绝对值与相反数(基础)知识讲解(1)
2.4绝对值与相反数(1)
点A表示的数-5的绝对值为5; 点B表示的数-3.5的绝对值为3.5; 点C表示的数1的绝对值为1;
点D表示的数2.5的绝对值为2.5;
点E表示的数5的绝对值为5.
例1
求4、-3.5的绝对值.
解:在数轴上分别画出表示4、-3.5的点A、点B.
3.5
4
A
-4 -3 -2 -1
B ·
0
1
2
3
4
5
因为点A与原点的距离是4,所以4的绝对值是4; 因为点B与原点的距离是3.5,所以-3.5的绝对值是3.5.
通常,我们将数a的绝对值记为|a| .
例如: 4的绝对值记为|4|, -3.5的绝对值记为 |-3.5|.
例2 某厂生产闹钟,从中抽取5件检验时,比标准
时间多的记为正数,比标准时间少的记为负数,请
根据下表,选出最准确的闹钟.
1 2 3 4 5
+2s
-3.5s
6s
+7s
-4s
误差不超过5秒的为合格品,否则为次品,问有几
台合格?
作业: 课原点O右侧且到原点O的距离为2个单位长
度.
A 3 O 2 B
-4 -3 -2 -1
0 1
2
3
4
5
-4
-3
-2
-1
0
1
2
3
4
数轴上表示一个数的点与原点的距离
叫做这个数的绝对值. 请你结合数轴,根据绝对值的概念, 说出-3、2、0的绝对值.
你能说出数轴上的点A、B、C、D、E所表
示的数的绝对值吗?
小明家在学校正西方3 km处,小丽家在学
校正东方2 km处,他们上学所花的时间,与各
初中-数学-苏科版-七年级上册-2.4绝对值与相反数(1)
总课题第2章有理数总课时数本课课题 2.4绝对值与相反数课型新授第 1 课时备课时间教学目标(一)知识与技能(1)初步理解绝对值的概念,理解绝对值的几何意义。
(2)通过画数轴的方法求一个数的绝对值。
(二)过程与方法(1)经历将实际问题数学化的过程,感受数学与生活的关系。
(三)情感态度价值观(1)经历将实际问题数学化的过程,感受数学与生活的联系。
(2)进一步渗透数形结合的思想,感知数学知识具有普遍的联系性。
教学重点、难点(一)教学重点:(1)一个数的绝对值的意义;(2)求已知数的绝对值;(3)用绝对值比较大小.(二)教学难点:理解绝对值的几何意义。
教学环节教师活动教学内容学生活动(一)创设情境引入新课提问板书课题绝对值与相反数(1)小明家在学校正西方3 km处,小丽家在学校正东方2 km处,他们上学所花的时间与各家到学校的距离有关.你会用数轴上的点表示学校、小明家、小丽家的位置吗?做一做:用数轴上的点表示学校、小明家、小丽家的位置.1.画数轴,用数轴的原点O表示学校的位置,规定向东为正,数轴上的1个单位长度表示1km;2.设点A、点B分别表示小明家、小丽家,则点A在原点O左侧且到原点O的距离为3个单位长度,点B在原点O右侧且到原点O的距离为2个单位长度.本节课我们就一起来学习绝对值。
尝试通过数轴表示问题。
交流分享(二)层层递进探索新知提问板书绝对值概念。
教师板书第一组:5-=_5_巡视,学生交流有错(1)观察图1,点A、B、C、D到原点的单位长度分别为______、______、______、_____,即它们到原点的距离为_____、______、______、_____.(2)点A、B、C、D所表示的数的绝对值为____、_____、_____、_____.归纳:数轴上表示一个数的点到_原点的距离_,叫做这个数的绝对值.3和-3所对应的点到原点的距离相同。
绝对值的表示与比较:-5的绝对值为___,记为:5-=____;-212的绝对值为____,记为:____;3.2的绝对值为___,记为:___.我们容易看出:_____<_____<_____.例l 求下列各数的绝对值:-112,5,0,-1,4.5.(1)5,1.5,2.5,65,1.5,2.5,6(2)5,1.5,2.5,6齐声朗读学生思考,交流。
苏科版七年级上2.4绝对值与相反数(1)课件ppt
学 校 小 丽 家 B
0
1
2
3
A
2
B
-3Βιβλιοθήκη -2-101
2
上图中点A与原点的距离是2,点B与原点的 距离是3.关于数轴上点与原点的距离我们 有一种专门的称呼----绝对值
学.科.网
你能说出什么是绝对值?
如图,你能说出数轴上A、B、C、D、E、F各点所 表示的数的绝对值吗?
2.4绝对值与相反数(1)
1、你能描述出你家与学校的位置和距离吗?
2、你能用正负数来说明你与你同桌家 和学校的位置吗?
小明的家在学校西边3㎞处,小李的家在学校东边 2km处。他们上学所花的时间与各家到学校的距离 有什么关系?
学.科.网
如果学校门前的大街看成一条数轴,把学校看作原点,那 么你能把小明和小丽家的相对位置在数轴上表示出来吗?
解:在数轴上分别画出表示-3、-6的点A、点B
6
3 B
-6 -5 -4
A
-3 -2 -1 0 1 2 3 4 5 6
因为∣-3 ∣=3, ∣ -6∣=6,并且3<6,
所以∣-3∣ <∣ -6∣,即-3的绝对值小于-6的绝对值 .
求-3、-0.4、-2的绝对值,并用“〈” 号把这些绝对值连接起来。
5 例3.已知一个数的绝对值是 ,求这个数。 2
从上面的问题中你能找到求一个数的绝对值 的方法吗?
学.科.网
(1)先画出数轴,在数轴上找出需要的点; (2)观察这个点与原点的距离,这个距离就是我们 要求的绝对值。
求4、-3.5的绝对值。
解:在数轴上分别画出表示4、-3.5的点A、点B
3.5
4
B
2.3绝对值与相反数公开课(1)
巩固练习:
1 1) +∣- ∣=_____; 3 2)-∣+3.6∣=______;
3)-∣-5∣=_____; 4)∣-19∣+ ∣11∣ =_____; 5) 2 - - 1
3
2
6)若︱x︱=8,︱y︱=5,且x<y,求x和y的值。
1、下列说法对吗?如果不对,应如何改正?
