高中物理-磁场(三)带电粒子在匀强磁场中运动的临界极值问题与多解问题1
高考物理知识体系总论:带电粒子在匀强磁场中运动的临界极值及多解问题
PART 2
利用知识体系框架来解题
DREAM OF THE FUTURE
经典例题1
(多选)空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界。 一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O点入射。这两种 粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含 不同速率的粒子。不计重力。下列说法正确的是(ꢀꢀ) A.入射速度相同的粒子在磁场中的运动轨迹一定相同 B.入射速度不同的粒子在磁场中的运动时间一定不同 C.在磁场中运动时间相同的粒子,其运动轨迹一定相同 D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大
有些题目只告诉了磁感应强度的大小,而未具体指出 磁感应强度的方向,此时必须考虑由磁感应强度方向
多解
不确定而形成的多解。如图所示。
4.运动的往 复性形成多
解
带电粒子在匀强磁场中运动的临界极值及多解问题
大致框架
1.带电粒子
如图所示,带电粒子在洛伦兹力作用下飞越有界磁场
电性不确定
时,由于粒子运动轨迹是圆弧状,因此,它可能直接
带电粒子在匀强磁场中运动的临界极值及多解问题
大致框架
突破一ꢀ 带电粒子在匀强磁场中 运动的临界极值问题
1.分析方法 2.四个结论
(1)刚好穿出磁场边界的条件是带电粒子在磁场中运 动的轨迹与边界相切。 (2)当速率v一定时,弧长越长,圆心角越大,则带电 粒子在有界磁场中运动的时间越长。 (3)当速率v变化时,圆心角大的,运动时间长,解题 时一般要根据受力情况和运动情况画出运动轨迹的草 图,找出圆心,根据几何关系求出半径及圆心角等。 (4)在圆形匀强磁场中,当运动轨迹圆半径大于区域 圆半径时,则入射点和出射点为磁场直径的两个端点 时,轨迹对应的偏转角最大(所有的弦长中直径最长)。
1.3.4带电粒子在匀强磁场中的运动(临界极值问题:平移圆、磁聚焦、磁发散) (含视频)
件的磁场的最小面积 。
例3.一带电质点,质量为m,电量为q,以与x轴成600的速度v从x轴上的P点射入
图中第Ⅰ象限,为了使该质点能从y轴上的Q点以垂直于y轴的速度v射出,可在
适当的地方加一个垂直于xy平面、磁感强度为B的匀强磁场.若此磁场仅分布在
物理 选择性必修 第二册
第一章 安培力与洛伦兹力
§1.34 带电粒子在匀强磁场中的运动
(临界极值问题: 平移圆、磁聚焦、磁发散)
例1.如图所示,等腰直角三角形OPQ,直角边OP、OQ长度均为L,直角平面内
(包括边界)有一垂直平面向外的匀强磁场,磁感应强度大小为B.在PQ边下方放
置一带电粒子发射装置,它沿垂直PQ边的方向发射出一束具有相同质量、电荷
线平行。
总结: 三种动态圆模型
一、“放缩圆”
二、“旋转圆”
定向不定径
定径不定向
三、“平移圆”
四. 模型: 磁聚焦与磁发散
1. 磁聚焦
v
平行聚一点
四. 模型: 磁聚焦磁发散
2. 磁发散
定点成平行
总结: 磁聚焦磁发散
磁发散
定点成平行
磁聚焦
平行于一点
条件:磁场圆 R = 轨迹圆 r
例2.情景一:如图甲所示,在xOy平面内有很多质量为m,电量为e的电子,从坐标原点O
以相同速度 沿不同方向平行于xOy平面射入第一象限。现在加一垂直xOy平面向里的、
磁感应强度为B的匀强磁场,要求这些入射电子都能平行轴且沿x轴正方向运动,求符合
条件的磁场的最小面积 。
情景二:如图乙所示,在.xOy平面内有很多质量为m,电量为e的电子,从坐标原点O以
高考物理大一轮复习第9章磁场第3节匀强磁场中的临界极值和多解问题课件
2.如图所示,宽度为 d 的有界匀强磁场,磁感应强度为 B, MM′和 NN′是它的两条边界.现有质量为 m、电荷量为 q 的带 电粒子沿图示方向垂直磁场射入.要使粒子不能从边界 NN′射 出,求粒子入射速率 v 的最大值可能是多少.
解析:题目中只给出粒子“电荷量为 q”,未说明是带哪种
电荷.若 q 为正电荷,轨迹是如图所示的上方与 NN′相切的14圆
A.使粒子的速度 v<B4mql B.使粒子的速度 v>54Bmql C.使粒子的速度 v>Bmql D.使粒子的速度 v 满足B4mql<v<54Bmql
解析:选 AB.若带电粒子刚好打在极板右边缘,有 r21=r1-2l 2+l2,又因 r1=mBvq1,解得 v1=54Bmql;若粒子刚好打在极板左边缘 时,有 r2=4l =mBvq2,解得 v2=B4mql,故 A、B 正确.
(2)BEL+(2n+1)2πemB(n=0,1,2,3,…)
编后语
听课不仅要动脑,还要动口。这样,上课就能够主动接受和吸收知识,把被动的听课变成了一种积极、互动的活动。这对提高我们的学习积极性和口头 表达能力,以及考试时回答主观题很有帮助的。实践证明,凡积极举手发言的学生,学习进步特别快。上课的动口,主要有以下几个方式:
形成多解
带电粒子在部分是电场、部分是磁场 运动具有周
空间运动时,往往具有周期性,因而 期性
形成多解
1.(多选)长为 l 的水平极板间有垂直纸面向里的匀强磁场, 如图所示,磁感应强度为 B,板间距离也为 l,极板不带电,现有 质量为 m、电荷量为 q 的带正电粒子(不计重力),从左边极板间中 点处垂直磁感线以速度 v 水平射入磁场,欲使粒子不打在极板上, 可采用的办法是( )
弧,轨道半径:R=mBqv又
带电粒子在匀强磁场中运动的临界极值及多解问题
带电粒子在匀强磁场中运动的临界极值及多解问题突破有界磁场中临界问题的处理方法考向1 “放缩法”解决有界磁场中的临界问题1.适用条件(1)速度方向一定,大小不同粒子源发射速度方向一定、大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化(2)轨迹圆圆心一一共线如图所示(图中只画出粒子带正电的情景),速度V。
越大,运动半径也越大可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直速度方向的直线PP,上.2.方法界定以入射点P为定点,圆心位于PP,直线上,将半径放缩作轨迹,从而探索出临界条件,这种方法称为“放缩法”.[典例1]如图所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd 边的中点.一个带正电的粒子仅在洛伦兹力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t。
刚好从c点射出磁场.现设法使该带电粒子从O点沿纸面以与Od成30°的方向,以大小不同的速率射入正方形内,粒子重力不计.那么下列说法中正确的是()A.若该带电粒子从ab边射出,它经历的时间可能为t。
