某高校讲义的化工热力学讲义1
第一章 基础化工热力学篇-第一第二讲
~ M i (PV ) i
i 1
n
能量衡算方程:
n n d ~ ~ 2 (U v 2 / 2 ) Q Ws P dV M (PV ) (U M (v / 2 )) M i i i i dt dt i 1 i 1
n d 2 ~ (U M (v / 2 )) M i (H v 2 / 2 ) i Q W dt i 1
热力学第一定律第二定律例题
例②:一个绝热罐,内装190kg,60℃水,如果 水以=0.2kg/s的稳定速度流出,而10℃的冷水 等量地流进罐,问需要多久罐里的水温度由60℃ 降到35℃,假设罐里的水充分搅拌,罐里的热损 耗可以忽略,对于液体Cv=Cp=C,与T,P无关。
热力学第一定律第二定律例题
3、Helm holtz自由能 定义:A≡U-ST 内能加上由热耦合而引起的能量,对于一个与外界 由热耦合而力学上孤立(保持V恒定)的体系,A 是有用的。 4、Gibbs自由能
定义:G≡H-TS≡U+PV-TS
内能加上力学和热耦合而引起的能差。
二、响应函数
响应函数是与实验关系最密切的热力学量,它 们为我们提供了这样一些知识,当体系的其他一些 独立的状态变量在可控制的条件下改变时,这些特 定的状态变量是如何变化的。 响应函数可分为热响应函数和力学响应函数。
热力学第一定律第二定律例题
恒温热源
T ' 200
Q' 2000kj
饱和蒸汽100℃ 装置
H1 2676.0kj / kg S1 7.3554kj / kg
液态水0℃
H2 0 S2 0
低温热源
《化工热力学》课件
通过改进热力学过程,可以提高产品的质量和产量,提升企业竞争力。
03
02
01
历史回顾
化工热力学起源于工业革命时期,随着科技的发展和工业的进步,逐渐形成一门独立的学科。
发展趋势
随着环保意识的提高和能源需求的增加,化工热力学将更加注重节能减排、资源循环利用和可再生能源的开发利用。
未来展望
总结词:熵增加
详细描述:热力学第二定律指出,在封闭系统中,自发过程总是向着熵增加的方向进行,即系统总是向着更加混乱无序的状态发展。这个定律对于化工过程具有重要的指导意义,因为它揭示了能量转换和利用的限制,以及不可逆过程的本质。
绝对熵的概念
总结词
热力学第三定律涉及到绝对熵的概念,它指出在绝对零度时,完美晶体的熵为零。这个定律对于化工过程的影响在于,它提供了计算物质在绝对零度时的熵值的方法,这对于分析化学反应的方向和限度具有重要的意义。同时,它也揭示了熵的物理意义,即熵是系统无序度的量度。
总结词
化工过程的能量效率是衡量化工生产经济效益的重要指标,通过提高能量效率,可以降低生产成本并减少环境污染。
能量效率是评价化工过程经济性和环境影响的重要参数。它反映了化工过程中能量转化和利用的效率。提高能量效率意味着减少能源的浪费,降低生产成本,同时减少对环境的负面影响。为了提高能量效率,需要采用先进的工艺技术和设备,加强能源管理,优化操作条件。
《化工热力学》PPT课件
xx年xx月xx日
目 录
CATALOGUE
化工热力学概述热力学基本定律化工过程的能量分析化工过程的热力学分析化工热力学的应用实例
01
化工热力学概述
提高能源利用效率
通过优化化工过程的热力学参数,可以降低能耗,提高能源利用效率。
化工热力学讲义-1-第二章-流体的p-V-T关系36页PPT文档
二、研究方法 热力学研究方法:分为宏观、微观两种。本书就工程应用而言, 主要介绍的是宏观研究方法。
宏观研究方法特点: ①研究对象:将大量分子组成的体系视为一个整体,研究大量 分子中发生的平均变化,用宏观物理量来描述体系的状态;
②研究方法:采取对大量宏观现象的直接观察与实验,总结出 具有普遍性的规律。
2a
VC3
而:V2p2 T
2RT
Vb3
6a V4
V 2p2TTC V2CRbC T3 V 6C a4 0
2RTC VC b
3
6a
VC4
上两式相除,得:
VC b VC 23
1
b 3 VC
则: a
VC3 2
