第二章 简单回归模型

学习笔记:伍德里奇《计量经济学》第五版-第二章 简单回归模型

~除了x 以外影响y 的因素?~y 和x 的函数关系?~何以确定在其他条件不变的情况下刻画了y 和x 的关系由以上得简单线性模型(simple linear regression model ):y = b0+ b1x + u (2.1)y :因变量x :自变量u :误差项(干扰项),即“观测不到的”因素(该模型没有限制x 和u 的关系,因此不能说明x 对y 的影响2.4节是如何解决x 的初始值不同时,同样变化量对y 的影响的?E(u) = 0 (2.5)(代价:方程中要包含截距b0 因为这样可以通过微调截距项来使第一个假定一定成立对u 做的第一个假定:E(u|x) = E(u)(2.6)(前提:u 和x 是随机变量均值独立假定(任何给定x 下u 的平均值都一样):E(u|x)= 0 (2.7)结合均值独立与均值为0,得零条件期望假定:E(y|x) = b0 + b1x (2.8)(E(y|x)称为总体回归函数(population regression function ,PRF ),说明了y 的均值是如何随着x 的变动而变动的结合方程(2.1)和假定(2.7)得条件均值函数:一、y 和x关系的起点随机变量:具有数值特征并由一个实验决定其结果的变量•(是为了解决协方差受度量单位影响的问题,是协方差的改进)(u 和x 不相关,u 也能和x ²相关,对于大部分回归不行)相关系数(仅衡量线性相关程度):•yi = b0 + b1xi + ui (2.9)抽取一个容量为n 的随机样本E(u)=0 (2.10)利用Cov(x,u)=E(xu)=0 (2.11)和假定(2.6)得:E(y –b0 –b1x) = 0 (2.12)E[x(y –b0 –b1x)] = 0 (2.13)因此方程(2.10)和(2.11)可写为在样本中就对应和(2.14)(2.15)结合(2.9)的均值形式(2.16)可以解出参变量(实际上就是矩法估计)( )(前提:分母大于0,即样本中所有x 不完全相等(含义:若样本中x 和y 正相关,则斜率系数为正二、普通最小二乘法(如何估计参变量)协方差:•不相关和协方差=0可互推,但不一定独立,独立一定不相关•矩法估计:利用要估计的参数与某种均值的关系,用样本矩 代替总体矩u 的解法。

计量经济学-简单线性回归模型

计量经济学-简单线性回归模型
1351.009
S.E. of regression
175.2325
Akaike info criterion
13.22880
Sum squared resid
951899.7
Schwarz criterion
13.31949
Log likelihood
-216.2751
Hannan-Quinn criter.
已经得到 =800, =8000, =300, (10)=2.23
则n=12, =30, =40000,
= =8000
=
650 2.23* * =650 30.1256411
即在95%的置信概率下消费支出C平均值的预测区间为(619.874359,680.125641)
2.4解:
(1)建立建筑面积与建造单位成本回归模型,建立EViews文件,利用建造单位成本(Y)和建筑面积(x)的数据表,作散点图
10071.74
Schwarz criterion
9.984610
Log likelihood
-57.42275
Hannan-Quinn criter.
9.873871
F-statistic
178.0715
Durbin-Watson stat
1.172407
Prob(F-statistic)
0.000000
Kurtosis
1.664917
2.346511
Jarque-Bera
0.898454
0.213547
Probability
0.638121
0.898729
Sum
42.28000
19432.00

计量经济学试题简单线性回归模型与

计量经济学试题简单线性回归模型与

计量经济学试题简单线性回归模型与多元线性回归模型比较计量经济学试题简单线性回归模型与多元线性回归模型比较简单线性回归模型和多元线性回归模型都是计量经济学中常用的分析工具,用于解释因变量与一个或多个自变量之间的关系。

在本文中,我们将比较这两种模型的特点和应用。

一、简单线性回归模型简单线性回归模型是一种用于分析一个自变量与一个因变量之间关系的模型。

它可以用以下形式表示:Y = β0 + β1X + ε其中,Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。

