地球化学第一章重点

合集下载

地球化学第一章太阳系和地球系统的元素分布和分配3

地球化学第一章太阳系和地球系统的元素分布和分配3

➢因为地壳中O, Si, Al, Fe, K, Na, Ca等元素
丰度最高,浓度大,容易达到形成独立矿 物的条件。
➢自然界浓度低的元素很难形成独立矿物
,如硒酸锂(Li2SeO4)和硒酸铷(Rb2SeO4); 但也有例外,“Be”元素地壳丰度很低 (1.7×10-6),但是它可以形成独立的矿物 Be3Al2Si6O18(绿柱石)
➢浓度克拉克值=某元素在区域内某一地质体
中平均含量/某区域元素的丰度值
第一章 太阳系和地球系统的元素
2007年4月5日
丰度PartⅢ
14
浓集系数
定义为:某元素最低可采品位/某元素的 克拉克值,反映了元素在地壳中倾向于集 中的能力。
Sb和Hg浓集系数分别为25000和14000, Fe的浓集系数为6,这说明Fe成矿时只要 克拉克值富集6倍即可
第一章 太阳系和地球系统的元素
2007年4月5日
丰度PartⅢ
8
➢③限制了自然体系的状态
➢实验室条件下可以对体系赋予不同物
理化学状态,而自然界体系的状态受到
限制,其中的一个重要的因素就是元素
丰度的影响。
➢例如,酸碱度—pH值在自然界的变化
范围比在实验室要窄很多,氧化还原电 位也是如此。
第一章Байду номын сангаас太阳系和地球系统的元素
第一章 太阳系和地球系统的元素
2007年4月5日
丰度PartⅢ
2
1.3.5 元素地壳丰度研究的地球 化学意义 ★
元素地壳丰度(克拉克值)是地球化学中 一个很重要的基础数据。它确定了地壳 中各种地球化学作用过程的总背景,它 是衡量元素集中、分散及其程度的标尺, 本身也是影响元素地球化学行为的重要 因素。

地球化学复习提纲

地球化学复习提纲

地球化学复习提纲第一章绪论地球化学——是研究地球及其子系统(含部分宇宙体)的化学组成、化学作用和化学演化的科学。

地球化学研究的基本问题——(1)元素(同位素)在地球及各子系统中的组成;(2)元素的共生组合和存在形式;(3)研究元素的迁移;(4)研究元素(同位素)的行为;(5)地球的历史与演化;地球化学研究思路——“见微而知著”,通过观察原子之微,以求认识地球和地质作用之著。

采集样品的要求:(1)明确的代表性;(2)系统性;(3)统计性;化学元素的丰度与分布丰度——一种化学元素在某个自然体中的重量占这个自然体总重量的相对份额(如百分数),称为该元素在自然体中的丰度。

克拉克值——是地壳中元素的重量百分数的丰度单位。

区域克拉克值——是指地壳不同构造单元中元素的丰度值。

如克拉通地壳元素丰度值。

丰度系数——是指某一自然体的元素丰度与另一个可作为背景的自然体的元素丰度的比值。

例:以地球丰度为背境,则地壳中该元素的丰度系数定义为:K=地壳丰度/地球丰度当K>1时,称为富集,当K<1时,称为亏损。

重量丰度:以重量单位表示的元素丰度。

确定太阳系元素组成的途径①对太阳及其它星体辐射的光谱进行定性、定量测定。

②直接测定地球岩石、月球岩石和各类陨石;③利用宇宙飞行器对临近地球的星体进行观察和测定;④分析测定气体星云、星际间物质和宇宙线的组成?太阳系元素丰度规律①氢和氦是丰度最高的两种元素,其原子数几乎占太阳中全部原子数目的98%②原子序数较低的范围内(Z<45),元素丰度随原子序数增大呈指数递减,而(Z>45)各元素丰度值很相近。

③质量数为4的倍数的核素或同位素具有较高丰度。

④原子序数为偶数的元素其丰度大大高于相邻原子序数为奇数的元素。

⑤锂、铍和硼具有很低的丰度,属于强亏损的元素,而O和Fe呈现明显的峰,它们是过剩元素。

陨石类型:石陨石(球粒陨石:约含10%的金属;非球粒陨石:约含1%的金属);石铁陨石:约含50%的金属;铁陨石:金属含量大于90%;地球元素丰度计算法陨石类比法:直接利用陨石的化学成分,经算术平均求出地球的元素丰度;地球模型和陨石类比法;地球物理类比法,也称层壳模型物理类比法;地球元素丰度特征①地球物质的90%由铁、氧、硅、镁四种元素组成;②地球元素丰度也遵循太阳系元素丰度的基本规律,如奇偶规律、递减规律等等。

地球化学重点

地球化学重点

地球化学重点第⼀章1本教材的地球化学定义★从20世纪初产⽣到现在,地球化学历经近100年的历史,其研究范围(从地壳到地球、宇宙)和着眼点(元素⾏为到化学组成、化学作⽤和化学研究)发⽣了重⼤变化,现代地球化学的中⼼课题是通过观察和揭⽰地球、地圈及各⼦系统(包括⾏星)这些客体的化学特性、所处的热动⼒学环境以及在各客体中或与客体有关的系统中发⽣的作⽤过程。

因此,为了强调地球及其⼦系统是地球化学研究的主要对象,在地球及其⼦系统中发⽣的各种⾃然作⽤的动态机制和物质系统的化学演化历史,地球化学定义可以简洁地表述为:地球化学是研究地球及其⼦系统(含部分宇宙体)的化学组成、化学机制和化学演化深⼊理解地球化学的定义从研究对象来看:是地球及其⼦系统(地壳、地幔及其⾃然作⽤体系)的岩浆作⽤、沉积作⽤、变质作⽤、成矿作⽤、表⽣作⽤、⽣态环境等,⽬前正在向宇宙天体拓展;从研究形式来看:主要是元素(同位素)在⾃然界的化学运动形式;从研究时间来看:包含了整个地球、地壳演化和全部地质作⽤时期;对单个元素(同位素)来讲,是研究它们的发⽣、不断发展及螺旋式演化的全部历史。

为此,地球化学是地质学与化学相结合的⼀门边缘学科,但本质上是⾪属地球科学。

地球化学的基本问题★围绕原⼦在⾃然环境中的变化及其意义,地球化学研究涉及以下5个基本问题/基本任务:1、地球系统中元素及其同位素的组成(丰度abundance和分配distrbution);2、元素的共⽣组合(paragenetic association)和赋存形式(occurrence mode);3、元素的迁移(migration)和循环(circulation);4、地球的历史(history)和演化(evolution);5、应⽤地球化学研究。

