高考数学(文科)常用公式(打印版)

合集下载

高考文科数学公式汇总

高考文科数学公式汇总

高考文科数学公式汇总在高考文科数学中,掌握各类公式是取得好成绩的关键。

以下为大家汇总了一些重要的公式,希望能对同学们的复习有所帮助。

一、函数相关公式1、一次函数:y = kx + b(k、b 为常数,k ≠ 0)当 k > 0 时,函数单调递增;当 k < 0 时,函数单调递减。

2、二次函数:y = ax²+ bx + c(a ≠ 0)对称轴为 x = b / 2a ,顶点坐标为(b / 2a ,(4ac b²) / 4a )当 a > 0 时,抛物线开口向上,函数在 x = b / 2a 处取得最小值;当 a < 0 时,抛物线开口向下,函数在 x = b / 2a 处取得最大值。

3、反比例函数:y = k / x(k 为常数,k ≠ 0)当 k > 0 时,函数在一、三象限,在每个象限内单调递减;当 k <0 时,函数在二、四象限,在每个象限内单调递增。

4、指数函数:y = a^x(a > 0 且a ≠ 1)当 a > 1 时,函数单调递增;当 0 < a < 1 时,函数单调递减。

5、对数函数:y =logₐ x(a > 0 且a ≠ 1)其与指数函数互为反函数,logₐ a = 1,logₐ 1 = 0 。

二、三角函数公式1、同角三角函数基本关系sin²α +cos²α = 1tanα =sinα /cosα2、诱导公式sin(π +α) =sinαcos(π +α) =cosαsin(α) =sinαcos(α) =cosα3、和差角公式sin(α +β) =sinαcosβ +cosαsinβsin(α β) =sinαcosβ cosαsinβcos(α +β) =cosαcosβ sinαsinβcos(α β) =cosαcosβ +sinαsinβ4、二倍角公式sin2α =2sinαcosαcos2α =cos²α sin²α =2cos²α 1 =1 2sin²αtan2α =2tanα /(1 tan²α)5、辅助角公式a sinα +b cosα =√(a²+b²) sin(α +φ),其中tanφ = b / a三、数列相关公式1、等差数列通项公式:aₙ = a₁+(n 1)d ,前 n 项和公式:Sₙ = n(a₁+ aₙ) / 2 = na₁+ n(n 1)d / 2其中 a₁为首项,d 为公差。

高中文科数学公式大全(精华版)

高中文科数学公式大全(精华版)

高中数学公式及知识点速记1、函数的单调性<1>设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.<2>设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。

2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。

若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-. 4、几种常见函数的导数①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则 〔1'''()u v u v ±=±. 〔2'''()uv u v uv =+.〔3'''2()u u v uv v v -=.6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂<1>m na =.<2>1m nm naa-==.8、根式的性质 〔1n a =.〔2当n 为奇数时a =;当n 为偶数时,0||,0a a a a a ≥⎧==⎨-<⎩. 9、有理指数幂的运算性质 <1>rs r s aa a +⋅=;<2>()r srsa a =; <3>()rr rab a b =.10、对数公式〔1指数式与对数式的互化式:log b a N b a N =⇔=。

高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质(1) (0,,)r s r sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)rr rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用..指数式与对数式的互化式: log b a N b a N =⇔=(0,1,0)a a N >≠>. .对数的换底公式 :log log log m a m NN a= (0a >,且1a ≠,0m >,且1m ≠, 0N >).对数恒等式:log a Na N =(0a >,且1a ≠, 0N >).推论 log log m n a a nb b m=(0a >,且1a ≠, 0N >). 常见的函数图象二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin . 9、正弦、余弦的诱导公式(奇变偶不变,符号看象限)απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。

文科的高中数学公式

文科的高中数学公式

文科的高中数学公式文科必备的高中数学公式活着就要学习,学习不是为了活着。

下面是小编为大家整理的文科必备的高中数学公式,欢迎参考~文科必备的高中数学公式之立体几何直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r,a是圆心角的'弧度数r>0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h文科必备的高中数学公式之三角函数1.两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)2.二倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a文科必备的高中数学公式之不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac<0注:方程没有实根,有共轭复数根文科必备的高中数学公式之圆圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角文科必备的高中数学公式之数列1+2+3+4+5+6+7+8+9+...+n=n(n+1)/21+3+5+7+9+11+13+15+...+(2n-1)=n22+4+6+8+10+12+14+...+(2n)=n(n+1)12+22+32+42+52+62+72+82+...+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+...n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+...+n(n+1)=n(n+1)(n+2)/3。