5tB.若该带电粒子从bc边射出,它经历的时间可能为十3C.若该带电粒子从cd边射出,它经历的时间号2tD.若该带电粒子从ad边射出,它经历的时间可能为43[解析]作出从ab边射出的轨迹①、从bc边射出的轨迹②、从cd边射出的轨迹③和从ad边射出的轨迹④.由带正电的粒子从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t o刚好从c点射出磁场可知,带电粒子在磁场中做圆周运动的周期是2t o.由图可知,从ab边射出经历的时间一定不大片;从bc边射出经历的时间一定不大于不从cd边射...... . 5t t出经历的时间一定是丁;从ad边射出经历的时间一定不大于可,C正确.3 3[答案]C考向2 “旋转法”解决有界磁场中的临界问题1.适用条件(1)速度大小一定,方向不同带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为一.一一、 ,.一.一 mv __ _____v,则圆周运动半径为区=”0.如图所示.o qB(2)轨迹圆圆心一一共圆mv 带电粒子在磁场中做匀速圆周运动的圆心在以入射点P为圆心、半径R=京的圆上. qB2.方法界定mv将一半径为R=氤的圆绕着入射点旋转,从而探索出临界条件,这种方法称为“旋转法”.qB[典例2]如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60 T.磁场内有一块平面感光板ab,板面与磁场方向平行.在距ab为l = 16 cm处,有一个点状的a粒子放射源S,它向各个方向发射a粒子,a...................... . .. ....... q . .. ...... . . 粒子的速度都是v=3.0X106 m/s.已知a 粒子的比何m=5.0X107 C/kg,现只考虑在纸面内 运动的a 粒子,求ab 板上被a 粒子打中区域的长度.[解题指导]过S 点作ab 的垂线,根据左侧最值相切和右侧最值相交计算即可.[解析]a 粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R 表示轨迹半径, 4 c V 2有 qvB=mR由此得R 瑞代入数值得R=10 cm,可见2R>l>R因朝不同方向发射的a 粒子的圆轨迹都过S,由此可知,某一圆轨迹在下图中N 左侧与 ab 相切,则此切点、就是a 粒子能打中的左侧最远点为确定、点的位置,可作平行于ab 的直线cd, cd 到ab 的距离为R,以S 为圆心,R 为半径,作圆弧交cd 于Q 点,过Q 作ab 的 垂线,它与ab 的交点即为,即:NP=R 2—(1—R) 2 = 8 cm再考虑N 的右侧.任何a 粒子在运动中离S 的距离不可能超过2R,在N 点右侧取一点P 2, 取SP=20 cm,此即右侧能打到的最远点由图中几何关系得NP 2=M (2R) 2 — 12=12 cm所求长度为P 1P 2=NP 1+NP 2代入数值得P 1P 2 = 20 cm.[答案]20 cm考向1带电粒子电性不确定形成多解受洛伦兹力作用的带电粒子,可能带正电荷,也可能带负电荷,在相同的初速度的条件 下,正、负粒子在磁场中运动轨迹不同,导致形成多解.[典例3]如图所示,宽度为d 的有界匀强磁场,磁感应强度为B, MM,和NN’是磁场左 右的两条边界线.现有一质量为m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入.要使粒子 不能从右边界NN,射出,求粒子入射速率的最大值为多少?突破 带电粒子在磁场中运动的多解问题fl 兄 乂尹। x x J V X y K P 2 x b[解题指导]由于粒子电性不确定,所以分成正、负粒子讨论,不从NN,射出的临界条 件是轨迹与NN,相切.[解析]题目中只给出粒子”电荷量为q”,未说明是带哪种电荷,所以分情况讨论. 若q 为正电荷,轨迹是如图所示的上方与NN,相切的(圆弧,则轨道半径R \12 (2+ 2) Bqd ............... 一 一 一一 一 ......3 一 ........... 若q 为负电荷,轨迹是如图所示的下方与NN,相切的工圆弧,则轨道半径又—全解得『=(2-'⑵刎 m…… (2+ 2) Bqd (2— 2) Bqd,[答案] --- 玄 ---- (q 为正电何)或 -- m ----- (q 为负电何)考向2磁场方向不确定形成多解有些题目只告诉了磁感应强度的大小,而未具体指出磁感应强度的方向,此时必须要考 虑磁感应强度方向不确定而形成的多解.[典例4](多选)一质量为m 、电荷量为q 的负电荷在磁感应强度为B 的匀强磁场中绕固mvBq又d=R 解得v=R,mv' Bq M N।■乂 ।1 ।*[典例5](多选)长为l 的水平极板间有垂直纸面向里的匀强磁场,如图所示,磁感应强 度为B,板间距离也为1,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从 左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是()定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在 负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是(不计重 力)() A. R 瘦 D. m 2qB C .— m D. qB m[解析]根据题目中条件“磁场方向垂直于它的运动平面”,磁场方向有两种可能,且 这两种可能方向相反.在方向相反的两个匀强磁场中,由左手定则可知负电荷所受的洛伦兹力 的方向也是相反的.当负电荷所受的洛伦兹力与电场力方向相同时,根据牛顿第二定律可知 _ V2 _ 4BqR v 4Bq4Bqv=m 万,得v= ,此种情况下,负电何运动的角速度为3=5=-;;当负电何所受的R m R m 洛伦兹力与电场力方向相反时,有2B qv=m V2, 丫=等,此种情况下,负电荷运动的角速度v 2Bq为3=R=/",应选A 、C.[答案]AC考向3临界状态不唯一形成多解如图所示,带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状, 因此,它可能直接穿过去了,也可能转过180°从入射界面反向飞出,于是形成了多解.如图 m所示.A.使粒子的速度v<Bq15BalB.使粒子的速度v>*C.使粒子的速度丫>平D.使粒子的速度v满足Bq^vV51a1[解析]带电粒子刚好打在极板右边缘,有r2 = (r-1)+12,又因r =%,解得v =誓;i V 12 i Bq i 4m粒子刚好打在极板左边缘,有r=l=M2,解得丫=整,故A、B正确. 2 4 Bq 2 4m[答案]AB考向4带电粒子运动的往复性形成多解空间中部分是电场,部分是磁场,带电粒子在空间运动时,运动往往具有往复性,因而形成多解.[典例6]如图所示,在x轴上方有一匀强磁场,磁感应强度为B;x轴下方有一匀强电场,电场强度为E.屏MN与y轴平行且相距L. 一质量m、电荷量为e的电子,在y轴上某点A 自静止释放,如果要使电子垂直打在屏MN上,那么:(1)电子释放位置与原点O的距离s需满足什么条件?(2)电子从出发点到垂直打在屏上需要多长时间?[解题指导]解答本题可分“两步走”:(1)定性画出粒子运动轨迹示意图.(2)应用归纳法得出粒子做圆周运动的半径r和L的关系.[解析](1)在电场中,电子从A-O,动能增加eEs=1mv0在磁场中,电子偏转,半径为mv r = o r eB据题意,有(2n+1)r=L一eL2B2 . .所以S=2Em (2n+1)2(n=0,1,2,3,”)⑵在电场中匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子总的2s T T , Ee 2nm运动时间 t=(2n+1)、: w+z+nj,其中 a=%, T=—B-■. । a 乙ui e一— .一 BL , 、nm, 、整理后得 t=^+(2n+1)族("=。
带电粒子在匀强磁场中的运动-临界、极值及多解问题
•
例题
有些题目只告诉了磁感应的大小,而未具体 指出磁感应强度的方向,此时必须要考虑磁
感应强度方向不确定而形成多解
电场力方向一定指向圆心,而洛伦兹力方向可能指向圆心,也可能背离圆心, 从而形成两种情况.
• 2.方法界定将一半径为 的圆绕着入射点旋转, 从而探索出临界条件,这种方法称为“旋转法”.
•
旋转法”模型示例
带电粒子在磁场中运动的多解问题
• 带电粒子电性不确定形成多解 • 受洛伦兹力作用的带电粒子,可能带正电荷,也可
能带负电荷,在相同的初速度的条件下,正、负粒 子在磁场中运动轨迹不同,导致形成多解.
