高频小信号放大电路

合集下载

高频小信号调谐放大器的电路设计与仿真

高频小信号调谐放大器的电路设计与仿真

课程设计任务书学生姓名: 专业班级: 指导教师: 工作单位: 题 目:1.高频小信号调谐放大器的电路设计与仿真2. 乘积型相位鉴频设计与仿真3. 高频谐振功率放大器设计与制作初始条件:对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1.谐振频率:o f =10.7MHz ;谐振电压放大倍数:dB A VO 20≥,;通频带:MHz B w 17.0=;矩形系数:101.0≤r K 。

要求:放大器电路工作稳定,采用自耦变压器谐振输出回路2.电路的主要技术指标:输出功率Po ≥125mW ,工作中心频率fo=6MHz , >65%, 已知:电源供电为12V ,负载电阻,RL=51Ω,晶体管用3DA1,其主要参数:Pcm=1W,Icm=750mA,VCES=1.5V,fT=70MHz,hfe ≥10,功率增益Ap ≥13dB (20倍)。

时间安排:第15周,安排任务(鉴3-204)第16周,仿真、实物设计(鉴主实验室)第17周,完成(答辩,提交报告,演示)指导教师签名: 年 月 日系主任(或责任教师)签名: 年 月 日高频小信号谐振放大器 (3)1.设计任务 (3)2 .总体电路方框图 (3)3 单元电路设计 (4)3.1小信号放大电路 (4)3.2 选频网络 (5)4仿真结果 (6)5 实物制作与测试 (7)乘积型相位鉴频设计与仿真 (8)1.鉴频器概述 (8)2.鉴频器的主要参数 (8)2.1鉴频特性(曲线) (8)2.2鉴频器的主要参数 (9)3.鉴频方法 (9)3.1直接鉴频法 (9)3.2间接鉴频法 (10)3.2乘积型相位鉴频器原理说明 (10)4.乘积型相位鉴频器实验电路说明及仿真设计 (11)4.1乘积型相位鉴频器电路 (11)4.2仿真电路设计及结果分析 (12)5.MC1496鉴频电路的鉴频实物实验 (14)5.1鉴频电路的鉴频操作过程 (14)5.2鉴频特性曲线(S曲线)的测量方法 (15)高频功率放大器 (15)1.放大器电路分析 (15)2 谐振功率放大器的动态特性 (17)2.1谐振功放的三种工作状态 (17)2.2 谐振功率放大器的外部特性 (18)3单元电路的设计 (21)3.1确定功放的工作状态 (21)3.2基极偏置电路计算 (22)3.3计算谐振回路与耦合线圈的参数 (22)3.4电源去耦滤波元件选择 (23)4电路的安装与调试 (24)总结 (25)参考文献 (26)高频小信号谐振放大器1.设计任务设计一高频小信号谐振放大器,所设计电路的性能指标如下:谐振频率:o f=10.7MHz,谐振电压放大倍数:dBA VO 20≥,通频带:MHzB w 17.0=,矩形系数:101.0≤r K 。

小信号放大器-高频电子电路2.2.217页PPT

小信号放大器-高频电子电路2.2.217页PPT

负载和回路之间采用了变
压器耦合,接入系数
p2

u54 u31

N1 N
晶体管集、射回路与振荡回路之间 采用抽头接入,接入系数
p1

u21 u31

N2 N
+3 5
+C
L
u31
2
+
4 yL u54
yie
yreuce
yfeube
yoeu21
-
1
-
-
二、放大器性能参数分析:
1 . 放 大 器 输 入 导 纳 Y i ib
休息1 休息2
3 电压增益
解 法 一 :
利用上述求解输入导
纳的方法,把振荡回 路折合到晶体管集电 极回路的等效电路
uou54p2u31
+
iS YS
yie
ube
yreuce
-
uceu21p1u31
有uo

p2 p1
uce
如 右 图 所 示 :
uce

yfe yoeYL
ube
故 可 得Auu uo i
的 缺 点 。
休息1 休息2
二、多级单调谐放大器
若 单 级 放 大 器 的 增 益 不 能 满 足 要 求 , 就 要 采 用 多 级 放 大 器 设 放 大 器 有 n级 , 各 级 的 电 压 增 益 分 别 为 A u1,A u2,A u3 A un ,
则 总 电 压 增 益 A n为 : A nA u 1A u2A u3 A un
1 2 直 高 流 e 频 偏 交 置 Y流 i电 e 等 路 效 电 YR 工 路 fee作 U为 ·R c点 e射 b1Y、 , 极 oeR C 负 b Cb2、 反 为 C 馈 基 e偏 为 1e极 )置 旁 、分 1g电 路 压 o旁阻 电 式 4, 容 路偏 稳 。 置 电定 Y电 L静 容阻 态 , ,耦

