-非线性电路混沌现象的探究以及基于Multisim的仿真设计

合集下载

非线性电阻电路-混沌电路

非线性电阻电路-混沌电路
2.实验目的
2.1)了解混沌现象的一些基本概念:混沌的定义,特征等。
2.2)对设计电路进行调试,在示波器上观察相图中的倍周期分岔及混沌,奇怪吸引子等。
2.3)测量有源非线性电阻的伏安特性。
3.实验原理
3.1非线性电路与非线性动力学
实验电路如图1所示。电路中的电感L和电容C1,C2并联构成一个振荡电路。R是一有源非线性负阻元件,电感L和电容器C2组成一损耗可以忽略的谐振回路;可变电阻R和电容C1串联将振荡器产生的正弦信号移相输出。
当R为非线性电阻,由于加在此元件上的电压增加时,通过它的电流却减小,因而此元件称为非线性负阻元件。
3.2有源非线性负阻元件的实现
有源非线性负阻元件R实现的放大有好多,本文采用两个运算放大器(一个双运放TL072)和6个配置的电阻来来实现比较简单的电路。电路图如图2,它的伏安特性如图3。
3.3非线性负阻元件R配置的电路实验
本实验所要研究的是非线性元件R对整个电路的影响,而非线性负阻元件的作用是使振动周期产生分岔和混沌。实际试验电路如图4.
4.实验过程及其结果
4.1有源非线性电阻伏安特性的测量
将元件安图5所示构成的电路图。可变电阻由99999.9Ω起由大到小调节,记录所调解的电阻值数字电压表以及电流表上对应的读书,填入表2中。由电压,电流关系在坐标轴上描点作出有源非线性电路的非线性负阻特性曲线。
记录单吸引子的相图相应的CH1,CH2输出波形图。
项目
相图
CH1波形
CH2波形
单吸引子
双吸引子
(贴Multisim仿真的混沌结果图)
5.结论
从上面试验结果可知,混沌现象表现了非周期有序性,看起来似乎是无序状态,但呈现一定的统计规律。
1)谱分析:R0很小时,系统只有一个稳定的状态,随着R0的变化系统由一个稳定状态变成在两个稳定状态之间跳跃,即由一周期的变化为二周期的。进而当R0继续变化(增大)两个稳定状态分裂为四个稳定状态(四周期),八个稳定状态(八周期)……….直到分裂进入无穷周期,即为连续频谱,接着进入混沌,系统的状态无法确定,分岔是进入混沌的途径。

非线性电路的MapleSim仿真实验

非线性电路的MapleSim仿真实验
( 4 1 0 1 2 8 )。
3 )静态工作点稳 定电路:可演示放大 电路中负反馈对 电路 的影 响,通过短路块可将反馈 电阻 R e接入 电路或短接, 观 察负 反馈对 放大 电路 的影 响; 改变 负载 阻值 ,观 察波形
幅度变 化。
在 理论教 学 的同时进 行辅助 实验演示 ,将实验 结果 通过虚 拟 示波器 传至 多媒体 计算机 投影 显示 。通 过演示 实验 ,使 得 课堂 教学能够 理论 联系 实际,理论 讲授过 程变得 直观 生 动,利用 学生 的探究 心理 ,提 高学生 的学 习兴趣 ,加深 学 生对 知识点 的理解 ,对 于提 高课堂教 学效 果的优 化增强 具 有重要的作用 。 参考文献 [ 1 ]张婧 , 朱骏 . 虚拟示 波器在物 理实验教学中的应用 [ J ] .
1 蔡 氏电路简介
2 O世纪 8 O 年代 ,非线性电路中陆续发现各种分岔和混
: I : 基 金 项 目:湖 南农 业大 学 东方科 技学 院教 改项 目 ( D B 2 0 1 1 0 5 3 )。 作 者 :赵 凡 ,硕 士 ,湖南 农业 大 学 东方 科技 学 院理 工 学部 实验 师 ,研 究 方 向为 理论 物理 学 ;汤 剑锋 ,湖 南 农业 大 学 东方 科技 学 院
文 章编 号 :1 6 7 卜4 8 9 X ( 2 0 1 4 ) 0 4 一 O 1 1 4 — 0 3
随着计算机科学 的发展 , 人们意识到计算机仿真技术 是
非线性科学包括 3个主要部分:孤立波 、混沌 、分 形。 传 统实验 教学方法 的有益 补充 。以往 文献探 讨 了 M a t l a b 、 讨M a p l e S i m仿 真软件在 实验 教学 中运 用的文献 。M a p l e S i m 是一个 多领域 物理 的仿真建 模软件 ,具有 图形化 的仿真 环 境,用户可通过简单和直观 的方式完成各种系统 的建模 、分 析和 仿真 。M a p l e S i m基于 M a p l e数学 引擎 ,使用 M a p l e中 的高 级符号计 算功 能生成物 理系 统的数 学模型 ,能有效 地 管理 和简化 复杂系 统 的数 学模 型,实现 系统 的高保 真、高 速仿 真,相 比于其他 仿真 软件有其 独特 的特 点。本文 以蔡 氏电路为例 ,说 明 M a p l e S i m在混沌 电路实验教学 中的应用 。

