广东省阳江中学高中数学必修4导学案 第二章《平面向量》复习课
高中数学必修4第2章平面向量复习教案 人教版_必修
平面向量必修4 第2章 平面向量 §2.1向量的概念及其表示重难点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量,掌握平行向量、相等向量和共线向量的区别和联系. 考纲要求:①了解向量的实际背景.②理解平面向量的概念及向量相等的含义. ③理解向量的几何表示.A.a与b共线,b与c共线,则a与c 也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行当堂练习:1.下列各量中是向量的是 ( ) A.密度 B.体积 C.重力 D.质量2下列说法中正确的是 ( ) A. 平行向量就是向量所在的直线平行的向量 B. 长度相等的向量叫相等向量 C. 零向量的长度为零 D.共线向量是在一条直线上的向量 3.设O 是正方形ABCD 的中心,则向量、、、是 ( ) A .平行向量 B .有相同终点的向量 C .相等的向量 D .模都相同的向量4.下列结论中,正确的是 ( ) A. 零向量只有大小没有方向 B. 对任一向量,||>0总是成立的 C. |=|| D. |与线段BA 的长度不相等A. 与共线B. 与相等C. 与 是相反向量D. 与模相等6.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,(1)与相等的向量有 ; (2)与长度相等的向量有 ; (3)与共线的向量有 .8.如图,O 是正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形,在图中所示的向量中:(1)与相等的向量有 ;AO OB CO OD ||AB CD AC BD AD AB BC OB DA AO(2)写出与共线的向有 ; (3)写出与的模相等的有 ; (4)向量与是否相等?答 . 9.O 是正六边形ABCDE 的中心,且,,,在以A ,B ,C ,D ,E ,O 为端点的向量中:(1)与相等的向量有 ; (2)与相等的向量有 ; (3)与相等的向量有10.在如图所示的向量,,,,中(小正方形的边长为1),是否存在:(1)是共线向量的有 ; (2)是相反向量的为 ; (3)相等向量的的 ; (4)模相等的向量 .11.如图,△ABC 中,D ,E ,F 分别是边BC ,AB ,CA 的中点,在以A 、B 、C 、D 、E 、F 为端点的有向线段中所表示的向量中,(1)与向量共线的有 . (2)与向量的模相等的有 . (3)与向量相等的有 .12.如图,中国象棋的半个棋盘上有一只“马”,开始下棋时,它位于A 点,这只“马”第一步有几种可能的走法?试在图中画出来.若它位于图中的P 点,这只“马”第一步有几种可能的走法?它能否从点A 走到与它相邻的B ?它能否从一交叉点出发,走到棋盘上的其它任何一个交叉点?必修4 第2章 平面向量 §2.2向量的线性运算 重难点:灵活运用向量加法的三角形法则和平行四边形法则解决向量加法的问题,利用交换律和结合律进行向量运算;灵活运用三角形法则和平行四边形法则作两个向量的差,以及求两个向量的差的问题;理解实数与向量的积的定义掌握实数与向量的积的运算律体会两向量共线的充要条件.考纲要求:①掌握向量加法,减法的运算,并理解其几何意义. ②掌握向量数乘的运算及其意义。
高中数学 第二章《平面向量》导学案 新人教A版必修4
第二章《平面向量》导学案(复习课)【学习目标】1.理解向量、零向量、向量的模、单位向量、平行向量、反向量、相等向量、两向量的夹角等概念.2.了解平面向量基本定理.3.向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接).4.了解向量形式的三角形不等式:||a |-|b |≤|a ±b |≤|a |+|b |(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(|a |2+|b |2)=|a -b |2+|a +b |2.5.了解实数与向量的乘法(即数乘的意义).6.向量的坐标概念和坐标表示法.7.向量的坐标运算(加、减、实数和向量的乘法、数量积).8.数量积(点乘或内积)的概念,a ·b =|a ||b |cos θ=x 1x 2+y 1y 2,注意区别“实数与向量的乘法、向量与向量的乘法”.【导入新课】向量知识,向量观点在数学、物理等学科的很多分支中有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视. 数量积的主要应用:①求模长;②求夹角;③判垂直.新授课阶段例1 已知(3,0),(,5)a b k ==r r ,若a 与b 的夹角为43π,则k 的值为_______.解析:例2 对于任意非零向量a 与b ,求证:||a |-|b ||≤|a ±b |≤|a |+ |b |. 证明:例3 已知O 为△ABC 内部一点,∠AOB=150°,∠BOC=90°,设OA =a ,OB =b ,OC =c ,且|a |=2,|b |=1,| c |=3,用a 与b 表示c ,i ,j . 解:例4 下面5个命题:①|a ·b |=|a |·|b |②(a ·b )2=a 2·b2③a ⊥(b -c ),则a ·c =b ·c ④a ·b =0,则|a +b |=|a -b |⑤a ·b =0,则a =0或b =0,其中真命题是( )A .①②⑤ B.③④ C.①③ D.②④⑤ 解析:例 5 已知向量(3,4)OA =-u u u r ,(6,3)OB =-u u u r ,(5,(3))OC m m =--+u u u r,(1)若点A 、B 、C 能构成三角形,求实数m 应满足的条件; (2)若ABC ∆为直角三角形,且A ∠为直角,求实数m 的值. 解:例6 已知在△ABC 中,)3,2(=,),,1(k =且△ABC 中∠C 为直角,求k 的值. 解:课堂小结本章主要内容就是向量的概念、向量的线性运算、向量知识解决平面几何问题;掌握向量法和坐标法,以及用向量解决平面几何问题的步骤.作业 见同步练习 拓展提升 一、选择题1.在矩形ABCD 中,O 是对角线的交点,若e e 则213,5===( )A .)35(2121e e +B .)35(2121e e -C .)53(2112e e - D .)35(2112e e - 2.化简)]24()82(21[31--+的结果是( )A .b a -2B .a b -2C .a b -D .b a -3.对于菱形ABCD ,给出下列各式:①=;②||||=;③||||+=-; ④222||||4||,AC BD AB +=u u u ru u u ru u u r其中正确的个数为 ( )A .1个B .2个C .3个D .4个4.在 ABCD 中,设====,,,,则下列等式中不正确的是( )A .=+B .=-C .=-D .=-5.已知向量与反向,下列等式中成立的是( ) A .||||||-=- B .||||-=+ C .||||||-=+D .||||||+=+6.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个点的坐标为( )A .(1,5)或(5,-5)B .(1,5)或(-3,-5)C .(5,-5)或(-3,-5)D .(1,5)或(-3,-5)或(5,-5)7.下列各组向量中:①)2,1(1-=e )7,5(2=e ②)5,3(1=e )10,6(2=e ③)3,2(1-=e )43,21(2-=e 其中能作为表示它们所在平面内所有向量的基底的是 ( )A .①B .①③C .②③D .①②③8.与向量)5,12(=d 平行的单位向量为 ( )A .)5,1312(B .)135,1312(--C .)135,1312(或)135,1312(--D .)135,1312(±±9.若32041||-=-b a ,5||,4||==b a ,则b a 与的数量积为( )A .103B .-103C .102D .1010.若将向量)1,2(=a 围绕原点按逆时针旋转4π得到向量b ,则b 的坐标为( ) A .)223,22(--B .)223,22(C .)22,223(-D .)22,223(-11.已知||22p =u r ,||3q =r ,,p q u r r 的夹角为4π,如图,若52AB p q =+u u u r u r r ,3AC p q =-u u u r u r r ,D 为BC 的中点,则||AD uuu r为( ).A .215B .215C .7D .18二、填空题12.非零向量||||||,b a b a b a +==满足,则b a ,的夹角为 . 13.在四边形ABCD 中,若||||,,b a b a b AD a AB -=+==且,则四边形ABCD 的形状是 .14.已知)2,3(=a ,)1,2(-=b ,若b a b a λλ++与平行,则λ= . 15.已知e 为单位向量,||a =4,e a 与的夹角为π32,则e a 在方向上的投影为 .三、解答题16.已知非零向量b a ,满足||||b a b a -=+,求证: b a ⊥.17.设21,e e 是两个不共线的向量,2121212,3,2e e e e e k e -=+=+=,若A 、B 、D 三点共线,求k 的值.参考答案 例1解析:如图1,设a OA =,43π=∠AOC ,直线l 的方程为5=y ,设l 与OC 的交点为B ,则OB 即为b , 显然()5,5-=b ,5-=∴k . 例2证明:(1)两个非零向量a 与b 不共线时,a +b 的方向与a ,b 的方向都不同,并且 |a |-|b |<|a ±b |<|a |+|b |;(2)两个非零向量a 与b 共线时,①a 与b 同向,则a +b 的方向与a .b 相同且|a +b |=|a |+|b |.②a 与b 异向时,则a +b 的方向与模较大的向量方向相同,设|a |>|b |,则|a +b |=|a |-|b |.同理可证另一种情况也成立.例3解:建立平面直角坐标系xoy ,其中i , j 是单位正交基底向量, 则B (0,1),C (-3,0),设A (x ,y ),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A (1,-3),也就是=-3, =, =-3.所以-3=33+,即=3-33.