高频小信号放大电路学习笔记

高频小信号放大电路学习笔记

图 2.2.5 共射—共基电路
3 宽频带放大器
在通信系统中,处于前端的前置低噪声放大器LNA和混 频器之后的中频放大器需要采用宽频带放大器进行小信号放大, 采用集中选频滤波器进行选频。
宽频带放大器中的晶体管特性宜采用混合π型等效电路。 图2.3.1是晶体管高频共发射极混合π型等效电路。输出电容Cce 很小, 可以忽略。
(2.2.24)
由上述公式可知, n级相同的单调谐放大器的总增益比单
级放大器的增益提高了, 而通频带比单级放大器的通频带缩小 了, 且级数越多, 频带越窄。
换句话说, 如多级放大器的频带确定以后, 级数越多, 则要 求其中每一级放大器的频带越宽。 因此, 增益和通频带的矛盾 是一个严重的问题, 特别是对于要求高增益宽频带的放大器来 说, 这个问题更为突出。 这一特性与低频多级放大器相同。
f0 2
1 LC

0 2
1 LC
回路有载Q值为
Qe
0C
g
1
0 Lg
回路通频带即放大器带宽为
(2.2.14)
BW f0 g
Qe 2C
(2.2.15)
以上几个公式说明, 考虑了晶体管和负载的影响之后, 放大
器谐振频率和Q值均有所变化。
谐振频率处放大器的电压增益为
Au0
其电压增益振幅为
UU0i0
用有源四端网络参数微变等效电路来分析。
2 谐振放大器
由晶体管、场效应管或集成电路与LC并联谐振回路组成
的高频小信号谐振放大器广泛用于广播、电视、通信、雷达等 接收设备中, 其作用是将微弱的有用信号进行线性放大并滤除不 需要的噪声和干扰信号。
谐振放大器的主要性能指标是电压增益、 通频带、 矩形系 数和噪声系数。

高频电路Multisim仿真实验一 高频小信号放大器

高频电路Multisim仿真实验一   高频小信号放大器

实验一 高频小信号放大器
一、 单调谐高频小信号放大器
图1.1 高频小信号放大器
1、 根据电路中选频网络参数值,计算该电路的谐振频率ωp ;
s rad CL w p /936.210580102001
1
612=⨯⨯⨯==--
2、 通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

,708.356uV V I = ,544.1mV V O = ===
357
.0544.10I O v V V A 4.325 输入波形:
输出波形:
3、 利用软件中的波特图仪观察通频带,并计算矩形系数。

4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电
压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v相应的图,根据图粗略计算出通频带。