非线性电路混沌实验报告

非线性电路混沌实验报告

非线性电路混沌实验报告本实验旨在通过搭建非线性电路,观察其在一定条件下的混沌现象,并对实验结果进行分析和总结。

在此过程中,我们使用了一些基本的电子元件,如电阻、电容和电感等,通过合理的连接和控制参数,成功地观察到了混沌现象的产生。

首先,我们搭建了一个基本的非线性电路,其中包括了电源、电阻、电容和二极管等元件。

通过调节电路中的参数,我们观察到了电压和电流的非线性响应,这表明电路的行为不再遵循简单的线性关系。

接着,我们进一步调整电路参数,尤其是电容和电阻的数值,使电路处于临界状态,这时我们观察到了电路输出信号的混沌波形。

混沌波形表现出了随机性和不可预测性,这与传统的周期性信号有着明显的区别。

在观察混沌波形的过程中,我们发现了一些有趣的现象。

首先,混沌波形的频谱分布呈现出了宽带特性,这说明混沌信号包含了多个频率成分,这也是混沌信号难以预测的重要原因之一。

其次,混沌信号的自相关函数表现出了指数衰减的特性,这表明混沌信号的相关性极低,难以通过传统的方法进行分析和处理。

最后,我们还观察到了混沌信号的分形特性,即信号在不同时间尺度下呈现出相似的结构,这也是混沌信号独特的特征之一。

综合以上实验结果,我们可以得出以下结论,非线性电路在一定条件下会产生混沌现象,混沌信号具有随机性、不可预测性、宽带特性、自相关性低和分形特性等特点。

这些特点使得混沌信号在通信、加密、混沌电路设计等领域具有重要的应用前景。

同时,我们也需要注意到混沌信号的复杂性和不确定性,这对于混沌信号的分析和处理提出了挑战,需要进一步的研究和探索。

总之,本实验通过搭建非线性电路,成功地观察到了混沌现象,并对混沌信号的特性进行了初步的分析和讨论。

通过本次实验,我们对混沌现象有了更深入的理解,也为混沌信号的应用和研究提供了一定的参考和启发。

希望本实验能够对相关领域的研究和工程实践有所帮助。

感谢各位的参与和支持!非线性电路混沌实验小组。

日期,XXXX年XX月XX日。

[实验报告]用非线性电路研究混沌现象

[实验报告]用非线性电路研究混沌现象

用非线性电路研究混沌现象一. 实验目的掌握用示波器观察正弦波形的周期分岔及混沌现象的方法。

学会自己设计和制作一个实用电感器以及测量非线性器件伏安特性的方法。

二. 实验原理1.非线性电路与非线性动力学实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。

电感器L 和电容C 2组成一个损耗可以忽略的谐振回路;可变电阻R V 和电容器C 1串联将振荡器产生的正弦信号移相输出。

本实验中所用的非线性元件R 是一个三段分段线性元件。

图2所示的是该电阻的伏安特性曲线,从特性曲线显示中加在此非线性元件上电压与通过它的电流极性是相反的。

由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。

图1非线性电路原理图 图2非线性元件伏安特性 图1电路的非线性动力学方程为:1121)(1C C C C U g U U G dtdU C ⋅--⋅= L C C C i U U G dt dU C +-⋅=)(21122 (1)2C L U dt di L -=式中,导纳V R G /1=,1C U 和2C U 分别为表示加在电容器C 1和C 2上的电压,L i 表示流过电感器L 的电流,G 表示非线性电阻的导纳。

2.有源非线性负阻元件的实现有源非线性负阻元件实现的方法有多种,这里使用的是一种较简单的电路,采用两个运算放大器和六个配置电阻来实现其电路如图4所示,实验所要研究的是该非线性元件对整个电路的影响,而非线性负阻元件的作用是使振动周期产生分岔和混沌等一系列非线性现象。

图3有源非线性器件图4双运放非线性元件的伏安特性实际非线性混沌实验电路如图5所示。

图5非线性电路混沌实验电路图三.实验步骤测量一个铁氧体电感器的电感量,观测倍周期分岔和混沌现象。

1.按图5所示电路接线,其中电感器L由实验者用漆包铜线手工缠绕。

可在线框上绕70-75圈,然后装上铁氧体磁心,并把引出漆包线端点上的绝缘漆用刀片刮去,使两端点导电性能良好。

混沌电路

混沌电路

混沌非线性电路及其研究摘要:在混沌电路的研究中,前人关于混沌电路中蔡氏电路(非线性电路)的建模已趋成熟。

所以本次实验通过研究混沌非线性电路,借助Multisims 10仿真软件对电路进行研究,从而得出蔡氏电路(非线性电路)中一些基本结论,加深对其的了解。

关键词:混沌非线性电阻特性曲线引言:混沌电路与系统理论经过3O多年的发展,在科学和工程中得到了广泛的应用。

混沌信号由于具有伪随机似噪声和宽频带特性,在保密通信领域获得了广泛的重视与研究。

在适当的电路参数范围内能够产生混沌现象,该电路结构简单、易于工程实现,因而获得了广泛的重视与研究。

蔡氏混沌电路是一个典型的非线性电路,在适当的电路参数范围内能够产生混沌现象,该电路结构简单、易于工程实现,因而获得了广泛的重视与研究是熟悉和理解混沌现象的一个基本的典型电路。

本文以蔡氏混沌电路为例进行仿真研究。

首先,借助Multisims 10仿真软件直接显示非线性电路的伏安特性曲线,再通过点测法来观察所做的图与示波器上观察到的图的吻合度来验证蔡氏电路。

其次,通过对混沌电路实验中的某几个元件进行研究,再得出其对混沌非线性电路的影响,从实验角度论证了蔡氏电路参数的非唯一性和蔡氏电路混沌状态对赋值的敏感性。

正文:非线性电路中的混沌现象是最早引起人们关注的现象之一,而迄今为止,最好的混沌实验结果也是在非线性电路中得到的.因为仿真电路实验有许多优点,如方程比较容易实现,仿真实验的条件可以以精确控制,数据精确度较高等.因此,非线性电路的仿真实验能够给出较好的定量结果,观察到比较单纯的、接近理论模式的混沌行为.因此,在混沌的研究中,仿真电路充当一个非常重要的角色.这里我们借助MULTISIM仿真软件进行仿真实验研究.蔡氏混沌电路是一个典型的非线性电路,它在一定的参数空间内,能够产生混沌信号,在实际中已获得大量应用。