高考文科生数学考高分必背公式

高考文科生数学考高分必背公式

高考文科生数学考高分必背公式新一轮的高考复习开始了,对于文科生来说,数学很可能会成为最大的困难。

那么你知道高考文科生数学考高分必背公式有哪些吗?这次小编给大家整理了高考文科生数学考高分必背公式,供大家阅读参考。

高考文科生数学考高分必背公式一、函数、导数1、函数的单调性(1)设x1、x2[a,b],x1x2那么f(x1)f(x2)0f(x)在[a,b]上是增函数;f(x1)f(x2)0f(x)在[a,b]上是减函数.(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.2、函数的奇偶性对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y轴对称。

二、解三角形公式:正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径余弦定理:a2=b2+c2-2bc×cosAsin(A+B)=sinCsin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB+sinBcosAsin2A=2sinAcosAcos2A=2(cosA)2-1=(cosA)2-(sinA)2=1-2(sinA)2tan2A=2tanA/[1-(tanA)2](sinA)2+(cosA)2=1三、常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαco t(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-si nαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinα文科生提高数学成绩有什么方法1.一步一个脚印成绩要想一蹴而就是基本上不可能的事情,除非你是天才,首先进入了高三后文科生应该要全面的对自己的成绩做一个分析和总结,即找出数学学不好的原因在哪里!2.摆正心态摆正心态,不要畏惧数学,即使数学虐你千百遍,你仍然要待它如初恋,很多高三党的同学会因为即将来临的高考而惶恐不前,以致于对数学失去了信心,这是非常不利的事情。

(完整版)文科高中数学公式大全(超全完美)

(完整版)文科高中数学公式大全(超全完美)

高中文科数学公式总结一、函数、导数1.元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.A A ∅⇔≠∅Ø集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个.2. 真值表 常四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)3. 充要条件(记p 表示条件,q 表示结论) (1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4. 全称量词∀表示任意,∃表示存在;∀的否定是∃,∃的否定是∀。

例:2,10x R x x ∀∈++> 的否定是 2,10x R x x ∃∈++≤ 5. 函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.6. 复合函数)]([x g f y =单调性判断步骤:(1)先求定义域 (2)把原函数拆分成两个简单函数)(u f y =和)(x g u = (3)判断法则是同增异减(4)所求区间与定义域做交集 7. 函数的奇偶性(1)前提是定义域关于原点对称。

(2)对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

(完整版)高中文科数学公式汇总.docx

(完整版)高中文科数学公式汇总.docx

高中数学公式汇总(文科)一、三角函数、三角变换、解三角形、平面向量 1、同角三角函数的基本关系式2 2 sinsin cos 1,tan = .2、正弦、余弦的诱导公式k的正弦、 余弦,等于 的同名函数, 前面加上把 看成锐角时该函数的符号;k的正弦、余弦,等于 的余名函数,前2面加上把看成锐角时该函数的符号。

3、和角与差角公式sin( ) sin cos cos sin ;cos( ) cos cosmsin sin;tan()tantan.m1 tan tan4 、二倍角公式sin 2sin cos .cos 2cos2sin22cos21 1 2sin2tan22 tan.1 tan2公式变形:2 cos21 cos2 , cos21 cos2 ;2 2sin 21 cos2 , sin 21 cos2;25 、三角函数的周期 函 数y sin( x ) ,x ∈ R 及 函 数ycos( x) , x ∈ R(A, ω , 为常数,且 A ≠ 0,ω > 0) 的 周 期 T 2) , ; 函 数 y tan( x x k, k Z (A, ω, 为常数, 且 A ≠ 0,ω> 0)2的周期 T.6 函数 ysin( x) 的周期、最值、单调区间、图象变换 7、辅助角公式y a sin xb cosxa 2b 2 sin(x )其中 tan ba8、正弦定理a b c2R .sin Asin B sin C9、余弦定理a 2b 2c 2 2bc cos A ;b 2c 2 a 2 2ca cos B ; c 2a2b22ab cosC .10、三角形面积公式S1ab sin C1bc sin A 1ca sin B .2 2211、三角形内角和定理在△ ABC 中,有 A B CC (A B)二、函数、导数1、函数的单调性(1) 设 x 1、 x 2 [ a, b], x 1 x 2 那么f ( x 1 ) f ( x 2 )f ( x)在[ a, b] 上是增函数;f ( x 1 ) f ( x 2 ) 0 f ( x)在[a, b] 上是减函数 . (2) 设函数 y f ( x) 在某个区间内可导,若 f ( x) 0 ,则 f (x) 为增函数;若 f ( x) 0 ,则 f (x) 为减函数 .2 、函数的奇偶性x ,都有 f ( x)f ( x) ,则 f ( x)对于定义域内任意的 是偶函数;对于定义域内任意的 x ,都有 f ( x) f ( x) ,则 f ( x)是奇函数。