(1)一个数的绝对值一定是正数。
2.3 绝对值与相反数(1)
小兰出校门后向东走30米到达A处, 小明出校门后向西走30米到达B处,校门 口西面50米处有一个车站C。
问题: (1)在Biblioteka 轴上表示出A、B、C的位置; (2)两人所在的位置相同吗?
(3)两人离校门的距离相等吗?
在数轴上,一个数所对应的点与原点的 距离叫做该数的绝对值.
2、填空: 若︱a︱=-a,则a ≤0 若︱a︱=a,则a ≥0
; ;
3、已知︱x—2︱+︱y+1︱=0, 求x、y的值。 练习:已知︱a+3︱+︱b—2︱=0, 求︱a︱—︱b︱
5、已知数轴上有A和B两点,他们之间的距 离为2,点A和原点的距离为3,那么所有满足条 件的点B对应的数有哪些?
比较两个数的大小: 两个正数,绝对值大的正数大; 两个负数,绝对值大的反而小。
思考:什么是数a的绝对值呢?如何用符号表示?
1、求下列各数的绝对值;
2、根据计算结果,你能归纳出求一个数 的绝对值有何规律吗?
- 1.6
8 5
0
10
2 3
2
- 10 1 2
1、说出下列各数的绝对值:
-7
- 2.05
7 9
0
1000
2、求绝对值等于4的数。
2.3《绝对值与相反数》ppt课件(1)
思考: 一个数的绝对值与该数之间 有什么关系?
-5 -4 -3 -2
0 0
4 A
-1 0 1 2 3 4 5
因为点 A 与原点的距离是 4 ,所以 4 的 绝对值是 4 ;记为 4 4. 因为点 B 与原点的距离是 3.5 ,所 以- 3.5 的绝对值是 3.5 ;记为 3.5 3.5 .
说一说: 你能说出数轴上点 A、B、C、D、 E、F 各点所表示的数的绝对值吗?
E
5
点 B 表示 -3 ,点 B 与原点的 距离是 3 ,所以 -3 的绝对值是 3. 记为|-3| = 3.
说一说: 你能说出数轴上点 A、B、C、D、 E、F 各点所表示的数的绝对值吗?
A
-5 -4
B
-3 -2 -1
F C
0 1 2
D
3 4
E
5
点 C 表示 1 ,点 C 与原点的距离是 1 ,所以 1 的绝对值是 1.记为|1| = 1.
练一练
比较下列各对数的大小:
(1) 2与 4 ( 2)0与 4 ( 3) 2 与 4 ) 4 与 4 (4
解: (3) 因为 2 2, 4 4, 并且 2 4, 所以 2 4 .
练一练
比较下列各对数的大小:
(1) 2与 4 ( 2)0与 4 ( 3) 2 与 4 ) 4 与 4 (4
解: (1) 因为 4 4,并且 2 4, 所以 2 4 .
练一练
比较下列各对数的大小:
(1) 2与 4 ( 2)0与 4 ( 3) 2 与 4 ) 4 与 4 (4
解: (2) 因为 4 4,并且 0 4, 所以 0 4 .
2.3.2绝对值与相反数:相反数(同步课件)-七年级数学上册(苏科版2024)_1
若两个数的绝对值相等,则这两个数相等或互为相反数, 即若|a|=|b|,则a=±b。
03 典例精析
例1、填空: (1)a的相反数是__-a__,-a的相反数是__a__; (2)a+b的相反数是____-_(a_+_b_)_=_-_a_-_b___, a-b的相反数是____-(_a_-_b_)=_-_a_+_b____。 (3)正数的相反数都是_负_数__;负数的相反数都是_正__数_。
例2、在①+(+3)与-(-3);②-(+3)与+(-3);③+(+3)与-(+3);④+(-3) 与-(-3),互为相反数的是___③__④___。(填序号)
【分析】先化简后判断: ①3与3,不互为相反数;②-3与-3,不互为相反数; ③3和-3,互为相反数;④-3和3,互为相反数。
03 典例精析
每组数符号不同,符号后的数值相同。
如图,以+250与-250为例: 数值相同
+250
-250
符号不同
02 知识精讲
相反数的概念
只有符号不同的两个数互为相反数(opposite number),其中一个 数叫做另一个数的相反数。
eg:250与-250互为相反数,也可以说250是-250的相反数, -250是250的相反数。
【分析】 -(-4)表示-4的相反数, 对于任意的数a都有-(-a)=a,即一个数 ∵-4的相反数是4, 的相反数的相反数就是这个数本身。 ∴-(-4)=4。
01 课堂引入 2.算一算,找规律: 1个“+”:+5=5; 2个“+”:+(+5)=____5____; “+”号的个数不影响化简的结果, 3个“+”:+[+(+5)]=____5____; 可以直接省略。 4个“+”:+{+[+(+5)]}=____5____。
《相反数和绝对值》 知识清单
《相反数和绝对值》知识清单一、相反数在数学中,相反数是一个非常重要的概念。
相反数指的是绝对值相等,正负号相反的两个数。
比如说,5 的相反数是-5 ,-3 的相反数是 3 。
可以看出,正数的相反数是负数,负数的相反数是正数,而 0 的相反数还是 0 。
怎么去理解相反数呢?我们可以把数字想象成在数轴上的点。
数轴就像是一条直线,规定了原点 0 ,正方向和单位长度。
每个数字都对应数轴上的一个点。
以 2 和-2 为例,它们到原点 0 的距离是相等的,都是 2 个单位长度,但方向相反。
这就是相反数在数轴上的表现。
相反数具有一些重要的性质:1、互为相反数的两个数之和为 0 。
比如 3 +(-3 )= 0 。
2、若 a 、 b 互为相反数,则 a + b = 0 ;反之,若 a + b = 0 ,则 a 、 b 互为相反数。
在实际应用中,相反数也经常出现。
比如在计算盈利和亏损时,如果盈利 50 元表示为+50 元,那么亏损 50 元就可以表示为-50 元,它们互为相反数。
二、绝对值绝对值则是另一个关键的概念。
绝对值表示一个数在数轴上所对应点到原点的距离。
例如,| 5 |= 5 ,|-5 |也等于 5 。
不管这个数是正数还是负数,绝对值都是非负数( 0 和正数)。
绝对值具有以下性质:1、正数的绝对值是它本身;负数的绝对值是它的相反数; 0 的绝对值是 0 。
2、若| a |= a ,则a ≥ 0 ;若| a |= a ,则a ≤ 0 。
3、互为相反数的两个数的绝对值相等。
在计算中,绝对值常常用于求解方程和不等式。