例4解析:根据向量的运算可得到,只有①③对,故选择答案 C 例 5解:(1)若点A 、B 、C 能构成三角形,则这三点不共线,∵(3,4)OA =-u u u r ,(6,3)OB =-u u u r ,(5,(3))OC m m =--+u u u r, ∴(3,1)AB =u u u r ,(1,)BC m m =---u u u r,而AB u u u r 与BC uuur 不平行,xy ABOCab图1即31m m -≠--,得12m ≠, ∴实数12m ≠时满足条件. (2)若ABC ∆为直角三角形,且A ∠为直角,则AB AC ⊥u u u r u u u r,而(3,1)AB =u u u r ,(2,1)AC m m =--u u u r,∴3(2)(1)0m m -+-=,解得74m =. 例6解:(1,)(2,3)(1,3),BC AC AB k k =-=-=--u u u ru u u ru u u rQ0(1,)(1,3)0C RT AC BC AC BC k k ∠∠⇒⊥⇒⋅=⇒⋅--=u u u r u u u r u u u r u u u rQ 为2313130.k k k ±⇒-+-=⇒=拓展提升 题号 1 2 3 4 5 6 7 8 9 10 11 答案 ABCBCDACABA11.提示:A 11()(6)22AD AC AB p q =+=-u u u r u u u r u u u r ur r ,∴222211||||(6)361222AD AD p q p p q q ==-=-+u u u r u u u r u r r u r u r r r g2211536(22)12223cos 3242π=⨯-⨯⨯⨯+=. 二、填空题:12. 120° 13. 矩形 14、 1± 15. 2- 三、解答题: 16.证:()()22b a b a b a b a -=+⇒+=+⇒-=+Θ2222220.a ab b a ab b ab ⇒++=-+⇒=r r r r r r r r r r,a b r rQ 又为非零向量,.a b ∴⊥r r17.()121212234,BD CD CB e e e e e e =-=--+=-u u u r u u u r u u u r u r u u r u r u u r u r u u rQ若A ,B ,D 三点共线,则与共线,,AB BD λ∴=u u u r u u u r设即121224.e ke e e λλ+=-u r u u r u r u u r 由于12e e u r u u r 与不共线,可得: 11222,4.e e ke e λλ==-u r u ru u r u u r故2,8.k λ==-。
平面向量复习课教案
平面向量复习课教案第一章:向量的概念与运算1.1 向量的定义与表示介绍向量的概念,解释向量的定义展示向量的表示方法,包括箭头表示和坐标表示强调向量的方向和模长的意义1.2 向量的运算复习向量的加法、减法和数乘运算解释向量加法和减法的几何意义探讨数乘向量的性质和运算规则第二章:向量的数量积2.1 数量积的定义与性质引入数量积的概念,解释数量积的定义展示数量积的计算公式和性质强调数量积的交换律、分配律和消去律2.2 数量积的应用探讨数量积在向量投影中的应用解释夹角和向量垂直的概念展示数量积在向量长度和方向判断中的应用第三章:向量的坐标运算3.1 坐标系的建立介绍坐标系的定义和建立方法解释直角坐标系和笛卡尔坐标系的区别和联系强调坐标系中点的表示方法3.2 向量的坐标运算复习向量在坐标系中的表示方法介绍向量的坐标运算规则,包括加法、减法和数乘强调坐标运算与几何意义的联系第四章:向量的线性相关与基底4.1 向量的线性相关性引入线性相关的概念,解释线性相关的定义探讨线性相关性的性质和判定方法强调线性相关性与向量组的关系4.2 向量的基底介绍基底的概念,解释基底的定义和作用探讨基底的选择方法和基底的性质强调基底与向量表示和线性相关的联系第五章:向量的线性空间5.1 线性空间的概念引入线性空间的概念,解释线性空间的定义探讨线性空间的性质和运算规则强调线性空间与向量组的关系5.2 向量组的线性表示介绍线性表示的概念,解释线性表示的定义探讨线性表示的方法和性质强调线性表示与基底和线性空间的关系第六章:向量的叉积与外积6.1 叉积的定义与性质引入叉积的概念,解释叉积的定义和几何意义展示叉积的计算公式和性质强调叉积的交换律、分配律和消去律6.2 叉积的应用探讨叉积在面积计算和力矩中的应用解释向量垂直和向量积的关系展示叉积在几何图形判断中的应用第七章:向量场的概念与运算7.1 向量场的定义与表示介绍向量场的概念,解释向量场的定义和表示方法展示向量场的图形表示和箭头表示强调向量场的物理意义和应用领域7.2 向量场的运算复习向量场的加法和乘法运算解释向量场的叠加原理和运算规则强调向量场的运算与物理意义的联系第八章:向量函数的概念与性质8.1 向量函数的定义与表示引入向量函数的概念,解释向量函数的定义和表示方法展示向量函数的图像和性质强调向量函数的应用领域和数学意义8.2 向量函数的性质与应用探讨向量函数的连续性、可导性和可微性解释向量函数在物理和工程中的应用展示向量函数的图像和性质第九章:向量微积分的基本定理9.1 向量微积分的定义与性质介绍向量微积分的基本概念,解释向量微积分的定义和性质展示向量微积分的运算规则和公式强调向量微积分在物理和工程中的应用9.2 向量微积分的基本定理复习格林定理、高斯定理和斯托克斯定理解释向量微积分基本定理的意义和应用强调向量微积分基本定理在几何和物理中的重要性第十章:向量的进一步应用10.1 向量在几何中的应用探讨向量在几何图形判断和证明中的应用解释向量积和向量场的几何意义展示向量在几何问题解决中的应用10.2 向量在物理中的应用解释向量在物理学中的重要性,包括力学和电磁学探讨向量在力学中速度、加速度和力矩的应用展示向量在电磁学中电场和磁场的应用10.3 向量在工程中的应用介绍向量在工程领域中的应用,如土木工程和航空工程解释向量在结构分析和流体动力学中的应用展示向量在工程问题解决中的作用重点和难点解析1. 向量的概念与表示:向量的定义和表示方法是理解向量运算和应用的基础。
【课件】必修4第二章《平面向量》复习课(共81张PPT)
35 35 of 22
3
第23课 第(6)题
P123
36 36 of 22
7
第23课 第(7)题
P123
37 37 of 22
B
第23课 第(7)题
P123
38 38 of 22
= 5
第23课 第(8)题
P123
39 39 of 22
23
第23课 第(8)题
P123
40 40 of 22
平面向量总复习
1 1 of 22
一张图学透
一张图学透 平面向量的
数量积
2 2 of 22
一张图学透
一张图学透 三角函数 的图像与
性质
3 3 of 22
一张图学透
一张图学透 三角函数 的图像与
性质
4 4 of 22
一张图学透
一张图学透 三角函数 的图像与
性质
5 5 of 22
四组题讲透
①②③④⑤⑥
23
第23课 第(8)题
P123
41 41 of 22
方法便笺
求向量的模或其范围的方法
第23课 方法便笺
P122
42 42 of 22
方法便笺
求向量的模或其范围的方法
提示: ①求形如 ma nb的向量的模,可通过平方,转化为数量 的运算. ②用定义法和坐标法求模的范围时,一般把它表示成某个 变量的函数,再利用函数的有关知识求解;用几何法求模 的范围时,注意数形结合的思想,长利用三角不等式进行 最值的求解.
第23课 方法便笺
P122
43 43 of 22
2 2
第23课 第(9)题
P123
44 44 of 22
广东省阳江中学高中数学必修4导学案 平面向量基本定理
2.3.1 平面向量基本定理及其正交分解 【课前导学】阅读教材第93-95页,找出疑惑之处,完成知识归纳 1、向量b 、()0a a ≠是共线的两个向量,则a 、b 之间的关系可以表示为 .2、平面向量的基本定理:如果1e ,2e 是同一平面内两个 的向量,a 是这一平面内的任一向量,那么有且只有一对实数,21,λλ使 。
其中,不共线的这两个向量,1e 2e叫做表示这一平面内所有向量的基底。
要否加上一句:只有不共线...的向量才可以做基底(这样学生做预习自测1时就有方向了) 3、两向量的夹角与垂直: 我们规定:已知两个非零向量,a b ,作=OA ,a =OB b ,则 叫做向量a 与b 的夹角。
如果,θ=∠AOB 则θ的取值范围是 。
当 时,表示a 与b 同向;当 时,表示a 与b 反向;当时,表示a 与b 垂直。
记作:a b ⊥.在不共线的两个向量中,90θ=,即两向量垂直是一种重要的情形,把一个向量分解为_____________,叫做把向量正交分解。
【预习自测】1、设O 是平行四边形ABCD 两对角线AC 与BD 的交点,下列向量组,其中可作为这个平行四边形所在平面表示所有向量的基底是( ) ①AD 与AB ;②DA 与BC ;③CA 与DC ;④OD 与OB 。
A.①②B.③④C.①③D.①④2、在ABCD 中,设AB =a ,AD =b ,试用a ,b (是否该用带箭头的向量表示?)表示AB ,BC .则AB = ,BC = 。
(此题好象有问题?是表示AC 、BD 吧)3、已知向量12e e 与不共线,若向量122e e -与12e e λ+共线,则λ= (学生会不会做?)4、已知向量12e e 与不共线,求作向量122.5e e -.1e 2e【课中导学】首先独立思考探究,然后合作交流展示探究一: 如图 ABCD 两条对角线交于点M ,且AB a =,AD b =,用a ,b 表示MA ,MB ,A 和变式:如图ABCD 中,M ,N 分别是BC ,CD 的中点,若AM a =,AN b =,试用a ,b 表示,AB AD 。
高中数学必修4第二章平面向量小结复习课ppt课件
(3)证明两直线平行的问题:
A
AB CD AB // CD
B与CD不在同一直线上
直线A
B
//
直线CD 7
平面向量基本定理:
如果 e1、e2 是同一平面内的两个不共线
向量,那么对于这一平面内的任一向
量 a 有且只有一对实数 1、2 ,使
a 1e1 2e2
其中e,e 叫做表示这一平面内 12
第二章 平面向量复习课
1
一.基本概念
1.向量及向量的模、向量的表示方法 B
1)图形表示 A
r uuur有向线段AB
2)字母表示 a AB r uuur
3)坐标表示
r
向量的模
rr
:|
a
||
AB
|
a xi y j (x, y)
r uuur
a OA (x, y) 点A(x, y)
r uuuur
的夹角为钝角(k a 2b)( 2a 4b) 0且k 1,
即14(k 6) 4(2k 4) 0且k 1k 50 且k 1
3
13
已知a 1,sin ,b 1, cos , R.