0.4.2 地球化学的基本⼯作⽅法0.4.2.1 地球化学野外⼯作⽅法1.地质考察对研究对象所处地质位置及周围环境、地质体产状测量和特征记录、地质体宏观现象的考察和描述,必要时进⾏地质填图;查明:地质体的岩⽯-矿物组成及相互作⽤关系,由此提供有关地球化学作⽤的空间展布、时间序列和相互关应该明确⼀点:地质背景清楚的地质体或样品才有研究意义。

地球化学复习资料

地球化学复习资料

地球化学复习资料地球化学复习资料第⼀章绪论⼀、地球化学的定义地球化学是研究地球及⼦系统(含部分宇宙体)的化学组成、化学作⽤和化学演化的科学(涂光炽)。

地球化学是研究地球的化学成分及元素在其中分布、分配、集中、分散、共⽣组合与迁移规律、演化历史的科学。

⼆、地球化学研究的基本问题第⼀:元素(同位素)在地球及各⼦系统中的组成(量)第⼆:元素的共⽣组合和存在形式(质)第三:研究元素的迁移(动)第四:研究元素(同位素)的⾏为第五:元素的地球化学演化第⼆章⾃然体系中元素的共⽣结合规律⼀、元素地球化学亲和性的定义在⾃然体系中元素形成阳离⼦的能⼒和所显⽰出的有选择地与某种阴离⼦结合的特性称为元素的地球化学亲和性。

⼆、亲氧元素、亲硫元素与亲铁元素的特点①:离⼦结构:最外层2、8个电⼦稳定结构,最外层18电⼦,最外层8—18电⼦②:电负性:较⼩,⼤,③:化学键:离⼦键,共价键,⾦属键④:氧化物的⽣成热:氧化物⽣成热⼤于FeO,⼩于FeO,氧化物⼩于亲氧元素、硫化物⼩于亲硫元素⑤:集中分布情况:岩⽯圈,硫化物——氧化物过渡圈,铁—镍核⑥:容积曲线:下降部分,上升部分,最低部分三、其它的概念离⼦电位(π):是离⼦电价(W)与离⼦半径(R)的⽐值,即π=W/R电离能:指从原⼦电⼦层中移去电⼦所需要的能量。

电离能愈⼤,则电⼦与原⼦核之间结合得愈牢固。

电⼦亲和能:原⼦得到电⼦所放出的能量(E)叫电⼦亲和能。

E越⼤,表⽰越容易得到电⼦成为负离⼦。

电负性:中性原⼦得失电⼦的难易程度。

或者说原⼦在分⼦中吸引价电⼦的能⼒叫电负性。

表⽰为:X=I+E (X:电负性;I:电离能;E:电⼦亲和能)周期表上,以Li的电负性为1.0,得出其它元素相对电负性。

化学键:离⼦键(电⼦交换),共价键(电⼦共⽤),⾦属键(价电⼦⾃由移动),范德华键(分⼦间或惰性原⼦间,存在弱的偶极或瞬时偶极),氢键(也属分⼦间静电⼒,含H的分⼦与其它极性分⼦或负离⼦间)四、元素的地球化学化学分类(⼽式分类)亲氧(亲⽯)、亲硫(亲铜)、亲铁、亲⽓根据地球中阴离⼦中氧丰度最⾼,其次是硫(主要形成氧的化合物和硫化物);⽽能以⾃然⾦属形式存在的丰度最⾼的元素是铁,因此,元素的地球化学亲和性主要分为以下三类:①亲氧性(亲⽯)元素;②亲硫性(亲铜)元素;③亲铁元素。

《地球化学》章节笔记

《地球化学》章节笔记

《地球化学》章节笔记第一章:导论一、地球化学概述1. 地球化学的定义:地球化学是应用化学原理和方法,研究地球及其组成部分的化学组成、化学性质、化学作用和化学演化规律的学科。

它是地质学的一个分支,同时与物理学、生物学、大气科学等多个学科有着密切的联系。

2. 地球化学的研究对象:- 地球的固体部分,包括岩石、矿物、土壤等;- 地球的流体部分,包括大气、水体、地下水等;- 地球生物体,包括植物、动物、微生物等;- 地球内部,包括地壳、地幔、地核等。

3. 地球化学的研究内容:- 地球物质的化学组成及其时空变化;- 地球内部和外部的化学过程;- 元素的迁移、富集和分散规律;- 地球化学循环及其与生物圈的相互作用;- 地球化学在资源、环境、生态等领域的应用。

二、地球化学的研究方法与意义1. 地球化学的研究方法:- 野外调查与采样:包括地质填图、钻孔、槽探、岩心采样等;- 实验室分析:包括光学显微镜观察、X射线衍射、电子探针、电感耦合等离子体质谱(ICP-MS)、原子吸收光谱(AAS)等;- 地球化学数据处理:包括统计学分析、多元回归、聚类分析等;- 地球化学模型:建立地球化学过程的理论模型和数值模型;- 同位素示踪:利用稳定同位素和放射性同位素研究地球化学过程。

2. 地球化学研究的意义:- 揭示地球的形成和演化历史;- 了解地球内部结构、成分和动力学过程;- 探索矿产资源的形成机制和分布规律;- 评估和治理环境污染问题;- 理解地球生物圈的化学循环和生态平衡;- 为可持续发展提供科学依据。

三、地球化学的发展历程与现状1. 地球化学的发展历程:- 起源阶段:19世纪初,地质学家开始关注矿物的化学组成;- 形成阶段:19世纪末至20世纪初,维克托·戈尔德施密特等科学家奠定了地球化学的基础;- 发展阶段:20世纪中叶,地球化学在理论、方法、应用等方面取得显著进展;- 现代阶段:20世纪末至今,地球化学与分子生物学、环境科学等学科交叉,形成新的研究领域。

地球化学

地球化学

第一章太阳系和地球系统化学元素的分布与分配研究任何物质的存在和运动规律,都必须观察研究对象的质和量的特征。

地壳和地球的化学组成如何,元素的相对含量怎样,无疑是地球化学必须探讨的基础课题。

地球化学在研究太阳系、地球和地壳及其它不同地质体中元素的含量时,常采用“丰度”(abundance)“分布”(distribution)和“分布量”等不同术语,它们都表示一定空间中物质组成的相对平均含量。