•
“放缩圆”模型示例
“旋转法”解决有界磁场中的临界问题
• 1.适用条件(1)速度大小一定,方向不同带电粒子 进入匀强磁场时,他们在磁场中做匀速圆周运动的 半径相同,若射入初速度为v0,则圆周半径为 . 如图所示.(2)轨迹圆圆心——共圆带电粒子在磁 场中做匀速圆周运动的圆心在以入射点P为圆心、 半径 的圆上.
临界状态不唯一形成多解
• 带电粒子在洛伦兹力作用下飞越有界磁场 时,由于粒子运动轨迹是圆弧状,因此, 他可能直接穿过去了,也可能转过180°从 入射界面反向飞出,于是形成了多解.如图 所示.
•
Байду номын сангаас
带电粒子在匀强磁场中的运动临界、极值及多解问题
• 1.有界磁场中临界问题的处 理方法
• 2.带电粒子在磁场中运动的 多解问题
1.有界磁场中临界问题的处理方法
• “放缩法”解决有界磁场中的临界问题 • 1.适用条件 • (1)速度方向一定,大小不同粒子源发射速度方向一定、大小
高考物理知识体系总论:带电粒子在匀强磁场中运动的临界极值及多解问题作业(答案+解析)
带电粒子在匀强磁场中运动的临界极值及多解问题作业题作业题目难度分为3档:三星☆☆☆(基础题目)四星☆☆☆☆(中等题目)五星☆☆☆☆☆(较难题目)本套作业题目1-10题为三星,11-15为四星。
1.某电子以固定的正点电荷为圆心在匀强磁场中沿逆时针方向做匀速圆周运动,磁场方向垂直于它的运动平面,电子所受正点电荷的电场力是洛伦兹力的3倍.若电子电荷量为e 、质量为m ,磁感应强度为B ,不计重力,则电子运动的角速度可能是()☆☆☆A.4Bem B.3Bem C.2Bem D.Bem答案解析:当洛伦兹力方向和电场力方向相同时,有ωmu r v m evB F ==+2电,又因为evB F 3=电,可得m eB 4=ω,当洛伦兹力和电场力方向相反时,有:ωmv evB F =-电,得meB 2=ω,故A 、C 正确。
2.如图示,边界OA 与OC 之间分布有垂直纸面向里的匀强磁场,边界OA 上有一粒子源S.某一时刻,从S 平行于纸面向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相同,经过一段时间有大量粒子从边界OC 射出磁场.已知∠AOC =60°,从边界OC 射出的粒子在磁场中运动的最长时间等于T/2(T 为粒子在磁场中运动的周期),则从边界OC 射出的粒子在磁场中运动的时间可能为()☆☆☆A.T 3B.T 4C.T 6D.T 8答案解析:粒子在磁场中做匀速圆周运动,出射点和入射点的连线为轨迹的弦,初速度大小相同,轨迹半径qBmv R =相同,设d OS =,当射出点D 与S 点连线垂直于OA 时,DS 弦最长,轨迹对应的圆心角α最大,根据qvB rv m =2,有m qBr v =,则周期qB m v r T ππ22==周期恒定,粒子的运动时间T t πα2=,此时粒子运动时间最长为2T ,当出射点E 与S 点的连线垂直于OC 时,弦ES 最短,轨迹所对的圆心角最小,则粒子在磁场中运动的时间最短,由几何关系,得︒=60θ,所以最短时间为T 61,故粒子在磁场中运动时间范围为26T t T ≤≤,运动时间不可能为8T ,故A 正确。
1.3.3带电粒子在匀强磁场中的运动(临界极值问题:放缩圆、旋转圆 (教学课件)-高中物理人教版
1.如图所示,在平面直角坐标系 xoy的第一象限 y≤a范
围内,存在垂直纸面向里磁感应强度为 B的匀强磁场.一
质量为m、电荷量为q带负电的粒子从坐标原点 O以速度大
2qBa
v
小为
m 沿不同方向射入磁场,不计粒子的重力,下列
说法正确的是
0
1.若粒子初速度沿y轴正方向,粒子在磁场中的运动时间为
垂 直 于 圆 平 面 ( 未 画 出 ) 。 一 群 比 荷 为 m 的 负 离 子 以 相 同 速 率 v 0( 较
大)由P点在纸平面内向不同方向射入磁场中发生偏转后,又飞出磁场,
则下列说法正确的是(不计重力)(
)
BC
A.离子飞出磁场时的动能一定相等
B.离子在磁场中运动半径一定相等
C.由Q点飞出的离子在磁场中运动的时间最长
二、运用“旋转圆”解决临界极值问题
方法综述:当带电粒子射入磁场时的速率 v 大小一定,但射入的方向变化时,粒
子做圆周运动的轨道半径 r 是确定的.在确定粒子运动的临界情景时,可以以入
射点为定点,将轨迹圆旋转,作出一系列轨迹,从而探索出临界条件.
定径不定向
v
旋转圆:v方向不同、大小相同的粒子源(同种)的
D.沿PQ方向射入的离子飞出时偏转角最大
旋转圆的时间问题
1.整个磁场的时间: 同边界进和出,且偏转角尽可能大,时
间最长
2.某一边界出射的时间:
看弦长: 圆心角>180°,弦越长,圆心角越小
圆心角<180°,弦越长,圆心角越大
5.真空中有宽度为L,磁感应强度为 B的匀强磁场,磁场
方向如图所示, MN,PQ是磁场的边界。质量为 m,电荷量
(q>0)的粒子,从 a点沿ab方向运动,不计粒子重力。求:
带电粒子在匀强磁场中运动的临界极值及多解问题
带电粒子在匀强磁场中运动的临界极值及多解问题带电粒子在匀强磁场中的临界问题可以通过“放缩法”解决。
当速度方向一定,大小不同时,带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化。
通过以入射点为定点,将半径放缩作轨迹,探索出临界条件。
另一种解决有界磁场中的临界问题的方法是“旋转法”。
当速度大小一定,方向不同时,带电粒子在磁场中做匀速圆周运动的半径相同。
圆心在以入射点为圆心、半径为mv/qB的圆上。
通过旋转圆心,将问题转化为无界磁场中的问题。
旋转法”是一种探索临界条件的方法,它通过让圆绕着入射点旋转来实现。
在一个真空室内,存在一个垂直于纸面向里的匀强磁场,磁感应强度为B=0.60 T。
在磁场内有一块平面感光板ab,板面与磁场方向平行。
距离ab为l=16cm处有一个点状的α粒子放射源S,它向各个方向发射速度为v=3.0×10m/s的α粒子。
已知α粒子的比荷为5.0×10C/kg,现只考虑在纸面内运动的α粒子,求ab板上被α粒子打中区域的长度。
解题思路是过S 点作ab的垂线,根据左侧最值相切和右侧最值相交计算。
由于带电粒子的电性不确定,可能带正电荷,也可能带负电荷。
在相同的初速度的条件下,正、负粒子在磁场中运动轨迹不同,导致形成多解。
在一个宽度为d的有界匀强磁场中,磁感应强度为B,MM′和NN′是磁场左右的两条边界线。
现有一质量为m、电荷量为q的带电粒子沿图示方向垂直磁场射入。
要使粒子不能从右边界NN′射出,需要求粒子入射速率的最大值。
由于粒子电性不确定,所以分成正、负粒子讨论,不从NN′射出的临界条件是轨迹与NN′相切。
题目描述:一个正方形的匀强磁场区域abcd,e是ad的中点,f是cd 的中点,如果在a点沿对角线方向以速度v射入一带负电的粒子,恰好从e点射出,则()。
解题思路:根据题目描述,可以画出如下示意图:image.png](/upload/image_hosting/ed6v3v6v.png)由于粒子带负电,所以在磁场中会受到洛伦兹力的作用,从而偏转方向垂直于速度方向和磁场方向的方向。