回归系数可以用最小二乘法估计,通过最小化误差平方和来确定最佳的参数估计值。

简单线性回归模型适用于自变量与因变量之间存在线性关系的情况。

它的优点是模型简单、易于理解和解释。

另外,由于只包含一个自变量,可以通过图形直观地展示变量之间的关系。

然而,简单线性回归模型也存在一些局限性。

首先,只考虑一个自变量可能无法充分解释因变量的变化。

其次,模型假设误差项具有同方差和独立性,这在实际情况中往往难以满足。

二、多元线性回归模型多元线性回归模型是一种用于分析多个自变量与一个因变量之间关系的模型。

它可以用以下形式表示:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y是因变量,X1、X2、...、Xn是自变量,β0和β1、β2、...、βn是回归系数,ε是误差项。

多元线性回归模型适用于自变量与因变量之间存在复杂的关系的情况,可以同时考虑多个自变量对因变量的影响。

它的优点是能够提供更全面的解释能力,增加了模型的灵活性。

然而,多元线性回归模型也存在一些问题。

例如,当自变量之间存在多重共线性时,模型的结果可能不可靠。

此外,模型的复杂性会增加参数的估计难度,可能需要更多的数据和计算资源。

三、简单线性回归模型与多元线性回归模型的比较简单线性回归模型和多元线性回归模型都有各自的适用范围和特点。

简单线性回归模型适用于简单的线性关系,用于解释一个自变量对因变量的影响。

伍德里奇《计量经济学导论》笔记和课后习题详解(简单回归模型)【圣才出品】

伍德里奇《计量经济学导论》笔记和课后习题详解(简单回归模型)【圣才出品】

β1 就是斜率参数。
②给定零条件均值假定 E(u|x)=0,把斱程中的 y 看成两个部分是比较有用的。一
部分是表示 E(y|x)的 β0+β1一个
部分是被称为非系统部分的 u,即丌能由 x 觋释的那一部分。
二、普通最小二乘法的推导
1.最小二乘估计值
表 2-1 简单回归的术语
3.零条件均值假定 (1)零条件均值 u 的平均值不 x 值无关。可以把它写作:E(u|x)=E(u)。当斱程成立时,就说 u 的均值独立亍 x。 (2)零条件均值假定的意义 ①零条件均值假定给出 β1 的另一种非常有用的觋释。以 x 为条件叏期望值,幵利用 E
1 / 33
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 2 章 简单回归模型
2.1 复习笔记
一、简单回归模型的定义 1.双发量线性回归模型 一个简单的斱程是:y=β0+β1x+u。 假定斱程在所关注的总体中成立,它便定义了一个简单线性回归模型。因为它把两个发 量 x 和 y 联系起来,所以又把它称为两发量戒者双发量线性回归模型。 2.回归术语
E x y β0 β1x 0
得到
1 n
n i1
yi βˆ0 βˆ1xi
0

2 / 33
圣才电子书 十万种考研考证电子书、题库视频学习平台

1
n
n i 1
xi
yi βˆ0 βˆ1xi
0
这两个斱程可用来觋出 βˆ0 和 βˆ1 , y βˆ0 βˆ1x ,则 βˆ0 y βˆ1x 。
量了 yi 的样本发异,SSR 度量了 ui 的样本发异。y 的总发异总能表示成觋释了的发异和未
觋释的发异 SSR 乊和。因此,SST=SSE+SSR。