比如,| x 3 |= 5 ,那么 x 3 = 5 或 x 3 =-5 ,从而解得 x = 8 或 x =-2 。
在比较两个数的大小时,有时候也需要先求出它们的绝对值。
三、相反数与绝对值的关系相反数和绝对值之间存在着一定的联系。
首先,互为相反数的两个数的绝对值相等。
因为绝对值表示的是距离,互为相反数的两个数到原点的距离是相同的。
班课讲义有理数(二)绝对值相反数和比较大小
标题: 有理数(二)——相反数、绝对值教学目标重点、难点教 学 内 容一、 知识点梳理+例题(一)相反数1.在数轴上分别找出表示各数的点。
6与―6,―213与213,―1.5与1.5 想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与―6,―213与213,―1.5与1.5有何特点?,观察每组数所对应的两个点的位置关系有什么规律?归纳:每组中的两个数只有符号不同,他们所对应的两点分别在原点的两侧,到原点的距离相等。
3.发现、总结相反数的定义:象这样只有符号不同的两个数称互为相反数 (opposite number)。
理解:代数定义:只有符号不同的两个数互为相反数。
0的相反数是0。
几何定义:在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数。
0的相反数是0。
说明:“互为相反数”的含义是相反数,是成对出现的,因而不能说“―6是相反数”。
“0的相反数是0”是相反数定义的一部分。
这是因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于它本身的唯一的数。
补充:一.相反数定义:只有符号不同的两个数叫做互为相反数定义的理解: “只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。
不能理解为只要符号不同的两个数就互为相反数。
另外,“0的相反数是0”也是相反数定义的一部分。
关于“数a 的相反数是-a”,应该明确的是-a 不一定是正数,a 不一定是正数。
关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二.相反数的意义(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
如5与-5是互为相反数。
(3)0的相反数是0。
也只有0的相反数是它的本身。
2.3 绝对值与相反数(第1课时)
2.3 绝对值与相反数(第1课时)【教学目标】〖知识与技能〗1.初步理解绝对值的概念,给出一个数能求出它的绝对值。
2.了解绝对值的几何意义,会利用绝对值比较两个负数的大小。
〖过程与方法〗通过绝对值与数轴的联系,加深对数轴的作用的理解〖情感、态度与价值观〗通过探索有理数绝对值的过程,培养学生的发现、归纳、总结能力【教学重点】求一个有理数的绝对值,会利用绝对值比较两个负数的大小。
【教学难点】理解绝对值的几何意义,【教学过程】一、自学质疑:1、什么叫做绝对值?〖活动一〗如图,汽车A距离O点20km,汽车B距离O点40km,如果规定在点右方为正,在数轴上A点和B点可以用什么数表示?A O B2、绝对值有怎样的几何意义?二、交流展示:〖活动二〗让学生画一条数轴,并在数轴上标出下列各数:3,-4,0,2.5, 5在讨论数轴上的各点与原点的距离时,只需要观察它与原点之间相隔多少个单位长度,与位于原点何方无关三、互动探究:在数轴上如果A点表示的数是16,那么A点到原点的距离是多少?在数轴上如果B点表示的数是-22,那么B点到原点的距离是多少?在数轴上如果C点表示的数是12,那么C点到原点的距离是多少?在数轴上如果D点表示的数是0,那么D点到原点的距离是多少?四、精讲点拨:1、绝对值的概念:数轴上表示一个数的点与原点的距离,叫做这个数的绝对值(absolute value)。
例如:表示‐1的点与原点的距离是1个长度单位,所以‐1的绝对值就是1.表示3的点与原点的距离是3个长度单位,所以3的绝对值就是3.表示0的点(原点)与原点的距离是0,所以0的绝对值就是0.表示-5的点和表示数5的点与原点的距离都是5个长度单位,所以-5和5的绝对值都是5.2、绝对值的表示:一个数的绝对值用符号“”表示,4的绝对值记着 4 ,-3.5的绝对值记着-3.5 ,0的绝对值记着03、例题讲解:例1.求4、-3.5的绝对值。
解:如图,在数轴上分别画出表示4、-3.5的点A、点B。
七年级数学上册专题02_绝对值与相反数(知识点串讲)(解析版)
专题02 绝对值与相反数知识点一相反数只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数)注意:1、通常a与-a互为相反数;2、a表示任意一个数,可以是正数、负数,也可以是0;3、特别注意,0的相反数是0.知识点二绝对值正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
(互为相反数的两个数的绝对值相等。
)考查题型考查题型一求一个数的相反数典例1.﹣25的相反数是()A.﹣25B.25C.﹣52D.52【答案】B 【解析】详解:-25的相反数是:25.故选:B.变式1-1.如果a表示有理数,那么下列说法中正确的是( )A.+a和一(-a)互为相反数B.+a和-a一定不相等C.-a一定是负数D.-(+a)和+(-a)一定相等【答案】D【解析】试题解析:A.()a a--=,两个数相等,故错误.B.当0a =时,a +与a -相等,故错误.C.a -可以是正数,也可以是负数,还可以是0.故错误.D .正确.故选D.变式1-2.-(-6)的相反数是 ( )A .|-6|B .-6C .0.6D .6【答案】B【详解】解:−(−6)=6,∴6的相反数是−6.答案为:−6.故选B.变式1-3已知1=a ,b 是2的相反数,则+a b 的值为( )A .-3B .-1C .-1或-3D .1或-3 【答案】C【详解】 ∵1=a ,b 是2的相反数,∴1a =或1a =﹣,2b =﹣,当1a =时,121a b +==﹣﹣;当1a =﹣时,123a b +==﹣﹣﹣;综上,+a b 的值为-1或-3,故选C .考查题型二 判断两个数是否互为相反数典例2.