本节以蔡氏电路为例,研究其产生的混沌特性。

(一)利用非线性负电阻电路,测量非线性伏安特性曲线。

混沌电路

混沌电路

现代电路理论混沌电路设计实验姓名:高振新学号:114104000455指导老师:孙建红用Multisim 仿真混沌电路一.混沌实验目的1.了解混沌现象和混沌电路2.使用软件仿真电路,能使用示波器观察混沌电路现象,通过实验感性认识混沌现象3.研究混沌电路敏感参数对混沌现象的影响二.混沌电路的原理和设计1.蔡氏电路本实验采用蔡氏电路,蔡氏电路是美国贝克莱大学的蔡少棠教授设计的能产生混沌行为的最简单的自制电路,为混沌电路的典型例子,其结构简单,现象明晰,被广泛用于高校的实验教学中。

蔡氏电路原理图如图1所示,电路由1个线性电感L,2个线性电容C1,C2,1个线性电阻R0,一个非线性电阻R构成,为三阶自制动态电路,即分为LC振荡电路,RC分相电路电路和分线性元件三部分。

电阻R0起调节C1,C2的相位差。

非线性电阻R为分段线性电阻,福安特性i R=g(U R)图1 蔡氏电路基本原理图根据基尔霍夫定律,由图1可得电路状态方程:由于R是非线性电阻,上述方程没有解析解。

该电路在特定的参数条件下出现自己振荡动态过程,出现混沌现象。

三.混沌电路的构建与仿真为了实现有源非线性负阻元件,可以使用以下电路采用两个运算放大器和六个配置电阻来实现,这主要是一个正反馈电路,能输出电流以维持振荡器不断震荡,而非线性负阻元件能使震荡周期产生分岔和混沌等一系列非线性现象3.1实验电路的构建1.运行Multisim,建立仿真文件,构建如下图所示的电路图,为了观察混沌电路的波形,在仿真平台上添加虚拟示波器,将示波器A,B两个输入通道与需要观测的电路节点相连,通道A观测电容C2两端的电压信号;通道B观测电容C1两端的电压信号。

3.2 实验电路仿真:运行软件,观察示波器,在示波器窗口上选择“Y/T”模式,进行波形的时域分析;选择“A/B”模式,则显示李萨如图形,进行波形的相位测试。

R0的作用是移相,使电容C1,C2两端的电压信号产生相位差,运放的前级和后级的正,负反馈同时存在,正反馈的大小程度与R0,R3,R6有关,负反馈大小与R1,R2,R5,R4有关,若调节R0的阻值大小,正反馈大小程度就会发生变化,当正反馈程度大于负反馈程度时,电路才能处于震荡状态。

非线性电路混沌实验报告

非线性电路混沌实验报告

非线性电路混沌_实验报告非线性电路混沌实验报告一、实验目的通过搭建非线性电路,观察和研究电路的混沌现象,深入理解和掌握混沌系统的特性。

二、实验原理混沌系统是一类非线性动力系统,其特点是对初始条件极其敏感,微小的初始条件变化会导致系统演化出完全不同的结果。

混沌系统的行为复杂、难以预测,具有高度的随机性。

在电路中,非线性元件的引入可以引起电路的混沌现象。

三、实验器材和仪器1. 函数生成器2. 示波器3. 混沌电路实验板4. 电源5. 电压表和电流表四、实验步骤1. 搭建混沌电路按照实验指导书上的电路图,搭建混沌电路。

其中,电路中需要包含非线性元件,如二极管、晶体管等。

2. 调节函数生成器将函数生成器连接到电路中,调节函数生成器的频率和幅度,使其能够提供合适的输入信号。

同时,设置函数生成器的触发方式和触发电平。

3. 连接示波器将示波器的输入端连接到电路输出端,调节示波器的触发方式和触发电平,使其能够正常显示电路的输出波形。

4. 开始实验打开电源,调节函数生成器和示波器,观察电路的输出波形。

记录不同参数下的波形变化,并观察混沌现象的特点。

五、实验结果与分析在实验中,我们观察到了电路的混沌现象。

随着参数的变化,电路输出的波形呈现出复杂的、不规则的变化。

即使是微小的参数调节,也会导致电路输出的波形发生明显的变化,呈现出不同的分形结构。

这表明混沌系统对初始条件的敏感性。

通过实验结果的观察和分析,我们深入理解了混沌系统的特性。

混沌系统的不可预测性和随机性使其在信息加密、随机数生成等领域具有广泛的应用价值。

六、实验总结通过本次实验,我们成功搭建了混沌电路,并观察到了电路的混沌现象。

通过实验的操作,我们对混沌系统的特性有了更深入的理解,并掌握了观察和研究混沌现象的方法。

混沌系统具有很高的随机性和不可预测性,这为信息加密、随机数生成等领域提供了新的思路和方法。

在今后的学习和研究中,我们将进一步探索混沌系统的特性,并应用于实际问题中。

蔡氏混沌电路的分析和MATLAB仿真

蔡氏混沌电路的分析和MATLAB仿真

参考文献
刘崇新. 非线性电路理论及应用. 西安:西安交通大学出版社, 2007
附 MATLAB 仿真程序
options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-4]); [t,x]=ode45(@mysolve,[0 100],[ 1 0 0],options); subplot(2,3,1);plot(x(:,1),x(:,2));title('x-y平面相图') subplot(2,3,2);plot(x(:,1),x(:,3));title('x-z平面相图') subplot(2,3,3);plot(x(:,2),x(:,3));title('y-z平面相图') subplot(2,3,4);plot(t,x(:,1));title('x时域波形') subplot(2,3,5);plot(t,x(:,2));title('y时域波形') subplot(2,3,6);plot(t,x(:,3));title('z时域波形')