计量经济学4简单的回归模型OLS

计量经济学4简单的回归模型OLS
yi 0 1xi
残差:yi的实际值与拟合值之差:
ui yi yi yi 0 1xi
7
• 最小化残差平方和:
n
2
n
ui
( yi 0 1xi )2
i 1
i 1
8
• 样本回归函数:(总体回归函数的一个样本估计)
y 0 1x
y 1x
• 描述了x变化如何引起y的变化,解释变量对被解释变量 的影响
n
2
( yi y)
i1
i 1
11
• 改变变量单位的影响。
12
• 在简单回归中加入非线性因素: • 加入自然对数
• 例如: log(wage) 0 1edu
• 1 描述了教育每增加一个单位 工资所增加的百
分比
13
OLS估计量的特征
• 假定1: y 0 1x u • 假定2:xi,yi为总体模型方程的随机样本,样
16
Var(1)
2
2
n
(xi x)2
SSTx
i 1
17
• 误差方差的估计:
• 误差与残差的区别
• 误差:u, error term
• 残差: u residual
• 无偏估计:
2
1
n
2
ui
SSR
n 2 i1
n2
18
简单回归模型应了解:
• 1、计量模型的思路: • (1)找到感兴趣的问题 • (2)建立函数关系 • (3)建立数据库 • (4)回归,得到函数关系中的参数,分析
变量间影响 • (5)分析估计量统计特征 • (6)对模型进行检验
19
本容量n
• 假定3: E( | x) 0

计量经济学-第一章 简单回归模型

计量经济学-第一章 简单回归模型
f(y)
.
x1 x2
. E(y|x) = β + β x
0 1
Population Regression Function
How to estimate the parameters β0 and β1?
8
How to derive the ordinary least squares (OLS) estimates?
12
Deriving OLS continued
We can write our 2 restrictions just in terms of x, y, β0 and β1 , since y = β0 + β1x + u,
u = y – β0 – β1 x
E(y – β0 – β1x) = 0 E[x(y – β0 – β1x)] moment restrictions
13
Deriving OLS using M.O.M.
The method of moments approach to estimation implies imposing the population moment restrictions on the sample moments What does this mean? Recall that for E(X), the mean of a population distribution, a sample estimator of E(X) is simply the arithmetic mean of the sample Σinxi/n
ˆ ˆ y = β 0 + β1 x , or ˆ ˆ β 0 = y − β1 x

计量经济学 第二章 简单线性回归模型案例分析 PPT

计量经济学 第二章 简单线性回归模型案例分析 PPT
t(ˆ 2 ) 1 1 .9 8 2 6 t0 .0 2 5 (2 9 ) 2 .0 4 5应拒绝 H0 :2 0
3. 用P值检验 α=0.05 >> p=0.0000
表明,城镇居民人均总收入对城镇居民每百户计算机拥有量确 有显著影响。
4. 经济意义检验:
所估计的参数
,说明城镇
居民家庭人均总收入每增加1元,平均说来城变量选择:被解释变量选择能代表城乡所有居民消费的 “城镇居民家庭平均每百户计算机拥有量”(单位:台) ; 解释变量选择表现城镇居民收入水平的“城镇居民平均每 人全年家庭总收入”(单位:元) 研究范围:全国各省市2011年底的城镇居民家庭平均每 百户计算机拥有量和城镇居民平均每人全年家庭总收入数 据。
3、总体回归函数(PRF)是将总体被解释变量Y的条件 均值表现为解释变量X的某种函数。 样本回归函数(SRF)是将被解释变量Y的样本条件 均值表示为解释变量X的某种函数。 总体回归函数与样本回归函数的区别与联系。
4、随机扰动项是被解释变量实际值与条件均值的偏差, 代表排除在模型以外的所有因素对Y的影响。
Yt 12Xt ut
估计参数
假定模型中随机扰动满足基本假定,可用OLS法。 具体操作:使用EViews 软件,估计结果是:
用规范的形式将参数估计和检验的结果写为: Y ˆt11.95800.002873X t
(5.6228) (0.00024) t= (2.1267) (11.9826) R2 0.8320 F=143.5836 n=31
即是说:当地区城镇居民人均总收入达到25000元时,城镇居 民每百户计算机拥有量 平均值置信度95%的预测区间为 (80.6219,86.9473)台。
12
个别值区间预测:

计量经济学简单模型分析

计量经济学简单模型分析

计量经济学简单模型分析计量经济学是经济学领域中的一个重要分支,它借助数学和统计学的方法,通过建立模型来描述、解释和预测经济现象。

简单模型分析是计量经济学的基础,本文将介绍如何进行计量经济学简单模型分析。

首先,进行计量经济学简单模型分析需要明确研究问题和目标。

确定研究问题需要考虑实际背景和理论依据,确定模型的目标是为了回答研究问题。

其次,需要收集相关数据,包括时间序列数据、横截面数据等。

在收集数据时,需要注意数据的准确性、完整性和可比较性。

接下来,需要选择合适的模型。

简单线性回归模型是计量经济学中最简单的模型之一,适用于单一自变量和因变量的分析。

简单线性回归模型的数学形式为:y = β0 + β1x + ε,其中y是因变量,x是自变量,β0和β1是模型的参数,ε是误差项。

建立模型后,需要进行模型的估计和检验。

普通最小二乘法(OLS)是估计简单线性回归模型最常用的方法,它通过最小化残差平方和来估计模型的参数。

模型的检验包括拟合优度检验、统计检验和计量经济学检验等。

拟合优度检验用于评估模型对数据的拟合程度,统计检验用于检验模型的假设条件是否成立,计量经济学检验用于评估模型的可靠性、稳定性和预测能力。

最后,需要对模型进行分析和解释。

模型的参数估计值是解释模型的关键,β1表示自变量x每增加一个单位时因变量y的平均增加量。

需要分析模型的假设条件是否成立,以及模型的预测能力。

如果模型存在不足之处,需要进行相应的调整和改进。

总之,计量经济学简单模型分析是经济学研究的重要基础。

通过简单模型分析,我们可以描述、解释和预测经济现象,为经济决策提供科学依据。

随着数据科学和机器学习的发展,计量经济学的方法和技术将不断得到完善和创新,为经济学研究提供更加精确和实用的工具。

第2章 简单回归模型

第2章 简单回归模型

将总体矩条件应用于样本 • 从总体中随机抽取一个样本容量为n的随机 样本,用{(xi,yi): i=1, „,n} ,i表示单 个样本(observation)的编号,n是样本总 量。xi,yi表示第i个样本的相应的变量。 • 每一观测样本i均应满足: yi = b0 + b1xi + ui • 将前面所假定的总体矩条件(3)(4)应用于样 本中,这种方法称为矩估计法(method of moments).

一个重要问题


如果我们忽略包含于误差项u中的其他因素,能否 通过简单回归模型,得到x对于y的其他因素不变 情况下的影响(ceteris paribus effect of x on y)呢? 不能。 需要对u和x的关系作出假定,或者是说,假定x与 y的关系符合一定的条件,才能通过上述模型估计 x对于y的其他因素不变情况下的影响(ceteris paribus effect of x on y)。
选择参数值b0, b1, 使得样本的矩条件成立
• 与总体中的矩条件(3)(4)相对应,在样本中相 应的矩条件(sample counterparts)为:
(3' ) ( 4' ) n
1
y
n i 1 n i 1 i
i
ˆ b ˆ x 0 b 0 1 i
i

n
1
x y
ˆ b ˆ x 0 b 0 1 i
普通最小二乘法的推导
(a ) (b) (c) (d )

x y y bˆ x bˆ x 0
n i 1 n i i 1 1 i
x ( y
i 1 n i
i
ˆ (x x) 0 y) b 1 i

EViews计量经济学实验报告-简单线性回归模型分析

EViews计量经济学实验报告-简单线性回归模型分析

时间地点实验题目简单线性回归模型分析一、实验目的与要求:目的:影响财政收入的因素可能有很多,比如国内生产总值,经济增长,零售物价指数,居民收入,消费等。

为研究国内生产总值对财政收入是否有影响,二者有何关系。

要求:为研究国内生产总值变动与财政收入关系,需要做具体分析。

二、实验内容根据1978-1997年中国国内生产总值X和财政收入Y数据,运用EV软件,做简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用,得出回归结果。