1.1太阳系的化学成分太阳系由太阳、行星、行星物体(宇宙尘、彗星、小行星)和卫星所组成,其中太阳集中了整个太阳系99.8%的质量。

行星沿着椭圆轨道绕太阳而运行(图1.1)。

在它们中间可以划分为两种类型:接近太阳的较小的内行星-水星、金星、地球、火星,也称为类地行星;远离太阳的大的外行星-木星、土星、天王星、海王星和冥王星。

在火星和木星之间存在着数以兆计的小行星(小行星带)。

它们的大小相差极大,其中最大的谷神星直径达770km。

据估计,直径大于10km的小行星有104个,而直径大于1m 的则有1011个。

有些小行星的轨道是横切过行星的轨道。

在殒落到地球上来的陨石中,已经发现有两颗的轨道曾位于小行星带内。

确定太阳系或宇宙丰度的途径计有:(1)直接分析测定地壳岩石、各类陨石和月球岩石的样品;(2)对太阳及其它星体辐射的光谱进行定性和定量研究;(3)利用宇宙飞行器对邻近地球的星体进行就近观察和测定,或取样分析;(4)分析测定气体星云和星际间的物质;(5)分析研究宇宙射线。

图1.1 太阳系及其行星示意图上图-示大小比例,下图-示分布及运行轨道1.1.1陨石的化学成分陨石是落到地球上来的行星物体的碎块。

它们可能起源于彗星。

更加可能来自火星和木星之间的小行星带。

陨石可由显微质点大小到具有几千公斤的巨块。

据估计,每年落到地球表面的大约有500个陨石,其总质量可达3×106至3×107t。

然而,每年见到其殒落,但又能找到的陨石仅5到6个。

地球化学复习重点

地球化学复习重点

绪论:1. 地球化学:地球化学是研究地球及其子系统(含部分宇宙)的化学组成、化学作用和化学演化的科学.2. 地球化学研究的基本问题:①元素(同位素)在地球及各子系统中的组成②元素的共生组合和存在形式③研究元素的迁移④研究元素(同位素)的行为⑤元素的地球化学演化3. 地球化学的研究思路:"见微而知著"。

通过观察原子、研究元素(同位素),以求认识地球和地质作用地球化学现象。

4. 简述地球化学的研究方法:A. 野外工作方法:①宏观地质调研②运用地球化学思维观察、认识地质现象③在地质地球化学观察的基础上,根据目标任务采集各种地球化学样品B.室内研究方法:④量的测定,应用精密灵敏的分析测试方法,以取得元素在各种地质体中的含量值⑤质的研究,也就是元素结合形态和赋存状态的研究⑥动的研究,地球化学作用过程物理化学条件的测定和计算。

包括测定和计算两大类。

⑦模拟地球化学过程,进行模拟实验。

⑧测试数据的多元统计处理和计算。

第一章:基本概念1. 地球化学体系:我们把所要研究的对象看作是一个地球化学体系,每个地球化学体系都有一定的时间连续,具有一定的空间,都处于特定的物理化学状态(T、P 等)2. 丰度:一般指的是元素在这个体系中的相对含量(平均含量)。

3. 分布:元素的分布指的是元素在一个化学体系中(太阳、陨石、地球、地壳、某地区)整体的总的含量特征。

4. 分配:元素的分配指的是元素在各地球化学体系内各个区域、各个区段中的含量。

5. 研究元素丰度的意义:①元素丰度是每一个地球化学体系的基本数据以在同一体系中或不同体系中用元素的含量值来进行比较,通过纵向(时间)、横向(空间)上的比较,了解元素基本特征和动态情况,从而建立起元素集中、分散、迁移等系列的地球化学概念。

是研究地球、研究矿产的重要手段之一。

②研究元素丰度是研究地球化学基础理论问题的重要素材之一。

宇宙天体是怎样起源的?地球又是如何形成的?地壳中主要元素为什么与地幔中的主要元素不一样?生命是怎么产生和演化的?这些研究都离不开地球化学体系中元素丰度分布特征和分布规律。

地球化学讲义第一章

地球化学讲义第一章

中国地质大学地球科学学院地球化学系制作,2010年6月1日更新
第21页/共68页
由表可知:
地 球 化 学
对于这样的数据我们应有一个正确的的评价: 首先这是一种估计值,是反映目前人类对太阳系的认识 水平,这个估计值不可能是很精确的,随着人们对太阳系以 至于宇宙体系的探索的不断深入,这个估计值会不断的修正; 它反映了元素在太阳系分布的总体规律,虽然还是很粗 略的,但从总的方面来看,它反映了元素在太阳系分布的总 体规律. 如果我们把太阳系元素丰度的各种数值先取对数,随后 对应其原子序数作出曲线图(如下图)时,我们会发现太阳 系元素丰度具有以下规律:
中国地质大学地球科学学院地球化学系制作,2010年6月1日更新
第18页/共68页
地 球 化 学
2.陨石的平均化学成分
要计算陨石的平均化学成分必须要解决两个问题:首先要了 解各类陨石的平均化学成分;其次要统计各类陨石的比例.各 学者采用的方法不一致.(V.M.Goldschmidt 采用硅酸盐:镍铁:陨硫铁=10:2:1).陨石的平均化学成分计算结果如下:
宇航员
月球车
火星车
中国地质大学地球科学学院地球化学系制作,2010年6月1日更新
第12页/共68页
地 球 化 学
太阳系景观
中国地质大学地球科学学院地球化学系制作,2010年6月1日更新
第13页/共68页
地 球 化 学
(二) 陨石的化学成分
陨石是从星际空间降落到地球表面上来的行星物体的碎片.陨石 是空间化学研究的重要对象,具有重要的研究意义: ① 它是认识宇宙天体,行星的成分,性质及其演化的最易获取, 数量最大的地外物质; ② 也是认识地球的组成,内部构造和起源的主要资料来源; ③ 陨石中的60多种有机化合物是非生物合成的"前生物物质", 对探索生命前期的化学演化开拓了新的途径; ④ 可作为某些元素和同位素的标准样品(稀土元素,铅,硫同位 素).

地球化学重点知识总结

地球化学重点知识总结

第一章太阳系和地球系统的元素丰度第1节基本概念1、地球化学体系按照地球化学的观点,把所要研究的对象看作是一个地球化学体系,每个地球化学体系都有一定的空间,都处于特定的物理化学状态,并且有一定的时间连续。

这个体系可大可小。

某个矿物包裹体,某矿物、某岩石可看作一个地球化学体系,某个地层、岩体、矿床、某个流域、某个城市也是一个地球化学体系,从更大范围来讲,某一个区域、地壳、地球直至太阳系、整个宇宙都可看作为一个地球化学体系。

地球化学的基本问题之一就是研究元素在地球化学体系中的分布(丰度)、分配问题,也就是地球化学体系中“量”的研究。

2、分布和丰度体系中元素的分布,一般认为是指的是元素在这个体系中的相对含量(平均含量),即元素的“丰度”,体系中元素的相对含量是以元素的平均含量来表示的。

体系中元素的丰度值实际上只能对这个体系里元素真实含量的一种估计;元素在一个体系中的分布,特别是在较大体系中决不是均一的。

3、分布与分配分布指的是元素在一个地球化学体系中(太阳、陨石、地球、地壳某地区)整体总含量。

元素的分配指的是元素在各地球化学体系内各个区域、区段中的含量。

分布是整体,分配是局部,两者是一个相对的概念,既有联系也有区别. 把某岩石作为一个整体,元素在某组成矿物中的分布,也就是元素在岩石中分配的表现.4第2节元素在太阳系中的分布规律(一)获得太阳系丰度资料的主要途径。