1若a b 2,0,求sin 2 2sin cos的值;
2若a b 0, 1 , ,2 ,求sin cos的值
所有向量的一组基底.
8
平面向量数量积
ar
•
r b
ar
•
r b
• cos
B
b
O
a B1 A
作OA a,OB b ,过点B作BB1
垂直于直线OA,垂足为 B1 ,则 OB1 | b | cosθ
| b | cosθ叫向量 b 在 a 方向上的投影.
高中数学必修4 第二章平面向量最优完整版导学案
(2)有向线段包含三个要素: 、 、
3.向量的表示
(1)几何表示:向量可以用有向线段表示,此时有向线段的方向就是向量的方向.
(2)字母表示:通常在印刷时用黑体小写字母 a,b,c…表示向量,书写时用→a ,→b ,→c …
表示向量;也可以用表示向量的有向线段的起点和终点字母表示,
平行四边形法则:
①适用于两个不共线向量求和,且两向量要共起点;
②力的合成可以看作向量加法平行四边形法则的物理模型.
4
三、应用举例 例 1 如图 5,已知向量 a、b,求作向量 a+b
作法 1(三角形法则):
b a
图5
作法 2(平行四边形法则):
探究合作: ||a|-|b||,|a+b|,|a|,|b|存在着怎样的关系?
| a |-| b |;若| a |<| b |,则 a + b 的方向与 b 相同,且| a + b |
ab
结论:一般地:
| a b || a | | b |
四、练习巩固: 教材 84 页 1、2 题
| b |-| a |.
5
2.2.2 向量的减法运算及其几何意义 一、 复习:向量加法的法则:三角形法则与平行四边形法则,向量加法的运算定律:
(1)当向量 a 与 b 不共线时,| a + b |
| a |+| b |;
(2)当 a 与 b 同向时,则 a + b 、 a 、 b
(填同向或反向),且| a + b |
| a |+| b |;当 a 与 b 反向时,若| a |>| b | ,则 a + b 的方 向与 a 相同,且| a + b |
高中数学第2章平面向量章末复习课教案含解析新人教B版必修4
第2章平面向量(教师用书独具)注意大小、方向两个方面.2.向量共线定理和平面向量基本定理是进行向量合成与分解的核心,是向量线性运算的关键所在,常应用它们解决平面几何中的共线问题、共点问题.3.题型主要有证明三点共线、两线段平行、线段相等、求点或向量的坐标等. 【例1】 如图,在△ABC 中,点M 是AB 边的中点,E 是中线CM 的中点,AE 的延长线交BC 于F .MH ∥AF 交BC 于H .求证:HF →=BH →=FC →.[思路探究] 选择两不共线向量作基底,然后用基底向量表示出HF →、BH →与FC →即可证得. [证明] 设BM →=a ,MH →=b , 则BH →=a +b , HF →=HB →+BA →+AF → =-BH →+2BM →+2MH → =-a -b +2a +2b =a +b ,FC →=FE →+EC →=12HM →+ME →=-12MH →+MA →+AE →=-12b +BM →+AF →-EF →=-12b +a +2MH →-12MH →=-12b +a +2b -12b =a +b .综上,得HF →=BH →=FC →.1.如图,平行四边形ABCD 中,点M 在AB 的延长线上,且BM =12AB ,点N 在BC 上,且BN=13BC ,求证:M ,N ,D 三点共线. [证明] 设AB →=e 1,AD →=e 2,则BC →=AD →=e 2, ∵BN →=13BC →=13e 2,BM →=12AB →=12e 1,∴MN →=BN →-BM →=13e 2-12e 1,又∵MD →=AD →-AM →=e 2-32e 1=3⎝ ⎛⎭⎪⎫13e 2-12e 1=3MN →,∴向量MN →与MD →共线,又M 是公共点,故M ,N ,D 三点共线.根据定义式可知,当向量夹角为锐角、钝角和直角时,其结果分别为正值、负值和零,零向量与任何一个向量的数量积均为零.平面向量的数量积是向量的核心内容,通过向量的数量积考查向量的平行、垂直等关系,利用向量的数量积可以计算向量的夹角和长度.【例2】 非零向量a ,b 满足(a +b )⊥(2a -b ),(a -2b )⊥(2a +b ),求a ,b 的夹角的余弦值.[思路探究]由(a +b )⊥(2a -b ),(a -2b )⊥(2a +b )列出方程组→求出|a |2,|b |2,a ·b 的关系→利用夹角公式可求[解] 由(a +b )⊥(2a -b ),(a -2b )⊥(2a +b ),得⎩⎪⎨⎪⎧2|a |2-|b |2+a ·b =0,2|a |2-2|b |2-3a ·b =0,解得⎩⎪⎨⎪⎧|a |2=-52a ·b ,|b |2=-4a ·b ,所以|a ||b |=-10a ·b ,所以cos θ=a ·b |a ||b |=-1010.2.如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC →=________. 18 [∵AP →·AC →=AP →·(AB →+BC →)=AP →·AB →+AP →·BC →=AP →·AB →+AP →·(BD →+DC →) =AP →·BD →+2AP →·AB →, ∵AP ⊥BD ,∴AP →·BD →=0.∵AP →·AB →=|AP →||AB →|cos∠BAP =|AP →|2, ∴AP →·AC →=2|AP →|2=2×9=18.]化为代数运算,实现数与形的统一.2.向量的坐标运算是将几何问题代数化的有力工具,它是转化思想、函数与方程、分类讨论、数形结合等思想方法的具体体现.3.通过向量坐标运算主要解决求向量的坐标、向量的模、夹角判断共线、平行、垂直等问题.【例3】 已知向量AB →=(4,3),AD →=(-3,-1),点A (-1,-2). (1)求线段BD 的中点M 的坐标;(2)若点P (2,y )满足PB →=λBD →(λ∈R ),求y 与λ的值. [思路探究] (1)先求B ,D 点的坐标,再求M 点坐标; (2)由向量相等转化为y 与λ的方程求解. [解] (1)设点B 的坐标为(x 1,y 1).∵AB →=(4,3),A (-1,-2),∴(x 1+1,y 1+2)=(4,3),∴⎩⎪⎨⎪⎧x 1+1=4,y 1+2=3,∴⎩⎪⎨⎪⎧x 1=3,y 1=1,∴B (3,1).同理可得D (-4,-3). 设线段BD 的中点M 的坐标为(x 2,y 2),则x 2=3-42=-12,y 2=1-32=-1,∴M ⎝ ⎛⎭⎪⎫-12,-1.(2)由已知得PB →=(3,1)-(2,y )=(1,1-y ), BD →=(-4,-3)-(3,1)=(-7,-4).又PB →=λBD →,∴(1,1-y )=λ(-7,-4),则⎩⎪⎨⎪⎧1=-7λ,1-y =-4λ,∴⎩⎪⎨⎪⎧λ=-17,y =37.3.已知△ABC 中,A (2,-1),B (3,2),C (-3,-1),BC 边上的高为AD ,求AD →. [解] 设D (x ,y ),则AD →=(x -2,y +1), BD →=(x -3,y -2),BC →=(-6,-3),∵AD →⊥BC →,∴AD →·BC →=0, 则有-6(x -2)-3(y +1)=0,①∵BD →∥BC →,则有-3(x -3)+6(y -2)=0,② 解由①②构成的方程组得⎩⎪⎨⎪⎧x =1,y =1,则D 点坐标为(1,1),所以AD →=(-1,2).运算和线段平行之间、数量积运算和垂直、夹角、距离问题之间联系密切,因此用向量方法可以解决平面几何中的相关问题.2.向量在解析几何中的应用,主要利用向量平行与垂直的坐标条件求直线的方程. 3.在物理中的应用,主要解决力向量、速度向量等问题.【例4】 已知正方形ABCD ,E 、F 分别是CD 、AD 的中点,BE 、CF 交于点P . 求证:(1)BE ⊥CF ; (2)AP =AB .[证明] 如图建立直角坐标系,其中A 为原点,不妨设AB =2,则A (0,0),B (2,0),C (2,2),E (1,2),F (0,1).(1)BE →=OE →-OB →=(1,2)-(2,0)=(-1,2), CF →=OF →-OC →=(0,1)-(2,2)=(-2,-1). ∵BE →·CF →=-1×(-2)+2×(-1)=0, ∴BE →⊥CF →,即BE ⊥CF .(2)设P (x ,y ),则FP →=(x ,y -1),CF →=(-2,-1), ∵FP →∥CF →,∴-x =-2(y -1),即x =2y -2. 同理由BP →∥BE →,得y =-2x +4,代入x =2y -2. 解得x =65,∴y =85,即P ⎝ ⎛⎭⎪⎫65,85. ∴AP →2=⎝ ⎛⎭⎪⎫652+⎝ ⎛⎭⎪⎫852=4=AB →2,∴|AP →|=|AB →|,即AP =AB .4.已知三个点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标,并求矩形ABCD 的两对角线所夹的锐角的余弦值.[解] (1)证明:∵A (2,1),B (3,2),D (-1,4), ∴AB →=(1,1),AD →=(-3,3), ∴AB →·AD →=1×(-3)+1×3=0, ∴AB →⊥AD →,即AB ⊥AD .(2)∵四边形ABCD 为矩形,∴AB →⊥AD →,AB →=DC →. 设C 点的坐标为(x ,y ),则AB →=(1,1),DC →=(x +1,y -4),∴⎩⎪⎨⎪⎧x +1=1,y -4=1,解得⎩⎪⎨⎪⎧x =0,y =5,∴C 点的坐标为(0,5).从而AC →=(-2,4),BD →=(-4,2),∴|AC →|=25,|BD →|=25,AC →·BD →=8+8=16. 设AC →与BD →的夹角为θ, 则cos θ=AC →·BD →|AC →||BD →|=1620=45,∴矩形ABCD 的两条对角线所夹的锐角的余弦值为45.合思想.向量的坐标表示的引入,使向量运算完全代数化,将数和形紧密地结合在一起.运用数形结合思想可解决三点共线,两条线段(或射线、直线)平行、垂直,夹角、距离、面积等问题.【例5】 如图所示,以△ABC 的两边AB ,AC 为边向外作正方形ABGF ,ACDE ,M 为BC 的中点,求证:AM ⊥EF .[思路探究] 要证AM ⊥EF ,只需证明AM →·EF →=0.先将AM →用AB →,AC →表示,将EF →用AE →,AF →表示,然后通过向量运算得出AM →·EF →=0.[证明] 因为M 是BC 的中点,所以AM →=12(AB →+AC →),又EF →=AF →-AE →,所以AM →·EF →=12(AB →+AC →)·(AF →-AE →)=12(AB →·AF →+AC →·AF →-AB →·AE →-AC →·AE →) =12(0+AC →·AF →-AB →·AE →-0)=12(AC →·AF →-AB →·AE →) =12[|AC →||AB →|cos(90°+∠BAC )-|AB →||AC →|cos(90°+∠BAC )]=0, 所以AM →⊥EF →,即AM ⊥EF .5.已知a ,b 是单位向量,a·b =0.若向量c 满足|c -a -b|=1,则|c |的最大值为( ) A.2-1 B. 2 C.2+1D.2+2C [∵|a|=|b |=1,且a·b =0,∴可设a =(1,0),b =(0,1),c =(x ,y ). ∴c -a -b =(x -1,y -1). ∵|c -a -b|=1, ∴(x -1)2+(y -1)2=1, 即(x -1)2+(y -1)2=1. 又|c |=x 2+y 2,如图所示.由图可知,当c 对应的点(x ,y )在点C 处时,|c |有最大值且|c |max =12+12+1=2+1.]。