带电粒子在匀强磁场中的多解和临界问题
的距离L;
解析 粒子在磁场中的运动轨迹如图所示,粒子
在MO边界射出点为N
由洛伦兹力提供向心力得 解得 R=mqBv②
qvB=mRv2①
由几何关系可知粒子在磁场中运动轨迹所对应的圆心角 α=60°③
则 O、N 间的距离 L=R=mqBv。④
答案
mv qB
mv qB
(2)粒子在磁场中的运动时间;
解析 设粒子在匀强磁场中做匀速圆周运动的周期
带电粒子在匀强磁场中的多解和临界问题
学习目标
会分析带电粒子在匀强磁场中的多解问题和临界极值问题, 提高思维分析综合能力。
目录
CONTENTS
01 研透核心考点 02 提升素养能力
1
研透核心考点
考点一 带电粒子在磁场中运动的多解问题
考点二 带电粒子在磁场中运动的临界极值问题
考点一 带电粒子在磁场中运动的多解问题
4qBL D. 5m
解析 若粒子恰好从 A 点射出磁场,则轨道半径为 r1=L2,由 qv1B=mvr112可得 v1=qBmr1=q2BmL;若粒子恰好从 B 点射出磁场,则轨道半径为 r2=L,由 qv2B =mvr222可得 v2=qmBL。为使粒子不能经过正方形的 AB 边,粒子的速度 v<v1= q2BmL或 v>v2=qmBL,故 A 正确。
有一个交点,故粒子偏转角只可能为 40°,运动时间 t=34600°°T=29πqmB,A 正确, C 错误;若粒子带正电,将做顺时针方向的匀速圆周运动,无论轨迹与 ON 有 几个交点,粒子回到 OM 直线时,由圆周运动的对称性,速度方向必与 OM 成
带电粒子在匀强磁场中运动的多解和临界问题
带电粒子在匀强磁场中运动的多解和临界问题一、多解问题(一)带电粒子电性不确定形成多解1.如图所示,宽度为d 的有界匀强磁场,磁感应强度为B ,MM ′和NN ′是它的两条边界。
现有质量为m ,电荷量为q 的带电粒子沿图示方向垂直磁场射入。
要使粒子不能从边界NN ′射出,则粒子入射速率v 的最大值可能是多少。
2.如图1所示,第一象限范围内有垂直于xOy 平面的匀强磁场,磁感应强度为B 。
质量为m ,电量大小为q 的带电粒子在xOy 平面里经原点O 射入磁场中,初速度v 0与x 轴夹角θ=60°,试分析计算:图1(1)带电粒子从何处离开磁场?穿越磁场时运动方向发生的偏转角是多大?(2)带电粒子在磁场中运动时间有多长?(二)磁场方向不确定形成多解2.(多选)一质量为m ,电荷量为q 的负电荷在磁感应强度为B 的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是( )A.4qB mB.3qB mC.2qB mD.qB m(三)带电粒子速度不确定形成多解3.(多选)如图所示,两方向相反、磁感应强度大小均为B 的匀强磁场被边长为L 的等边三角形ABC 理想分开,三角形内磁场垂直纸面向里,三角形顶点A 处有一质子源,能沿∠BAC的角平分线发射速度不同的质子(质子重力不计),所有质子均能通过C 点,质子比荷q m =k ,则质子的速度可能为A .2BkLB.BkL 2C.3BkL 2D.BkL 81.(多选)如图6所示,直线MN 与水平方向成60°角,MN 的右上方存在垂直纸面向外的匀强磁场,左下方存在垂直纸面向里的匀强磁场,两磁场的磁感应强度大小均为B 。
一粒子源位于MN 上的a 点,能水平向右发射不同速率、质量为m (重力不计)、电荷量为q (q >0)的同种粒子,所有粒子均能通过MN 上的b 点,已知ab =L ,则粒子的速度可能是( )图6A .3qBL 6m B .3qBL 3m C .3qBL 2m D .3qBL m(四)带电粒子运动的往复性形成多解4.某装置用磁场控制带电粒子的运动,工作原理如图8212所示。
人教版高中物理选修3-1第三章 专题:带电粒子在磁场中运动的临界极值多解问题 (共50张PPT)
α
O
t
2
θ = 2α
注意:θ 应以弧度制表示
T
临界问题之不确定情况讨论
1.电性不确定引起的分类讨论问题。
2.入射点不确定引起的临界问题。 3.出射点不确定引起的临界问题。 4.入射速度方向确定、大小不确定,从而使得轨迹多样,
并且出射点不确定,引起的临界问题。
5.入射速度大小确定,方向不确定,从而引起的临界问题
力),从左边极板间中点处垂直磁场以速度v平行
O
极板射入磁场,欲使粒子不打在极板上,则入射
速度v应满足什么条件?
从右边出, ( R 1 L 2 ) L R1 , 得 R1
2 2 2
5L 4
,从而 v 1
5 qBL 4m
L
v +q , m
B
从左边出,
R
2
L 4
,从而 v 2
qBL 4m
放缩法:带电粒子以任意速度沿特定方向射入匀强磁场时,它们将在磁场
中做匀速圆周运动,其轨迹半径随速度的变化而变化,如图所示,(图中
只画出粒子带正电的情景),速度v0越大,运动半径也越大.可以发现这样 的粒子源产生的粒子射 入磁场后,它们运动轨迹的圆心在垂直速度方向 的直线PP′上. 由此我们可得到一种确定临界条件的方法:在确 定这类粒子运动的临界条件时,可以以入射点P为
60º
如粒子带正电,则:
O
120º
x
如粒子带负电,则:
入射点不确定引起的临界问题
如下图所示,两块长度均为5d的金属板相距d,平行放置,
下板接地,两极间有垂直只面向里的匀强磁场,一束宽为d
的电子束从两板左侧垂直磁场方向射入两极间,设电子的
带电粒子在匀强磁场中运动的临界极值及多解问题
带电粒子在匀强磁场中运动的临界极值及多解问题突破有界磁场中临界问题的处理方法考向1 “放缩法”解决有界磁场中的临界问题1.适用条件(1)速度方向一定,大小不同粒子源发射速度方向一定、大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化.(2)轨迹圆圆心——共线如图所示(图中只画出粒子带正电的情景),速度v 0越大,运动半径也越大.可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直速度方向的直线PP ′上.2.方法界定以入射点P 为定点,圆心位于PP ′直线上,将半径放缩作轨迹,从而探索出临界条件,这种方法称为“放缩法”.[典例1] 如图所示,垂直于纸面向里的匀强磁场分布在正方形abcd 区域内,O 点是cd 边的中点.一个带正电的粒子仅在洛伦兹力的作用下,从O 点沿纸面以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场.现设法使该带电粒子从O 点沿纸面以与Od 成30°的方向,以大小不同的速率射入正方形内,粒子重力不计.那么下列说法中正确的是( )A.若该带电粒子从ab 边射出,它经历的时间可能为t 0B.若该带电粒子从bc 边射出,它经历的时间可能为5t 03C.若该带电粒子从cd 边射出,它经历的时间为5t 03D.若该带电粒子从ad 边射出,它经历的时间可能为2t 03[解析] 作出从ab 边射出的轨迹①、从bc 边射出的轨迹②、从cd 边射出的轨迹③和从ad 边射出的轨迹④.