感谢下载!
欢迎您的下载,资料仅供参考。

高频小信号放大电路实验报告

高频小信号放大电路实验报告

高频小信号放大电路
一.实验目的
1.了解Multisim软件的各项功能,掌握其使用方法。

2.通过使用Multisim软件来仿真电路,掌握高频小信号调谐放大器的工作原理。

3.了解负载对谐振回路的影响。

4.掌握高频小信号放大器动态范围的测试方法。

二.实验内容
1.并联谐振回路的演示仿真分析。

2.测试小信号放大器的静态工作状态。

3.观察放大器输出波形与谐振回路的关系。

4.测试放大器的幅频特性。

5.观察放大器的动态范围。

三.绘图
四.数据处理
<4>.动态数据分析:
增益计算公式:(2.)
幅频特性曲线:。

第三章-高频小信号放大器

第三章-高频小信号放大器

➢ yoe yo1 go1 jCo1 为晶体管的输出导纳。
➢ Y为L' 晶体管在输出端1、2两点之间看来的负载导纳,即下级晶 体管输入导纳与LC 谐振回路折算至1、2两点间的等效导纳。
➢ yoe YL' 可以看成是1、2两点之间的总等效导纳。
所有元件折算到LC 回路两端得图(a),再简化为图(b)
yre yfe yie Ys
图 4.2.3 晶体管放大器及其 y参数等效电路
End
y(导纳)参数的缺点:随频率变化;物理含义不明显。
图 4.2.4 混合π等效电路
优点: 各个元件在很宽的频率范围内都保持常数。 缺点:
rbc 集电结电阻
Cbc 集电结电容 rbe 基射极间电阻
C b'e 发射结电容 rbb 基极电阻
rce 集射极间电阻
图 4.2.4 混合π等效电路
gm 晶体管跨导
附加电容 Cbe、Cbc、Cce:由晶体管引线和封装等结构所形成,数
值很小,高频下可以忽略。
rb'e
26 0
IE
0 为共射组态晶体管的低频电流放大系数;
I E 为发射极电流,单位为mA。
gm Vb'e 表示晶体管放大作用的等效电流发生器。
电压增益改写为:
Av
V o1 V i1
yfe yoe YL'
p12 yfe Y'
本级实际电压增益为:
Av
V i2 V i1
N2 V o1
N1
V i1
p2 V o1
p1
V i1
p2 p1
p12 yfe Y'
p1 p2 yfe Y'
由右图知:

高频小信号放大电路作用

高频小信号放大电路作用

高频小信号放大电路作用
高频小信号放大电路是一种电路设计,旨在增强高频小信号的幅度,并将其传递到下一级电路或设备。

这种类型的电路通常用于无线通讯、雷达、放大器和其他需要处理高频信号的应用中。

高频小信号放大电路的主要作用是放大输入信号的幅度,以提高信号质量和可靠性。

此外,它还可以增加电路的灵敏度和动态范围,提高电路的性能和效率。

因此,高频小信号放大电路是许多电子设备中必不可少的组成部分,对于电子工程师和电路设计师来说是非常重要的。

- 1 -。

高频小信号放大器实验报告

高频小信号放大器实验报告

实验1高频小信号放大器幅频特性曲线为:带宽:8.0*0.7=5.6Bw1=6.6-6.1=0.5MHz2、观察集电极负载对单调谐回路谐振放大器幅频特性的影响当放大器工作于放大状态下,运用上步点测法测出接通与不接通1R3的幅频特性曲线。

既令2K1置“on”,重复测量并与上步图表中数据作比较。

f/MHz 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1U/mV 1.7 1.9 2.0 2.4 2.6 3.2 3.6 4.0 5.2 5.6 5.6 5.2 4.4 3.8 3.2 2.6 2.4 2.0幅频特性曲线为:5.6*0.7=3.92;Bw2=6.65-6.1=0.55MHz3、双调谐回路谐振放大器幅频特性测量(保持输入幅度不变,改变输入信号的频率,测出与频率相对应的双调谐放大器的输出幅度,然后画出频率与幅度的关系曲线,该曲线即为双调谐回路放大器的幅频特性。

)2K2往上拨,接通2C6(80P),2K1置off。

高频信号源输出频率6.3MHZ(用频率计测量),幅度300mv,然后用铆孔线接入双调谐放大器的输入端(IN)。

2K03往下拨,使高频信号送入放大器输入端。

示波器CH1接2TP01,示波器CH2接放大器的输出(2TP02)端。

反复调整2C04、2C11使双调谐放大器输出为最大值,此时回路谐振于6.3MHZ。

按照下表改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度峰——峰值为300mv(示波器CH1监视),从示波器CH2上读出与频率相对应的双调谐放大器的幅度值,并把数据填入下表中。

f/MHz 4.8 5.0 5.2 5.4 5.7 5.8 5.9 6.0 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 U/mV 0.8 1.4 2.6 4.2 8.0 8.8 8.0 8.0 8.0 8.2 8.4 6.4 4.8 3.2 2.0 1.8 1.4 1.2 幅频特性曲线:8*0.7=5.6V;Bw3=6.55-5.5-1.05MHz4、放大器动态范围测量2K1置off,2K2置单调谐,接通2C6.高频信号源输出接双调谐放大器的输入端(IN),调整高频信号源频率为6.3MHz,幅度为100mV。