主要有以下几种:1、光谱分析:对太阳和其它星体的辐射光谱进行定性和定量分析,但这些资料有两个局限性:一是有些元素产生的波长小于2900Å,这部分谱线在通过地球化学大气圈时被吸收而观察不到;二是这些光谱产生于表面,它只能说明表面成分,如太阳光谱是太阳表面产生的,只能说明太阳气的组成。

2 、直接分析:如测定地壳岩石、各类陨石和月岩、火星的样品.上个世纪七十年代美国“阿波罗”飞船登月,采集了月岩、月壤样品,1997年美国“探路者”号,2004年美国的“勇敢者”、“机遇”号火星探测器测定了火星岩石的成分。

地球化学知识点整理

地球化学知识点整理

地球化学绪论1、地球化学的定义:地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学2、地球化学的基本问题:【填空】(1)质:地球系统中元素的组成(2)量:元素的共生组合和赋存形式(3)动:元素的迁移和循环(4)史:地球的历史和演化3、地球化学研究思路:【简答】在地质作用过程中,在宏观地质体变化和形成的同时,亦伴有大量肉眼难以辨别的化学组成变化的微观踪迹,它们包含着重要的定性和定量的地质作用信息,应用现代化学分析测试手段,剖析这些微观踪迹,从而揭示宏观地质作用的奥秘。

即“见微而知著”。

第一章地球和太阳系的化学组成第一节地球的结构和组成1、地球的圈层结构、主要界面名称:(1)地震波(P波和S波)在地球内部传播速度的变化,反映出地球内部物质的密度和弹性是不均一的。

这种不均一性在地球的一定深度表现为突变性质。

由此得出,地球内部具有壳层结构的概念,即认为地球由表及里分为地壳、地幔和地核三个部分。

界面分别为:莫霍面和古登堡面。

(2)上地壳和下地壳分界面为康拉德面。

上地壳又叫做硅铝层,下地壳又叫做硅镁层。

大陆地壳由上、下地壳,而大洋地壳只有下地壳。

【填空】2、固体地球各圈层的化学成分特点:(分布顺序)地壳:O、Si、Al、Fe、Ca地幔:O、Mg、Si、Fe、Ca地核:Fe-Ni地球:Fe、O、Mg、Si、Ni第二节元素和核素的地壳丰度1、基本概念:【名词解释】(1)地球化学体系:我们把所要研究的对象看作是一个地球化学体系,有一定的空间,处于特定的物理-化学状态,并且有一定时间的连续(2)丰度:研究体系中被研究元素的相对含量(3)克拉克值:地壳中元素的平均含量(4)质量克拉克值:以质量计算表示的克拉克值(5)原子克拉克值:以原子数之比表示的元素相对含量。

它是指某元素在某地质体全部元素的原子总数中所占原子个数的百分数。

(6)浓度克拉克值:某一元素在地质体中的平均含量与克拉克值的比值2、克拉克值的变化规律:(1)递减:元素的克拉克值大体上随原子序数的增大而减小。

地球化学第一章 总论

地球化学第一章 总论

(二)现阶段地球化学的基本思想、研究 对象和研究层次
1. 地球化学进入新发展阶段的背景:
上世纪60年代中现代板块构造学说兴起,引起了地 学界的思想革命,使之首次真正能从全球甚至太阳 系和宇宙的视野来思考研究地学问题。板块学说本 身的深入研究和论证,就涉及壳/幔相互作用、洋/陆 相互作用、地幔对流和动力学等层次的问题。此外 ,工业发展带来的环境恶化问题,如全球变暖,也 涉及大气圈、水圈、生物圈和岩石圈相互作用和物 质循环问题。这些问题都要求地球化学参与研究。
地球化学
陈远荣,桂林理工大学地球科学学院
2011,秋季学期
前言
一、主要讲授内容:
1、总论(发展历史、概念、方法论和主要任务) 2、地球化学基础知识 3、地球的化学组成 4、元素的结合规律和赋存形式 5、水—岩化学作用和水介质中元素的迁移 6、地球化学热力学和地球化学动力学 7、微量元素素种类 — 贵金属元素、稀缺元素和为不 同研究目的寻找新的指示元素。
自然过程 — 深部作用,低温过程,动力学 过程,地流体(Geofluid)及其作用,生 物作用,以及不同地质过程的相互作用。
应用领域 — 农业,养殖业,矿产资源综合 利用,环境中元素的生物效应,环境和水 污染及其监测、治理和可持续发展。
二、主要参考书
1、个别元素地球化学: 《元素地球化学》刘英俊等,科学出版社,1984 《金的地球化学》刘英俊,马东升,科学出版社
,1991 《钨的地球化学》刘英俊,马东升,科学出版社
,1987 《Geochemistry》V. M. Goldschmidt, Oxford at the
5、 发展基础理论:元素的迁移形式、赋存状 态和活化与沉淀条件,尤其是溶液地球化学 ;补充完善元素的热力学和动力学参数,尤 其是在高温高压条件下的参数;发展有关元 素活化—迁移—沉淀的实验地球化学和数值 模拟技术和方法,并建立相关模型和发展新 的理论或假说。

最新地球化学,第一章1知识讲解精品课件

最新地球化学,第一章1知识讲解精品课件

一、基本概念
丰度的表示方法(fāngfǎ) 重量丰度W
W
a

M
X
•W0
常量 (chángliàng)
元素 (wt%)
微量元素
ppm
(g/t, ,10-6)
痕量(hén liànɡ)元素 ppb
(μg/t,ng/g,10-9)
原子丰度
(原子%)
Wi
相对丰度R(宇宙丰度单位,CAU. )
Ri
绝对含量单位
T

kg
千克
g

mg
毫克
μg
微克
相对含量单位

百分之

千分之
ppm、μg/g、g/t ppb、μg/kg、ng/g
百万分之 十亿分之
×10-2 ×10-3
×10-6 ×10-9
ng
纳克
ppt、pg/g
万亿分之
×10-12
pg
皮克
1g/t=1μg/g=10-4%=10-6=1ppm
第十页,共46页。
化及硫同位素国际标准),帮助了解地球的成因和组成 防治自然灾害
第三十一页,共46页。
美国亚利桑那Barringer(or Meteor)陨石坑,直径约1.2km 由一个直径约40m的撞击(zhuàngjī)物撞击(zhuàngjī)而成。 撞击(zhuàngjī)物残余称为Canyon Diablo铁陨石(国际S同位素标准)
2 丰度 元素
关键词:(yuán
sù )
自然 (zìrán)体
含量
平均含量
一种化学元素在某个自然体中
丰度的表示方法(fāngfǎ) 的重量占这个自然体的全部化