三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用。

(一)模型设定为研究中国国内生产总值对财政收入是否有影响,根据1978-1997年中国国内生产总值X 和财政收入Y,如图1:1978-1997年中国国内生产总值和财政收入(单位:亿元)根据以上数据,作财政收入Y 和国内生产总值X 的散点图,如图2:从散点图可以看出,财政收入Y 和国内生产总值X 大体呈现为线性关系,所以建立的计量经济模型为以下线性模型:01i i i Y X u ββ=++(二)估计参数1、双击“Eviews ”,进入主页。

输入数据:点击主菜单中的File/Open /EV Workfile —Excel —GDP.xls;2、在EV 主页界面点击“Quick ”菜单,点击“Estimate Equation ”,出现“Equation Specification ”对话框,选择OLS 估计,输入“y c x ”,点击“OK ”。

即出现回归结果图3:图3. 回归结果Dependent Variable: Y Method: Least Squares Date: 10/10/10 Time: 02:02 Sample: 1978 1997 Included observations: 20Variable Coefficient Std. Error t-Statistic Prob. C 857.8375 67.12578 12.77955 0.0000 X0.1000360.00217246.049100.0000R-squared 0.991583 Mean dependent var 3081.158 Adjusted R-squared 0.991115 S.D. dependent var 2212.591 S.E. of regression 208.5553 Akaike info criterion 13.61293 Sum squared resid 782915.7 Schwarz criterion 13.71250 Log likelihood -134.1293 F-statistic 2120.520 Durbin-Watson stat0.864032 Prob(F-statistic)0.000000参数估计结果为:i Y = 857.8375 + 0.100036i X(67.12578) (0.002172)t =(12.77955) (46.04910)2r =0.991583 F=2120.520 S.E.=208.5553 DW=0.8640323、在“Equation ”框中,点击“Resids ”,出现回归结果的图形(图4):剩余值(Residual )、实际值(Actual )、拟合值(Fitted ).(三)模型检验1、 经济意义检验回归模型为:Y = 857.8375 + 0.100036*X (其中Y 为财政收入,i X 为国内生产总值;)所估计的参数2ˆ =0.100036,说明国内生产总值每增加1亿元,财政收入平均增加0.100036亿元。

计量经济学----几种常用的回归模型

计量经济学----几种常用的回归模型

• P175图6.10
几种常用的回归模型计量经济学回归模型计量经济学常用模型常用回归模型常用的回归模型计量经济学回归分析计量经济学线性回归计量经济学回归计量经济学逐步回归法计量经济学非线性回归
几种常用的回归模型
1. 对数线性模型 2. 半对数模型 3. 倒数模型 4. 对数倒数模型
1. 对数线性模型(不变弹性模型)
2的含义?
• 其测度了Y的瞬时增长率,即Y随着时间t变化的变 化率。 • 例如,Y为个人的年消费支出,t为年度,那么斜 率系数为个人消费支出的年增长率。
证明:
d(ln Y ) dY Y dY dt 2 dt dt Y
• 注意根据斜率系数的估计值也可以求出复 合增长率r的值。
线性到对数模型
回归子的相对改变量 2 回归元的绝对改变量
• 半对数模型的斜率系数度量了解释变量一个单位 的绝对变化,对应的因变量的相对变化量。 • P166例6.4
对数到线性模型(解释变量对数形式)
Yi 1 2 ln X i i
dY 2 d(lnX ) dX X
dY
2的含义?
证明:
d(ln Y ) dY Y 2 d(ln X ) dX X
适用性?
• 画出lnYi对lnXi的散点图,看是否近似为一 条直线,若是,则考虑此模型。 • P165例6.3
例:柯布--道格拉斯生产函数(P210)
Y AK L e


i
ln Y ln A ln K ln L i ln Y 0 lnK lnL i
• 其测度了X变化1%时Y的绝对变化量,当X变化1% 时,Y绝对变化为0.01 2
3. 倒数模型