2
0
0
0
-2
-2
-4
-0.5
-4
0
50
100
0
50
100
0
50
100
结论
蔡氏电路所代表的非线性动力学系统的确是混沌系统。该系统具有丰富的混沌动力学行 为。仿真结果印证了震荡过程中出现的双涡卷混沌奇怪吸引子。
利用系统平衡点处的线性化矩阵,可以定性分析系统的动力学行为,以便寻找能使系统 产生混沌的参数。
计算仿真

非线性电阻电路-混沌电路

非线性电阻电路-混沌电路

非线性电阻电路-混沌电路姓名:陈文河学号. 0858210103班级:08582101指导老师:孙建红非线性电阻电路•混沌电路摘要:混沌的研究是20世纪物理学的重人事件。

混沌的研究表明,即使是非常简单的确定系统,由于自身的非线性作用,同样具有内在的随机性。

本文首先简略地介绍了混沌的基本概念,及其相关定义,概述了混沌运动的基本特征和混沌运动的判别方法。

利用非线性电阻的特性来设计混沌电路,然后通il Multisim 10.0软件来进行仿真计算,观察混沌现象。

分析结果衣明所谓混沌是指确定的非线性动力学系统中出现的貌似无规的类随机现象,此时系统运动轨道的时间行为对初始条件具有敏感性形成敏感参数,从而其长期行为变得混乱而无法预测,而整个系统长期行为的全局特征又与初始条件无关这种局部局域的不稳定性和整体上的稳定性必使它具有许多奇特性质。

混沌运动产生了层次和结构,混沌并不是真正意义上的无序和混乱,它是一种非周期的有序运动。

关键词:混沌,敏感参数,非线性电阻lo引言混沌(chaos)的英文意思是混乱的,无序的。

自1963年洛伦兹(E.N.Lorenz) 从三维自洽动力学系统中发现混沌以来,混沌动力学已迅速成为内容极为丰富,应用非常广泛的研究领域,它的概念和和方法逐步应用到自然科学,工程技术和社会科学的许多领域,并对于开阔和深化人们对自然界的认识起着越来越重要的作用。

混沌学揭示:世界是确定的,必然的,有序的,但同时又是随机的,偶然的,无序的。

有序运动会产生无序,无序的运动又包含着更高层次的有序,现实世界就是确定性和随机性,必然性和偶然性,有序性和无序性的辩证统一。

2. 实验目的2.1) 了解混沌现象的一些基本概念:混沌的定义,特征等。

2.2) 对设计电路进行调试,在示波器上观察相图中的倍周期分岔及混沌,奇怪吸引子等。

2.3) 测量有源非线性电阻的伏安特性。

3. 实验原理3.1非线性电路与非线性动力学实验电路如图1所示。

电子电工综合实验混沌电路

电子电工综合实验混沌电路

电子电工综合实验--混沌电路电工电子综合实验论文课题名称:非线性电阻电路的应用—混沌电路姓名:张枫霞学号: 1104210412【摘要】本实验研究非线性电阻的应用—混沌电路。

以非线性负电阻电路为基础,简单介绍了非线性负电阻混沌电路实验的原理。

通过设计非线性负电阻电路和混沌电路,了解非线性电阻电路的应用和混沌电路基本原理。

同时利用Multisim仿真软件模拟测定非线性负电阻的伏安特性曲线,观察不同参数条件下混沌现象。

【关键词】混沌电路 Multisim 非线性电阻电路【引言】混沌是20世纪最重要的科学发现之一,被誉为是继相对论和量子力学后的第三次物理革命,它打破了确定性与随机性之间不可逾越的分界线,将经典力学研究推进到一个崭新的时代。

混沌学中的混沌是指貌似无序的序,紊乱中的规律。

现在混沌研究涉及的领域包括数学、物理学、生物学、化学、天文学、经济学及工程技术的众多学科,并对这些学科的发展产生了深远影响。

混沌包含的物理内容非常广泛,研究这些内容更需要比较深入的数学理论,如微分动力学理论、拓扑学、分形几何学等等。

目前混沌的研究重点已转向多维动力学系统中的混沌、量子及时空混沌、混沌的同步及控制等方面。

本实验将借助非线性电阻电路,从实验上对这一现象进行一番探索。

【正文】一、实验器材示波器 数字电流表 运算放大器 二、 实验过程1、 实验原理参考线路:蔡氏电路(参考马鑫金主编《电工仪表与电路实验技术》第九章课题三专题2<混沌电路>的蔡氏电路) 电路的非线性动力学方程为:1121)(1C C C C U g U U G dtdU C ⋅--⋅=LC C C i U U G dtdU C+-⋅=)(21122(1)2C LU dtdi L-=式中,导纳V R G /1=,1C U 和2C U 分别为表示加在电容器C 1和C 2上的电压,L i 表示流过电感器L 的电流,G 表示非线性电阻的导纳。

2、 利用Multisim7仿真软件设计的实验电路<1>设计一个满足要求的非线性电阻电路,并研究它的伏安特性 (1)非线性电阻电路图1 非线性电阻电路(2)测量非线性负电阻的伏安特性曲线改变外加电源V3的值,分别测量流经非线性负电阻的电流值和非线性负电阻两端的电压值,并根据测量结果画出伏安特性曲线。