高中数学必修四第二章平面向量复习教案课时训练练习教案课件
第二章 平面向量复习课(一)一、教学目标1. 理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。
2. 了解平面向量基本定理.3. 向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。
4. 了解向量形式的三角形不等式:||a |-|b |≤|a ±b |≤|a |+|b |(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(|a |2+|b |2)=|a -b |2+|a +b |2.5. 了解实数与向量的乘法(即数乘的意义):6. 向量的坐标概念和坐标表示法7. 向量的坐标运算(加.减.实数和向量的乘法.数量积)8. 数量积(点乘或内积)的概念,a ·b =|a ||b |cos θ=x 1x 2+y 1y 2注意区别“实数与向量的乘法;向量与向量的乘法”二、知识与方法向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视. 数量积的主要应用:①求模长;②求夹角;③判垂直三、教学过程(一)重点知识:1. 实数与向量的积的运算律:b a b a a a a a a λλλμλμλλμμλ+=++=+=)( (3) )( (2) )()( (1)2. 平面向量数量积的运算律:)1(a b b a ⋅=⋅ )()()( )2(b a b a b a λλλ⋅=⋅=⋅ c b c a c b a ⋅+⋅=⋅+ )( )3(3. 向量运算及平行与垂直的判定:).0(),,(),,(2211≠==b y x b y x a 设 则),(2121y y x x b a ++=+ ),(2121y y x x b a --=- 2121y y x x b a +=⋅.0//1221=-⇔y x y x b a .02121=+⇔⊥y y x x b a4. 两点间的距离:221221)()(||y y x x AB -+-=5. 夹角公式:222221212121cos y x y x y y x x b a +⋅++==θ6. 求模:= 22y x += 221221)()(y y x x -+-=(二)习题讲解:第二章 复习参考题(三)典型例题例1. 已知O 为△ABC 内部一点,∠AOB=150°,∠BOC=90°,设OA =a ,OB =b ,OC =c ,且|a |=2,|b |=1,| c |=3,用a 与b 表示c解:如图建立平面直角坐标系xoy ,其中i , j 是单位正交基底向量, 则B (0,1),C (-3,0),设A (x ,y ),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A (1,-3),也就是a =i -3j , b =j , c =-3i 所以-3a =33b +c |即c =3a -33b(四)基础练习:(五)、小结:掌握向量的相关知识。
高一数学必修四第2章平面向量导学案(全)(2021年整理)
高一数学必修四第2章平面向量导学案(全)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学必修四第2章平面向量导学案(全)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学必修四第2章平面向量导学案(全)(word版可编辑修改)的全部内容。
§2.1向量的概念及表示(预学案)课时:第一课时预习时间:年月日1。
了解向量的实际背景,会用字母表示向量,理解向量的几何表示.2. 理解零向量、单位向量、共线向量、相等向量、相反向量等概念。
B级重难点:对向量概念的理解.(预习教材P55 ~ P57,完成以下内容并找出疑惑之处)一、知识梳理、双基再现1、在现实生活中,有些量(如距离、身高、质量、等)在取定单位后只用就能表示,我们称之为,而另外一些量(如位移、速度、加速度、力、等)必须用和才能表示。
2、我们把称为向量,向量常用一条来表示,表示向量的大小。
以A为起点、B为终点的向量记为 .3、称为向量的长度(或称为),记作4、称为零向量,记作;叫做单位向量.5、叫做平行向量叫做相等向量。
叫做共线向量.二、小试身手、轻松过关1、下列各量中哪些是向量?浓度、年龄、面积、位移、人造卫星速度、向心力、电量、盈利、动量2、判断下列命题的真假:(1)向量AB的长度和向量BA的长度相等.(2)向量a与b平行,则b与a方向相同。
(3)向量a与b平行,则b与a方向相反。
(4)两个有共同起点而长度相等的向量,它们的终点必相同.§2。
1向量的概念及表示(作业)完成时间:年月日一、【基础训练、锋芒初显】1、判断下列命题的真假:(1)若a与b平行同向,且a>b,则a>b(2)由于0方向不确定,故0不能与任意向量平行.(3)如果a=b,则a与b长度相等。
最新高中数学第二章平面向量章末复习课导学案新人教A版必修4
最新人教版数学精品教学资料第二章 平面向量学习目标 1.回顾梳理向量的有关概念,进一步体会向量的有关概念的特征.2.系统整理向量线性运算、数量积运算及相应的运算律和运算性质.3.体会应用向量解决问题的基本思想和基本方法.4.进一步理解向量的“工具”性作用.1.向量的运算:设a =(x 1,y 1),b =(x 2,y 2).2.两个定理(1)平面向量基本定理①定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.②基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. (2)向量共线定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . 3.向量的平行与垂直a ,b 为非零向量,设a =(x 1,y 1),b =(x 2,y 2),类型一 向量的线性运算例1 如图所示,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案311解析 设BP →=λBN →,则BP →=BA →+AP →=-AB →+mAB →+211AC →=(m -1)AB →+211AC →.BN →=BA →+AN →=-AB →+14AC →.∵BP →与BN →共线,∴14(m -1)+211=0,∴m =311.反思与感悟 向量共线定理和平面向量基本定理是进行向量合成与分解的核心,是向量线性运算的关键所在,常应用它们解决平面几何中的共线、共点问题.跟踪训练1 在△ABC 中,E 为线段AC 的中点,试问在线段AC 上是否存在一点D ,使得BD →=13BC →+23BE →,若存在,说明D 点位置;若不存在,说明理由.解 假设存在D 点,使得BD →=13BC →+23BE →.BD →=13BC →+23BE →⇒BD →=13BC →+23(BC →+CE →)=BC →+23CE →⇒BD →-BC →=23CE →⇒CD →=23CE →⇒CD →=23×⎝ ⎛⎭⎪⎫12CA →⇒CD →=13CA →.所以当点D 为AC 的三等分点⎝⎛⎭⎪⎫CD →=13CA →时,BD →=13BC →+23BE →.类型二 向量的数量积运算例2 已知a =(cos α,sin α),b =(cos β,sin β),且|k a +b |=3|a -k b |(k >0). (1)用k 表示数量积a ·b ;(2)求a ·b 的最小值,并求出此时a 与b 的夹角θ的大小. 解 (1)由|k a +b |=3|a -k b |, 得(k a +b )2=3(a -k b )2,∴k 2a 2+2k a ·b +b 2=3a 2-6k a ·b +3k 2b 2. ∴(k 2-3)a 2+8k a ·b +(1-3k 2)b 2=0.∵|a |=cos 2α+sin 2α=1,|b |=cos 2β+sin 2β=1, ∴k 2-3+8k a ·b +1-3k 2=0, ∴a ·b =2k 2+28k =k 2+14k.(2)a ·b =k 2+14k =14(k +1k).由函数的单调性可知,f (k )=14(k +1k )在(0,1]上单调递减,在[1,+∞)上单调递增,∴当k =1时,f (k )min =f (1)=14×(1+1)=12,此时a 与b 的夹角θ的余弦值cos θ=a ·b |a ||b |=12,∴θ=60°.反思与感悟 数量积运算是向量运算的核心,利用向量数量积可以解决以下问题: (1)设a =(x 1,y 1),b =(x 2,y 2),a ∥b ⇔x 1y 2-x 2y 1=0, a ⊥b ⇔x 1x 2+y 1y 2=0.(2)求向量的夹角和模的问题 ①设a =(x 1,y 1),则|a |=x 21+y 21. ②两向量夹角的余弦(0≤θ≤π)cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 跟踪训练2 已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-(3+m )). (1)若点A ,B ,C 能构成三角形,求实数m 应满足的条件; (2)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值. 解 (1)若点A ,B ,C 能构成三角形,则这三点不共线, ∵OA →=(3,-4),OB →=(6,-3), OC →=(5-m ,-(3+m )),∴AB →=(3,1),BC →=(-m -1,-m ), ∵AB →与BC →不平行,∴-3m ≠-m -1,解得m ≠12,∴当实数m ≠12时满足条件.(2)若△ABC 为直角三角形,且∠A 为直角,则AB →⊥AC →,而AB →=(3,1),AC →=(2-m ,1-m ), ∴3(2-m )+(1-m )=0,解得m =74.类型三 向量坐标法在平面几何中的应用例3 已知在等腰△ABC 中,BB ′,CC ′是两腰上的中线,且BB ′⊥CC ′,求顶角A 的余弦值的大小.解 建立如图所示的平面直角坐标系,设A (0,a ),C (c ,0),则B (-c ,0),OA →=(0,a ),BA →=(c ,a ),OC →=(c ,0),BC →=(2c ,0).因为BB ′,CC ′为AC ,AB 边上的中线, 所以BB ′—→=12(BC →+BA →)=⎝ ⎛⎭⎪⎫3c 2,a 2,同理CC ′—→=⎝ ⎛⎭⎪⎫-3c 2,a 2.因为BB ′—→⊥CC ′—→,所以BB ′—→·CC ′—→=0, 即-9c 24+a 24=0,化简得a 2=9c 2,又因为cos A =AB →·AC→|AB →||AC →|=a 2-c 2a 2+c 2=9c 2-c 29c 2+c 2=45.即顶角A 的余弦值为45.反思与感悟 把几何图形放到适当的坐标系中,就赋予了有关点与向量具体的坐标,这样就能进行相应的代数运算和向量运算,从而解决问题.这样的解题方法具有普遍性.