高频小信号放大电路课程设计

高频小信号放大电路课程设计

高频小信号放大电路课程设计一、课程设计要求(二)内容:设计一个高频小信号放大电路,利用构成四极管栅极基本电路的三极管,放大10KHZ频率、50mV幅值的脉冲输入信号,放大倍数在20以上,输出的信号的频率和幅值保持与输入信号基本相同,对输出节目信号加以调制,并对加载的模拟电路进行模拟仿真分析,研究各器件的参数对输出性能的影响,指出最佳仿真结果并给出改进措施。

(三)目的:掌握高频小信号放大电路的构成、功能和高频放大电路器件工作特性。

了解高频小信号放大电路最佳设计技术。

二、环境准备1. 硬件环境:采用N-TFP1台式模拟仿真器,加载电路模块中心,采用新建封装原理图加载模拟电路,采用CALAY抽象类完成模拟仿真;2. 软件环境:在C++编程环境下,编写模拟仿真程序,关于比特信号的模拟仿真均可完成;3. 仪器设备:示波器、示波器频率发生器、模块功率发生器,执行现场测试和分析仿真结果。

三、仿真实验(一)分析仿真电路和节点参数,进行电路建模;(二)基本模型程序实现,完成仿真程序编程,根据仿真结果对放大电路及节点参数进行修正,对不足的地方进行改进;(三)进行实时强大的现场测试,观察示波器的状态,并同时计算信号的准确峰值。

(四)通过统计仿真结果,分析节点参数和各模块误差。

(五)通过实验测量信号分析仪对放大倍数、放大品质系数、信号-噪声比等噪声参数进行测试,实现仿真结果的精确测试,准确分析放大器模型参数对信号有效程度的影响;四、总结和结论(一)本次课程设计完成了小信号的放大电路的仿真模型的设计,通过分析仿真结果,得到了正确的放大电路设计;(二)本次课程设计完成了放大电路的实时现场测试,通过实时测试,我们了解了放大电路的性能;(四)本次课程设计,加深了对高频小信号放大电路的理解,使学生掌握高频放大电路的基本知识。

高频小信号调谐放大器的电路设计

高频小信号调谐放大器的电路设计

西勒振荡器

晶体管BG1接成共基组态西勒振荡器,Cb为基 极电容。振荡电路的静态工作点由Rb1、Rw1、 Rb2决定。变容二极管的直流偏置电路由R1与 RW2构成。只要静态偏置调整合适,就可实现线 性调频。ZL为扼流电感,R2为限流电阻,调制 电压经C10耦合电容加到变容二极管。Cc为振荡 回路与变频回路的耦合电容,采用部分接入。调 制信号经BG2射随放大后经输出耦合电容C9输 出。跳线开关K4-5-1控制变容管断开与接入, 拨码开关K4-5-2改变接入系数。

振荡频率 频率稳定度 输出幅度
fo 6MHZ 50KHZ
f / f o 1104
Uo 0.3Vp p
基本设计条件

电源供电为12V,振荡管BG1为9018 (其主要参数ICM=50/A,VCEQ=5V, VCEQ≤0.1/V,hFE28-198,取β=100, fT>1100MHz)。隔离级射随器晶体管 BG2也为9018,LC振工作频率为6MHz, 晶体为6 MHz。
高频小信号调谐放大器的电路设计
主要技术指标:
已知:
设计时要考虑


高频小信号放大器一般用于放大微弱的高 频信号,此类放大器应具备如下基本特性: 只允许所需的信号通过,即应具有较高的选 择性。放大器的增益要足够大。放大器工 作状态应稳定且产生的噪声要小。放大器 应具有一定的通频带宽度。
基本步骤
变容二极管调频与鉴频器电路设计

1、变容二极管调频基本原理
f
1 2 LC

1 2 L(C N C j )
主要主要技术指标


主振频率f0=6MHz, 频率稳定度Δfo/fo≤5x10-4小时, 最大频偏△fm=±25KHz, 振荡器输出电压Vo≥0.8V.