由带正电的粒子从O 点沿纸面以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场可知,带电粒子在磁场中做圆周运动的周期是2t 0.由图可知,从ab 边射出经历的时间一定不大于5t 06;从bc 边射出经历的时间一定不大于4t 03;从cd 边射出经历的时间一定是5t 03;从ad 边射出经历的时间一定不大于t 03,C 正确.[答案] C考向2 “旋转法”解决有界磁场中的临界问题1.适用条件(1)速度大小一定,方向不同带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为v 0,则圆周运动半径为R =mv 0qB.如图所示.(2)轨迹圆圆心——共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P 为圆心、半径R =mv 0qB的圆上. 2.方法界定 将一半径为R =mv 0qB的圆绕着入射点旋转,从而探索出临界条件,这种方法称为“旋转法”. [典例2] 如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B =0.60 T.磁场内有一块平面感光板ab ,板面与磁场方向平行.在距ab 为l =16 cm 处,有一个点状的α粒子放射源S ,它向各个方向发射α粒子,α粒子的速度都是v =3.0×106m/s.已知α粒子的比荷q m=5.0×107C/kg ,现只考虑在纸面内运动的α粒子,求ab 板上被α粒子打中区域的长度.[解题指导] 过S 点作ab 的垂线,根据左侧最值相切和右侧最值相交计算即可. [解析] α粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R 表示轨迹半径,有qvB =m v 2R由此得R =mv qB代入数值得R =10 cm ,可见2R >l >R因朝不同方向发射的α粒子的圆轨迹都过S ,由此可知,某一圆轨迹在下图中N 左侧与ab 相切,则此切点P 1就是α粒子能打中的左侧最远点.为确定P 1点的位置,可作平行于ab的直线cd ,cd 到ab 的距离为R ,以S 为圆心,R 为半径,作圆弧交cd 于Q 点,过Q 作ab 的垂线,它与ab 的交点即为P 1.即:NP 1=R 2-(l -R )2=8 cm再考虑N 的右侧.任何α粒子在运动中离S 的距离不可能超过2R ,在N 点右侧取一点P 2,取SP =20 cm ,此即右侧能打到的最远点由图中几何关系得NP 2=(2R )2-l 2=12 cm 所求长度为P 1P 2=NP 1+NP 2 代入数值得P 1P 2=20 cm. [答案] 20 cm突破 带电粒子在磁场中运动的多解问题考向1 带电粒子电性不确定形成多解受洛伦兹力作用的带电粒子,可能带正电荷,也可能带负电荷,在相同的初速度的条件下,正、负粒子在磁场中运动轨迹不同,导致形成多解.[典例3] 如图所示,宽度为d 的有界匀强磁场,磁感应强度为B ,MM ′和NN ′是磁场左右的两条边界线.现有一质量为m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入.要使粒子不能从右边界NN ′射出,求粒子入射速率的最大值为多少?[解题指导] 由于粒子电性不确定,所以分成正、负粒子讨论,不从NN ′射出的临界条件是轨迹与NN ′相切.[解析] 题目中只给出粒子“电荷量为q ”,未说明是带哪种电荷,所以分情况讨论. 若q 为正电荷,轨迹是如图所示的上方与NN ′相切的14圆弧,则轨道半径R =mv Bq又d =R -R2解得v =(2+2)Bqdm.若q 为负电荷,轨迹是如图所示的下方与NN ′相切的34圆弧,则轨道半径R ′=mv ′Bq又d =R ′+R ′2解得v ′=(2-2)Bqdm[答案](2+2)Bqd m (q 为正电荷)或(2-2)Bqdm(q 为负电荷)考向2 磁场方向不确定形成多解有些题目只告诉了磁感应强度的大小,而未具体指出磁感应强度的方向,此时必须要考虑磁感应强度方向不确定而形成的多解.[典例4] (多选)一质量为m 、电荷量为q 的负电荷在磁感应强度为B 的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是(不计重力)( )A.4qB mB.3qBmC.2qBmD.qB m[解析] 根据题目中条件“磁场方向垂直于它的运动平面”,磁场方向有两种可能,且这两种可能方向相反.在方向相反的两个匀强磁场中,由左手定则可知负电荷所受的洛伦兹力的方向也是相反的.当负电荷所受的洛伦兹力与电场力方向相同时,根据牛顿第二定律可知4Bqv =m v 2R ,得v =4BqR m ,此种情况下,负电荷运动的角速度为ω=v R =4Bqm ;当负电荷所受的洛伦兹力与电场力方向相反时,有2Bqv =m v 2R ,v =2BqRm,此种情况下,负电荷运动的角速度为ω=v R =2Bqm,应选A 、C. [答案] AC考向3 临界状态不唯一形成多解如图所示,带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能直接穿过去了,也可能转过180°从入射界面反向飞出,于是形成了多解.如图所示.[典例5] (多选)长为l 的水平极板间有垂直纸面向里的匀强磁场,如图所示,磁感应强度为B ,板间距离也为l ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A.使粒子的速度v <Bql 4mB.使粒子的速度v >5Bql4mC.使粒子的速度v >Bql mD.使粒子的速度v 满足Bql 4m <v <5Bql 4m[解析] 带电粒子刚好打在极板右边缘,有r 21=⎝⎛⎭⎪⎫r 1-l 22+l 2,又因r 1=mv 1Bq ,解得v 1=5Bql 4m ;粒子刚好打在极板左边缘,有r 2=l 4=mv 2Bq ,解得v 2=Bql4m,故A 、B 正确.[答案] AB考向4 带电粒子运动的往复性形成多解空间中部分是电场,部分是磁场,带电粒子在空间运动时,运动往往具有往复性,因而形成多解.[典例6] 如图所示,在x 轴上方有一匀强磁场,磁感应强度为B ;x 轴下方有一匀强电场,电场强度为E .屏MN 与y 轴平行且相距L .一质量m 、电荷量为e 的电子,在y 轴上某点A 自静止释放,如果要使电子垂直打在屏MN 上,那么:(1)电子释放位置与原点O 的距离s 需满足什么条件? (2)电子从出发点到垂直打在屏上需要多长时间? [解题指导] 解答本题可分“两步走”: (1)定性画出粒子运动轨迹示意图.(2)应用归纳法得出粒子做圆周运动的半径r 和L 的关系.[解析] (1)在电场中,电子从A →O ,动能增加eEs =12mv 2在磁场中,电子偏转,半径为r =mv 0eB据题意,有(2n +1)r =L所以s =eL 2B 22Em (2n +1)2(n =0,1,2,3,…).