跟踪训练 3 如图,半径为3的扇形AOB 的圆心角为120°,点C 在AB 上,且∠COB =30°,若OC →=λOA →+μOB →,则λ+μ等于( )A. 3B.33C.433D.2 3 答案 A解析 由题意,得∠AOC =90°,故以O 为坐标原点,OC ,OA 所在直线分别为x 轴,y 轴建立平面直角坐标系,则O (0,0),A (0,3),C (3,0),B (3×cos 30°,-3×sin 30°), 因为OC →=λOA →+μOB →,所以(3,0)=λ(0,3)+μ(3×32,-3×12), 即⎩⎪⎨⎪⎧3=μ×3×32,0=3λ-3×12μ,则⎩⎪⎨⎪⎧μ=233,λ=33,所以λ+μ= 3.1.在菱形ABCD 中,若AC =2,则CA →·AB →等于( ) A.2 B.-2C.|AB →|cos A D.与菱形的边长有关答案 B解析 如图,设对角线AC 与BD 交于点O ,∴AB →=AO →+OB →.CA →·AB →=CA →·(AO →+OB →) =-2+0=-2.2.设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4.若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( ) A.20 B.15 C.9 D.6答案 C解析 ▱ABCD 的图象如图所示,由题设知,AM →=AB →+BM →=AB →+34AD →,NM →=13AB →-14AD →,∴AM →·NM →=⎝ ⎛⎭⎪⎫AB →+34AD →·⎝ ⎛⎭⎪⎫13AB →-14AD →=13|AB →|2-316|AD →|2+14AB →·AD →-14AB →·AD →=13×36-316×16=9. 3.已知向量a =(2,3),b =(-1,2),若m a +4b 与a -2b 共线,则m 的值为( ) A.12 B.2 C.-12 D.-2 答案 D解析 m a +4b =(2m -4,3m +8),a -2b =(4,-1). ∵m a +4b 与a -2b 共线,∴(2m -4)×(-1)-(3m +8)×4=0,解得m =-2.4.若向量OA →=(1,-3),|OA →|=|OB →|,OA →·OB →=0,则|AB →|=________. 答案 2 5解析 由题意可知,△AOB 是以O 为直角顶点的等腰直角三角形,且腰长|OA →|=|OB →|=10,由勾股定理得|AB →|=20=2 5.5.平面向量a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32,若存在不同时为0的实数k 和t ,使x =a +(t 2-3)b ,y =-k a +t b ,且x⊥y ,试求函数关系式k =f (t ). 解 由a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32,得a·b =0,|a |=2,|b |=1,由x ⊥y ,得[a +(t 2-3)b ]·(-k a +t b )=0, -k a 2+t a·b -k (t 2-3)a·b +t (t 2-3)b 2=0, 即-4k +t 3-3t =0,所以k =14(t 3-3t ),令f (t )=14(t 3-3t ),所以函数关系式为k =f (t )=14(t 3-3t ).1.由于向量有几何法和坐标法两种表示方法,它的运算也因为这两种不同的表示方法而有两种方式,因此向量问题的解决,理论上讲总共有两个途径,即基于几何表示的几何法和基于坐标表示的代数法,在具体做题时要善于从不同的角度考虑问题.2.向量是一个有“形”的几何量,因此,在研究向量的有关问题时,一定要结合图形进行分析判断求解,这是研究平面向量最重要的方法与技巧.课时作业一、选择题1.下列命题中正确的是( ) A.OA →-OB →=AB → B.AB →+BA →=0 C.0·AB →=0 D.AB →+BC →+CD →=AD → 答案 D解析 OA →-OB →=BA →;AB →,BA 是一对相反向量,它们的和应该为零向量,即AB →+BA →=0;0·AB →=0.2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →等于( ) A.5 B.4 C.3 D.2 答案 A解析 ∵四边形ABCD 为平行四边形,∴AC →=AB →+AD →=(1,-2)+(2,1)=(3,-1),∴AD →·AC →=2×3+(-1)×1=5.3.设向量a =(2,4)与向量b =(x ,6)共线,则实数x 等于( ) A.2 B.3 C.4 D.6 答案 B解析 ∵a ∥b ,∴2×6-4x =0,∴x =3.4.若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b 等于( ) A.(-3,6) B.(3,-6) C.(6,-3) D.(-6,3)答案 A解析 设b =k a =(k ,-2k ),k <0,而|b |=35,则5k 2=35,∴k =-3,b =(-3,6).5.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于( ) A.-4 B.-3 C.-2 D.-1答案 B6.在△ABC 中,若AB →2-AB →·AC →=BA →·BC →-CA →·BC →,则△ABC 是( ) A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形答案 C解析 由已知,得AB →·(AB →-AC →)-BC →·(BA →-CA →)=0, ∴AB →·CB →-BC →·BC →=0,∴BC →·(-AB →-BC →)=0,即-BC →·AC →=0,BC →⊥AC →, ∴BC ⊥AC ,∴△ABC 为直角三角形.故选C.7.若a ,b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角θ的大小为( ) A.π6 B.π3 C.2π3D.5π6答案 B解析 ∵a 2-2a ·b =0,b 2-2a ·b =0, ∴a 2=b 2,|a |=|b |,又∵cos θ=a ·b |a ||b |=12a 2|a |2=12,θ∈[0,π],∴θ=π3.8.如图所示,在△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于点F .设AB →=a ,AC →=b ,AF →=x a +y b ,则(x ,y )为()A.⎝ ⎛⎭⎪⎫12,12B.⎝ ⎛⎭⎪⎫23,23C.⎝ ⎛⎭⎪⎫13,13 D.⎝ ⎛⎭⎪⎫23,12 答案 C解析 令BF →=λBE →.由题可知,AF →=AB →+BF →=AB →+λBE →=AB →+λ⎝ ⎛⎭⎪⎫12AC →-AB →=(1-λ)AB →+12λAC →.令CF →=μCD →,则AF →=AC →+CF →=AC →+μCD →=AC →+μ⎝ ⎛⎭⎪⎫12AB →-AC →=12μAB →+(1-μ)AC →.由⎩⎪⎨⎪⎧1-λ=12μ,12λ=1-μ,解得⎩⎪⎨⎪⎧λ=23,μ=23,所以AF →=13AB →+13AC →,故选C.二、填空题9.若|a |=1,|b |=2,a 与b 的夹角为60°,若(3a +5b )⊥(m a -b ),则m 的值为________. 答案238解析 由题意知(3a +5b )·(m a -b )=3m a 2+(5m -3)a·b -5b 2=0,即3m +(5m -3)×2×cos 60°-5×4=0,解得m =238.10.已知向量a ,b 的夹角为120°,|a |=1,|b |=3,则|5a -b |=________. 答案 711.在△ABC 中,点O 在线段BC 的延长线上,且|BO →|=3|CO →|,当AO →=xAB →+yAC →时,x -y =________. 答案 -2解析 由|BO →|=3|CO →|,得BO →=3CO →, 则BO →=32BC →,所以AO →=AB →+BO →=AB →+32BC →=AB →+32(AC →-AB →)=-12AB →+32AC →.所以x =-12,y =32,所以x -y =-12-32=-2.12.已知向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则b 在a 方向上的投影是________. 答案 1解析 ∵|a |=|b |=2,a 与b 的夹角为60°,∴b 在a 方向上的投影是|b |cos 60°=1.13.已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.答案 712解析 ∵AP →⊥BC →,∴AP →·BC →=(λAB →+AC →)·(AC →-AB →)=-λAB →2+(λ-1)AB →·AC →+AC →2=-9λ+(λ-1)×3×2×(-12)+4=0, ∴λ=712. 三、解答题14.若OA →=(sin θ,-1),OB →=(2sin θ,2cos θ),其中θ∈[0,π2],求|AB →|的最大值. 解 ∵AB →=OB →-OA →=(sin θ,2cos θ+1)⇒|AB →|=sin 2θ+4cos 2θ+4cos θ+1=3cos 2θ+4cos θ+2= 3(cos θ+23)2+23, ∴当cos θ=1,即θ=0时,|AB →|取得最大值3.四、探究与拓展15.已知OA →=(1,0),OB →=(0,1),OM →=(t ,t )(t ∈R ),O 是坐标原点.(1)若A ,B ,M 三点共线,求t 的值;(2)当t 取何值时,MA →·MB →取到最小值?并求出最小值.解 (1)AB →=OB →-OA →=(-1,1),AM →=OM →-OA →=(t -1,t ).∵A ,B ,M 三点共线,∴AB →与AM →共线, ∴-(t -1)-t =0,∴t =12. (2)∵MA →=(1-t ,-t ),MB →=(-t ,1-t ),∴MA →·MB →=2t 2-2t =2⎝ ⎛⎭⎪⎫t -122-12,易知当t =1 2时,MA→·MB→取得最小值-12.。
人教A版高中数学必修四第二章平面向量复习课件
解:设点 B 的坐标为(x,y),
则 OB (x, y), AB (x 5, y 2)
OB AB
∴ x( x-5) +y( y-2) =0
即 x2+y2 – 5x – 2y=0
①
又 OB AB
∴x2+y2=(x-5)2+(y-2)2 即 10x+4y=29 ②
2024/11/3
由①、②解得:
2
2a b
b2
3
ab
3
2024/11/3
上页 下页 返回
15、如图,E是正方形ABCD的边AB延
长线上的一点,F在BC上,且BE=BF, 用向量的坐标法证明:AF⊥CE
2024/11/3
D
C
F
A
BE
上页 下页 返回
3、已知三个力 f1、f2、f3 作用于同一质点,且 | f1 | 20, | f2 | 30, | f3 | 40 (单位:牛)若三个力在同一平面
内且两两的夹角都为1200,求协力的大小和方向
y
B
f2
oθ
f3
x
C
A f1
2024/11/3
上页 下页 返回
例2:已知向量a (cos 3 x,sin 3 x),b (cos x , sin x),
22
2
2
且x
0,2
,
求
:
(1)a
b及
a
b
;
(2)若f
(x)
a
b
2
a
b
的最小值是-
3 2
, 求的值.