基于MULTISIM仿真电路的设计与分析

基于MULTISIM仿真电路的设计与分析

基于MULTISIM仿真电路的设计与分析一、本文概述本文旨在探讨基于Multisim仿真软件的电路设计与分析方法。

我们将详细介绍Multisim仿真电路的基本原理,操作流程,以及在实际电路设计中的应用。

通过本文,读者将能够了解Multisim仿真软件的基本功能,掌握电路设计的基本步骤,学会利用Multisim进行电路仿真分析,从而提高电路设计效率,减少实际电路搭建过程中的错误和成本。

我们将简要介绍Multisim仿真软件的发展历程、特点及其在电路设计领域的重要性。

然后,我们将详细阐述电路设计的基本流程,包括需求分析、原理图设计、仿真分析、优化改进等步骤。

接下来,我们将通过具体的案例,展示如何利用Multisim进行电路仿真分析,包括电路元件的选择、电路连接、仿真参数设置、结果分析等过程。

我们将对基于Multisim仿真电路的设计与分析方法进行总结,并展望其在未来电路设计领域的应用前景。

通过本文的学习,读者将能够熟悉并掌握基于Multisim仿真电路的设计与分析方法,为实际电路设计提供有力的支持。

本文也将为电路设计师、电子爱好者以及相关专业学生提供有益的参考和借鉴。

二、MULTISIM仿真软件基础MULTISIM是一款强大的电路设计与仿真软件,广泛应用于电子工程、计算机科学及相关领域的教学和科研中。

它为用户提供了一个直观、易用的图形界面,允许用户创建、编辑和模拟各种复杂的电路系统。

本章节将详细介绍MULTISIM仿真软件的基础知识和基本操作,为后续的电路设计与分析奠定坚实基础。

MULTISIM软件界面简洁明了,主要由菜单栏、工具栏、电路图编辑区和结果输出区等部分组成。

用户可以通过菜单栏访问各种命令和功能,如文件操作、电路元件库、仿真设置等。

工具栏则提供了一系列快捷按钮,方便用户快速选择和使用常用的电路元件和工具。

电路图编辑区是用户创建和编辑电路图的主要区域,支持多种电路元件的拖拽和连接。

结果输出区则用于显示仿真结果和数据分析。

基于Multisim的混沌电路仿真实验

基于Multisim的混沌电路仿真实验

基于Multisim的混沌电路仿真实验
杜宇上;肖化
【期刊名称】《实验室研究与探索》
【年(卷),期】2013(032)001
【摘要】混沌电路是大学物理实验课程非线性系统的典型内容.为提高学生在大学物理实验课程中对非线性系统实验内容的学习效率,发挥学生学习的自主作用,介绍采用Multisim对混沌电路进行实验仿真的方法.在介绍蔡氏混沌电路基本原理和非线性电阻等效电路的基础上,叙述了在Multisim界面下对混沌电路的构建;通过设置不同的电路参数,运行仿真功能,出现了相应的李萨如图形和时域波形,并对仿真结果进行分析.说明了在大学物理实验教学中应用Multisim的可行性,为大学物理实验课程实施探究性学习策略提供可行的实验工具.
【总页数】4页(P42-45)
【作者】杜宇上;肖化
【作者单位】华南师范大学物理与电信工程学院,广东广州510006;广东工业大学实验教学部,广东广州510006;华南师范大学物理与电信工程学院,广东广州510006
【正文语种】中文
【中图分类】TP391.9
【相关文献】
1.基于Multisim的RC积分电路仿真实验教学研究 [J], 李素玲
2.基于Multisim和Authorware的数字电路仿真实验平台设计 [J], 周围;韩建;于波
3.基于Multisim10的直流稳压电路与光控电路仿真实验教学研究 [J], 张冬梅;马玉丽
4.基于Multisim分数阶混沌系统的电路仿真 [J], 蒋逢灵;
5.基于Multisim电路仿真软件的电路故障实验教学探究 [J], 陈欢
因版权原因,仅展示原文概要,查看原文内容请购买。

实验48 非线性电路中混沌现象的研究

实验48 非线性电路中混沌现象的研究

第4章基础实验25 实验4.8 非线性电路中混沌现象的研究现代科学技术研究发现,非线性是真实世界的普遍特性,非线性问题大量出现在自然科学、社会科学和工程科学中,并起着重要的作用。

混沌的研究是20世纪物理学的重大事件,在现代非线性理论中,混沌是泛指在确定体系中出现的貌似无规律的、随机的运动。

混沌运动的基本特征是确定性中包含的非周期性和不可预测性,以及对初值的敏感性等。

混沌的研究表明,一个完全确定的系统,即使非常简单,由于自身的非线性作用,同样具有内在的随机性。

绝大多数非线性动力学系统,既有周期运动,又有混沌运动,而混沌既不是具有周期性和对称性的有序,又不是绝对的无序,而是可用奇怪吸引子来描述的复杂的有序,混沌是非周期的有序性。