计量经济学实验简单线性回归模型

计量经济学实验简单线性回归模型

计量经济学实验简单线性回归模型引言计量经济学是经济学中的一个分支,致力于通过经验分析和实证方法来研究经济问题。

实验是计量经济学中的重要方法之一,能够帮助我们理解和解释经济现象。

简单线性回归模型是实验中常用的工具之一,它能够通过建立两个变量之间的数学关系,预测一个变量对另一个变量的影响。

本文将介绍计量经济学实验中的简单线性回归模型及其应用。

简单线性回归模型模型定义简单线性回归模型是一种用于描述自变量(X)与因变量(Y)之间关系的线性模型。

其数学表达式为:Y = β0 + β1X + ε其中,Y表示因变量,X表示自变量,β0和β1为未知参数,ε表示误差项。

参数估计在实际应用中,我们需要通过数据来估计模型中的参数。

最常用的估计方法是最小二乘法(OLS)。

最小二乘法的目标是通过最小化观测值与拟合值之间的平方差来估计参数。

具体而言,我们需要求解以下两个方程来得到参数的估计值:∂(Y - β0 - β1X)^2 / ∂β0 = 0∂(Y - β0 - β1X)^2 / ∂β1 = 0解释变量与被解释变量在简单线性回归模型中,解释变量(X)用来解释或预测被解释变量(Y)。

例如,我们可以使用房屋的面积(X)来预测房屋的价格(Y)。

在实验中,我们可以根据收集到的数据来建立回归模型,并利用该模型进行预测和分析。

应用实例数据收集为了说明简单线性回归模型的应用,我们假设收集了一些关于学生学习时间与考试成绩的数据。

下面是收集到的数据:学习时间(小时)考试成绩(百分制)2 723 784 805 856 88模型建立根据收集到的数据,我们可以建立简单线性回归模型来分析学生学习时间与考试成绩之间的关系。

首先,我们需要确定自变量和因变量的符号。

在这个例子中,我们可以将学习时间作为自变量(X),考试成绩作为因变量(Y)。

然后,我们使用最小二乘法来估计模型中的参数。

通过计算,可以得到如下参数估计值:β0 = 69.85β1 = 2.95最终的回归方程为:Y = 69.85 + 2.95X预测与分析通过建立的回归模型,我们可以进行预测和分析。

计量经济学简单回归模型

计量经济学简单回归模型

总体回归线(PRF): E(y|x) = b0 + b1x
y
E(y|x=x2)
.
E(y|x=x1) .
x1=1
x2 =2
E(y|x) = b0 + b1x
x
2.2 一般最小二乘法(OLS)旳推导
一般最小二乘法(OLS)旳推导: 措施一:矩估计措施
• 零条件均值假定: E(u|x) = E(u) = 0
得样本相应旳矩条件(3’)(4’)成立。
• 即:求解有关 bˆ0, bˆ1旳方程组(3’)(4’)。
一般最小二乘法旳推导
• 根据样本均值旳定义以及加总旳性质,可将第一 种条件
(3' )
• 变换为
n
n 1
yi bˆ0 bˆ1xi 0
i 1
y bˆ0 bˆ1x,
or
bˆ0 y bˆ1x
家庭人均消费 = 395.96 + 0.48 • 家庭人均收入
2023年四川省农户调查样本, n=100 ;消费和收入单位:元
了解:样本回归线,样本数据点和残差
y
y4 y3
. . û3 û4{ yˆ bˆ0 bˆ1x
yˆ 3
y2
û2{.
y3
yˆ 3
y1
.} û1
x1
x2
x3
x4
x
有关OLS旳一点阐明
0
(4'')
Q
bˆ1
n
2
i 1
xi
yi bˆ0 bˆ1xi
0
• 这两个方程与前面旳矩条件完全一致,能够用相
同旳措施求解参数 bˆ0, bˆ1
所以,零条件均值假定能够表述为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档