x1
y1
7 2
23或xy22
3 为
高中数学人教A版必修4 平面向量复习课教案
平面向量--复习课教案一、教学目标1. 理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。
2. 了解平面向量基本定理.3. 向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。
4. 了解向量形式的三角形不等式:|||-||≤|±|≤||+||(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(||+||)=|-|+|+|.5. 了解实数与向量的乘法(即数乘的意义):6.向量的坐标概念和坐标表示法7. 向量的坐标运算(加.减.实数和向量的乘法.数量积)8. 数量积(点乘或内积)的概念,²=||||cos=x x+y y注意区别“实数与向量的乘法;向量与向量的乘法”二、知识与方法向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视. 数量积的主要应用:①求模长;②求夹角;③判垂直三、典型例题例1.对于任意非零向量与,求证:|||-|||≤|±|≤||+||证明:(1)两个非零向量与不共线时,+的方向与,的方向都不同,并且||-||<|±|<||+||(3)两个非零向量与共线时,①与同向,则+的方向与.相同且|+|=||+||.②与异向时,则+的方向与模较大的向量方向相同,设||>||,则|+|=||-||.同理可证另一种情况也成立。
例2 已知O为△ABC内部一点,∠AOB=150°,∠BOC=90°,设=,=,=,且||=2,||=1,| |=3,用与表示解:如图建立平面直角坐标系xoy,其中, 是单位正交基底向量, 则B(0,1),C(-3,0),设A(x,y),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A(1,-),也就是=-, =,=-3所以-3=3+|即=3-3例3.下面5个命题:①|²|=||²||②(²)=²③⊥(-),则·=²④²=0,则|+|=|-|⑤²=0,则=或=,其中真命题是()A①②⑤ B ③④C①③D②④⑤三、巩固训练1.下面5个命题中正确的有()①=²=²;②²=²=;③²(+)=²+²;④²(²)=(²)²;⑤.A..①②⑤B.①③⑤C. ②③④D. ①③2.下列命题中,正确命题的个数为(A )①若与是非零向量,且与共线时,则与必与或中之一方向相同;②若为单位向量,且∥则=||③··=||④若与共线,与共线,则与共线;⑤若平面内四点A.B.C.D,必有+=+A 1B 2C 3D 43.下列5个命题中正确的是①对于实数p,q和向量,若p=q则p=q②对于向量与,若||=||则=③对于两个单位向量与,若|+|=2则=④对于两个单位向量与,若k=,则= 4.已知四边形ABCD的顶点分别为A(2,1),B(5,4),C(2,7),D(-1,4),求证:四边形ABCD 为正方形。
最新人教A版高中数学必修4第二章平面向量章末复习课导学案
第二章 平面向量学习目标.1.回顾梳理向量的有关概念,进一步体会向量的有关概念的特征.2.系统整理向量线性运算、数量积运算及相应的运算律和运算性质.3.体会应用向量解决问题的基本思想和基本方法.4.进一步理解向量的“工具”性作用.1.向量的运算:设a =(x 1,y 1),b =(x 2,y 2).2.两个定理(1)平面向量基本定理①定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.②基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.(2)向量共线定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . 3.向量的平行与垂直a ,b 为非零向量,设a =(x 1,y 1),b =(x 2,y 2),类型一.向量的线性运算例1.如图所示,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案.311解析.设BP →=λBN →,则BP →=BA →+AP →=-AB →+mAB →+211AC →=(m -1)AB →+211AC →.BN →=BA →+AN →=-AB →+14AC →.∵BP →与BN →共线,∴14(m -1)+211=0,∴m =311.反思与感悟.向量共线定理和平面向量基本定理是进行向量合成与分解的核心,是向量线性运算的关键所在,常应用它们解决平面几何中的共线、共点问题.跟踪训练1.在△ABC 中,E 为线段AC 的中点,试问在线段AC 上是否存在一点D ,使得BD →=13BC→+23BE →,若存在,说明D 点位置;若不存在,说明理由.解.假设存在D 点,使得BD →=13BC →+23BE →.BD →=13BC →+23BE →⇒BD →=13BC →+23(BC →+CE →)=BC →+23CE →⇒BD →-BC →=23CE →⇒CD →=23CE →⇒CD →=23×⎝ ⎛⎭⎪⎫12CA →⇒CD →=13CA →.所以当点D 为AC 的三等分点⎝⎛⎭⎪⎫CD →=13CA →时,BD →=13BC →+23BE →.类型二.向量的数量积运算例2.已知a =(cos α,sin α),b =(cos β,sin β),且|k a +b |=3|a -k b |(k >0). (1)用k 表示数量积a ·b ;(2)求a ·b 的最小值,并求出此时a 与b 的夹角θ的大小. 解.(1)由|k a +b |=3|a -k b |, 得(k a +b )2=3(a -k b )2,∴k 2a 2+2k a ·b +b 2=3a 2-6k a ·b +3k 2b 2. ∴(k 2-3)a 2+8k a ·b +(1-3k 2)b 2=0.∵|a |=cos 2α+sin 2α=1,|b |=cos 2β+sin 2β=1, ∴k 2-3+8k a ·b +1-3k 2=0, ∴a ·b =2k 2+28k =k 2+14k.(2)a ·b =k 2+14k =14(k +1k).由函数的单调性可知,f (k )=14(k +1k )在(0,1]上单调递减,在[1,+∞)上单调递增,∴当k =1时,f (k )min =f (1)=14×(1+1)=12,此时a 与b 的夹角θ的余弦值cos θ=a ·b |a ||b |=12,∴θ=60°.反思与感悟.数量积运算是向量运算的核心,利用向量数量积可以解决以下问题: (1)设a =(x 1,y 1),b =(x 2,y 2),a ∥b ⇔x 1y 2-x 2y 1=0, a ⊥b ⇔x 1x 2+y 1y 2=0.(2)求向量的夹角和模的问题 ①设a =(x 1,y 1),则|a |=x 21+y 21. ②两向量夹角的余弦(0≤θ≤π)cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 跟踪训练2.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-(3+m )). (1)若点A ,B ,C 能构成三角形,求实数m 应满足的条件; (2)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值. 解.(1)若点A ,B ,C 能构成三角形,则这三点不共线, ∵OA →=(3,-4),OB →=(6,-3), OC →=(5-m ,-(3+m )),∴AB →=(3,1),BC →=(-m -1,-m ), ∵AB →与BC →不平行,∴-3m ≠-m -1,解得m ≠12,∴当实数m ≠12时满足条件.(2)若△ABC 为直角三角形,且∠A 为直角,则AB →⊥AC →,而AB →=(3,1),AC →=(2-m ,1-m ), ∴3(2-m )+(1-m )=0,解得m =74.类型三.向量坐标法在平面几何中的应用例3.已知在等腰△ABC 中,BB ′,CC ′是两腰上的中线,且BB ′⊥CC ′,求顶角A 的余弦值的大小.解.建立如图所示的平面直角坐标系,设A (0,a ),C (c ,0),则B (-c ,0),OA →=(0,a ),BA →=(c ,a ),OC →=(c ,0),BC →=(2c ,0).因为BB ′,CC ′为AC ,AB 边上的中线, 所以BB ′—→=12(BC →+BA →)=⎝ ⎛⎭⎪⎫3c 2,a 2,同理CC ′—→=⎝ ⎛⎭⎪⎫-3c 2,a 2.因为BB ′—→⊥CC ′—→,所以BB ′—→·CC ′—→=0, 即-9c 24+a 24=0,化简得a 2=9c 2,又因为cos A =AB →·AC→|AB →||AC →|=a 2-c 2a 2+c 2=9c 2-c 29c 2+c 2=45.即顶角A 的余弦值为45.反思与感悟.把几何图形放到适当的坐标系中,就赋予了有关点与向量具体的坐标,这样就能进行相应的代数运算和向量运算,从而解决问题.这样的解题方法具有普遍性.跟踪训练3.如图,半径为3的扇形AOB 的圆心角为120°,点C 在AB 上,且∠COB =30°,若OC →=λOA →+μOB →,则λ+μ等于(..)A. 3B.33C.433D.2 3 答案.A解析.由题意,得∠AOC =90°,故以O 为坐标原点,OC ,OA 所在直线分别为x 轴,y 轴建立平面直角坐标系,则O (0,0),A (0,3),C (3,0),B (3×cos 30°,-3×sin 30°),因为OC →=λOA →+μOB →,所以(3,0)=λ(0,3)+μ(3×32,-3×12), 即⎩⎪⎨⎪⎧3=μ×3×32,0=3λ-3×12μ,则⎩⎪⎨⎪⎧μ=233,λ=33,所以λ+μ= 3.1.