高中数学公式大全文科

高中数学公式大全文科

高中数学公式大全文科1.代数运算公式:(1) 二项式公式:(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^2,(a + b)(a - b) = a^2 - b^2(2) 平方差公式:(a + b)^2 - (a - b)^2 = 4ab(3) 证明等式:(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,(a -b)^3 = a^3 - 3a^2b + 3ab^2 - b^3(4)等比数列求和:S_n=a(1-q^n)/(1-q),其中a为首项,q为公比,n为项数(5) 二次根式相加:√a + √b = √(a + b + 2√ab)(6)三次方程和四次方程的求根公式2.几何公式:(1) 三角形面积公式:S = 1/2 * a * b * sinC,其中a,b为两边的长度,C为两边夹角的度数(2) 三角形边长关系:a/sinA = b/sinB = c/sinC = 2R,其中R为外接圆半径(3) 三角函数的和与差的公式:sin(A ± B) = sinAcosB ± cosAsinB,cos(A ± B) = cosAcosB ∓ sinAsinB,tan(A ± B) = (tanA ± tanB)/(1 ∓ tanAtanB)(4) 三角函数的倍角公式:sin2A = 2sinAcosA,cos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A,tan2A = (2tanA)/(1 - tan^2A)(5)圆的面积公式:S=πr^2,其中r为半径(6)圆的周长公式:C=2πr,其中r为半径3.概率与统计公式:(1)加法原理:P(A∪B)=P(A)+P(B)-P(A∩B),其中P(A)为事件A发生的概率,P(B)为事件B发生的概率,P(A∩B)为事件A与事件B同时发生的概率(2)乘法原理:P(A∩B)=P(A)×P(B,A),其中P(A)为事件A发生的概率,P(B,A)为在事件A发生的条件下事件B发生的概率(3)期望:E(X)=μ=∑(xP(x)),其中X为随机变量,x为随机变量X 的取值,P(x)为X取值为x的概率(4) 方差:Var(X) = σ^2 = E((X - μ)^2),其中E为期望,σ^2为方差,(X - μ)^2为随机变量X与其期望之差的平方以上是高中数学文科相关的一些公式,但由于篇幅有限,可能并未包含所有相关的公式。

高中文科数学公式大全(精华版)

高中文科数学公式大全(精华版)

高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。

2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。

若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v-=. 6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)mna =.(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。

高中数学公式及知识点总结大全(精华版)

高中数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<−上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>−上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =−,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f −=−,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y −'=−.*二次函数: (1)顶点坐标为24(,)24b ac b a a −−;(2)焦点的坐标为241(,)24b ac b a a−+− 4、几种常见函数的导数 ①'C 0=;②1')(−=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '−=;⑤a a a xx ln )('=;⑥xx e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v −=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa−==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨−<⎩.有理指数幂的运算性质(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论logmnab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。

高中文科数学公式大全(精华版)

高中文科数学公式大全(精华版)

高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。

2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。

若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v-=. 6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)mna =.(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)一、代数1. 一元一次方程:ax + b = 0,其中a ≠ 0。

解为 x = b/a。

2. 一元二次方程:ax^2 + bx + c = 0,其中a ≠ 0。

解为 x =[b ± sqrt(b^2 4ac)] / 2a。

3. 一元三次方程:ax^3 + bx^2 + cx + d = 0,其中a ≠ 0。

解为x = [b ± sqrt(b^2 3ac)] / 3a。

4. 一元四次方程:ax^4 + bx^3 + cx^2 + dx + e = 0,其中 a≠ 0。

解为x = [b ± sqrt(b^2 4ac)] / 2a。

5. 分式方程:分子和分母均为多项式。

解法为将方程两边乘以分母的乘积,得到一个等价的整式方程,然后求解。

6. 二元一次方程组:由两个一元一次方程组成的方程组。

解法为消元法或代入法。

7. 二元二次方程组:由两个一元二次方程组成的方程组。

解法为消元法或代入法。

8. 三元一次方程组:由三个一元一次方程组成的方程组。

解法为消元法或代入法。

9. 等差数列:首项为 a1,公差为 d。

第 n 项为 an = a1 + (n 1)d。

前 n 项和为 Sn = n/2(a1 + an)。

10. 等比数列:首项为 a1,公比为 q。

第 n 项为 an = a1q^(n 1)。

前 n 项和为 Sn = a1 (1 q^n) / (1 q),其中q ≠ 1。

二、几何1. 平面几何(1)直线:两点确定一条直线,直线方程为 y = mx + b,其中m 是斜率,b 是截距。

(2)圆:圆心为 (a, b),半径为 r。

圆的方程为 (x a)^2 +(y b)^2 = r^2。

(3)椭圆:中心为 (a, b),长轴为 2a,短轴为 2b。

椭圆的方程为 (x a)^2 / a^2 + (y b)^2 / b^2 = 1。

(4)双曲线:中心为 (a, b),实轴为 2a,虚轴为 2b。

高考文科数学必背公式文科数学必备公式总结

高考文科数学必背公式文科数学必备公式总结

高考文科数学必背公式文科数学必备公式总结有很多的文科同学数学成绩是非常的不好的,其实要想学好数学最主要就是把公式记住,小编整理了高考文科数学必背公式仅供参考!函数、导数1、函数的单调性(1)设x1、x2[a,b],x1x2那幺f(x1)f(x2)0f(x)在[a,b]上是增函数;f(x1)f(x2)0f(x)在[a,b]上是减函数.(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.2、函数的奇偶性对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数;对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y轴对称。