《地球化学》课程笔记

《地球化学》课程笔记

《地球化学》课程笔记第一章:地球化学概述一、地球化学的定义与范畴1. 定义地球化学是研究地球及其组成部分的化学组成、化学作用、化学演化规律以及这些过程与地球其他物理、生物过程的相互关系的学科。

2. 范畴地球化学的研究范畴包括但不限于以下几个方面:- 地球的物质组成和结构- 元素在地球各圈层中的分布、迁移和循环- 岩石和矿物的形成、演化和分类- 生物与地球化学过程的相互作用- 地球表面环境的化学演化- 自然资源和能源的地球化学特征- 环境污染和生态破坏的地球化学机制二、地球化学的研究内容1. 地球的物质组成- 地壳:研究地壳的化学成分、岩石类型、矿物组成及其变化规律。

- 地幔:探讨地幔的化学结构、岩石类型、矿物组成和地球化学动力学过程。

- 地核:分析地核的物质组成、物理状态和地球化学性质。

- 地球表面流体:研究大气、水圈和生物圈的化学组成和演化。

2. 元素地球化学- 元素的丰度:研究元素在地壳、地幔、地核中的丰度分布。

- 元素的分布:分析元素在地球各圈层中的分布规律和影响因素。

- 元素的迁移与富集:探讨元素在地质过程中的迁移机制和富集条件。

- 元素循环:研究元素在地球系统中的循环路径和循环速率。

3. 岩石地球化学- 岩石成因分类:根据岩石的化学成分、矿物组成和形成环境对岩石进行分类。

- 岩浆岩地球化学:研究岩浆的起源、演化、结晶过程和岩浆岩的地球化学特征。

- 沉积岩地球化学:分析沉积物的来源、沉积环境和沉积岩的地球化学特点。

- 变质岩地球化学:探讨变质作用过程中岩石的化学变化和变质岩的地球化学特征。

4. 矿物地球化学- 矿物的化学成分:研究矿物的化学组成、晶体结构和化学键合。

- 矿物的形成与变化:探讨矿物的形成条件、变化过程和稳定性。

- 矿物物理性质与地球化学:分析矿物的物理性质与地球化学环境的关系。

- 矿物化学分类:根据矿物的化学成分和结构特点进行分类。

5. 生物地球化学- 生物地球化学循环:研究元素在生物体内的循环过程和生物地球化学循环的模式。

地球化学知识点整理

地球化学知识点整理

地球化学绪论1、地球化学的定义:地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学2、地球化学的基本问题:【填空】(1)质:地球系统中元素的组成(2)量:元素的共生组合和赋存形式(3)动:元素的迁移和循环(4)史:地球的历史和演化3、地球化学研究思路:【简答】在地质作用过程中,在宏观地质体变化和形成的同时,亦伴有大量肉眼难以辨别的化学组成变化的微观踪迹,它们包含着重要的定性和定量的地质作用信息,应用现代化学分析测试手段,剖析这些微观踪迹,从而揭示宏观地质作用的奥秘。

即“见微而知著”。

第一章地球和太阳系的化学组成第一节地球的结构和组成1、地球的圈层结构、主要界面名称:(1)地震波(P波和S波)在地球内部传播速度的变化,反映出地球内部物质的密度和弹性是不均一的。

这种不均一性在地球的一定深度表现为突变性质。

由此得出,地球内部具有壳层结构的概念,即认为地球由表及里分为地壳、地幔和地核三个部分。

界面分别为:莫霍面和古登堡面。

(2)上地壳和下地壳分界面为康拉德面。

上地壳又叫做硅铝层,下地壳又叫做硅镁层。

大陆地壳由上、下地壳,而大洋地壳只有下地壳。

【填空】2、固体地球各圈层的化学成分特点:(分布顺序)地壳:O、Si、Al、Fe、Ca地幔:O、Mg、Si、Fe、Ca地核:Fe-Ni地球:Fe、O、Mg、Si、Ni第二节元素和核素的地壳丰度1、基本概念:【名词解释】(1)地球化学体系:我们把所要研究的对象看作是一个地球化学体系,有一定的空间,处于特定的物理-化学状态,并且有一定时间的连续(2)丰度:研究体系中被研究元素的相对含量(3)克拉克值:地壳中元素的平均含量(4)质量克拉克值:以质量计算表示的克拉克值(5)原子克拉克值:以原子数之比表示的元素相对含量。

它是指某元素在某地质体全部元素的原子总数中所占原子个数的百分数。

(6)浓度克拉克值:某一元素在地质体中的平均含量与克拉克值的比值2、克拉克值的变化规律:(1)递减:元素的克拉克值大体上随原子序数的增大而减小。

(完整word版)地球化学知识点整理

(完整word版)地球化学知识点整理

地球化学绪论1、地球化学的定义:地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学2、地球化学的基本问题:【填空】(1)质:地球系统中元素的组成(2)量:元素的共生组合和赋存形式(3)动:元素的迁移和循环(4)史:地球的历史和演化3、地球化学研究思路:【简答】在地质作用过程中,在宏观地质体变化和形成的同时,亦伴有大量肉眼难以辨别的化学组成变化的微观踪迹,它们包含着重要的定性和定量的地质作用信息,应用现代化学分析测试手段,剖析这些微观踪迹,从而揭示宏观地质作用的奥秘。

即“见微而知著”。

第一章地球和太阳系的化学组成第一节地球的结构和组成1、地球的圈层结构、主要界面名称:(1)地震波(P波和S波)在地球内部传播速度的变化,反映出地球内部物质的密度和弹性是不均一的。

这种不均一性在地球的一定深度表现为突变性质。

由此得出,地球内部具有壳层结构的概念,即认为地球由表及里分为地壳、地幔和地核三个部分。

界面分别为:莫霍面和古登堡面。

(2)上地壳和下地壳分界面为康拉德面。

上地壳又叫做硅铝层,下地壳又叫做硅镁层。

大陆地壳由上、下地壳,而大洋地壳只有下地壳。

【填空】2、固体地球各圈层的化学成分特点:(分布顺序)地壳:O、Si、Al、Fe、Ca地幔:O、Mg、Si、Fe、Ca地核:Fe-Ni地球:Fe、O、Mg、Si、Ni第二节元素和核素的地壳丰度1、基本概念:【名词解释】(1)地球化学体系:我们把所要研究的对象看作是一个地球化学体系,有一定的空间,处于特定的物理-化学状态,并且有一定时间的连续(2)丰度:研究体系中被研究元素的相对含量(3)克拉克值:地壳中元素的平均含量(4)质量克拉克值:以质量计算表示的克拉克值(5)原子克拉克值:以原子数之比表示的元素相对含量。