以下我们用级联倍周期分岔的方式接近混沌,从一个简单的实验中去观察非线性的现象,并尝试着得到一些重要结论。

【实验目的及要求】1.学习有源非线性电阻的伏安特性。

2.通过研究一个简单的非线性电路,了解混沌现象和产生混沌的原因。

3.学会自己设计和制作一个实用电感器以及测量非线性器件伏安特性的方法。

【提供的主要器材】NCE-Ⅱ型非线性电路混沌实验仪、双踪示波器、铁氧介质电感、自备器件。

【实验预备知识】1.了解混沌起源混沌理论是一门对复杂系统现象进行整体性研究的科学。

我国科学家钱学森称混沌是宏观无序、微观有序的现象。

混沌理论的创立,将非线性系统表现的随机性和系统内部的决定性机制巧妙地结合起来。

20世纪60年代,麻省理工学院的气象学家洛伦兹在计算机上进行天气模拟演算。

他当时用的计算机,储存数据的容量是小数点后六位数字,但是在打印输出数据时,为了节省纸张,只输出小数点后三位数字。

而洛伦兹在给第二次计算输入初始条件的时候,只输入了小数点后的三位,与精确的数据有不到0.1%的误差。

就是这个原本应该忽略不计的误差,使最终的结果大相径庭,如图4-20所示。

1963年,洛伦兹在美国《气象学报》上发表了题为“确定性的非周期流”的论文,提出了在确定性系统中的非周期现象。

非线性电路的MapleSim仿真实验

非线性电路的MapleSim仿真实验

非线性电路的MapleSim仿真实验非线性科学包括3个主要部分:孤立波、混沌、分形。

其中,孤立波是由罗素于1844年在实验室中发现的。

1895年,数学家科特维格与得佛里斯从数学上导出了有名的浅水波KdV方程,并给出了一个类似于罗素孤立波的解析解,即孤立波解,孤立波的存在于是得到普遍承认。

混沌和分形理论则是在20世纪才开始兴起。

20世纪初至50年代是混沌研究的萌芽时期,60年代开始迅速发展。

气象学家洛伦兹提出的“蝴蝶效应”指出了混沌系统的一个基本性质:对初始条件的敏感依赖性。

20世纪70年代,混沌现象的研究开始渗透到其他学科;80年代以来,随着计算机技术的进步,混沌学的研究方法得到快速发展。

有人将混沌和分形誉为继相对论和量子力学之后的20世纪物理学的第三次革命。

物理学中的力、热、电、光、原子体系中均存在混沌现象。

非线性电路中的混沌现象是混沌研究的热点之一,混沌电路也具有广泛的应用前景。

由于混沌电路较易于引入实验教学,所以它是启迪学生探索非线性规律的一种重要途径。

然而传统的非线性电路实验对电路元件参数的误差极为敏感,需要严格地挑选元件,缺少灵活性,另外还要受到实验场地等的限制,不能很好地培养学生的兴趣和创造性思维。

随着计算机科学的发展,人们意识到计算机仿真技术是传统实验教学方法的有益补充。

以往文献探讨了Matlab、Multisim等软件在电路实验教学中的运用[1-2],但还没有探讨MapleSim仿真软件在实验教学中运用的文献。

MapleSim是一个多领域物理的仿真建模软件,具有图形化的仿真环境,用户可通过简单和直观的方式完成各种系统的建模、分析和仿真。

MapleSim基于Maple数学引擎,使用Maple 中的高级符号计算功能生成物理系统的数学模型,能有效地管理和简化复杂系统的数学模型,实现系统的高保真、高速仿真,相比于其他仿真软件有其独特的特点。

本文以蔡氏电路为例,说明MapleSim在混沌电路实验教学中的应用。

电工电子综合实验_非线性电阻电路的应用—混沌电路

电工电子综合实验_非线性电阻电路的应用—混沌电路

非线性电阻电路的应用—混沌电路摘要:本文以能产生混沌行为的最简的一种自治电路—蔡氏电路为基础,用一个非线性负电阻电路设计一个混沌电路关键词:混沌电路, 蔡氏电路,非线性电阻引言:蔡氏电路(英语:Chua's circuit),一种简单的非线性电子电路设计,它可以表现出标准的混沌理论行为。

在1983年,由蔡少棠教授发表,当时他正在日本早稻田大学担任访问学者[1]。

这个电路的制作容易程度使它成为了一个无处不在的现实世界的混沌系统的例子,导致一些人声明它是一个“混沌系统的典范正文:实验设备:Multisim 10.0电路仿真软件中的模拟元件1.万用表2.运算放大器OPA1013CN83.示波器4.直流电源5.电阻若干实验目的:1、通过实验感性地认识混沌现象,理解非线性科学中“混沌”一词的含义;2、学会借助Multisim10.0仿真软件对电路进行研究;3、掌握非线性电阻的非线性特征,以及其非线性电阻特征的测量方法;4、以非线性电阻电路为基础,设计混沌电路,观察混沌现象。

实验原理与方法:1.非线性电阻电路(1)列表法测量并作出伏安特性曲线利用OPA1013CN8运算放大器构成非线性负电阻电路如图1,并且具有如图2的伏安特性曲线图1图2改变V1的电压值,分别用万用表XMM1,XMM2分别测量电路的输入电压和输入电流,测得如表1所示数据,并绘制如图3所示伏安特性曲线。

U/V I/mA U/V I/mA U/V I/mA U/V I/mA-6.400 -2.619 -3.000 1.486 0.400 -0.274 3.800 -1.756-6.200 -1.940 -2.800 1.419 0.600 -0.411 4.000 -1.824-6.000 -1.261 -2.600 1.352 0.800 -0.548 4.200 -1.892-5.800 -0.582 -2.400 1.284 1.000 -0.686 4.400 -1.959-5.600 0.097 -2.200 1.217 1.200 -0.823 4.600 -2.026-5.400 0.777 -2.000 1.149 1.400 -0.946 4.800 -2.093-5.200 1.455 -1.800 1.082 1.600 -1.014 5.000 -2.040-5.000 2.041 -1.600 1.014 1.800 -1.082 5.200 -1.451-4.800 2.095 -1.400 0.946 2.000 -1.149 5.400 -0.771-4.600 2.026 -1.200 0.823 2.200 -1.217 5.600 -0.091-4.400 1.960 -1.000 0.686 2.400 -1.284 5.800 0.588-4.200 1.892 -0.800 0.548 2.600 -1.352 6.000 1.267-4.000 1.824 -0.600 0.411 2.800 -1.419 6.200 1.945-3.800 1.756 -0.400 0.274 3.000 -1.486 6.400 2.625-3.600 1.689 -0.200 0.137 3.200 -1.554-3.400 1.622 0.000 0.000 3.400 -1.622-3.200 1.554 0.200 -0.137 3.600 -1.689表1图3由以上分析测量可知,所搭建电路符合图1要求的伏安特性曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-非线性电路混沌现象的探究以及基于Multisim的仿真设计D非线性电路混沌现象的探究以及基于Multisim的仿真设计一、引言混沌是二十世纪最重要的科学发现之一,被誉为继相对论和量子力学之后的第三次物理革命,它打破了确定性与随机性之间不可逾越的分界线,将经典力学研究推进到一个崭新的时代。