下列各组数中,互为相反数的是( )A .-(-1)与1B .(-1)2与1C .|1|-与1D .-12与1 【答案】D【解析】试题分析:选项A ,-(-1)与1不是相反数,选项A 错误;选项B ,(-1)2与1不是互为相反数,选项B 错误;选项C ,|-1|与1不是相反数,选项C 错误;选项D ,-12与1是相反数,选项正确.故答案选D .变式2-1.A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是( )A.B.C.D.【答案】B【解析】试题分析:根据互为相反数的两个数到原点的距离相等,并且在原点的两侧,可知只有B答案正确.故选B.变式2-2.(2020·沈阳市期末)如图,数轴上有A,B,C,D 四个点,其中到原点距离相等的两个点是()A.点B 与点D B.点A 与点C C.点A 与点D D.点B 与点C【答案】C【解析】试题分析:到原点距离相等的两个点所表示的数互为相反数.变式2-3.下列各对数互为相反数的是()A.+(+3)与-(-3) B.+(-3)与-(+3)C.+|+3|与+|-3| D.+|-3|与-|+3|【答案】D【详解】A、+(+3)=3,-(-3)=3,两者相等,故本选项错误;B、+(-3)=-3,-(+3)=-3,两者相等,故本选项错误;C、+|+3|=3,+|-3|=3,两者相等,故本选项错误;D、+|-3|=3,-|+3|=-3,两者互为相反数,故本选项正确;故选D.考查题型三多重符号化简典例3.下列化简,正确的是()A.﹣(﹣3)=﹣3B.﹣[﹣(﹣10)]=﹣10C.﹣(+5)=5D.﹣[﹣(+8)]=﹣8【答案】B【解析】试题分析:A、-(-3)=3,故错误;B、-[-(-10)]=-10,故正确;C、-(+5)=-5,故错误;D、-[-(+8)]=8,故正确.故选B.变式3-1.化简-(+2)的结果是()A .-2B .2C .±2D .0【答案】A【详解】-(+2)=-2.故选A .变式3-2.下列各数中互为相反数的是( )A .(5)+- 与 5-B .(5)-+ 与 5-C .(5)-+ 与 |5|--D .(5)-- 与 (5)+-【答案】D【详解】解:A 、+(-5)=-5,选项错误;B 、-(+5)=-5,选项错误;C 、-(+5)=-5,-|-5|=-5,选项错误;D 、-(-5)=5,+(-5)=-5,5与-5互为相反数,选项正确.故选D .变式3-3.﹣(﹣3)的绝对值是( )A .﹣3B .13 C .3 D .﹣13 【答案】C【详解】解:∵﹣(﹣3)=3,3的绝对值等于3,∴﹣(﹣3)的绝对值是3,即|﹣(﹣3)|=3.故选:C .考查题型四 相反数的应用典例4.已知x ﹣4与2﹣3x 互为相反数,则x=( )A .1B .﹣1C .32 D .﹣32【答案】B【详解】因为x ﹣4与2﹣3x 互为相反数,所以x ﹣4+2﹣3x =0,解得:x=-1.故选B. 变式4-1.若37m -和9m -互为相反数,则m 的值是( )A .4B .1C .1-D .4-【答案】C【详解】由题意知3790m m -+-=,则379m m -=-, 22m =-,1m =-,故选:C .变式4-2.(2020·大石桥市期中)如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-1 【答案】C【详解】由a 与1互为相反数,得a+1=0,即a=-1,故|a+2|=|-1+2|=1.故选C考查题型五 求一个数的绝对值典例5.2019-=( )A .2019B .-2019C .12019D .12019- 【答案】A【详解】 20192019-=.故选A .变式5-1.如图,在数轴上点A 所表示的数的绝对值为( )A .1B .﹣1C .0D .2【答案】A由数轴可得:点A 表示的数是﹣1.∵|﹣1|=1,∴数轴上点A 所表示的数的绝对值为1.故选A .变式5-2.已知a 与1的和是一个负数,则|a |=( )A .aB .﹣aC .a 或﹣aD .无法确定【答案】B【解析】试题解析:∵a 与1的和是一个负数,∴a <-1.∴|a|=-a .故选B .变式5-3.在0,1-,2,3-这四个数中,绝对值最小的数是( )A .0B .1-C .2D .3-【答案】A【详解】解:∵|−1|=1,|0|=0,|2|=2,|−3|=3,∴这四个数中,绝对值最小的数是0;故选:A .考查题型六 化简绝对值典例6.实数a 、b 、c 在数轴上的位置如图所示,则代数式|c ﹣a |﹣|a +b |的值等于()A .c +bB .b ﹣cC .c ﹣2a +bD .c ﹣2a ﹣b【答案】A【详解】由数轴可知,b <a <0<c ,∴c-a >0,a+b <0,则|c-a|-|a+b|=c-a+a+b=c+b ,故选A .变式6-1.当1<a<2时,代数式|a -2|+|1-a|的值是( )A .-1B .1C .3D .-3【答案】B解:当1<a <2时,|a ﹣2|+|1﹣a |=2﹣a +a ﹣1=1.故选B .变式6-2.已知5,2a b ==,且||a b b a -=-,则a+b 的值为( )A .3或7B .-3或-7C .-3D .-7【答案】B【解析】试题分析:由|a -b |=b -a ,知b >a ,又由|a |=5,|b |=2,知a =-5,b =2或-2,当a =-5,b =2时,a +b =-3,当a =-5,b =-2时,a +b =-7,故a +b =-3或-7. 解:∵|a -b |=b −a , ∴b >a ,∵|a |=5,|b |=2,∴a =−5,b =2或−2,当a =−5,b =2时,a +b =−3,当a =−5,b =−2时,a +b =−7,∴a +b =−3或−7.故选B.考查题型七 绝对值非负性的应用典例7.已知,则a+b 的值是( ) A .-4B .4C .2D .-2【答案】D【详解】解:根据题意得,a +3=0,b−1=0,解得a =−3,b =1,所以a +b =−3+1=−2.故选:D .变式7-1.已知|1|a +与|4|b -互为相反数,则b a 的值是( )。
2.4__绝对值与相反数(1)
请你结合数轴,根据定义说出
-3、2、0的绝对值.