解三角形公式:正弦定理:a/sinA=b/sinB=c/sinC=2RR为三角形外接圆的半径余弦定理:a2=b2+c2-2bc*cosAsin(A+B)=sinCsin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB+sinBcosAsin2A=2sinAcosAcos2A=2(cosA)2-1=(cosA)2-(sinA)2=1-2(sinA)2tan2A=2tanA/[1-(tanA)2](sinA)2+(cosA)2=1常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2- α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinα怎幺才能让数学成绩快速提高?1.审题与解题的关系对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。

新高考数学必背公式

新高考数学必背公式

一、代数部分平方差公式:公式:a² - b² = (a + b)(a - b)全平方公式:公式:a²± 2ab + b² = (a ± b)²立方和与立方差公式:立方和公式:a³ + b³ = (a + b)(a² - ab + b²)立方差公式:a³ - b³ = (a - b)(a² + ab + b²)因式分解公式:a² - b² = (a + b)(a - b),a³ + b³ = (a + b)(a² - ab + b²),等等。

集合运算性质:并集:A∪B=B∪A,A∪A=A,A∪∅=∅∪A=A交集:A∩B=B∩A,A∩A=A,A∩∅=∅∩A=∅德·摩根定律:(A∩B)=(A)∪(B)(A∪B)=(A)∩(B)不等式性质:如果a<b,c<d,那么a+c<b+d如果a<b,c>0,那么ac<bc如果a<b,c<0,那么ac>bc基本不等式:a+b≥2(a,b∈R+),当且仅当a=b时等号成立柯西不等式:二维柯西不等式:(a+b)(c+d)≥(ac+bd),当且仅当ad=bc时成立伯努利不等式:对于实数x>-1,n≥1时,有(1+x)n≤1+nx成立,当且仅当n=0,1,或x=0时,等号成立。

二、三角函数部分正弦、余弦、正切的定义:sin = 对边/斜边cosθ = 邻边/斜边tanθ = 对边/邻边三角函数的和差公式:sin(α + β) = sinαcosβ + cosαsinβcos(α + β) = cosαcosβ - sinαsinβtan(α + β) = (tanα + tanβ) / (1 - tanαtanβ)三角函数的倍角公式:sin2α = 2sinαcosαcos2α = cos²α - sin²αtan2α = 2tanα / (1 - tan²α)三、几何部分圆的周长和面积公式:周长:C = 2πr面积:S = π*r²三角形的面积公式:S = 1/2 * 底 * 高平行四边形的面积公式:S = 底 * 高四、微积分部分导数的定义:(x) = lim(Δx→0) [f(x + Δx) - f(x)] / Δx 积分的基本公式:∫f(x)dx = f(x) + C(C为常数)。

高考数学所有公式大全

高考数学所有公式大全

高考数学所有公式大全一、集合。

1. 集合的基本运算。

- 交集:A∩ B = {xx∈ A且x∈ B}- 并集:A∪ B={xx∈ A或x∈ B}- 补集:∁_U A={xx∈ U且x∉ A}(U为全集)2. 集合间的关系。

- 若A⊆ B,则A中的元素都在B中,n(A)≤ n(B)(n(A)表示集合A的元素个数)- 若A = B,则A⊆ B且B⊆ A二、函数。

1. 函数的定义域。

- 分式函数y = (f(x))/(g(x)),其定义域为g(x)≠0的x的取值范围。

- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),其定义域为f(x)≥0的x的取值范围。

2. 函数的单调性。

- 设x_1,x_2∈[a,b]且x_1 < x_2- 增函数:f(x_1),则y = f(x)在[a,b]上是增函数,其导数f^′(x)≥0(x∈(a,b))。

- 减函数:f(x_1)>f(x_2),则y = f(x)在[a,b]上是减函数,其导数f^′(x)≤0(x∈(a,b))。

3. 函数的奇偶性。

- 奇函数:f(-x)= - f(x),图象关于原点对称。

- 偶函数:f(-x)=f(x),图象关于y轴对称。

4. 一次函数y = kx + b(k≠0)- 斜率k=(y_2 - y_1)/(x_2 - x_1)5. 二次函数y=ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a)- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})- 当a>0时,函数图象开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a < 0时,函数图象开口向下,在x=-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。