高频小信号谐振放大器的设计

高频小信号谐振放大器的设计

高频小信号谐振放大器的设计高频小信号谐振放大器是一种用来提高信号的有效电平的电路,常用于高灵敏度的无线信号传输。

这种电路的设计比一般的放大器设计要困难的多,因为它需要考虑到小信号的放大以及谐振限制,而且还要处理谐振和放大之间的优化等因素。

首先,要设计一个高频小信号谐振放大器,应该先考虑如何设计谐振电路。

谐振电路和电路放大之间存在协同作用,即只有当谐振参数设定正确时,才能有效放大信号,而谐振参数往往会受到非线性对电路的影响,因此谐振电路的设计非常重要。

常用的谐振电路有环形双极RC谐振电路和RC-L谐振电路等。

其次,要设计一个高频小信号谐振放大器,以满足要求应该考虑用什么类型的放大器。

一般来说,该电路采用双极型、混合型或OTA放大器都是可行的,其中OTA(Operational Transconductance Amplifier)的特殊结构,能有效地提高放大效果,具有较高的电压增益、低负载电压和低失真等优点。

另外,用于谐振放大的放大器也应该具有较高的带宽限制功能,因为过大的带宽会导致信号模糊,影响放大效果。

最后,注意高频小信号谐振放大器要求低噪声,应该采用低噪声特性良好的元件,放大器部分要采用隔离手段,以减少电源信号对输出信号的影响。

此外,调整输入和输出的阻抗匹配度有利于提高谐振放大器的性能,同时也可以降低失真和噪声,以最大程度发挥信号放大的作用。

总之,高频小信号谐振放大器的设计需要仔细考虑谐振电路、放大器、阻抗匹配度等因素,因为这些因素都会影响放大器的性能。

如果设计得当,高频小信号谐振放大器能够提高信号的传输质量,延长信号传输的距离,满足用户的要求。

高频小信号放大电路分析

高频小信号放大电路分析
大、滤波和选频的作用。非谐振放大器由阻容放大器和各 种滤波器组成,其机构简单,便于集成。
3、高频小信号放大器的质量指标
1)增益:(放大系数)
电压增益:AV
Vo Vi
功率增益:
AP
P0 Pi
分贝表示:AV
2)通频带:
20 log V0 Vi
Ap
10 log
Po Pi
放大器的电压增益下降到最大值的0.707倍时,所对
应的频率范围称为放大器的通频带,用B=2f 0.7表示。
2f 0.7也称为3分贝带宽。
AV
AP
AV 0
AP 0
1
0.7 2f0.7
1
2
0.5
f0
f f0
为什么要求通频带?
f 2f0.5
放大器所放大的一般都是已调制的信号,已调制的信号
都包含一定谱宽度,所以放大器必须有一定的通频带,让必
要的信号频谱分量通过放大器。
放大器的质量指标
1)电压指标
A V
V o V i
Ib
c Ic
a
+
yreVc
yoe
+
P1
Is
Vi
Ys
– yie1 YfeVi
C Vc
L
+
P2
– gp
gie2Vo
根据电压变比关系: V o p2V ab V ab V c p1
所以: A V
V o V i
p2 p1
Vc Vi
p2 y fe
p1yoe YL
Y参数等效电路与混合π等效电路参数的转换式
输入导纳
y ie
I1 V1
V2 0
Ybe 1 rbbYbe
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CM =(1+gmR′L)Cb′c
(2.2.1)
即把Cb′c的作用等效到输入端, 这就是密勒效应。其中gm是 晶体管跨导, R′L是考虑负载后的输出端总电阻, CM称为密勒电 容。
另外, 由于rce和rb′c较大, 一般可以将其开路。这样, 利用密 勒效应后的简化高频混合π型等效电路如图2.2.2所示。
高频小信号放大电路是线性放大电路。Y参数等效电路和 混合π型等效电路是分析高频晶体管电路线性工作的重要工具, 晶体管、场效应管和电阻引起的电噪声将直接影响放大器和整 个电子系统的性能。本书将这两部分内容作为高频电路的基础 也在这一章里讨论。
2.2
晶体管在高频线性运用时常采用两种等效电路进行分析, 一是混合π型等效电路, 一是Y参数等效电路。
cb′e:发射结电容, 约10 皮法到几百皮法。
cb′c:集电结电容, 约几个皮法。
gm:晶体管跨导, 几十毫西门子以下。
由于集电结电容C b′c跨接在输入输出端之间, 是双向传输 元件, 使电路的分析复杂化。为了简化电路, 可以把C b′c 折合 到输入端b′、 e之间, 与电容C b′e并联, 其等效电容为:



I1y11U1y12U2



I2y21U1y22U2
其中y11、y12、y21、y22四个参数均具有导纳量纲, 且:

Y11
I

|U2 0
U1

Y12
I1

|U1 0
U2

Y21
I2

|U2
0
U1

Y22
I2

|U1 0
U2
所以Y参数又称为短路导纳参数, 即确定这四个参数时必 须使某一个端口电压为零, 也就是使该端口交流短路。
值有关, 而且是工作频率的函数。

增加时, 输入与输出电导都将加大。 当工作频率较低时I , 电容
效应的影响逐渐减弱。所以无论是测量还是查阅晶体管手册,
都应注意工作条件和工作频率。
显然, 在高频工作时由于晶体管结电容不可忽略, Y参数 是一个复数。晶体管Y参数中输入导纳和输出导纳通常可写 成用电导和电容表示的直角坐标形式, 而正向传输导纳和反向 传输导纳通常可写成极坐标形式, 即:

IC

Ib
。从图
2.2.1可以看到, 当输出端短路后, r b′e 、Cb′e 和Cb′c三者并联。

IIC b |UC1jwbgrem(rbccbecbc)1j0ff
其中
gmrbe
β0= gmr b′e
1
fβ= 2rbe(cbe cbe )
由式(2.2.8)可知,
2.2.1 混合π
图2.2.1是晶体管高频共发射极混合π型等效电路。 图中各元件名称及典型值范围如下: rbb′: 基区体电阻, 约15Ω~50Ω 。 rb′e: 发射结电阻re折合到基极回路的等效电阻, 约几十欧 到几千欧。 rb′c:集电结电阻, 约10kΩ~10MΩ。 rce:集电极—发射极电阻, 几十千欧以上。
的幅值随频率的增高而下降。 当下
降到β0的 率fβ。
时, 对应的频率定义为共射晶体管截止频
2 特征频率fT

当 a 的幅值下降到1时, 对应的频率定义为特征频率fT。
3 共基晶体管截止频率fα
共基短路电流放大系数 是晶体管用作共基组态时的输出 交流短路参数, 即


a

IC

|U C 0
Ie
的幅值也是随频率的增高而下降, fα定义为
现以共发射极接法的晶体管为例, 将其看作一个双口网络,
如图2.2.4所示, 相应的Y参数方程为:



Ib yieUbyreUc



Ic yieUbyoeUc
其中, 输入导纳

Yie

Ib

|Uc
0
Ub
反向传输导纳

Yie

Ib

|Ub 0
Ub
正向传输导纳

Yie

Ic

|Uc 0
图 2.3.1 单管单调谐放大电路
负载(或下级放大器)与回路的耦合采用自耦变压器耦合 和电容耦合方式, 这样, 既可减弱负载(或下级放大器)导纳对 回路的影响, 又可使前、 后级的直流供电电路分开。另外, 采 用上述耦合方式也比较容易实现前、 后级之间的阻抗匹配。
2.
为了分析单管单调谐放大器的电压增益, 图2.3.2给出了
前者是从模拟晶体管的物理机构出发, 用集中参数元件R、 C和受控源来表示管内的复杂关系。优点是各元件参数物理意 义明确, 在较宽的频带内元件值基本上与频率无关。缺点是随 器件不同而有不少差别, 分析和测量不方便。因而混合π型等效 电路法较适合于分析宽频带小信号放大器。
Y参数法则是从测量和使用的角度出发, 把晶体管作为一 个有源线性双口网络, 用一组网络参数构成其等效电路。优点 是导出的表达式具有普遍意义, 分析和测量方便。 缺点是网络 参数与频率有关。由于高频小信号谐振放大器相对频带较窄, 一般仅需考虑谐振频率附近的特性, 因而采用这种分析方法较 合适。
谐振放大器的主要性能指标是电压增益, 通频带和矩形 系数。
本节仅分析由晶体管和LC回路组成的谐振放大器。
2.3.1
1.
图2.3.1是一个典型的单管单调谐放大器。Cb c分别是和信号源(或前级放大器)与负载(或后级放大器) 的耦合电容, Ce是旁路电容。
电容C与电感L组成的
并联谐振回路作为晶体管的集电极负载, 其谐振频率应调 谐在输入有用信号的中心频率上。回路与本级晶体管的耦合 采用自耦变压器耦合方式, 这样可减弱晶体管输出导纳对回路 的影响。