你能说出数轴上的点A、B、C、D、E所表
示的数的绝对值吗?
点A表示的数-5的绝对值为5; 点B表示的数-3.5的绝对值为3.5; 点C表示的数1的绝对值为1;
点D表示的数2.5的绝对值为2.5;
点E表示的数5的绝对值为5.
例1
求4、-3.5的绝对值.ห้องสมุดไป่ตู้
解:在数轴上分别画出表示4、-3.5的点A、点B.
3.5
4
5 4 3 2 1 0
B ·
A
1
2
3
4
5
因为点A与原点的距离是4,所以4的绝对值是4; 因为点B与原点的距离是3.5,所以-3.5的绝对值是3.5.
通常,我们将数a的绝对值记为|a| .
例如: 4的绝对值记为|4|, -3.5的绝对值记为 |-3.5|.
5 例2 已知一个数的绝对值是 2 ,求这个数. 5 解:数轴上到原点的距离是 2 的点有2个,它们 分别是点A和点B.
B ·
5 2
5 2
5 4 3 2 1 0
1
2
A ·
3
4
5
5 5 , 因为点A、点B表示的数分别是 、 2 2 5 5 5 所以绝对值是 的数有2个,它们是 或 . 2 2 2
初中数学 七年级(上册)
2.4
绝对值与相反数(1)
小明家在学校正西方3 km处,小丽家在学
校正东方2 km处,他们上学所花的时间,与各
家到学校的距离有关.
小明家
学校
小丽家
你会用数轴上的点表示学校、小明家、小
丽家的位置吗?
1.画数轴,用数轴的原点O表示学校的位置,
《相反数与绝对值》 讲义
《相反数与绝对值》讲义一、引入在数学的广袤世界里,相反数和绝对值是两个非常基础且重要的概念。
它们就像是数学大厦的基石,为我们解决各种数学问题提供了关键的工具和思路。
想象一下,你站在数轴上,向左走和向右走是完全相反的方向,这就有点像相反数的概念。
而无论你在数轴上的哪个位置,距离原点的长度始终是确定的,这就是绝对值。
二、相反数的定义与性质(一)定义相反数指的是绝对值相等,正负号相反的两个数。
比如说,5 和-5 就是一对相反数。
再比如,-2 的相反数是 2。
(二)性质1、互为相反数的两个数之和为 0 。
这是一个非常重要的性质,比如 3 和-3 相加,结果就是 0 。
2、 0 的相反数还是 0 。
因为 0 既不是正数也不是负数,它是唯一的一个相反数等于自身的数。
三、如何求一个数的相反数要想求出一个数的相反数,其实很简单。
对于正数,只需要在它前面加上一个负号就可以得到它的相反数。
比如,7 的相反数就是-7 。
对于负数,把负号去掉就得到它的相反数。
例如,-11 的相反数就是 11 。
对于 0 ,如前面所说,它的相反数还是 0 。
四、相反数在实际生活中的应用相反数的概念在实际生活中也有不少应用。
比如,在温度计量中,如果今天的最高气温是 5℃,而最低气温是-5℃,这里的 5 和-5 就是一对相反数,它们反映了温度在零上和零下的相反情况。
再比如,在财务记账中,收入和支出可以用正负数来表示,收入100 元可以记为+100 元,支出 50 元就可以记为-50 元,那么+50 元和-50 元也是一对相反数,分别代表着相反的财务流向。
五、绝对值的定义与性质(一)定义绝对值是指一个数在数轴上所对应点到原点的距离。
用符号“||”来表示。
例如,|5| = 5 ,|-5| = 5 。
(二)性质1、绝对值具有非负性,即任何数的绝对值都大于等于 0 。
2、互为相反数的两个数的绝对值相等。
六、如何求一个数的绝对值求一个数的绝对值,需要分情况讨论。
绝对值与相反数(基础)知识讲解
绝对值与相反数(基础)责编:康红梅【学习目标】1.借助数轴理解绝对值和相反数的概念;2.知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系;3.会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小;4.通过应用绝对值解决实际问题,体会绝对值的意义和作用.【要点梳理】要点一、相反数1.定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0.要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点二、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.要点三、绝对值1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数.(2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点四、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法: 两个数比较大小,按数的性质符号分类,情况如下: 两数同号 同为正号:绝对值大的数大 同为负号:绝对值大的反而小 两数异号正数大于负数 -数为0 正数与0:正数大于0负数与0:负数小于0要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b <,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.【典型例题】类型一、相反数的概念1.下列各组数互为相反数的是( )A .18-和0.8+ B .13和0.33- C .6-和(6)-- D . 3.14-和π 【思路点拨】解决这类问题的关键是抓住互为相反数的特征“只有符号不同”,所以只要将原数的符号变为相反的符号,即可求出其相反数.【答案】C【解析】18-的相反数是18,而不是0.8+;13的相反数是13-,而不是0.33-,-6的相反数就是(6)--,所以C 正确; 3.14-的相反数是3.14,不是π.【总结升华】求一个数的相反数,只改变这个数的符号,其他部分都不变.举一反三:【变式】(2015•天水)若a 与1互为相反数,则|a+1|等于( )A.-1B.0C.1D.2【答案】B类型二、多重符号的化简2.(2014秋•本溪校级月考)化简:(1)﹣{+[﹣(+3)]};(2)﹣{﹣[﹣(﹣|﹣3|)]}.【答案与解析】解:(1)原式=﹣{+[﹣3]}=﹣{﹣3}=3;(2)原式=﹣{﹣[﹣(﹣3)]}=﹣{﹣[+3]}=﹣{﹣3}=3.【总结升华】运用多重符号化简的规律解决这类问题较为简单.