②图3中高于临界温度Tc的等温线T1、T2,曲线平滑且不与相界线相交, 近似于双曲线,即:PV=常数; 小于临界温度Tc的等温线T3、T4,由三个部分组成,中间水平线表示 汽液平衡共存,压力为常数,等于饱和蒸汽压。
③从图3还可知道:临界等温线(蓝线所示)在临界点处的斜率和 曲率等于零,即:
p 0 V TTC
第二章 流体的P-V-T关系
①P、V、T的可测量性:流体压力P、摩尔体积V和温度T是可以 直接测量的,这是一切研究的前提;
②研究的目的与意义:利用P、V、T数据和热力学基本关系式可 计算不能直接测量的其他性质,如焓H、内能U、熵S和自由能G。
一、p-V-T图
2.1纯物质的P-V-T关系
说明:①曲面以上或以下的空间为不平衡区; ②三维曲面上“固”、“液”和“气(汽)”表示单相区 ; ③“固-液”、“固-汽”和“液-汽”表示两相区;
③超临界流体的特殊性:它的密度接近于液体,但同时具有气体的 “体积可变性”和“传递性质”。所以和气体、液体之间的关系是: 既同又不同,
化工热力学讲义-1-第二章-流体的p-V-T关系
理想气体与实际气体差异
理想气体
理想气体是一种假设的流体模型,其分子间无相互作用力,分子本身无体积。理想气体的p-v-t关系符合 理想气体状态方程,因此在一些简单的计算和理论分析中,可以使用理想气体模型进行近似处理。
范德华方程的适用范围
范德华方程适用于中等压力、中等温度的气体,对于高压、低温或高温条件下的气体,其精度可能 有所下降。
范德华方程的参数
范德华方程中包含三个参数,分别是气体的摩尔体积、临界温度和临界压力,这些参数可以通过实 验测定得到。
维里方程
维里方程的形式和意义
维里方程是另一个用于描述真 实气体行为的状态方程,它通 过引入维里系数来考虑气体分 子间的相互作用力。
体积
体积是指流体所占据的空间大小,也是流体状态的重要参数之一。体积的大小与流体的密度 和数量有关,常用的体积单位有立方米(m³)、立方厘米(cm³)、升(L)等。
温度
温度是表示物体冷热程度的物理量,是流体状态的重要参数之一。在化工热力学中,常用的 温度单位有摄氏度(℃)、华氏度(℉)、开尔文度(K)等。
温度降低,气体分子的热运动减缓,分子间的相互作用力增强,实际气体与 理想气体的偏差增大,压缩因子增大。
膨胀系数及变化规律
80%
膨胀系数的定义
表示流体体积随温度或压力变化程 度的物理量。
100%
等压膨胀系数
在恒定压力下,流体体积随温度升 高而增大的程度。一般随温度升高 而增大。
80%
等温膨胀系数
在恒定温度下,流体体积随压力升 高而减小的程度。一般随压力升高 而减小。
化工热力学讲义1
ac (Tr )
( RTc )2 c a 其中: pc RTc b b pc
RTc c c pc (Tr ) 1 (d1 d2 d3 2 ) (1 Tr1/ 2 )
d1 , d2 , d3 为关联参数
各种形式的立方型状态方程及其求解方法
Virial方程及多项级数展开式类状态方程
对应态原理及其应用 混合规则与混合物状态方程
纯液体的pVT关系及其密度(摩尔体积)的估算方法
重要内容 流体pVT关系可采用两种方式来描述: 图表法;立体图及平面图中的点、线、面的 物理意义及变化趋势。
解析法:如状态方程法与对应状态原理法等。
意为: lim
p 0 (V )
pV RT
理想气体方程的应用
在较低压力和较高温度下可用理想气体方程进行 计算。
为真实气体状态方程计算提供初始值。
判断真实气体状态方程的极限情况的正确程度, p 0 V 当 或 时,任何状态方程都还原为理想 气体方程。
通用型立方型状态方程:
A、B、C为常数,使用时应注意适用的温度范 围和单位。 缺乏蒸汽压数据或蒸汽压方程常数的条件下,也 可以用经验方法估计。如:
B T C
ln p / pc f
S
0
f
1
f f
0
6.09648 0.16934 5.92714 1.28862 ln Tr Tr Tr6
热力学过程与循环