在菱形ABCD 中,若AC =2,则CA →·AB →等于(..) A.2 B.-2C.|AB →|cos A D.与菱形的边长有关答案.B解析.如图,设对角线AC 与BD 交于点O ,∴AB →=AO →+OB →.CA →·AB →=CA →·(AO →+OB →) =-2+0=-2.2.设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4.若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于(..) A.20 B.15 C.9 D.6答案.C解析.▱ABCD 的图象如图所示,由题设知,AM →=AB →+BM →=AB →+34AD →,NM →=13AB →-14AD →,∴AM →·NM →=⎝ ⎛⎭⎪⎫AB →+34AD →·⎝ ⎛⎭⎪⎫13AB →-14AD →=13|AB →|2-316|AD →|2+14AB →·AD →-14AB →·AD →=13×36-316×16=9. 3.已知向量a =(2,3),b =(-1,2),若m a +4b 与a -2b 共线,则m 的值为(..) A.12 B.2 C.-12 D.-2 答案.D解析.m a +4b =(2m -4,3m +8),a -2b =(4,-1). ∵m a +4b 与a -2b 共线,∴(2m -4)×(-1)-(3m +8)×4=0,解得m =-2.4.若向量OA →=(1,-3),|OA →|=|OB →|,OA →·OB →=0,则|AB →|=________. 答案.2 5解析.由题意可知,△AOB 是以O 为直角顶点的等腰直角三角形,且腰长|OA →|=|OB →|=10,由勾股定理得|AB →|=20=2 5.5.平面向量a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32,若存在不同时为0的实数k 和t ,使x =a +(t 2-3)b ,y =-k a +t b ,且x⊥y ,试求函数关系式k =f (t ). 解.由a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32,得a·b =0,|a |=2,|b |=1,由x ⊥y ,得[a +(t 2-3)b ]·(-k a +t b )=0, -k a 2+t a·b -k (t 2-3)a·b +t (t 2-3)b 2=0, 即-4k +t 3-3t =0,所以k =14(t 3-3t ),令f (t )=14(t 3-3t ),所以函数关系式为k =f (t )=14(t 3-3t ).1.由于向量有几何法和坐标法两种表示方法,它的运算也因为这两种不同的表示方法而有两种方式,因此向量问题的解决,理论上讲总共有两个途径,即基于几何表示的几何法和基于坐标表示的代数法,在具体做题时要善于从不同的角度考虑问题.2.向量是一个有“形”的几何量,因此,在研究向量的有关问题时,一定要结合图形进行分析判断求解,这是研究平面向量最重要的方法与技巧.课时作业一、选择题1.下列命题中正确的是(..) A.OA →-OB →=AB → B.AB →+BA →=0 C.0·AB →=0 D.AB →+BC →+CD →=AD → 答案.D解析.OA →-OB →=BA →;AB →,BA 是一对相反向量,它们的和应该为零向量,即AB →+BA →=0;0·AB →=0.2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →等于(..) A.5 B.4 C.3 D.2 答案.A解析.∵四边形ABCD 为平行四边形,∴AC →=AB →+AD →=(1,-2)+(2,1)=(3,-1),∴AD →·AC →=2×3+(-1)×1=5.3.设向量a =(2,4)与向量b =(x ,6)共线,则实数x 等于(..) A.2 B.3 C.4 D.6 答案.B解析.∵a ∥b ,∴2×6-4x =0,∴x =3.4.若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b 等于(..) A.(-3,6) B.(3,-6) C.(6,-3) D.(-6,3)答案.A解析.设b =k a =(k ,-2k ),k <0,而|b |=35,则5k 2=35,∴k =-3,b =(-3,6).5.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于(..) A.-4 B.-3 C.-2 D.-1 答案.B6.在△ABC 中,若AB →2-AB →·AC →=BA →·BC →-CA →·BC →,则△ABC 是(..) A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形答案.C解析.由已知,得AB →·(AB →-AC →)-BC →·(BA →-CA →)=0, ∴AB →·CB →-BC →·BC →=0,∴BC →·(-AB →-BC →)=0,即-BC →·AC →=0,BC →⊥AC →, ∴BC ⊥AC ,∴△ABC 为直角三角形.故选C.7.若a ,b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角θ的大小为(..) A.π6 B.π3 C.2π3D.5π6答案.B解析.∵a 2-2a ·b =0,b 2-2a ·b =0, ∴a 2=b 2,|a |=|b |,又∵cos θ=a ·b |a ||b |=12a 2|a |2=12,θ∈[0,π],∴θ=π3.8.如图所示,在△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于点F .设AB →=a ,AC →=b ,AF →=x a +y b ,则(x ,y )为(..)A.⎝ ⎛⎭⎪⎫12,12B.⎝ ⎛⎭⎪⎫23,23C.⎝ ⎛⎭⎪⎫13,13 D.⎝ ⎛⎭⎪⎫23,12 答案.C解析.令BF →=λBE →.由题可知,AF →=AB →+BF →=AB →+λBE →=AB →+λ⎝ ⎛⎭⎪⎫12AC →-AB →=(1-λ)AB →+12λAC →.令CF →=μCD →,则AF →=AC →+CF →=AC →+μCD →=AC →+μ⎝ ⎛⎭⎪⎫12AB →-AC →=12μAB →+(1-μ)AC →.由⎩⎪⎨⎪⎧1-λ=12μ,12λ=1-μ,解得⎩⎪⎨⎪⎧λ=23,μ=23,所以AF →=13AB →+13AC →,故选C.二、填空题9.若|a |=1,|b |=2,a 与b 的夹角为60°,若(3a +5b )⊥(m a -b ),则m 的值为________. 答案.238解析.由题意知(3a +5b )·(m a -b )=3m a 2+(5m -3)a·b -5b 2=0,即3m +(5m -3)×2×cos 60°-5×4=0,解得m =238.10.已知向量a ,b 的夹角为120°,|a |=1,|b |=3,则|5a -b |=________. 答案.711.在△ABC 中,点O 在线段BC 的延长线上,且|BO →|=3|CO →|,当AO →=xAB →+yAC →时,x -y =________. 答案.-2解析.由|BO →|=3|CO →|,得BO →=3CO →, 则BO →=32BC →,所以AO →=AB →+BO →=AB →+32BC →=AB →+32(AC →-AB →)=-12AB →+32AC →.所以x =-12,y =32,所以x -y =-12-32=-2.12.已知向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则b 在a 方向上的投影是________. 答案.1解析.∵|a |=|b |=2,a 与b 的夹角为60°,∴b 在a 方向上的投影是|b |cos 60°=1.13.已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.答案.712解析.∵AP →⊥BC →,∴AP →·BC →=(λAB →+AC →)·(AC →-AB →)=-λAB →2+(λ-1)AB →·AC →+AC →2=-9λ+(λ-1)×3×2×(-12)+4=0, ∴λ=712. 三、解答题14.若OA →=(sin θ,-1),OB →=(2sin θ,2cos θ),其中θ∈[0,π2],求|AB →|的最大值. 解.∵AB →=OB →-OA →=(sin θ,2cos θ+1)⇒|AB →|=sin 2θ+4cos 2θ+4cos θ+1=3cos 2θ+4cos θ+2= 3(cos θ+23)2+23, ∴当cos θ=1,即θ=0时,|AB →|取得最大值3.四、探究与拓展15.已知OA →=(1,0),OB →=(0,1),OM →=(t ,t )(t ∈R ),O 是坐标原点.(1)若A ,B ,M 三点共线,求t 的值;(2)当t 取何值时,MA →·MB →取到最小值?并求出最小值.解.(1)AB →=OB →-OA →=(-1,1),AM →=OM →-OA →=(t -1,t ).∵A ,B ,M 三点共线,∴AB →与AM →共线, ∴-(t -1)-t =0,∴t =12. (2)∵MA →=(1-t ,-t ),MB →=(-t ,1-t ),∴MA →·MB →=2t 2-2t =2⎝ ⎛⎭⎪⎫t -122-12,易知当t =1 2时,MA→·MB→取得最小值-12.。
广东省阳江中学高中数学(人教)必修4课件:第二章《平面向量》复习
a b | a ||b |
a)
2
⑤|a· b|≤|a|· |b|
2、向量垂直的判定
( 1 ) a b a b 0 向量表示 (2) a b x1 x2 y1 y2 0 坐标表示