即数一下数字前面有多少个负号.若有偶数个,则结果为正;若有奇数个,则结果为负.类型三、绝对值的概念3.求下列各数的绝对值. 112-,-0.3,0,132⎛⎫-- ⎪⎝⎭ 【思路点拨】112,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解.【答案与解析】方法1:因为112-到原点距离是112个单位长度,所以111122-=. 因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0.因为132⎛⎫-- ⎪⎝⎭到原点的距离是132个单位长度,所以113322⎛⎫--= ⎪⎝⎭. 方法2:因为1102-<,所以111111222⎛⎫-=--= ⎪⎝⎭. 因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0因为1302⎛⎫--> ⎪⎝⎭,所以113322⎛⎫--= ⎪⎝⎭ 【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法为:首先判断这个数是正数、负数还是零.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是零.从而求出该数的绝对值.类型四、比较大小4.比较下列有理数大小:(1)-1和0; (2)-2和|-3| ;(3)13⎛⎫-- ⎪⎝⎭和12- ; (4)1--______0.1-- 【答案】(1)0大于负数,即-1<0;(2)先化简|-3|=3,负数小于正数,所以-2<3,即-2<|-3|;(3)先化简1133⎛⎫--= ⎪⎝⎭,1122-=,1123>,即1132⎛⎫--<- ⎪⎝⎭. (4)先化简11--=-,0.10.1--=-,这是两个负数比较大小:因为11-=,0.10.1-=,而10.1>,所以10.1-<-,即1--<0.1--【解析】(2)、(3)、(4)先化简,再运用有理数大小比较法则.【总结升华】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断. 举一反三:【高清课堂:绝对值比大小 356845 典型例题2】【变式】比大小:653-______763- ; -|-3.2|______-(+3.2); 0.0001______-1000; 1.38-&&______-1.384; -π______-3.14.【答案】>;=;>;>;<类型五、绝对值非负性的应用5. 已知|2-m|+|n-3|=0,试求m-2n 的值.【思路点拨】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m |=0,|n-3|=0.因此,2-m =0,n-3=0,所以m =2,n =3.【答案】解:因为|2-m|+|n-3|=0且|2-m|≥0,|n-3|≥0所以|2-m|=0,|n-3|=0即2-m =0,n-3=0所以m =2,n =3故m-2n =2-2×3=-4.【解析】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m |=0,|n-3|=0.因此,2-m =0,n-3=0,所以m =2,n =3.【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a=b=…=m=0.类型六、绝对值的实际应用6.正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案】因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【解析】根据实际问题可知,哪个足球的质量偏离规定质量越小,则足球的质量越好.这个偏差可以用绝对值表示,即绝对值越小偏差也就越小,反之绝对值越大偏差也就越大.【总结升华】绝对值越小,越接近标准.【变式】某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L的误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数记作负数.检查结果如下表:+0.0018 -0.0023 +0.0025-0.0015 +0.0012 +0.0010请用绝对值知识说明:(1)哪几瓶是合乎要求的(即在误差范围内的)?(2)哪一瓶净含量最接近规定的净含量?【答案】(1)绝对值不超过0.002的有4瓶,分别是检查结果为+0.0018,-0.0015,+0.0012,+0.0010的这四瓶(2)第6瓶净含量与规定的净含量相差最少,最接近规定的净含量.。
绝对值和相反数的理解与应用
绝对值和相反数的理解与应用在数学的世界里,绝对值和相反数是两个非常基础且重要的概念。
虽然它们看起来简单,但却在数学的各个领域,以及我们的日常生活中有着广泛的应用。
首先,让我们来理解一下什么是绝对值。
绝对值指的是一个数在数轴上所对应点到原点的距离。
比如说,数字 5 在数轴上距离原点 5 个单位长度,所以 5 的绝对值就是 5;而-5 距离原点同样也是 5 个单位长度,所以-5 的绝对值也是 5。
用数学符号表示,绝对值记作“||”,那么|5| = 5,|-5| = 5。
绝对值具有非负性,也就是说,任何数的绝对值总是大于等于0 的。
这是因为距离不可能是负数。
例如,|0| = 0,|8| = 8,|-35| =35 等等。
再来说说相反数。
相反数是指绝对值相等,正负号相反的两个数。
例如 5 和-5 就是一对相反数,25 和-25 也是相反数。
可以说,如果两个数互为相反数,那么它们的和为 0 。
比如 3 +(-3) = 0 。
那么,绝对值和相反数在数学中有哪些具体的应用呢?在计算中,绝对值常常用于解决一些涉及距离和大小比较的问题。
比如,在计算两点之间的距离时,如果已知两点在数轴上的坐标分别为 A 和 B,那么它们之间的距离就可以表示为|A B| 。
假设 A 点表示的数是 2,B 点表示的数是-3,那么 A 和 B 之间的距离就是|2 (-3)|=|2 + 3| = 5 。
再比如,在比较两个数的大小但不确定它们的正负时,我们可以先求出它们的绝对值,再进行比较。
因为绝对值越大,这个数在数轴上距离原点就越远。