(2)在电场中匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子总的运动时间t =(2n +1)2s a +T 4+n T 2,其中a =Ee m ,T =2πm eB整理后得t =BL E +(2n +1)πm2eB(n =0,1,2,3,…).[答案] (1)s =eL 2B 22Em (2n +1)2(n =0,1,2,3,…) (2)BL E +(2n +1)πm2eB(n =0,1,2,3,…) 专项精练1.[放缩法的应用]如图所示,有一个正方形的匀强磁场区域abcd ,e 是ad 的中点,f 是cd 的中点,如果在a 点沿对角线方向以速度v 射入一带负电的粒子,恰好从e 点射出,则( )A.如果粒子的速度增大为原来的两倍,将从d 点射出B.如果粒子的速度增大为原来的三倍,将从f 点射出C.如果粒子的速度不变,磁场的磁感应强度变为原来的两倍,也将从d 点射出D.只改变粒子的速度使其分别从e 、d 、f 点射出时,从e 点射出所用时间最短答案:A 解析:作出示意图如图所示,根据几何关系可以看出,当粒子从d 点射出时,轨道半径增大为原来的两倍,由半径公式R =mvqB可知,速度也增大为原来的两倍,选项A 正确,显然选项C 错误;当粒子的速度增大为原来的四倍时,才会从f 点射出,选项B 错误;粒子的周期公式T =2πmqB,可见粒子的周期与速度无关,在磁场中的运动时间取决于其轨迹圆弧所对应的圆心角,所以从e 、d 射出时所用时间相等,从f 点射出时所用时间最短,故D 错误.2.[旋转法的应用]如图所示,在真空中坐标xOy 平面的x >0区域内,有磁感应强度B =1.0×10-2T 的匀强磁场,方向与xOy 平面垂直,在x 轴上的P (10,0)点,有一放射源,在xOy 平面内向各个方向发射速率v =104m/s 的带正电的粒子,粒子的质量为m =1.6×10-25kg ,电荷量为q =1.6×10-18C ,求带电粒子能打到y 轴上的范围.答案:-10~10 3 cm 解析:带电粒子在磁场中运动时由牛顿第二定律得:qvB =m v 2R解得:R =mv qB=0.1 m =10 cm如图所示,当带电粒子打到y 轴上方向的A 点与P 连线正好为其圆轨迹的直径时,A 点即为粒子能打到y 轴上方的最高点.因OP =10 cm ,AP =2R =20 cm则OA =AP 2-OP 2=10 3 cm当带电粒子的圆轨迹正好与y 轴下方相切于B 点时,若圆心再向左偏,则粒子就会从纵轴离开磁场,所以B 点即为粒子能打到y 轴下方的最低点,易得OB =R =10 cm ,综上所述,带电粒子能打到y 轴上的范围为-10~10 3 cm.3.[带电粒子在磁场中运动的临界问题]如图所示,在平面直角坐标系xOy 的第四象限有垂直纸面向里的匀强磁场,一质量为m =5.0×10-8kg 、电荷量为q =1.0×10-6C 的带正电粒子从静止开始经U 0=10 V 的电压加速后,从P 点沿图示方向进入磁场,已知OP =30 cm(粒子重力不计,sin 37°=0.6,cos 37°=0.8).(1)求带电粒子到达P 点时速度v 的大小;(2)若磁感应强度B =2.0 T ,粒子从x 轴上的Q 点离开磁场,求OQ 的距离; (3)若粒子不能进入x 轴上方,求磁感应强度B ′满足的条件. 答案:(1)20 m/s (2)0.90 m (3)B ′>5.33 T解析:(1)对带电粒子的加速过程,由动能定理有qU 0=12mv 2代入数据得:v =20 m/s.(2)带电粒子仅在洛伦兹力作用下做匀速圆周运动,有qvB =mv 2R得R =mv qB代入数据得:R =0.50 m 而OPcos 53°=0.50 m故圆心一定在x 轴上,轨迹如图甲所示 由几何关系可知:OQ =R +R sin 53° 故OQ =0.90 m.甲乙(3)带电粒子恰不从x 轴射出(如图乙所示),由几何关系得:OP >R ′+R ′cos 53° ① R ′=mv qB ′②由①②并代入数据得:B ′>163T≈5.33 T(取“≥”同样正确). 4.[带电粒子在磁场中运动的多解问题]如图甲所示,M 、N 为竖直放置彼此平行的两块平板,板间距离为d ,两板中央各有一个小孔O 、O ′正对,在两板间有垂直于纸面方向的磁场,磁感应强度随时间的变化如图乙所示,设垂直纸面向里的磁场方向为正方向.甲 乙有一群正离子在t =0时垂直于M 板从小孔O 射入磁场.已知正离子质量为m 、带电荷量为q ,正离子在磁场中做匀速圆周运动的周期与磁感应强度变化的周期都为T 0,不考虑由于磁场变化而产生的电场的影响.求:(1)磁感应强度B 0的大小;(2)要使正离子从O ′孔垂直于N 板射出磁场,正离子射入磁场时的速度v 0的可能值. 答案:(1)2πm qT 0 (2)πd 2nT 0(n =1,2,3,…)解析:(1)正离子射入磁场,由洛伦兹力提供向心力,即qv 0B 0=mv 2r①做匀速圆周运动的周期T 0=2πrv 0②联立两式得磁感应强度B 0=2πmqT 0.③(2)要使正离子从O ′孔垂直于N 板射出磁场,两板之间正离子只运动一个周期即T 0时,v 0的方向应如图所示,有r =d4④当在两板之间正离子共运动n 个周期,即nT 0时,有- 11 - r =d 4n(n =1,2,3,…)⑤ 联立①③⑤求解,得正离子的速度的可能值为v 0=qB 0r m =πd 2nT 0(n =1,2,3,…).。
带电粒子在磁场中运动——极值多解问题模板
带电粒子从射入到射出磁场所用的总时间 t=t1+t2 由以上各式可得 B1=56πqmt ,B2=53πqmt
答案
5πm 6qt
5πm 3qt
建模感悟 粒子在多个磁场中连续运动时,会画出不同 的轨迹,从复杂的轨迹中找出规律,寻找解决问题的突 破口,解这类问题时,关键在于能画出轨迹,想清楚粒 子的运动过程,借助圆周运动的特点解决问题.
1)
B
. R vO0
·
S
t
总r
(n
1)R
tan
n 1
n2
v
v
5.如图所示,在半径为R的圆筒内有匀强磁场,质量
为m、带电量为q的正离子在小孔S处,以速度v0向着 圆心射入,施加的磁感应强度为多大,此粒子才能在
最短的时间内从原孔射出?(设相碰时电量和动能均
无损失)
B
解:粒子经过n=2,3,4……次与圆筒
碰撞从原孔射出,其运动轨迹具
有对称性.当发生最少碰撞次数
r
. R vO0
n=2时 600
r R cot 300 3R
·
O’
r
S
qvB m v2 B mv0 mv0
r
qr 3qR
t 3 1 T m 3R
6 qB v0
当发生碰撞次数n=3时
900
(1)若能打到P点,则粒子速度的最小值为多少? (2)若能打到P点,则粒子在磁场中运动的最长时间 为多少?
例1.如图所示,一带电质点,质量为m,电量为q,以 平行于Ox轴的速度v从y轴上的a点射入图中第一象限所 示的区域.为了使该质点能从x轴上的b点以垂直于Ox轴 的速度v射出,可在适当的地方加一个垂直于xy平面、 磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆 形区域内,试求这圆形磁场区域的最小半径.重力忽略 不计. (若磁场为矩形,或正三角形又如何?)