IC UCYL
由Y参数方程(2.2.3)可知:


IC



IC yfeUiyoeUc
代入式(2.3.3)可得:

Ui

yoeyfeYLUC


根据自耦变压器特性 Ui/Upn1,Ui/Upn2,
因此

U0

n2 n1

UC
将式(2.3.5)与(2.3.6)代入(2.3.1), 可得
yie=gie+jωCie yfe=|yfe|∠φfe
yoe=goe+jωCoe yre=|yre|∠φre
2.2.3
考虑电容效应后, 晶体管的电流增益是工作频率的函数。 下面介绍三个与电流增益有关的晶体管高频参数。
1 共射晶体管截止频率fβ
共射短路电流放大系数


是指混合π型等效电路输出交
流短路时, 集电极电流
.
Au
U 0 Ui
n12ny1no2e yfYe L
其中, YL=n21Y′L是Y′L等效到谐振回路两端的导纳, 它包括
回路本身元件L、C、ge0和负载导纳总的等效值, 即
YL=(ge0+jωC+
1 jwL
) +n22yie
(2.3.8)
根据式(2.2.7), 将式(2.3.8)代入(2.3.7)中, 则:
第2章 高频小信号放大电路
2.1 概述
2.2 晶体管高频等效电路
2.3 谐振放大器
2.4 宽频带放大器
2.5 集中选频放大器
2.6 电噪声
2.7 集成高频放大电路的选用与实例介绍
2.8 章末小结
返回主目录
第2章 高频小信号放大电路
2.1概述
高频小信号放大电路分为窄频带放大电路和宽频带放大 电路两大类。前者对中心频率在几百千赫到几百兆赫, 频谱宽 度在几千赫到几十兆赫内的微弱信号进行不失真的放大, 故不 但需要有一定的电压增益, 而且需要有选频能力。后者对几兆 赫至几百兆赫较宽频带内的微弱信号进行不失真的放大, 故要 求放大电路的下限截止频率很低(有些要求到零频即直流), 上 限截止频率很高。
与各参数有关的公式如下:
gm

1 re
re= kT 26(mv) ()
qIEQ IEQ(mA)
rb′e=(1+β0)re Cb′e +Cb′c =
1 2 f re
其中k为波尔兹曼常数, T是电阻温度(
K
计量), IEQ是发射极静态电流, β0是晶体管低频短路电流放大系 数, fT是晶体管特征频率。
对于双口网络, 在其每一个端口都只有一个电流变量和一 个电压变量, 因此共有四个端口变量。如设其中任意两个为自 变量, 其余两个为应变量, 则共有六种组合方式, 也就是有六组 可能的方程用以表明双口网络端口变量之间的相互关系。 Y参数方程就是其中的一组, 它是选取各端口的电压为自变量, 电流为应变量, 其方程如下:
A0 g
n1n2yie
jwc
1 jwL
其中gΣ与CΣ分别为谐振回路总电导和总电容:
谐振频率 或
gΣ=n21goe+n22gie+ge0
CΣ=n21Coe+n22Cie+C
f0 2
1 LC
w0 2
1 LC
回路有载Q值
Qe=
w0CX 1 g w0Lg
以上几个公式说明, 考虑了晶体管和负载的影响之后, 放
晶体管的Y参数可以通过测量得到。根据Y参数方程, 分 别使输出端或输入端交流短路, 在另一端加上直流偏压和交流 信号, 然后测量其输入端或输出端的交流电压和交流电流, 代 入式(2.2.6)中就可求得。通过查阅晶体管手册也可得到 各种型号晶体管的Y参数。
需要注意的是, Y参数不仅与静态工作点的电压值、电流
相关文档
最新文档