例如,要比较-7 和 5 的大小,我们先求出|-7| = 7 ,|5| = 5 ,因为 7 > 5 ,所以-7 < 5 。
相反数在解方程中有着重要的作用。
比如,当方程中出现形如 x =5 这样的式子时,我们可以根据相反数的定义,知道 x =-5 。
在实际生活中,绝对值和相反数的概念也经常出现。
想象一下,你在一个坐标轴上行走,以原点为起点,向前走 5 步表示为+5 ,向后走 5 步表示为-5 。
七年级(上)第二章 有理数 第5课时 绝对值与相反数(1)(附答案)
第5课时绝对值与相反数(1)预学目标1.通过课本中“家与学校的距离”问题,了解距离与数轴上的单位长度之间的关系.2.了解绝对值的概念,尝试理解绝对值与距离的关系(即绝对值的几何意义).3.了解绝对值的表示方法.4.了解绝对值的大小比较.知识梳理1.绝对值的概念(1)观察图1,点A、B、C、D到原点的单位长度分别为________、________、________、_______,即它们到原点的距离为_______、________、________、_______.(2)点A、B、C、D所表示的数的绝对值为_______、________、________、________.归纳:数轴上表示一个数的点到_____________________,叫做这个数的绝对值.2.绝对值的表示与比较-5的绝对值为______,记为:5-=______;-212的绝对值为_______,记为:______;3.2的绝对值为_______,记为:_______.我们容易看出:_____<_____<_____.例题精讲例l 求下列各数的绝对值:-112,5,0,-1,4.5.提示:求一个数的绝对值的问题,其实就是处理符号的问题.解答:112-=l12,5-=5,0=0,1-=1,4.5=4.5.点评:理解一个数的绝对值,我们可以借助于数轴,先在数轴上画出表示这个数的点,再求出它到原点的距离,这个距离就是这个数的绝对值.例2 某工厂生产一批零件,根据零件的质量要求(零件长度可以有0.2 cm的误差),现检查6个零件,检查数据如下(超过规定长度的厘米数记作正数,反之记作负数):以上6个零件中,( )号零件符号要求,其中质量最好的一个是( )号.提示:我们可以分别求出每一个数的绝对值,将所求值与误差作比较.小于或等于0.2的为合格产品,绝对值越小的质量越好.解答:①③④⑤;④.点评:一个数的绝对值越小,表示这个数距离原点越近;一个数的绝对值越大,表示这个数距离原点越远.热身练习1.在数轴上表示-12的点与原点的距离是 ( ) A .-12 B .12C .-2D .2 2.-14的绝对值是 ( ) A .14 B .4 C .-14D .-4 3.-23的绝对值是_______,23的绝对值是_______. 4.12+=_______;0=_______; 2.1-=_______;9--5=________.5.在数轴上分别画出表示-4、3、-2.5的点A 、B 、C ,然后填空:(1)点A 、B 、C 到原点的距离分别是_______、_______、_______.(2)4、3、-2.5的绝对值分别是_______、_______、________.6.用“>”、“<”或“=”填空:(1)3- _______2.7; (2) 5.5______7.2-- .7.在数轴上表示下列各数,并将它们的绝对值用“<”号连接起来.0,-3,2,-14,5.8.正式的排球比赛对所用排球的重量有严格的规定.检查5个排球的重量,超过规定重量的克数记作正数,不足规定重量的克数记作负数,检查结果如下(单位:克):+12,-14,+23,-16,-7.请运用学过的绝对值知识说明哪个排球的质量最好.参考答案1.B 2.A 3.23234.12 0 2.1 4 5.图略(1)4 3 2.5 (2)4 3 2.56.(1)> (2)< 7.图略0<14-<2<3-<58.离规定重量的克数为-7克的排球最好理由:因为它离规定重量的克数的绝对值最小.。
绝对值与相反数(第1课时)-2022-2023学年七年级数学上册课件(苏科版)
(1)如果点A、B表示的数互为相反数,那么点C表示的数是_____.
-1
-5
(2)如果点E、B表示的数互为相反数,那么点D表示的数是_____.
∵A、B互为相反数
∴A、B关于原点对称
01
问题引入
− − − −5
=?
既然有很多的“-”,
那我们只能像把洋葱一样慢慢打开你的心,
02
知识精讲
Q1:算一算,找规律
若x+y=0,则x与y互为相反数
=-2b
(1)a-b+(-a-b)
(2)a+b+(-a-b)
=0
(3)a+1+(1-a)
=2
(4)-a+b+(a-b)
=0
?
=0
例7-2
在(1)+(+3)与-(-3);(2)-(+3)与+(-3);(3)+(+3)与-(+3);
(3)(4)
(4)+(-3)与-(-3),互为相反数的是________。(填序号)
Q1:算一算,找规律
当有奇数个“-”时,结果为“-”
1个“ − ”
− 5 = −5
2个“ − ”
− −5 = _____ 5
当有偶数个“-”时,结果为“+”
3个“ − ”
− − −5
4个“ − ”
− − − −5
横批:奇负偶正
= _____ -5
= _____
5
例5
a − + −a
(1)−(−a) = ____;
(2)− − +43
(3)− + − +3
冀教版七年级上册数学《绝对值与相反数》说课教学复习课件
0
4
-2 -3.5
0 1.5 0 0
01
知识讲解
例1 (1)用数轴上的点表示下列各组数:
3,-3;5,-5; 3 ,- 3 . 55
(2) 观察表示上述各组数的点在数轴上的位置,写出
这些数的绝对值.
解:(1)如下图:
5
3
3
3
55
3
5
-5 -4 -3 -2 -1 0 1 2 3 4 5
(2)观察各点在数轴上的位置,得到
随堂训练
1.-1.6是_1_._6_的相反数,_-0_._3_的相反数是0.3. 2.下列几对数中互为相反数的一对为( C ).
A. (8) 和 (8) B. (8) 与 (8)
C. (8) 与 (8) 3.5的相反数是__-5__;a的相反数是_-_a_;
4.若a是负数,则-a是_正____数;若-a是负数,则
| 3 | 3 ,| 2.5 | 2.5 88
互为相反数的两个 数的绝对值相等.