它是指某元素在某地质体全部元素的原子总数中所占原子个数的百分数。

(6)浓度克拉克值:某一元素在地质体中的平均含量与克拉克值的比值2、克拉克值的变化规律:(1)递减:元素的克拉克值大体上随原子序数的增大而减小。

地球化学第一章

地球化学第一章

第一章太阳系和地球系统的元素丰度一、基本概念地球化学体系把所研究对象称为一个地球化学体系,每个地球化学体系都有一定的空间,都处于特定的物理化学状态,并且有一定的时间连续性。

(P15)元素的分布分布:指元素在各种宇宙体或地质体中(太阳、行星、陨石、地球、地圈、地壳)整体(母体)的含量元素的分配分配:则指元素在构成该宇宙体或地质体内各个部分或各区段(子体)中的含量。

与分布既有联系又有区别,而且是一个相对的概念。

化学元素在地球中的分布,也就是元素在地球(母体)中的各层圈(子体)分配的总和。

而元素在构成地壳的各构造层及各类型岩石中的分布,则又是元素在地壳(母体)中各子体中分配。

(注意元素分配和分布的区别与联系)元素在地壳中的原始分布受控于:元素的起源元素的质量原子核的结构和性质地球演化过程中的热核反应元素在地壳中各圈层的分配受控于:地质作用中元素的迁移元素的化学反应元素电子壳层结构及其地球化学性质元素的丰度指化学元素在地球化学系统(太阳、行星、陨石、地球、地圈、地壳)中的平均分布量。

自然体系中不同级别、不同规模的宇宙体或地质体中(如太阳系、行星、陨石、地球、地壳、各地圈)元素的平均含量就相应的称为元素的宇宙丰度、地球丰度、地壳丰度,各种岩石的元素丰度等。

丰度的表示方法:常量元素常用重量%表示,微量元素常用百万分之一(ppm,10-6)和十亿分之一(ppb,10-9)表示。

元素丰度的研究意义1.丰度是每一个地球化学体系的基本数据。

近代地球化学正是在探索和了解丰度这一过程中逐渐形成的。

2.一些重要的地球化学基本理论问题都离不开地球化学体系中元素丰度分布特征和规律研究。

二、宇宙(太阳系)中元素的组成现代宇宙成因假说“宇宙大爆炸”假说:由美国天体物理学家加莫夫最先提出的(Gamow, 1952)。

该假说认为,大约在150亿年以前,所有的天体物质都集中在一起,密度极大,温度极高,被称为原始火球。

这个时期的天空中,没有恒星和星系,只是充满了辐射。

地球化学-重点精选全文完整版

地球化学-重点精选全文完整版

可编辑修改精选全文完整版绪论1地球化学学科特点:1.地球化学研究的主要物质系统是地球、地壳、地幔及地质作用体系, 因此它是地球科学的一部分。

2.地球化学着重研究地球系统中的化学运动3.地球化学以化学类科学理论为基础(无机化学、有机化学、物理化学、热力学等);4.综合性边缘科学,与其它学科相互渗透,已形成三十个分支学科。

5.理论与应用并重:在矿产资源开发与利用、全球环境与气候变化、污染与治理、地方病防治、农牧业生产等需要应用地球化学知识;6 . 地球化学是年青学科,发展迅速。

3地球化学的研究思路:那就是在地质作用过程中形成宏观地质体的同时,还形成大量肉眼难以辨别的常量元素、微量元素及同位素成分的组合的微观踪迹,它们包含着重要的定性和定量的地质作用信息,只要应用现代分析测试手段观察这些微观踪迹以及宏观的地球化学现象,便可深入地揭示地质作用的奥秘。

概括一句话那就是见微而知著(即通过观察原子之微,以求认识地球和地质作用之著)5地球化学研究方法及其的特点研究方法:一)野外阶段:1)宏观地质调研。

明确研究目标和任务,制定计划;2)运用地球化学思维观察认识地质现象;3)采集各种类型的地球化学样品。

二)室内阶段:1)“量”的研究,应用精密灵敏的分析测试方法,以取得元素在各种地质体中的分配量。

元素量的研究是地球化学的基础和起点,为此,对分析方法的研究的要求:首先是准确;其次是高灵敏度;第三是快速、成本低;2)“质”的研究,即元素的结合形式和赋存状态的鉴定和研究;3)地球化学作用的物理化学条件的测定和计算;4)归纳、讨论:针对目标和任务进行归纳、结合已有研究成果进行讨论。

特点第一个特点:由于地球化学是隶属于地球科学的,为此,首先要遵循地质学的思维方法和工作途径。

归纳起来有以下几个方面:♠第一手实际资料来自对自然地质现象的详细观察和研♠在地学的时空结构中整理和综合资料;♠确信事实规律的统计性特征;♠反序追踪历史;♠结论的推断性和多解性,以及认识的反复深化。

地球化学(复习资料)要点

地球化学(复习资料)要点

第一章1.克拉克值:元素在地壳中的丰度,称为克拉克值。

元素在宇宙体或地球化学系统中的平均含量称之为丰度。

丰度通常用重量百分数(%),PPM(百万分之一)或g/t表示。

2.富集矿物:指所研究元素在其中的含量大大超过它在岩石总体平均含量的那种矿物。

3.载体矿物:指岩石中所研究元素的主要量分布于其中的那种矿物。

4. 浓集系数=工业利用的最低品位/克拉克值。

为某元素在矿床中可工业利用的最低品位与其克拉克值之比。

5.球粒陨石:是石陨石的一种。

(约占陨石的84%):含有球体,具有球粒构造,球粒一般为橄榄石和斜方辉石。

基质由镍铁、陨硫铁、斜长石、橄榄石、辉石组成。

划分为: E群——顽火辉石球粒陨石,比较稀少;O群——普通球粒陨石: H亚群—高铁群,橄榄石古铜辉石球粒损石;L亚群—低铁群,橄榄紫苏辉石球粒陨石; LL亚群—低铁低金属亚群;C群——碳质球粒陨石,含有碳的有机化合物和含水硅酸盐,如烷烃、芳烃、烯烃、氨基酸、卤化物、硫代化合物等。