系统从一个平衡状态变化到另一个平衡状态。 等温,等压 等容,等熵 绝热,可逆
热力学循环过程的特征是:
cycle
Mdx 0
第2章 纯物质的p-V-T 关系
化工热力学-讲义
恒温过程
绝热压缩
p
g
f
1
V
过程 等温压缩
温度
轴功
绝热压缩
多变压缩
(1)等温压缩
(2)绝热压缩
(2)绝热压缩
p
g
H
F
E
D
节 省 的 功
C
I
f
G B
V
A
(1)单级压缩
(2)两级压缩、中间冷却
节流膨胀
绝热,不做功,典型的不可逆过程。重要特征:焓不变。
节流膨胀
绝热做功膨胀
(1)节流膨胀
教材P121
热机 热机 功源
4.6.1 熵产生
能量不仅在数量上具有守恒性,而且在质量上具有品位性 能量 总是从高品位向低品位转化,从有效能向无效能转化 熵 做功能力的大小,熵的大小表示无效能的大小
4.6.2 熵平衡
高温 463.15K
装置
冷却水 273.15
4.7.1 理想功
完全可逆过程的封闭体系, 非流动过程 可逆传热
2.2流体的状态方程式(EOS)
2.2流体的状态方程式(EOS)
2.2.3立方型方程
vdW
RK
SRK
G PR
2.2流体的状态方程式(EOS)
2.2.3立方型方程
vdW
RK
SRK
G PR
2.2流体的状态方程式(EOS)
2.2.3立方型方程
vdW
RK
SRK
G PR
2.2流体的状态方程式(EOS)
恒p
状态 1’ 状态 2
解:
简单的讨论:
初态
1
本题结论
适用条件
恒p
状态 1’
化工热力学经典课件-1
新的绿色溶剂及混合物
低能耗的CO2捕集分离过程
设计新的填料环-提高传质效率
流体力学性能、界面润湿性能对传质效率的影响
CO2的埋存和资源化利用
香山科学会议第276次学术讨论会(2006.4.25~27)的主题
2006年5月国际原油价格已突破70$/桶大关
CO2驱油是有利可图的一举两得的方法
高等化工热力学
2007年9月
损失金额在250亿至1000亿美元之间
2005年的卡特里娜飓风及其 对美国新奥尔良市的影响
2005年第13号台风“泰利”造 成浙江、安徽、福建、江西、 河南、湖北等6省1930.1万人受 灾,死亡124人,失踪31人,紧 急转移安置灾民183.6万人;倒 塌房屋9.7万间,损坏27.7万间 ;农作物受灾面积126.1万公顷 ,绝收26.2万公顷;直接经济 损失154.2亿元。
H H (S , p, n1, , nK ) A A(T , V , n1, , nK ) G G(T , p, n1, , nK )
2 热力学基本方程
Z Z ( X , Y , n1, , nK )
K
Z dZ X
KZ Z dY dni dX Y n i 1 Y,n j X ,n j i X,Y,n[i ]
300 400
空气含水率=p/大气压
600
T 500
T/K
2005年9月16日新民晚报A30国际新闻.生活/社会 版
过去35年间强飓风数量显著增长
全球升温增长飓风势头
研究人员15日说,过去35年间全球范围 内强度类似于“卡特里娜”的飓风数量显著 增长,与全球气候升温引起的海面水温上升 有关。 美国佐治亚理工学院的柯里说,随着海 洋表面水温增高,飓风变得更强,破坏力更 大。有充分理由可以相信,海洋表面水温升 高与飓风强度增高有联系,而全球气候升温 可能使这一趋势得以延续。 与柯里就职于同一所学院的彼得.韦伯斯 特也认为,“海水表面温度越高,飓风威力 越猛”。 海面上蒸发的水蒸气最终会变成降雨, 水蒸气释放热量过程中则形成热带气旋,而 这最终可能转化为飓风。韦伯斯特说,海水 表面越温暖,水蒸气就会越多,而飓风也就 能得到更多“燃料”。他说,即使海面 水温微小提升也能引起水蒸气迅速增多。 研究人员说,自1970年以来,大西 洋的洋面水温上升了0.5摄氏度。 柯里及其同事发现,1990年至今, 全球发生的强飓风次数比1970年到1985 年间翻了一倍。所谓“强飓风”,特指4 级或5级飓风,破坏力巨大。 研究人员在美国《科学》杂志上报 告说,虽然强飓风增多,但过去10年间 全球飓风总次数呈现下降趋势。 柯里等人的研究结果与其它科学家 近期发表在《自然》杂志上另一份研究 报告的结论吻合。后者认定,过去30年 间飓风强度正在增大。 马震 (新华社供本报特稿)