高中物理选修31课件:第九章+第三讲 带电粒子在匀强磁场中运动的临界极值多解问题
热点一
出的粒子在磁场中运动的最短时间等于T6(T 为粒子在磁场
中运动的周期),则从边界 OC 射出的粒子在磁场中运动的最长时间为( )
T
T
A.3
B.2
2T C. 3
5T D. 6
热点一
题组突破
[解析] 由左手定则可知,粒子在磁场中做逆时针方向的圆 周运动,由于粒子速度大小都相同,故轨迹弧长越小,粒 子在磁场中运动时间就越短;而弧长越小,所对弦长也越 短,所以从 S 点作 OC 的垂线 SD,则 SD 为最短弦,可知 粒子从 D 点射出时运行时间最短,如图所示.根据最短时 间为T6,可知△O′SD 为等边三角形,粒子圆周运动半径 R=SD,过 S 点 作 OA 垂线交 OC 于 E 点,由几何关系可知 SE=2SD,SE 为圆弧轨迹的直 径,所以从 E 点射出,对应弦最长,运行时间最长,且 t=T2,故 B 项正确. [答案] B
热点一 题组突破
[典题 1] 如图所示,边界 OA 与 OC 之间分布有垂直纸面向里的匀强磁场,
边界 OA 上有一粒子源 S.某一时刻,从 S 平行于纸面向各个方向发射出大量
带正电的同种粒子(不计粒子的重力及粒子间的相互作
用),所有粒子的初速度大小相同,经过一段时间有大量粒
子从边界 OC 射出磁场.已知∠AOC=60°,从边界 OC 射
热点二
(1)求磁场区域的宽度 h; (2)欲使粒子到达收集板的位置从 P 点移到 N 点,求粒子入射速度 的最小变化量 Δv; (3)欲使粒子到达 M 点,求粒子入射速度大小的可能值.
高二物理带电粒子在磁场中运动的问题临界极值及多解等问题课件新人教版选修31
(2)若电子从下边右端点 c 处穿出,其轨迹所对应的圆心角 为 θ,由几何关系可知: L 4 sinθ= = ,得:θ=53° R 5 θ πm 电子的运动时间:t= T=0.29 360° eB 若电子从下边左端点 d 处穿出,其轨迹为半圆,电子的运 动时间: 1 πm t= T = 2 eB
因此,电子在磁场中运动时间 t 的变化范围: πm πm 0.29 <t< . eB eB
(2)设粒子在磁场中运动的轨迹与 CD 板相切于 K 点,此轨 R2 迹的半径为 R2,在△AKC 中:sin 45° = L- R2 解得 R2=( 2-1)L 即 KC 长等于 R2= ( 2- 1)L 所以 CD 板上可能被粒子打中的区域的长度 x=HK,即 x = R1- R2=(2- 2)L.
形成的多解.
3.临界状态不唯一形成多解
带电粒子在洛伦兹力作用下穿过有界磁场时,由于粒子 运动轨迹是圆弧状,因此,它可能直接穿过去,也可能转过 180°,从入射界面这边反向飞出,如图所示,于是形成了多 解.
4.运动具有周期性形成多解
带电粒子在部分是电场、部分是磁场的空间运动时,往 往运动具有周期性,因而形成多解.
(15 分 )(2012· 唐山摸底)一质量为 m、 电荷量为 q 的带负电的 粒子,从 A 点射入宽度为 d、磁感应强度为 B 的匀强磁场中, MN、 PQ 为该磁场的边界线,磁感线垂直于纸面向里,如下图 所示.带电粒子射入时的初速度与 PQ 成 45° 角,且粒子恰好没 有从 MN 射出.(不计粒子所受重力) (1)求该带电粒子的初速度 v0; (2)求该带电粒子从 PQ 边界射出的出射点到 A 点的距离 x.
如光学中的“临界角”、超导现象中的“临界温度”、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在匀强磁场中运动的临界极值问题与多解问题物理系统由于某些原因而要发生突变时所处的状态,叫做临界状态.突变过程是从量变到质变的过程,在临界状态的前后,系统服从不同的物理规律,按不同的规律变化。
在高考试题中涉及的物理过程中常常出现隐含着一个或几个临界状态,需要通过分析思考,运用所学的知识和已有的能力去分析临界条件,挖掘出临界值,那么如何确定它们的临界条件?下面介绍三种寻找临界点的两种有效方法:1.对称思想带电粒子垂直射入磁场后,将做匀速圆周运动。
分析粒子运动,会发现它们具有对称的特点,即:粒子的运动轨迹关于入射点P与出射点Q的中垂线对称,轨迹圆心O位于对称线上,入射速度、出射速度与PQ线间的夹角(也称为弦切角)相等,并有==2=t,如图所示。
应用这一粒子运动中的“对称性”不仅可以轻松地画出粒子在磁场中的运动轨迹,对于某些临界问题的求解也非常便捷。
【典例】如图所示,半径r=10cm的圆形区域内有匀强磁场,其边界跟y轴在坐标原点O处相切;磁场B=0.33T垂直于纸面向内,在O处有一放射源S可沿纸面向各个方向射出速率均为v=3.2×106m/s的α粒子;已知α粒子质量为m=6.6×10-27kg,电量q=3.2×10-19c,则α粒子通过磁场空间的最大偏转角θ及在磁场中运动的最长时间t各多少?【审题指导】本题α粒子速率一定,所以在磁场中圆周运动半径一定,由于α粒子从点O进入磁场的方向不同故其相应的轨迹与出场位置均不同,则粒子通过磁场的速度偏向角θ不同,要使α粒子在运动中通过磁场区域的偏转角θ最大,则必使粒子在磁场中运动经过的弦长最大,因而圆形磁场区域的直径即为粒子在磁场中运动所经过的最大弦,依此作出α粒子的运动轨迹进行求解。
【名师点睛】当速度一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长。
2.放缩法带电粒子以任意速度沿特定方向射入匀强磁场时,它们将在磁场中做匀速圆周运动,其轨迹半径随速度的变化而变化,如图所示(图中只画出粒子带正电的情景),速度v0越大,运动半径也越大。
可以发现这样的粒子源产生的粒子射入磁场后,它们运动轨迹的圆心在垂直速度方向的直线PP′上。
由此我们可得到一种确定临界条件的方法:在确定这类粒子运动的临界条件时,可以以入射点P为定点,圆心位于PP′直线上,将半径放缩作轨迹,从而探索出临界条件,使问题迎刃而解,这种方法称为“放缩法”。
【典例】如图所示,宽度为d的匀强有界磁场,磁感应强度为B,MM′和NN′是磁场左右的两条边界线.现有一质量为m,电荷量为q的带电粒子沿图示方向垂直射入磁场中,θ=45°.要使粒子不能从右边界NN′射出,求粒子入射速率的最大值为多少?3.平移法带电粒子以一定速度沿任意方向射入匀强磁场时,它们将在磁场中做匀速圆周运动,其轨迹半径相同,若射入初速度为v0,则圆周运动半径为R=mv0/(qB),如图所示。
同时可发现这样的粒子源的粒子射入磁场后,粒子在磁场中做匀速圆周运动,圆心在以入射点P为圆心、半径R=mv0/(qB)的圆(这个圆在下面的叙述中称为“轨迹圆心圆”)上。
由此我们也可以得到一种确定临界条件的方法:确定这类粒子在有界磁场中运动的临界条件时,可以将一半径为R=mv0/(qB)的圆沿着“轨迹圆心圆”平移,从而探索出临界条件,这种方法称为“平移法”。