为研究生命起源提供重要信息。

分Ⅰ型、Ⅱ型和Ⅲ型。

Ⅰ型其非挥发性组成代表了太阳系星云的非挥发性元素丰度。

6.浓度克拉克值=某元素在地质体中的平均含量/克拉克值,反映地质体中某元素的浓集程度。

1.陨石在地化研究中的意义:(一)陨石的成分是研究和推测太阳系及地球系统元素成分的重要依据:(1)用来估计地球整体的平均化学成分。

○1陨石类比法,即用各种陨石的平均成分或用球粒陨石成分来代表地球的平均化学成分。

○2地球模型和陨石类比法来代表地球的平均化学成分,其中地壳占质量的1%,地幔31.4%,地核67.6%,然后用球粒陨石的镍—铁相的平均成分加 5.3%的陨硫铁可以代表地核的成分,球粒陨石的硅酸盐相平均成分代表地壳和地幔的成分,用质量加权法计算地球的平均化学成分。

(2)I型碳质球粒陨石其挥发性组成代表了太阳系中非挥发性元素的化学成分。

(二)陨石的类型和成分是用来确定地球内部具层圈结构的重要依据:由于陨石可以分为三种不同的陨石—石陨石、石铁陨石和铁陨石,因而科学家设想陨石是来自某种曾经分异成一个富含金属的核和一个硅酸盐外壳的行星体,这种行星经破裂后就成为各种陨石,其中铁陨石来自核部,石铁陨石来自金属核和硅酸盐幔的界面,而石陨石则来自富硅酸盐的幔区。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章地球地壳中化学元素的分布与分配一,确定太阳系或宇宙元素丰度的途径:1)直接分析测定地壳岩石,各类陨石,月球岩石样品2)对太阳及其他星体辐射的光谱进行定性和定量的测量3)利用宇宙飞行器对邻近地球的星体进行就近观察和测定或取样分析4)分析测定气体星云和星际间物质5)分析研究宇宙射线二,陨石分类及特点:陨石主要由镍铁合金,结晶硅酸盐或两者的混合物所组成,按成分可以分为三类:1)铁陨石:主要由Ni,Fe(98%)和其他元素组成2)石陨石:主要由硅酸盐矿物所组成(橄榄石,辉石)可分为两类:a,球粒陨石:含有球体具有球粒构造。

(约含10%金属)可分为E群(顽火辉石球粒陨石);O群(普通球粒陨石)分为三个亚群:H群(高铁普通球粒陨石)L群(低铁普通球粒陨石)LL群(低铁低金属普通球粒陨石);C群(炭质球粒陨石)主要特征为含有碳的有机化合物分子,主要由含水硅酸盐组成;分为I型,II型,III型。

b,无球粒陨石:不含球粒,常常比球粒陨石结晶粗,成分和结构和地球上的火成岩相似。

可分为贫钙(CaO-0~3%)和富钙两个群,约含1%金属。

3)石-铁陨石:由数量上大体相等的Fe,Ni和硅酸盐矿物组成,属过渡类型。

研究陨石主要从陨石的成分、年龄、成因出发,其研究成果不仅对研究太阳系的化学成分、起源和演化、有机质起源和太阳系空间环境等有着重要意义,而且对研究地球的形成、组成演化以及地球早期生命系统的化学演化有重要意义。

1)它是认识宇宙天体、行星的成分、性质及其演化的最易获取、数量最大的地外物质;2)是认识地球的组成、内部构造和起源的主要资料来源,可以用陨石类比法,地球模型和陨石的类比法来研究地球元素的丰度;3)陨石中的60多种有机化合物是非生物合成的“前生物物质”,对探索生命前期的化学演化开拓了新的途径;4)可作为某些元素和同位素的标准样品(稀土元素,铅、硫同位素)。

5)I型炭质球粒陨石的成分除了H,He外,与太阳成分基本一致,可代表太阳系早期物质,可以用来了解元素的宇宙丰度四,太阳,行星,月球化学成分获得的方法与途径:太阳:1)对太阳辐射的光谱进行定性和定量的测量2)根据宇宙飞行器获取的资料进行推测和判定行星:1)直接分析测定宇宙飞行器带回来的岩石样品2)利用宇宙探测器对行星大气进行探测3)根据间接获得的资料对行星的内部结构和化学成分进行理论推测月球:1)直接分析测定宇宙飞行器带回来的月球表面物质样品2)分析宇宙飞行器获取的大量月球资料3)利用宇宙探测器对月球表面进行探测五,太阳元素的丰度规律:太阳元素丰度的获取方法:测定太阳光谱中不同波长谱线强度(太阳光谱的谱线数目和他们的波长主要取决于太阳表层中所存在的元素,谱线的亮度取决于元素的相对丰度,温度,压力和其他条件;在温度压力固定的条件下丰度越大谱线越亮)1)H,He是两种丰度最高的元素,这两种元素的原子数几乎占了太阳中全部原子数的98% 2)在原子序数较低的范围内,元素的丰度随原子序数增大呈指数递减,在原子序数较大的范围内(Z>45)各元素丰度值很接近3)原子序数为偶数的元素丰度大大高于其相邻原子序数为奇数的元素4)具有偶数质子数或中子数的核素丰度总高于具有奇数质子数或中子数的核素5)质量数为四的倍数的核素或同位素具有较高的丰度6)Li,Be,B具有很低的丰度,为强亏损元素;O,Fe在元素丰度曲线上呈明显的峰,为过剩元素六,地壳元素的丰度特征:(地壳中元素的丰度不仅取决于元素原子核的结构和稳定性同时又受地球形成前,地球形成时,地球存在时的演化和分异的影响;现在地壳中元素丰度特征是由元素起源直到地球形成和存在这一漫长时期内元素演化历史的总体体现)1)地壳中的元素平均含量极不均一,只有少量元素在数量上起决定性作用,而大部分元素属从属地位2)与太阳系和整个地球相比,在元素丰度排序上有很大的不同。

与太阳系相比明显贫H,He,Ne,N等气体元素;与地球相比明显贫Fe,Mg同时富集Al,K,Na3)地壳元素丰度不是固定不变的,是不断变化的开放体系4)将元素原子克拉克值取对数后做出这些数值对应于原子序数的曲线可看出:地壳中元素分布规律粗略的与太阳系元素分布规律相同(即:元素丰度随原子序数增大而减小,偶数质子数元素的丰度大于奇数质子数的元素)5)元素丰度随原子核构造的复杂程度加大而减小6)奥多-哈根斯法则,相邻元素之间偶数元素的分布量大于奇数元素的分布量(REE)。

(附:地球化学组成的基本特征:首先,地球的元素丰度也遵守太阳系元素丰度的基本规律(递减规律和奇偶规律);其次,地球的元素丰度还具有以下特征:1)地球中含量大于10%的元素有Fe、O、Si、Mg;大于1%的元素有Ni、S、Ca、Al;其次为Na、K、Cr、Co、P、Mn和Ti,可以认为地球几乎是由15种元素组成的;2)与太阳系化学成分相比,地球富Fe、Mg、S和贫气态物质组分;3)与地壳化学成分相比,地球富Mg、Fe和贫Al、K、Na。