矿大(北京)化工热力学01第一章
ˆi
1.5 学好化工热力学的目的和方法
1.5.2 学好化工热力学的方法
3、注意单位换算 能量:J,Cal,cm3· atm,cm3 · bar 压力:kg/m2(工程压力),atm ,mmHg, bar, Pa,Mpa
温度:K,℃ ,oF,4、循序渐进1来自5 学好化工热力学的目的和方法
巨大的中间试验(需要模型)。
1.4 化工热力学的研究方法和特点
化工热力学研究内容的“三要素”: 原理-模型-应用
状态方程EOS
模型 原理
活度系数模型γi
应用
方法:运用经典热力学的原理,结合反映体系特征的模
型,应用于解决工程中的实际问题。
1.4 化工热力学的研究方法和特点
特点:
a. 研究体系为实际状态
过程开发、设计和生产的重要理论依据。
1.1.4 热力学的分支
⑷ 统计热力学
Statistical Thermodynamics
统计热力学是年轻的、刚刚起步的学科, 它从微观角度出发,例如采用配分函数,研究
过程的热现象。
经典热力学
无论是工程热力学还是化学热力学还是化 工热力学,它们均是经典热力学,遵循经典热 力学的三大定律(热力学第一、第二、第三定 律),不同之处是由于热力学应用的具体对象 不同,决定了各种热力学解决问题的方法有各
b. 处理方法:以理想态为标准态加上校正
气体Z (压缩因子) 实际结果 = 理想结果 + 校正 气体φ(逸度系数) 溶液γi(活度系数)
化学热力学的方法 建立模型
1.4 化工热力学的研究方法和特点
c. 获取数据的方法:少量实验数据加半经验模型
化工热力学是用少量实验数据加半经验模型,
《高等化工热力学》课件
目录
• 绪论 • 热力学基础 • 化学平衡 • 相平衡 • 热力学在化工过程中的应用 • 结论与展望
01
绪论
热力学的定义与重要性
总结词:基本概念
详细描述:热力学是一门研究热现象的物理学分支,主要关注能量转换和传递过程中的基本规律和性 质。在化工领域,热力学是核心理论基础之一,对于化工过程的优化、设计和改进具有重要意义。
反应过程的优化提供理论支持。
加强与环境、能源等领域的交叉研究,探索化工过程 的绿色化、低碳化、资源化发展路径,为可持续发展
提供科技支撑。
针对复杂化学反应体系的热力学性质和传递特 性进行研究,发展适用于复杂体系的热力学模 型和计算方法。
结合人工智能、大数据等先进技术,发展智能化 的热力学分析和优化工具,提高化工过程的效率 和效益。
谢谢观看
化工过程的节能与减排
节能技术
利用热力学原理,开发和应用节能技术,降低能耗和减少温室气体排放。
减排措施
通过改进工艺和采用环保技术,减少化工过程对环境的污染和排放。
06
结论与展望
高等化工热力学的重要性和应用价值
高等化工热力学是化工学科中的重要分支,它涉及到化学反应、传递过程和热力学的基本原理,是实 现高效、低耗、安全、环保的化工生产的关键。
03
化学平衡
化学平衡的基本概念
化学平衡的定义
在一定条件下,可逆反应的正逆 反应速率相等,反应体系中各物 质的浓度不再发生变化的状态。
平衡常数
在一定温度下,可逆反应达到平衡 时各生成物浓度的系数次幂的乘积 与各反应物浓度的系数次幂的乘积 之比。
平衡态的描述
平衡态是系统内部各组分浓度和能 量达到相对稳定的状态,可以用状 态方程和热力学函数来描述。
2024版化工热力学精ppt课件
化工热力学精ppt课件目录•化工热力学基本概念•流体的热物理性质•化工过程能量分析•相平衡与相图分析•化学反应热力学基础•化工热力学在工艺设计中的应用PART01化工热力学基本概念孤立系统与外界既没有物质交换也没有能量交换的系统。
开放系统与外界既有能量交换又有物质交换的系统。
封闭系统与外界有能量交换但没有物质交换的系统。