由于混沌信号是一种貌似随机而实际却是由确定信号系统产生的信号,使得混沌在许多领域(如保密通信,自动控制,传感技术等)得到了广泛的应用[1]。

20多年来混沌一直是举世瞩目的前沿课题和研究热点,它揭示了自然界及人类社会中普遍存在的复杂性、有序性和无序的统一,大大拓宽了人们的视野,加深了人们对客观世界的认识。

目前混沌控制与同步的研究成果已被用来解决秘密通信、改善和提高激光器性能以及控制人类心律不齐等问题。

混沌(chaos)作为一个科学概念,是指一个确定性系统中出现的类似随机的过程。

理论和实践都证明,即使是最简单的非线性系统也能产生十分复杂的行为特性,可以概括一大类非线性系统的演化特征。

混沌现象出现在非线性电路中是极为普遍的现象,通过改变电路中的参数可以观察到倍周期分岔、阵法混乱和奇异吸引子等现象。

二、混沌电路简介对电路系统来说,在有些二阶非线性非自治电路或三阶非线性自治电路中,出现电路的解既不是周期性的也不是拟周期的,但在状态平面上其相轨迹始终不会重复,但是有界的,而且电路对初始条件十分敏感,这便是非线性电路中的混沌现象。

根据Li-York定义,一个混沌系统应具有三种性质:(1)存在所有阶的周期轨道;(2)存在一个不可数集合,此集合只含有混沌轨道,且任意两个轨道既不趋向远离也不趋向接近,而是两种状态交替出现,同时任一轨道不趋于任一周期轨道,即此集合不存在渐近周期轨道;(3)混沌轨道具有高度的不稳定性。

可见,周期轨道与混沌运动有密切关系,表现在两个方面:第一,在参数空间中考察定常的运动状态,系统往往要在参量变化过程中先经历一系列周期制度,然后进入混沌状态;第二,一个混沌吸引子里面包含着无穷多条不稳定的周期轨道,一条混沌轨道中有许许多多或长或短的片段,它们十分靠近这条或那条不稳定的周期轨道。

根据文献[2][3],混沌主要特征表现在:(1)敏感依赖于初始条件;(2)伸长与折叠;(3)具有丰富的层次和自相似结构;(4)在非线性耗散系统中存在混沌吸引子。

同时,混沌运动还具有如下特征:(1)存在可数无穷多个稳定的周期轨道;(2)存在不可数无穷多个稳定的非周期轨道;(3)至少存在一个不稳定的非周期轨道。

非线性电路是指电路中至少包含一个非线性元件的电路。

事实上一切实际元件都是非线性的。

因为给任何元件上加足够大的电压或电流后都将破坏其线性。

实质上,确定系统受确定性激励,影响也可能是不确定的,这是由于运动对初始值的敏感性造成的。

三、实验原理3.1蔡氏电路及其动力学方程本实验采用的电路图如图1所示,即蔡氏电路。

蔡氏电路是由美国贝克莱大学的蔡少棠教授设计的能产生混沌行为的最简单的一种自制电路。

R 是非线性电阻元件,这是该电路中唯一的非线性元件,是一个有源负阻元件。

电容C2与电感L 组成一个损耗很小的振荡回路。

可变电阻1/G 和电容C1构成移相电路。

最简单的非线性元件R 可以看作由三个分段线性的元件组成。

由于加在此元件上的电压增加时,故称为非线性负阻元件。

图1 蔡氏电路21221121-=dtdi i +)-(=•g -)-(=11C L L C C C C C C C V L V V G dt dV C V V V G dt dV C 式中,G 代表可变电组的导纳,VC1、VC2分别表示加在电容上C1、C2上的电压,iL 表示流过L 的电流u ,g=1/R 表示非线性电阻R 的导纳。

实验时将G 取最小,用示波器观察VC1和VC2的李萨如图形,并可用双踪观察两电压详细曲线[4]。

3.2通向混沌道路方式简述震荡系统一旦发生倍周期分岔必将导致混沌。

混沌是一种运动状态,从确定性系统通往混沌主要有倍周期分岔、阵发性、准周期等道路。

对于一位映射: )-1(=n 1+X X μX n n当参数μ增加时出现周期分岔的过程,即周期1分岔出周期2,周期2又分岔出周期4……若周期倍分岔相邻3个分岔点的参数分别为:μn -1,μn,μn+1则当n→∞时,比值:6992016091.4=--lim =n1+n 1-n μμμμδn 这是一个无理常数,δ称为费根鲍姆常数。

3.3有源非线性负阻元件有源非线性负阻元件实现的方法有多种,这里使用一种较为简单的电路,采用两个运算放大器(1个双运放TL082)和六个配置电阻来实现,其电路如图2,它主要是一个正反馈电路,能输出电流以维持振荡器不断震荡,而非线性负阻元件能使振荡周期产生分岔和混沌等一系列非线性现象。