)七,月球元素的丰度特点:同地球和陨石的相应资料相比较,月岩中的碱金属和许多挥发性元素较贫,耐熔元素和稀土元素较为富集(反映了月球形成于高温条件,并且说明月球和地球在化学成分上不属于同一类)八,元素克拉克值的地球化学意义:元素克拉克值是地球化学中一个很重要的基础数据,确定了地壳作为一个物理化学体系的总特征和地壳中各种地球化学作用过程的总背景,是衡量元素集中,分散及其程度的标尺。

一)控制元素的地球化学行为:1)元素的克拉克值在某种程度上影响元素参加各种化学过程的浓度,从而支配元素的地球化学行为2)限制自然界的矿物种类及种属3)限制了自然体系的状态4)对元素亲氧性和亲硫性的限定二)可作为衡量微量元素集中,分散的标尺:如可以作为阐明地球化学省的特征提供一种标准三)指示特征的地球化学过程:某些元素的克拉克值是相对固定的,当发现这些元素的比值发生了变化,则示踪着某种地球化学过程的发生四)依据元素克拉克值可以计算出地球化学性质相似或地球化学上有关系的元素之间的平均比例五)标识地壳中元素的富集和成矿能力九,浓度克拉克值及其意义:浓度克拉克值:某元素在某一地质体中的平均含量与其克拉克值之间的比值。

意义:浓度克拉克值可以反映出某元素在地质体中的浓集程度,当浓度克拉克值大于1时,意味着该元素在地质体中集中了;小于1时则意味着该元素在地质体中分散了。

因此,浓度克拉克值可以作为衡量元素集中分散的标尺,可以为找矿勘探提供依据。

十,地幔物质鉴别的主要依据:1)在火山岩管中呈包体状的可能是地幔岩石样品2)高温,高压下矿物和岩石行为的实验研究3)元素丰度方面的知识十一,概说太阳成份的研究思路和研究方法。

我们地球所在的太阳系是由太阳、行星、行星物体(宇宙尘、彗星、小行星)组成的,其中太阳的质量占太阳系总质量的99.8%,其他成员的总和仅为0.2%,所以太阳的成分是研究太阳系成分的关键。

获得太阳系丰度资料的主要途径有:1)直接分析测定地壳岩石,各类陨石,月球岩石样品2)对太阳及其他星体辐射的光谱进行定性和定量的测量3)利用宇宙飞船(飞行器)对邻近地球的星体进行就近观察和测定或取样分析4)分析测定气体星云和星际间物质5)分析研究宇宙射线十二,月球的结构和化学成分与地球相比有何异同?1)月球的主要岩石类型为玄武岩和辉长岩类,没有花岗岩和沉积岩,但有一种特殊的岩石-克里普岩,是一种含钾、稀土元素和磷的岩石;2)月球没有铁镍核,也没有大气圈和水圈所以月球表面无风化作用,表层岩石的破碎和角砾岩化主要由于陨石的撞击和较大的昼夜温差所致。

3)与地球的化学成分相比较,月岩中碱金属和挥发性元素较贫,而富耐熔元素和稀土元素。

4)与地球相比,月球物质的分异相当弱,表面岩石密度和整体密度相近。

十三,地壳元素丰度的研究方法:1)克拉克法: 收集尽可能多的研究样品,进行系统的样品分析;将样品按种类和地区分组,求平均成分;确定各类样品的权值;加权平均求地壳元素丰度;2)戈尔德斯密特法:挪威南部细粒冰川粘土;3)维诺格拉多夫法:岩石比例法,用二份酸性岩加一份基性岩;4)泰勒法:花岗岩和玄武岩质量比为1:1进行计算;5)黎彤法:在计算中国岩浆岩平均化学成分的基础上,并采用全球地壳模型,对各构造单元的质量加权平均。

十四,岩浆岩中各岩类元素含量变化规律如何?从超基性岩-基性岩-中性岩-酸性岩:1) Fe、Mg、Ni、Co、Cr和Pt族元素等含量逐步降低;2) K、Na、Si、Li、Be、Rb、REE等元素含量逐渐增高;3)Ca、Al、Ti、V、Mn、P和Se等元素在基性岩中含量最高;4) Ge、Sb、As等元素含量分配变化不明显。

十五,简述沉积岩不同岩类中元素含量变化规律。

1)Si以极大优势富集于砂岩中,Al和Si倾向于在页岩和粘土岩类中浓集,而Ca和Mg则以碳酸盐为最大浓集场所。

2)绝大多数微量元素在页岩和粘土岩类岩石的丰度一般均高于它们在砂岩类和碳酸盐类岩石中的丰度。

3)Sr与Mn等显著的富集于碳酸盐类岩石中,而Zr和REE元素等则倾向在砂岩类岩石中富集十六,简要说明区域地壳元素丰度的研究方法.1)区域范围的确定——靶区的选择,应根据工作任务和区域特征来选择工作范围;2)建立区域地壳结构-组成模型;3)区域地壳元素丰度的计算方法:(1)分别计算不同类型岩石中元素的平均含量;(2)按不同类型岩石在地壳结构层中的质量比,加权平均计算各结构层的元素丰度;(3)按区域地壳结构-组成模型计算区域地壳元素丰度。

十七,概述区域地壳元素丰度的研究意义。

1)它是决定区域地壳(岩石圈)体系的物源、物理化学特征的重要基础数据;2)为研究各类地质、地球化学作用、分析区域构造演化历史及区域成矿规律提供重要的基础资料;3)为研究区域生态环境,为工业、农业、畜牧业、医疗保健等事业提供重要信息。

十八,概念:1)浓集系数:某元素最低可采品位与其克拉克值之间的比值,反映了元素在地壳中倾向于集中的能力。

2)载体矿物:岩石中所研究的元素主要分配于其中的那种矿物。

3)富集矿物:岩石中所研究的元素在其中的含量大大超过它在岩石总体中的含量的那种矿物。

4)初级宇宙射线:同大气作用前的宇宙射线5)次级宇宙射线:宇宙射线同大气作用后的粒子及作用中产生的各种粒子6)丰度:元素在宇宙体或地球化学体系中的平均含量7)克拉克值:元素在地壳中的相对平均含量,又称平均含量。

8)地球化学省:由地壳形成和演化的地球化学差异而引起的与地壳平均化学成分显著不同的地段9)碳质球粒陨石:富含水和有机化合物的球粒陨石,成分主要为硅酸盐,氧化物及硫化物。

10)镧系压缩:镧系开始的第六周期元素,其原子半径由于经历了镧系,在内层多了14个电子,导致有效核电荷数增大,对核外电子吸引力增大,而发生了收缩。

相关文档
最新文档