热力学系统及其分类热力学基本定律热力学第零定律如果两个系统分别与第三个系统处于热平衡状态,那么这两个系统也必定处于热平衡状态。
热力学第一定律热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。
热力学第二定律不可能把热从低温物体传到高温物体而不产生其他影响,或不可能从单一热源取热使之完全转换为有用的功而不产生其他影响,或不可逆热力过程中熵的微增量总是大于零。
状态方程与状态参数状态方程描述系统或它的性质和本质的一系列数学形式。
将系统的物理性质用数学形式表达出来,即建立该系统各状态参数间的函数关系。
状态参数表征体系特性的宏观性质,多数指具有能量量纲的热力学函数(如内能、焓、吉布斯自由能、亥姆霍茨自由能)。
偏微分与全微分概念偏微分在多元函数中,函数对每一个自变量求导数,就是偏导数。
全微分如果函数z = f(x, y) 在(x, y) 处的全增量Δz = f(x + Δx, y + Δy) -f(x, y) 可以表示为Δz = AΔx + BΔy + o(ρ),其中A、B 不依赖于Δx, Δy 而仅与x, y 有关,ρ = √[(Δx)2 + (Δy)2],此时称函数z = f(x, y) 在点(x, y) 处可微,AΔx + BΔy 称为函数z = f(x, y) 在点(x, y) 处的全微分。
PART02流体的热物理性质基于实验数据的经验方法利用已有的实验数据,通过拟合、插值等数学手段,得到纯物质的热物理性质随温度、压力等条件的变化规律。
热力学讲义——第一章 高等化工热力学
16
内能仅以差值进行定义和测定。只有给定基准态时,U 才有一数 值。通常用的几种基准态: (1) 1 大气压和 0 K 时的理想气体。 (2) 1 大气压和 298.15 K 时的理想气体。 (3) 1 大气压和 298.15 K 时的最稳定状态。 若只有压力为形成功的来源,则式(1-3)可写成一微分过程。
U U U dU dS dV dni n S V , ni V S , ni i i S ,V , nj i
(1-24)
24
对于闭系,ni 是常数,因此: U T S V , ni
2
试题类型
• 推导题: 3-5
• 思考题: 3-5
3
课程纪律:
• 缺课1/4者,无成绩 • 缺作业1/2者,无成绩
• 上课关闭手机声音(违反两次者无成绩)
• 雷同作业者,扣 10分/次
4
预修课程要求:化工热力学(本科) 课程目的:
在本科化工热力学的基础上,(1)进一步 加深理解经典热力学的概念;(2)介绍统计力 学的基础知识,使学生掌握从微观结构推算宏观
12
1.2 体系、过程和性质
体系:在热力学分析中,所研究的对象称为体系,其余部分称 为环境。分为: 孤立体系:体系与环境间无质量和能量的交换。 封闭体系:体系与环境间有能量交换,但无质量交换。 敞开体系:体系与环境间有质量和能量交换。 相:体系的均匀部分,与所研究的尺度有关。 容量性质:与相的质量成正比的性质。如,体积、内能、焓。
过程:状态的变化。 可逆过程:某一过程在无限小的净推动力和无限小的速度下进 行时,称为可逆过程。为理想过程,实际过程均为不可逆的。 热力学中的量分为两大类: 状态性质:只与状态有关的性质,如密度、内能等 非状态性质:只与过程有关的性质,如功、热等
化工热力学第一章课件资料
第四页,共38页。
第五页,共38页。
教材和参考书
第六页,共38页。
教学内容
Chap 1 绪论
Chap 2 流体的PVT关系:状态方程式
Chap 3 纯流体的热力学性质计算
Chap 4 热力学第一定律及其应用
Chap 5 热力循环-热力学第二定律及其应用
Chap 6 化工过程热力学分析
你关心的问题和疑问
v 我要赚大钱!
v 到底是出国、考研还是工作?
v 化学工程与工艺专业不是我喜欢的专业!我想做律师、
公务员、做贸易!
v 我忙着考证将来找个好工作!
v 所有的课程我都不感兴趣!所以我忙着玩游戏!但我心
里也虚,不知怎么办?
v 化学工程是夕阳工业么?