6. 指数函数y = a^x(a>0,a≠1)- 指数运算法则:a^m× a^n=a^m + n,frac{a^m}{a^n}=a^m - n,(a^m)^n=a^mn,(ab)^n=a^nb^n,((a)/(b))^n=frac{a^n}{b^n}- 当a > 1时,函数在R上单调递增;当0 < a<1时,函数在R上单调递减。

(完整版)高考文科数学公式汇总(精简版)

(完整版)高考文科数学公式汇总(精简版)

高中数学公式汇总(文科)一、复数1、复数的除法运算22)()())(())((d c iad bc bd ac di c di c di c bi a di c bi a +-++=-+-+=++. 2、复数z a bi =+的模||z =||a bi +二、三角函数、三角变换、解三角形、平面向量3、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin . 4、正弦、余弦的诱导公式απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。

5、和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=m ;tan tan tan()1tan tan αβαβαβ±±=m .6、二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 公式变形: ;22cos 1sin ,2cos 1sin 2;22cos 1cos ,2cos 1cos 22222αααααααα-=-=+=+=7、三角函数的周期函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. 8、 函数sin()y x ωϕ=+的周期、最值、单调区间、图象变换9、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y 其中ab =ϕtan 10、正弦定理2sin sin sin a b cR A B C===. 11、余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.12、三角形面积公式111sin sin sin 222S ab C bc A ca B ===. 13、三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+ 14、与的数量积(或内积)θcos ||||b a b a ⋅=⋅15、平面向量的坐标运算(1)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--u u u r u u u r u u u r.(2)设=11(,)x y ,=22(,)x y ,则⋅=2121y y x x +. (3)设=),(y x ,则22y x a +=16、两向量的夹角公式设a =11(,)x y ,b =22(,)x y ,且0≠b ,则222221212121cos y x y x y y x x ba b a +⋅++=⋅=θ17、向量的平行与垂直//⇔λ= 12210x y x y ⇔-=.)(≠⊥ ⇔0=⋅b a 12120x x y y ⇔+=.三、函数、导数18、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.19、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

公式大全 文科版

公式大全 文科版

高中数学常用公式及常用结论(文科)1.集合12{,, , }n a a a ⋅⋅⋅的子集个数共有2n 个;真子集有2n -1个; 非空子集有2n -1个;非空的真子集有2n -2个.2.二次函数的解析式的三种形式(1)一般式2() (0)f x ax bx c a =++≠; (2)顶点式2()() (0)f x a x h k a =-+≠; (3)零点式12()()() (0)f x a x x x x a =--≠. 3.真值表四种命题的相互关系充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.4.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.5.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.6.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.7.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.若函数)(x f y =是奇函数,则()()f x a f x a --=-+;若函数)(a x f y +=是奇函数,则()()f x a f x a -+=-+.8.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称.9.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称; 若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.10.多项式函数110()n n n n P x a x a xa --=++⋅⋅⋅+的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零.11.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.12.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.13.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.14.互为反函数的两个函数的关系 a b f b a f =⇔=-)()(1.15.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,()()(),(1)f xy f x f y f α==.16.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,则)(x f 的周期T=2a ;17.分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==0,,a m n N *>∈,且1n >).18.根式的性质(1)na =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.19.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.20.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m n a a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).21.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N =-; (3)log log ()na a M n M n R =∈.对数恒等式 log a N a N =22.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆. 若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.23. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.24.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =++⋅⋅⋅+).25.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-.26.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1), 11, 1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或11, 11, 1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.27.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 诱导公式可用十个字概括为“奇变偶不变,符号看象限”。

高考必备数学公式大全

高考必备数学公式大全

高考必备数学公式大全一、集合。

1. 集合的基本运算。

- 交集:A∩ B={xx∈ A且x∈ B}- 并集:A∪ B ={xx∈ A或x∈ B}- 补集:∁_UA={xx∈ U且x∉ A}(U为全集)2. 集合元素个数公式。

- n(A∪ B)=n(A)+n(B)-n(A∩ B)二、函数。

1. 函数的定义域。

- 分式函数y = (f(x))/(g(x)),定义域为g(x)≠0的x的取值范围。

- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),定义域为f(x)≥slant0的x的取值范围。

2. 函数的单调性。

- 设x_1,x_2∈[a,b]且x_1,对于函数y = f(x)- 若f(x_1),则y = f(x)在[a,b]上是增函数,f^′(x)≥slant0(可导函数时)。

- 若f(x_1)>f(x_2),则y = f(x)在[a,b]上是减函数,f^′(x)≤slant0(可导函数时)。

3. 函数的奇偶性。

- 对于函数y = f(x),定义域关于原点对称。

- 若f(-x)=f(x),则y = f(x)是偶函数,其图象关于y轴对称。

- 若f(-x)= - f(x),则y = f(x)是奇函数,其图象关于原点对称。

4. 一次函数y=kx + b(k≠0)- 斜率k=frac{y_2-y_1}{x_2-x_1},截距为b。

5. 二次函数y = ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a)。

- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})。

- 当a>0时,函数开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a<0时,函数开口向下,在x =-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。