四、实验仪器——NCE —1非线性电路混沌实验仪本实验装置的核心是NCE-1非线性电路混沌实验仪,它是由非线性电路混沌实验电路板、-15~0~+15V 稳压电源和四位半数字电压表(0~20V ,分辨率1mV )组成,装在一个仪器箱内。

非线性电路除电感外,全部焊接在一块电路板上。

实验还另配有电感测量盒(其内部及外部连线如图3)、双踪示波器、信号发生器和电阻箱各一个,电缆6根,三通1个。

混沌振荡电路板如上图,双运放TL082的前级和后级正负反馈同时存在,正反馈的强弱与比值R3/RV,R6/RV 有关,负反馈的强弱与比值R2/R1,R5/R4有关。

当正反馈大于负反馈时,振荡电路才能振荡。

若调节RV ,正反馈就发生变化,因为运放TL082处于振荡状态,所以是一种非线性应用,混沌振荡电路实际上是一个可调的特殊振荡器。

途中电感L 约为20mH 。

五、实验现象5.1倍周期分叉和混沌现象的观察打开机箱,按图1连接好实验装置后,用示波器测量李萨如图形。

讲RV=1/G 调节到某一较大值,这时出现一个斜椭圆,它表明系统开始自激振荡。

继续增加电导(减小可变电阻值1/G),此时将有1倍周期变化为2倍周期,即系统需要两个周期才恢复原状。

这在非线性理论中称为倍周期分岔。

它揭开了动力学系统步入混沌的“序幕”。

继续减小1/G的值,依次初现4倍周期和阵发混沌。

再减小1/G,出现3倍周期。

随着1/G值得进一步减小,系统将完全进入混沌区。

其运动轨线不再是周期性的,从屏幕上观察轨道的演化时,可以看到的轨道线在的绕行规律是随机的。

但是这种随机性与真正随机系统中不可预测的无规性又不相同。

因为相点貌似无规振荡,不会重复以走过的路,但并不以连续概分布在相平面上随机行走。

类似“线圈”的轨道本身是有界的,其极限集合呈现出奇特而美丽的性状,显然有某种规律。

我们仍把这时的解集和前面看到的周期成为一种吸引子。

此类吸引子与其他周期解得吸引子不同,通常称之为奇异吸引子或混沌吸引子[5]。

在实验中,我们观察到的图像记录如下:一倍周期:两倍周期:三倍周期:四倍周期:阵发混乱:单吸引子:双吸引子:5.2非线性电阻测量在实验中,将电路的LC 振荡部分与非线性电阻直接断开,因为负阻部分是含源的,所以可用一个电阻箱作电阻,只要直接测出加在非线性负阻的电压,并记录相应R 值,通过公式:RV I R R = V (v ) R(Ω)V (v ) R (Ω) V (v ) R (Ω) -12.0 76000.0 -8.0 2061.8 -4.01798.5 -11.8 2152.0 -7.8 2053.2 -3.81774.6 -11.6 12330.0 -7.6 2044.4 -3.61749.0 -11.4 8530.0 -7.4 2035.1 -3.41721.5 -11.2 6450.0 -7.2 2025.4 -3.21691.5 -11.0 5145.0 -7.0 2015.2 -3.01623.8 -10.8 4248.0 -6.8 2009.6 -2.81585.4 -10.6 3591.0 -6.6 1993.4 -2.61542.8 -10.4 3091.0 -6.4 1981.6 -2.41495.8 -10.2 2699.0 -6.2 1969.3 -2.21443.6 -10.0 2384.0 -6.0 1956.2 -2.01385.5 -9.8 2130.0 -5.8 1942.5 -1.81320.0 -9.6 2118.9 -5.6 1928.1 -1.61306.4 -9.4 2112.7 -5.4 1912.7 -1.41304.9 -9.2 2106.2 -5.2 1896.6 -1.21302.8 -9.0 2099.5 -5.0 1879.3 -1.01300.1 -8.8 2092.6 -4.8 1861.1 -0.81295.9 -8.6 2085.3 -4.6 1841.5 -0.61288.9 -8.4 2077.8 -4.4 1820.8 -0.41275.2 -8.2 2069.9 -4.2 1798.5 -0.21235.6六、 基于MultiSim 的蔡氏电路仿真6.1 MultiSim 软件介绍Multisim 是美国国家仪器(NI )有限公司推出的以Windows 为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。

它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。

这款软件具有如下特点:①直观的图形界面:整个操作界面就像一个电子实验工作台,绘制电路所需的元器件和仿真所需的测试仪器均可直接拖放到屏幕上,轻点鼠标可用导线将它们连接起来,软件仪器的控制面板和操作方式都与实物相似,测量数据、波形和特性曲线如同在真实仪器上看到的;②丰富的元器件:提供了世界主流元件提供商的超过17000多种元件,同时能方便的对元件各种参数进行编辑修改,能利用模型生成器以及代码模式创建模型等功能,创建自己的元器件。

③强大的仿真能力:以SPICE3F5和Xspice的内核作为仿真的引擎,通过Electronic workbench带有的增强设计功能将数字和混合模式的仿真性能进行优化。

包括SPICE仿真、RF仿真、MCU仿真、VHDL仿真、电路向导等功能。

④完备的分析手段:Multisimt提供了许多分析功能:它们利用仿真产生的数据执行分析,分析范围很广,从基本的到极端的到不常见的都有,并可以将一个分析作为另一个分析的一部分的自动执行。

集成LabVIEW和Signalexpress快速进行原型开发和测试设计,具有符合行业标准的交互式测量和分析功能;这是软件的界面图:对于蔡氏电路的仿真,在实验中,我们也已经尝试使用MatLab进行编程,除此之外,还有数种软件可以使我们进行仿真。

以下是一个列表,来比较其他软件的仿真与MultiSim的区别。

相关文档
最新文档