第一页,共38页。
国家和全球关心的问题
种能量的相互转化和有效利用,研究各种物理和化学变化过程中
达到平衡的理论极限、条件和状态。
– 它是化学工程学的一个重要组成部分,是化工过程开发、设计
和生产的重要理论依据。
Energy(能量)
Entropy(熵)
四个“E”
Equilibrium(平衡)
Chemical Engineering(化学工程)
♥ 化工是耗能大户,仅次于冶金。
第十页,共38页。
降低资源消耗
♠ 2003年,中国消耗了全球总产量30%的主要能源和原材料,创
造的GDP仅占世界的4%。
♠ 如果按每1美元生产总值能耗,我国比发达国家能耗高4~5倍。
♠ 目前,美国每万美元耗水为514m3,日本208m3,中国5045m3, 是
发达国家的8~20倍。
– 从局部的实验数据加半经验模型推算系统完整的信息
化工热力学基本概念和重点讲课稿
化工热力学基本概念和重点第一章热力学第一定律及其应用本章内容:*介绍有关热力学第一定律的一些基本概念,热、功、状态函数,热力学第一定律、热力学能和焓,明确准静态过程与可逆过程的意义,进一步介绍热化学。
第一节热力学概论*热力学研究的目的、内容*热力学的方法及局限性*热力学基本概念一.热力学研究的目的和内容目的:热力学是研究热和其它形式能量之间相互转换以及转换过程中所应遵循的规律的科学。
内容:热力学第零定律、第一定律、第二定律和本世纪初建立的热力学第三定律。
其中第一、第二定律是热力学的主要基础。
一.热力学研究的目的和内容把热力学中最基本的原理用来研究化学现象和化学有关的物理现象,称为化学热力学。
化学热力学的主要内容是:*利用热力学第一定律解决化学变化的热效应问题;*利用热力学第二律解决指定的化学及物理变化实现的可能性、方向和限度问题,建立相平衡、化学平衡理论;*利用热力学第三律可以从热力学的数据解决有关化学平衡的计算问题。
二、热力学的方法及局限性方法:以热力学第一定律和第二定律为基础,演绎出有特定用途的状态函数,通过计算某变化过程的有关状态函数改变值,来解决这些过程的能量关系和自动进行的方向、限度。
而计算状态函数的改变只需要根据变化的始、终态的一些可通过实验测定的宏观性质,并不涉及物质结构和变化的细节。
二、热力学的方法及局限性优点:*研究对象是大数量分子的集合体,研究宏观性质,所得结论具有统计意义。
*只考虑变化前后的净结果,不考虑物质的微观结构和反应机理,简化了处理方法。
二、热力学的方法及局限性局限性:*只考虑变化前后的净结果,只能对现象之间的联系作宏观的了解,而不能作微观的说明或给出宏观性质的数据。
例如:热力学能给出蒸汽压和蒸发热之间的关系,但不能给出某液体的实际蒸汽压的数值是多少。
*只讲可能性,不讲现实性,不知道反应的机理、速率。
三、热力学中的一些基本概念*系统与环境系统:用热力学方法研究问题时,首先要确定研究的对象,将所研究的一部分物质或空间,从其余的物质或空间中划分出来,这种划定的研究对象叫体系或系统(system)。
化工热力学方法讲座PPT
液体活度系数模型
优点:
•有效的关联化学品系统在低压下的性 质; •容易使用无限稀释活度系数数据; •可根据基团贡献进行预测; •许多物系的二元相互作用参数可从 DECHEMA 丛书中查出;
液体活度系数模型
局限性:
• 只能用于液相; • 可用的温度压力范围很窄;
• 对超临界组分需采用亨利常数;
立方型状态方程
• Soave-Redlich-Kwong (1972)
RT a P= v b ( v )( v b )
• Peng-Robinson (1976)
RT a P= v b (v 0.414 b)(v 2.414 b)
立方型状态方程-Φi计算
• PR方程Φi计算
• 换热器设计和核算
– 要求焓值及其它性质计算
• 压缩机、膨胀机设计
– 要求熵值及其它性质计算
• 塔水力学计算,管线阻力降、直径计算
– 要求传递性质计算
热力学方法应用步骤
☆ 确定物系的性质:极性或非极性物质 ☆ 选择适合物系的正确的热力学模型.
1、非极性物质-状态方程法或通用关联式法; 2、极性物质-活度系数法; • 确定该物系的关键二元对. • 核实该关键二元对的相互作用参数. • 估算缺少的其它二元对的相互作用参数.
rises again with increasing temperature Not reliable for extrapolation to high acentric factor because of 4th order dependence on Cannot be applied to polar components
• SIMSCI a(T)