6. 指数函数y = a^x(a>0,a≠1)- 性质:当a > 1时,函数在R上单调递增;当0 < a < 1时,函数在R上单调递减。

高三文科数学公式大全

高三文科数学公式大全

高三文科数学公式大全数学公式是人类长期生产劳动的经验总结,包含着历代数学家辛勤汗水和智慧,它揭示了数学知识的基本规律,是学生数学认知发展的重要载体。

学习数学,前提就是对公式和定理有着正确透彻的理解。

牢固掌握并灵活运用公式定理是提高数学能力的关键。

以下是店铺为大家精心准备的:高三文科数学公式大全。

欢迎参考阅读!高三文科数学公式大全如下:一、对数函数log.a(MN)=logaM+logNloga(M/N)=logaM-logaNlogaM^n=nlogaM(n=R)logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1)二、简单几何体的面积与体积S直棱柱侧=c*h(底面周长乘以高)S正棱椎侧=1/2*c*h′(底面的周长和斜高的一半)设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2*(c+c′)*hS圆柱侧=c*lS圆台侧=1/2*(c+c′)*l=兀*(r+r′)*lS圆锥侧=1/2*c*l=兀*r*lS球=4*兀*R^3V柱体=S*hV锥体=(1/3)*S*hV球=(4/3)*兀*R^3三、两直线的位置关系及距离公式(1)数轴上两点间的距离公式|AB|=|x2-x1|(2) 平面上两点A(x1,y1),(x2,y2)间的距离公式|AB|=sqr[(x2-x1)^2+(y2-y1)^2](3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式d=|Ax0+By0+C|/sqr(A^2+B^2)(4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1-C2|/sqr(A^2+B^2)同角三角函数的基本关系及诱导公式sin(2*k*兀+a)=sin(a)cos(2*k*兀+a)=cosatan(2*兀+a)=tanasin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tanasin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tanasin(兀+a)=-sinasin(兀-a)=sinacos(兀+a)=-cosacos(兀-a)=-cosatan(兀+a)=tana四、二倍角公式及其变形使用1、二倍角公式sin2a=2*sina*cosacos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2tan2a=(2*tana)/[1-(tana)^2]2、二倍角公式的变形(cosa)^2=(1+cos2a)/2(sina)^2=(1-cos2a)/2tan(a/2)=sina/(1+cosa)=(1-cosa)/sina五、正弦定理和余弦定理正弦定理:a/sinA=b/sinB=c/sinC余弦定理:a^2=b^2+c^2-2bccosAb^2=a^2+c^2-2accosBc^2=a^2+b^2-2abcosCcosA=(b^2+c^2-a^2)/2bccosB=(a^2+c^2-b^2)/2accosC=(a^2+b^2-c^2)/2abtan(兀-a)=-tanasin(兀/2+a)=cosasin(兀/2-a)=cosacos(兀/2+a)=-sinacos(兀/2-a)=sinatan(兀/2+a)=-cotatan(兀/2-a)=cota(sina)^2+(cosa)^2=1sina/cosa=tana两角和与差的余弦公式cos(a-b)=cosa*cosb+sina*sinbcos(a-b)=cosa*cosb-sina*sinb两角和与差的正弦公式sin(a+b)=sina*cosb+cosa*sinbsin(a-b)=sina*cosb-cosa*sinb两角和与差的正切公式tan(a+b)=(tana+tanb)/(1-tana*tanb) tan(a-b)=(tana-tanb)/(1+tana*tanb)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学(文科)公式大全及重要基础知识记忆检查目录第一章集合与常用逻辑用语 (2)第二章函数 (3)第三章倒数及其应用 (7)第四章三角函数 (8)第五章平面向量 (12)第六章数列 (13)第七章不等式 (15)第八章立体几何 (17)第九章平面解析几何 (19)第十章概率、统计及统计案例 (24)第十一章算法初步及框图 (25)第十二章推理与证明 (26)第十三章数系的扩充与复数的引入 (26)第十四章几何证明选讲 (26)第十五章坐标系和参数方程 (27)第十六章不等式选讲 (27)第一章集合与常用逻辑用语1.集合的基本运算;;2..集合的包含关系:;;3.识记重要结论:A B A=⇔A B⊆;A B A A B=⇔⊇;()UU UA B CC A C B=;()UU UA B CC A C B=4.对常用集合的元素的认识①{}2340A x x x=+-=中的元素是方程2340x x+-=的解,A即方程的解集;②{}260B x x x=+-≤中的元素是不等式260x x+-≤的解,B即不等式的解集;③{}221,05C y y x x x==+-≤≤中的元素是函数221,05y x x x=+-≤≤的函数值,C 即函数的值域;④(){}22log21D x y x x==+-中的元素是函数()22log21y x x=+-的定义域,D即函数的定义域;⑤(){},23M x y y x==-中的元素可看成是关于,x y的方程的解集,也可看成以方程23y x=-的解为坐标的点,M为点的集合,是一条直线。