知识讲解
例4 已知|x-3|+|y-2|=0,求x+y的值 分析:
一个数的绝对值总是大于或等于0,即为非负数,若两个非负 数的和为0,则这两个数同时为0. 解:根据题意可知x-3=0,y-2=0,所以x=3,y=2,故x+y=5.
0
(a 0) (a 0) (a 0)
|a|≥0 任何一个有理数的绝对值都是非负数.
知识讲解
例3 求下列各数的绝对值:
3 , 3 , -2.5,+2.5 88
[解析] 先判断该数的符号,再根据正数的绝对值是它本
身;负数的绝对值是它的相反数;0的绝对值是0,即可
求解.
解:| 3 | 3 ,| 2.5 | 2.5, 88
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值与相反数(基础)
【学习目标】
1.借助数轴理解绝对值和相反数的概念;
2.知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系;
3.会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小;
4.通过应用绝对值解决实际问题,体会绝对值的意义和作用.
【要点梳理】
要点一、相反数
1.定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0.
要点诠释:
(1)“只”字是说仅仅是符号不同,其它部分完全相同.
(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.
(3)相反数是成对出现的,单独一个数不能说是相反数.
(4)求一个数的相反数,只要在它的前面添上“-”号即可.
2.性质:
(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).
(2)互为相反数的两数和为0.
要点二、多重符号的化简
多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .
要点诠释:
(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.
(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.
要点三、绝对值
1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.
要点诠释:
(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:
(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.
(3)一个有理数是由符号和绝对值两个方面来确定的.
2.性质:
(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩
(1)0除外,绝对值为一正数的数有两个,它们互为相反数.
(2)互为相反数的两个数(0除外)的绝对值相等.
(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.
要点四、有理数的大小比较
1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .
2.法则比较法:
利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:
(3)判定两数的大小.
3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.
4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b <,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.
5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.
【典型例题】
类型一、相反数的概念
1.(2016•益阳)的相反数是( )
A .2016
B .﹣2016
C .
D .
【思路点拨】解决这类问题的关键是抓住互为相反数的特征“只有符号不同”,所以只要将原数的符号变为相反的符号,即可求出其相反数.
【答案】C
【解析】解:∵﹣
与只有符号不同,
∴﹣的相反数是. 故选:C .
【总结升华】求一个数的相反数,只改变这个数的符号,其他部分都不变.
举一反三:
【变式】(2015•天水)若a 与1互为相反数,则|a+1|等于( )
A.-1
B.0
C.1
D.2
【答案】B
类型二、多重符号的化简
2.(2014秋•本溪校级月考)化简:
(1)﹣{+[﹣(+3)]};
(2)﹣{﹣[﹣(﹣|﹣3|)]}.
【答案与解析】
解:(1)原式=﹣{+[﹣3]}=﹣{﹣3}=3;
(2)原式=﹣{﹣[﹣(﹣3)]}=﹣{﹣[+3]}=﹣{﹣3}=3.
【总结升华】运用多重符号化简的规律解决这类问题较为简单.即数一下数字前面有多少个负号.若有偶数个,则结果为正;若有奇数个,则结果为负.
类型三、绝对值的概念
3.求下列各数的绝对值. 112-,-0.3,0,132⎛⎫-- ⎪⎝⎭
【思路点拨】1
12,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字
就是各数的绝对值.还可以用绝对值法则来求解.
【答案与解析】
方法1:因为112-到原点距离是112个单位长度,所以111122-=. 因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.
因为0到原点距离为0个单位长度,所以|0|=0. 因为132⎛
⎫-- ⎪⎝⎭到原点的距离是132个单位长度,所以113322⎛⎫--= ⎪⎝⎭
. 方法2:因为1102-<,所以111111222⎛⎫-=--= ⎪⎝⎭
. 因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.
因为0的绝对值是它本身,所以|0|=0 因为1302⎛
⎫--> ⎪⎝⎭,所以113322
⎛⎫--= ⎪⎝⎭ 【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法为:首先判断这个数是正数、负数还是零.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是零.从而求出该数的绝对值.
类型四、比较大小
4.比较下列有理数大小:
(1)-1和0; (2)-2和|-3| ; (3)13⎛⎫
-- ⎪⎝⎭和12
- ; (4)1--______0.1-- 【答案】
(1)0大于负数,即-1<0;
(2)先化简|-3|=3,负数小于正数,所以-2<3,即-2<|-3|;
(3)先化简1133⎛⎫
--= ⎪⎝⎭,1122-=,1123>,即1132⎛⎫--<- ⎪⎝⎭
. (4)先化简11--=-,0.10.1--=-,这是两个负数比较大小:因为11-=,0.10.1-=,而10.1>,所以10.1-<-,即1--<0.1--
【解析】(2)、(3)、(4)先化简,再运用有理数大小比较法则.
【总结升华】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断. 举一反三:
【变式】比大小: 6
53-______763- ; -|-3.2|______-(+3.2); 0.0001______-1000; 1.38-______-1.384; -π______-3.14.
【答案】>;=;>;>;<
类型五、绝对值非负性的应用
5.已知|2-m|+|n-3|=0,试求m-2n 的值.
【思路点拨】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m |=0,|n-3|=0.因此,2-m =0,n-3=0,所以m =2,n =3.
【答案】
解:因为|2-m|+|n-3|=0
且|2-m|≥0,|n-3|≥0
所以|2-m|=0,|n-3|=0
即2-m =0,n-3=0
所以m =2,n =3
故m-2n =2-2×3=-4.
【解析】由|a|≥0即绝对值的非负性可知,|2-m|≥0,|n-3|≥0,而它们的和为0.所以|2-m|=0,|n-3|=0.因此,2-m=0,n-3=0,所以m=2,n=3.
【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a=b=…=m=0.
类型六、绝对值的实际应用
6.正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.
【答案】因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.
【解析】根据实际问题可知,哪个足球的质量偏离规定质量越小,则足球的质量越好.这个偏差可以用绝对值表示,即绝对值越小偏差也就越小,反之绝对值越大偏差也就越大.。