【典例】如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60 T,磁场内有一块平面感光板ab,板面与磁场方向平行,在距ab的距离l=16 cm处,有一个点状的α放射源S,它向各个方向发射α粒子,α粒子的速率都是v=3.0×106 m/s。
已知α粒子的电荷量与质量之比q m =5.0×107C/kg ,现只考虑在图纸平面中运动的α粒子,求ab 上被α粒子打中的区域的长度。
【解析】α粒子从S 点垂直磁场以一定大小的速度朝各个方向射入,在磁场中均沿逆时针方向做匀速圆周运动,可求出它们的运动轨迹半径R ,由qvB =m v 2R ,得R =v q /m B,代入数值得R =10 cm ,可见2R >l >R .由于朝不同方向发射的α粒子的圆轨迹都过S ,可先考查速度沿负y 方向的α粒子,其轨迹圆心在x 轴上的A 1点,将α粒子运动轨迹的圆心A 1点开始,沿着“轨迹圆心圆”逆时针方向移动,如图所示。
【答案】 20 cm【典例】 如图所示,S 为电子射线源能在图示纸面上和360°范围内向各个方向发射速率相等的质量为m 、带电-e 的电子,MN 是一块足够大的竖直挡板且与S 的水平距离OS =L ,挡板左侧充满垂直纸面向里的匀强磁场;① 若电子的发射速率为V 0,要使电子一定能经过点O ,则磁场的磁感应强度B 的条件?② 若磁场的磁感应强度为B ,要使S 发射出的电子能到达档板,则电子的发射速率多大?③ 若磁场的磁感应强度为B ,从S 发射出的电子的速度为meBL 2,则档板上出现电子的范围多大? 【审题指导】 电子从点S 发出后必受到洛仑兹力作用而在纸面上作匀速圆周运动,由于电子从点S 射出的方向不同将使其受洛仑兹力方向不同,导致电子的轨迹不同,分析知只有从点S 向与SO 成锐角且位于SO 上方发射出的电子才可能经过点O ;由于粒子从同一点向各个方向发射,粒子的轨迹构成绕S 点旋转的一动态圆,动态圆的每一个圆都是逆时针旋转,这样可以作出打到最高点与最低点的轨迹,如图所示,最低点为动态圆与MN 相切时的交点,最高点为动态圆与MN 相割,且SP 2为直径时P 为最高点。
【答案】见解析【名师点睛】本题利用了动态园法寻找引起范围的“临界轨迹”及“临界半径R0”,然后利用粒子运动的实际轨道半1. 有界磁场分布区域的临界问题该类问题主要解决外界提供什么样以及多大的磁场,使运动电荷在有限的空间内完成规定偏转程度的要求,一般求解磁场分布区域的最小面积,它在实际中的应用就是磁约束。
容易混淆点是:有界磁场的圆形区域与粒子运动径迹的圆弧。
解决的方法就是加强有界磁场圆形区域与带电粒子运动径迹所在圆的圆心以及半径的对比。
在涉及多个物理过程问题中,依据发生的实际物理场景,寻求不同过程中相衔接和联系的物理量,采用递推分析或者依据发生的阶段,采用顺承的方式针对不同阶段进行分析,依据不同的运动规律进行解决。
【典例】一质量m、带电q的粒子以速度V0从A点沿等边三角形ABC的AB方向射入强度为B的垂直于纸面的圆形匀强磁场区域中,要使该粒子飞出磁场后沿BC射出,求圆形磁场区域的最小面积。
【审题指导】由题中条件求出粒子在磁场中作匀速圆周运动的半径为一定,故作出粒子沿AB进入磁场而从BC射出磁场的运动轨迹图中虚线圆所示,只要小的一段圆弧PQ能处于磁场中即能完成题中要求;故由直径是圆的最大弦可得圆形磁场的最小区域必为以直线PQ为直径的圆如图中实线圆所示。
【典例】如图所示,ABCD是边长为a的正方形.质量为m、电荷量为e的电子以大小为v0的初速度沿纸面垂直于BC边射入正方形区域.在正方形内适当区域中有匀强磁场。
电子从BC边上的任意点入射,都只能从A点射出磁场. 不计重力,求:(1) 此匀强磁场区域中磁感应强度的方向和大小;(2) 此匀强磁场区域的最小面积。
【审题指导】 根据带电粒子的电性和入射、出射方向,结合左手定则能否判定匀强磁场区域中磁感应强度的方向和大小?由C 点入射的粒子的运动轨迹,能否确定出粒子运动的上边界?取边BC 中点,画出轨迹,以D 为原点、DC 为x 轴、DA 为y 轴建立坐标系,能否写出P 点的坐标,你会有什么发现?【解析】 (1) 设匀强磁场的磁感应强度的大小为B . 令圆弧 ︵ AEC是自C 点垂直于BC 入射的电子在磁场中的运行轨道。
电子所受到的磁场的作用力f =Bev 0 ,应指向圆弧的圆心,因而磁场的方向应垂直于纸面向外。
圆弧 ︵ AEC 的圆心在CB 边或其延长线上.依题意,圆心在A 、C 连线的中垂线上,故B 点即为圆心,圆半径为a ,按照牛顿定律有f =m v 20a联立得B =mv 0ea图中,圆弧 ︵ AP 的圆心为O ,PQ 垂直于BC 边,由③式知,圆弧 ︵ AP 的半径仍为a ,在以D 为原点、DC 为x 轴、AD 为y 轴的坐标系中,P 点的坐标(x ,y )为x =a sin θy =-[a -(a -a cos θ)]=-a cos θ这意味着,在范围0≤θ≤π2内,P 点形成以D 为圆心、a 为半径的四分之一圆周︵ AFC ,它是电子做直线运动和圆周运动的分界线,构成所求磁场区域的另一边界。
因此,所求的最小匀强磁场区域是分别以B 和D 为圆心、a 为半径的两个四分之一圆周 ︵ AEC 和 ︵ AFC 所围成的,其面积为S =2(14πa 2-12a 2)=π-22a 2. 【答案】(1) mv 0ea 垂直于纸面向外 (2) π-22a 2 【名师点睛】 确定带电粒子在有界磁场中运动的最小面积时,可将粒子运动的边界点的运动轨迹用标准的尺规作图,然后借助数学方法找出边界的特点,最终由几何方法求出面积.2.求解运动电荷初始运动条件的边界临界问题该类问题多指运动电荷以不同的运动条件进入限定的有界磁场区域,在有限的空间内发生磁偏转,有可能是一个相对完整的匀速圆周运动,也有可能是圆周运动的一部分,对于后者往往要求在指定的区域射出,但由于初速度大小以及方向的差别,致使运动电荷在不同的位置射出,因此也就存在着不同情况的边界最值问题。
因外界磁场空间范围大小的限定,使运动的初始条件有了相应的限制,表现为在指定的范围内运动.确定运动轨迹的圆心,求解对应轨迹圆的几何半径,通过圆心角进而表述临界最值,这应当是解决该类问题的关键。
(1)带电粒子在“平行直线边界磁场”中的运动甲 乙 丙a. 圆心在磁场原边界上(如图甲)① 速度较小时,作半圆运动后从原边界飞出;② 速度增加为某临界值时,粒子作部分圆周运动其轨迹与另一边界相切;③ 速度较大时粒子作部分圆周运动后从另一边界飞出。
b. 圆心在过入射点跟边界垂直的直线上(如图乙)① 速度较小时,作圆周运动通过射入点;② 速度增加为某临界值时,粒子作圆周运动其轨迹与另一边界相切;③ 速度较大时粒子作部分圆周运动后从另一边界飞出。
c. 圆心在过入射点跟跟速度方向垂直的直线上(如图丙)① 速度较小时,作圆弧运动后从原边界飞出;② 速度增加为某临界值时,粒子作部分圆周运动其轨迹与另一边界相切;③ 速度较大时粒子作部分圆周运动后从另一边界飞出。
【典例】如图甲所示,真空中宽为d 的区域内有强度为B 的匀强磁场方向如图,质量m 带电-q 的粒子以与CD 成θ角的速度V 0垂直射入磁场中。