5.集合12{,,,}na a a的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个;非空的真子集有2n–2个.6.方程0)(=xf在),(21kk上有且只有一个实根,与0)()(21<kfkf不等价,前者是后者的一个必要而不是充分条件.特别地,方程)0(02≠=++acbxax有且只有一个实根在),(21kk内,等价于0)()(21<kfkf,或0)(1=kf且22211kkabk+<-<,或0)(2=kf且22122kabkk<-<+.7.闭区间上的二次函数的最值问题:二次函数)0()(2≠++=acbxaxxf在闭区间[]q p,上的最值只能在abx2-=处及区间的两端点处取得,具体如下:(1)当a>0时,①若[]qpabx,2∈-=,则有{}min max()(),()max(),()2bf x f f x f p f qa=-=;②若[]qpabx,2∉-=,则有{}max()max(),()f x f p f q=,{}min()min(),()f x f p f q=.(2)当a<0时,①若[]qpabx,2∈-=,则有{}min()min(),()f x f p f q=,二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系。

②若[]q p abx ,2∉-=,则有{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.8.()()max a f x a f x ≥⇔≥⎡⎤⎣⎦;()()mina f x a f x ≤⇔≤⎡⎤⎣⎦9.由不等导相等的有效方法..........:若ab ≥且a b ≤,则a b =.10.真值表11.常见结论的否定形式12.四种命题的相互关系如右图所示13.充要条件(1)若p q ⇒,则说p 是q 的充分条件,同时q 是p 的必要条件(2)充要条件:若p q ⇒,且q p ⇒,则p 是q 的充要条件.另外:如果条件最终都可化为数字范围,则可转化为集合的包含关系来刻画,二者逻辑关系一目了然。

设(){}A x p x =,(){}B x q x =,①若A ⊂,则p 是q 的充分不必要条件;②若B A ⊂,则q 是p 的必要不充分条件;③若A B =,则p 是q 的充要条件。

第二章函数14.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么pq非pp或qp且q真真假真真真假假真假假真真真假假假真假假原结论反设词原结论反设词是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有n 个至多有(1n -)个小于不小于至多有n 个至少有(1n +)个对所有x ,成立存在某x ,不成立p 或q p ⌝且q⌝对任何x ,不成立存在某x ,成立p 且q p ⌝或q⌝原命题“p q 若则”逆命题“q p 若则”否命题“p q ⌝⌝若则”逆否命题“q p ⌝⌝若则”互逆互逆互否互否为互逆否互为逆否一个命题一种形式两种方法表2同真为真同假为假真假相对表1[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.⑶单调性性质:①增函数+增函数=增函数;②减函数+减函数=减函数;③增函数-减函数=增函数;④减函数-增函数=减函数;注:上述结果中的函数的定义域一般情况下是要变的,是等号左边两个函数定义域的交集。

15.复合函数单调性的判断方法:⑴如果函数)(x f 和)(x g 都是减函数(增函数),则在公共定义域内,和函数)()(x g x f +也是减函数(增函数);⑵16.函数的奇偶性(注:奇偶函数大前提:定义域必须关于原点对称...................)⑴若()f x 是偶函数,则()()()f x f x fx =-=;偶函数的图象关于y 轴对称;偶函数在x >0和x <0上具有相反的单调区间。

⑵定义域含零的奇函数必过原点(可用于求参数);奇函数的图象关于原点对称;奇函数在x>0和x<0上具有相同的单调区间。

⑶判断函数奇偶性可用定义的等价形式:()()0f x f x ±-=或者()()()()10f x f x f x -=±≠⑷奇偶函数的图象特征:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.⑸多项式函数110()n n n n P x a x a xa --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零.多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零.17.函数()y f x =的图象的对称性:函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.18.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数()y f x =与函数()y f x =-的图象关于直线0y =(即x 轴)对称.(3)指数函数xa y =和x y a log =的图象关于直线y=x 对称.19.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.的单调性。

的单调性,从而得出与的单调性,必须考虑对于复合函数)]([)()()]([x g f y x g u u f y x g f y ====增函数增函数增函数增函数增函数增函数减函数减函数减函数减函数减函数减函数()y f u =()u g x =()y f g x =⎡⎤⎣⎦小结:同增异减。

研究函数的单调性,定义域优先考虑,且复合函数的单调区间是它的定义域的某个子区间。

20.互为反函数的两个函数的关系(指数函数xy a =和对数函数()log 0,1a y x a a =>≠):a b f b a f =⇔=-)()(1.21.几个常见抽象函数模型所对应的具体函数模型(1)正比例函数()f x kx =,()()(),(1)f x y f x f y f k +=+=.(2)指数函数()xf x a =,()()(),()()(),(1)0f x y f x f y f x y f x f y f a +=-=÷=≠.(3)对数函数()log a f x x =,()()(),()()(),()1(0,1)xf xy f x f y f f x f y f a a a y=+=÷=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,(0)1f =.22.对于y x =,2y x =,3y x =,12y x =,1y x=的图象,了解它们的变化情况.如图:23.几个函数方程的周期()0a ≠⑴()y f x =对x R ∈时,)()(a x f x f +=,则)(x f 的周期为a 的周期函数⑵()()f x a f x a +=-或()()2f x a f x -=()0a >恒成立,则()y f x =是周期为2a 的周期函数⑶若()y f x =是偶函数,其图像又关于直线x a =对称,则是周期为2a 的周期函数⑷若()y f x =是奇函数,其图像又关于直线x a =对称,则是周期为4a 的周期函数⑸()y f x =对x R ∈时,0)()(=++a x f x f ,或1()()f x a f x +=-(()0)f x ≠,则()y f x =的周期2a 的周期函数24.函数图像变换()y f x =图象()y f x φ=+图象() y =Af x 图象y =f(wx)图象向左(φ>0)或向右(φ<0)移︱φ︱单位点的横坐标变为原来的1/ω倍纵坐标不变点的纵坐标变为原来的A 倍横坐标不变向上(b>0)或向下(b<0)移︱b ︱单位()y f x b =+图象25.分数指数幂(1)m na=0,,a m n N *>∈,且1n >);(2)1mnm na a-=(0,,a m n N *>∈,且1n >).26.根式的性质(1)na =;(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.27.有理指数幂的运算性质(1)(0,,)rsr s a a aa r s R +⋅=>∈;(2)()(0,,)r s rs a a a r s R =>∈;(3)()(0,0,)r rrab a b a b r R =>>∈.28.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.29.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠,0N >).推论log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠,0N >).30.对数的四则运算法则:若a>0,a≠1,M>0,N>0,则(1)log ()log log a a a MN M N =+;(2)log log log a a a MM N N=-;(3)log log ()na a M n M n R =∈;31.对数有关性质:⑴log a b 的符号有口诀“同正异负”记忆;⑵log 1a a =;⑶log 10a =;⑷对数恒等式:()log 0,1,0a NaN a a N =>≠>⑸log log ma ab m b =⋅;⑹设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.;32.对数函数()log 0,1y x a a =>≠的图像和性质分析:1a >⑹指数函数()0,1xy aa a =>≠的图像和性质分析:33.如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.第三章导数及其应用34.导数的定义:)(x f 在0x 处的导数记作00000()()()limlim x x x xf x x f x y f x y x x=∆→∆→+∆-∆''===∆∆.35.⑴)(x f 在),(b a 的导数概念:()dy df f x y dx dx ''===00()()lim limx x y f x x f x x x∆→∆→∆+∆-==∆∆.⑵能根据导数概念求函数..........y C =(C 为常数),y x =,1y x =,2y x =,y =的导数....36.函数)(x f y =在点0x 处的导数的几何意义....:函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.37.几种常见函数的导数(1)0='C (C 为常数);(2)'1()()n n x nxn Q -=∈;(3)x x cos )(sin =';(4)x x sin )(cos -=';(5)x x 1)(ln =';e a xx a log 1)(log =';(6)xx e e =')(.38.导数的运算法则法则1:[()()]()()u x v x u x v x '''±=±;法则2:)()()()(])()([x v x u x v x u x v x u '+'=';法则3:).0)(( )()()()()()()(2≠'-'='⎦⎤⎢⎣⎡x v x v x v x u x v x u x v x u 39.判别)(0x f 是极大(小)值的方法当函数)(x f 在点0x 处连续时,(1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,则)(0x f是极大值;(2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,则)(0x f 是极小值.第四章三角函数40.⑴终边相同的角的集合:{}2,k k Z ββαπ=+∈;⑵角度与弧度的换算:()180180,1,1180rad rad rad πππ⎛⎫=== ⎪⎝⎭;⑶弧长与扇形的面积公式:弧长l r α=⋅,扇形面积21122S lr r α==⋅.⑷常见恒成立的三角不等式(给定范围条件下)①若(0,)2x π∈,则sin tan x x x <<;②若(0,2x π∈,则1sin cos x x <+≤③|sin ||cos |1x x +≥.41.常用三角函数不等式及相关等式的解集:⑴不含绝对值情况:①sin cos x x >的x 集合是322,44x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭;②sin cos x x =的x 集合是,4x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;③sin cos x x <的x 集合是322,44x k x k k Z ππππ⎧⎫-+<<+∈⎨⎬⎩⎭。

相关文档
最新文档