2
2
坐标表示
x2 y 2
2 2 (3)若A(x1,y1),B(x2,y2),则| AB | (x1 x 2) (y1 y 2) x1 x2 y1 y2 a b 5、向量的夹角 cos 2 2 2 2 x y x y | a || b | 1 1 2 2
3、数量积的坐标运算
B
a b x1 x2 y1 y2
O B1 4、运算律: ( 1 ) a b b a (2)( a ) b (a b ) a( b ) θ A
( 3)( a b) c ac b c
1、平面向量的数量积a· b的性质: ①e·a=a·e=|a|cosθ
4km / h ,方向是 与水流方向成 . 60 角
必修四 平面向量
总复习
知识网络
向量 向量有关概念 向量的定义 单位向量及零向量 相等向量 平行向量和共线向量 向量的运算 向量的加法 向量的减法 实数和向量的积 向量的数量积 基本应用 平行与垂直的条件 求长度 求角度
一、向量的概念与几何运算 (一)、向量的概念 向量、零向量、单位向量、共线向量(平行向量)、C 相等向量、相反向量、向量的夹角等. a +b (二)、向量的加法与减法
特别注意:
a b 0 cos 0 为锐角或 0
广东省阳江中学高中数学必修4导学案 平面向量的数量积的表示、模、夹角
2.4.2平面向量的数量积的坐标表示、模、夹角【课前导学】(一)复习引入: 1.平面向量数量积(内积)的定义: __________a b ⋅=2.两个向量的数量积的重要性质:(1)________a b ⊥⇔;(2)__________a a a ⋅==或||;(3)cos __________θ=3.探究:已知两个非零向量11()a x ,y =,22()b x ,y =,试用a 和b 的坐标表示a b ⋅.提示:若直角坐标系中,x 轴方向的单位向量为i ,y 轴方向上的单位向量为j ,则向量,a b 用,i j 可以表示为a = ,b = ;其中i i = ,j j = ,i j = 故:a b ⋅=(二)新课学习(阅读课本P104~105的内容后,完成下列内容)1、平面两向量数量积的坐标表示:若两个非零向量11()a x ,y =、22()b x ,y =,则_________a b ⋅=即,两个向量的数量积等于它们对应坐标的________________.2. 平面内两点间的距离公式:(1)设()a x,y =,则2||___________||___________a a ==,或.(2)如果表示向量a 的有向线段的起点A 和终点B 的坐标分别为11()A x ,y 、22()B x ,y ,那么A 、B 间的距离||___________________AB = (平面内两点间的距离公式)3、 向量垂直的判定:设11()a x ,y =、22()b x ,y =,则⊥ ⇔______________.4、两向量夹角的余弦:已知两个非零向量11()a x ,y =,22()b x ,y =,a 与b 之间的夹角为θ, 则cos θ=_____________________.【预习自测】1、已知(34)a ,=-,(5,2)b =,则||_______a =,||_______b =,_________a b ⋅=.2、已知(32)a ,=,(2,3)b =,a 与b 之间的夹角为θ,则cos θ=______,sin θ=______.3、若(22)BA ,=-,C (11)B ,=,则ABC ∠=_________.【课内探究】 探究一:数量积的坐标表示及计算(求向量的模)例1、()()(3,4),(6,8),,,,.a b a b a b a b a b =-=-⋅+⋅-已知求变式:上例中,若求a b -||呢?探究二:向量垂直的问题例2、已知(1,4),(5,2),(3,4)A B C --,试判断△ABC 的形状,并给出证明.变式:若(34),12),_______.a ,b a b x,3x b =⊥=,且的起点坐标为(,终点坐标为(),则探究三:向量夹角的问题例3、(1)(13)(223)a ,b ,a b ==-已知,,求与的夹角. (2)(12)(23)2a ,b ,c a b ==--=+设,,又,d a mb =+,且45c d ︒与的夹角为,m 求实数的值.【总结提升】1、掌握平面向量数量积的坐标表示,即两个向量的数量积等于它们对应坐标的乘积之和;2、要学会运用平面向量数量积的坐标表示解决有关长度、角度及垂直问题.【课外作业】1、(2,3),(2,4),(1,2)a b c ==-=--已知,()(),,()b a b a b a b a b c ⋅+⋅-⋅+求,.2、求证:(1,0),(5,2),(8,4),(4,6).A B C D -为顶点的四边形是一个矩形3、3,//.a b a b a =已知||=(1,2),且,求的坐标.(提示:设a x,y 的坐标为())4、(4,2),.a a e =已知求与垂直的单位向量的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修4平面向量(章节复习)
【课前导学】
一、知识结构:
二、知识梳理:
(一)向量的概念与几何运算
1.向量的有关概念
⑴向量:既有又有的量叫向量.
零向量:的向量叫零向量.单位向量:的向量,叫单位向量.
⑵平行向量(共线向量)叫平行向量,也叫共线向量.规定零向量与任一向量.
⑶相等向量:且的向量叫相等向量.
2.向量的加法与减法
⑴向量的加法法则:(Ⅰ)三角形法则:(四字概括)
(Ⅱ)平行四边形法则:(四字概括)
⑵向量的减法法则:三角形法则:由的终点指向的终点。
3.实数与向量的积
⑴实数λ与向量的积是一个向量,记作λ.它的长度与方向规定如下:
① | λ|=.
②当λ>0时,λ的方向与的方向;
当λ<0时,λ的方向与的方向;
当λ=0时,λ.
⑵λ(μ)=.(λ+μ)=.λ(+b)=.
⑶共线向量定理:向量b与非零向量共线,当且仅当存在唯一个实数λ使得.
4.平面向量基本定理:如果1e、2e是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量,有且只有一对实数
λ、2λ,使得.
1
(二)平面向量的坐标运算
1.平面向量的坐标表示
分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,对于一个向量a,有且只有一对实数x、y,使得=x i+y j.我们把(x、y)叫做向量的直角坐标,记作.并且||=.
P x y,则OP=
2.向量的坐标等于起点为的向量的终点坐标,即,若(,)
3.平面向量的坐标运算:
(1)若=(x1、y1),=(x2、y2),λ∈R,则:
+b=-b=λ=
(2)已知A(x1、y1),B(x2、y2),则=.
4.两个向量=(x1、y1)和b=(x2、y2)共线的充要条件是.
P P的中点P的坐标为。
5.设P1(x1、y1),P2(x2、y2),线段
12
(三)平面向量的数量积
1.两个向量的夹角:已知两个非零向量和b,过O点作=,=b,则∠AOB=θ (0°≤θ≤180°) 叫做向量与b的.当θ=0°时,与b;当θ=180°时,与b;如果与b的夹角是90°,我们说a与b垂直,记作.
2.两个向量的数量积的定义:已知两个非零向量与b,它们的夹角为θ,则数量叫做与b的数量积(或内积),记作·b,即·b=.规定零向量与任一向量的数量积为0.若=(x1, y1),b=(x2, y2),则·b=.
3.向量的数量积的几何意义:
|b|cosθ叫做向量b在方向上的投影(θ是向量与b的夹角).
a·b的几何意义是,数量a·b等于.
4.向量数量积的性质:设、b都是非零向量,是单位向量,θ是与b的夹角.
⑴·=·=⑵⊥b⇔
⑶当与b同向时,·b=;当与b反向时,·b=.
⑷cosθ=.⑸ |·b|≤
5.向量数量积的运算律:
N
A B
D
M C
⑴ a ·b = ;⑵ (λa )·b = =a ·(λb ) ⑶ (a +b )·c =
【预习自测】
1. 若A (2,-1),B (-1,3),则AB 的坐标是 ( ) A.(1,2) B.(-3,4) C. (3,-4) D. 以上都不对 2、化简下列各式:
(1)()()AB CD AC BD ---= ;(2)MP MN --ON QM += ; (3)BA CO BO OC OA -+++= . (4))(MB AB ++()BO BC OM ++=__________ 3. △ABC 中,BC =a , AC =b ,则AB 等于 ( )
A.a b +
B. ()a b -+
C. a b -
D. b a - 4. 若|a |=1,| b |=2,(a b -)⊥a ,则a 与b 的夹角为 ( ) A.300 B.450 C.600 D.750
5.一艘船从A 点出发以h km /32的速度向垂直于对岸的方向行驶,同时河水的流速为h km /2,则船实际航行的速度的大小和方向是 .
【课中导学】
例1:如图,
ABCD 中,点M 是AB 的中点,点N 在BD 上,且 BN =
3
1
BD ,a AB AD b ==设,
(1)试用a 与 b 表示出MC , (2)求证:M 、N 、C 三点共线.
例2. 已知:→
a 、→
b 、→
c 是同一平面内的三个向量,其中→
a =(1,2) (1)若|→
c |=2
5,且→c ‖→a ,求→
c 的坐标
(2)若|→
b |=2
5
,且→a +2→b 与2→a -→b 垂直,求→a 与→b 的夹角θ.
例3、已知点O (0,0),A (1,2),B (4,5),P 为一动点,及t +=, (1)t 为何值时,P 在x 轴上?P 在y 轴上?P 在第二象限?
(2)四边形OABP 能否成为平行四边形?若能,求出相应的t 值;若不能,请说明理由。
【课后作业】
1. 已知A(2,-2),B(4,3),向量p 的坐标为(2k-1,7)且p ∥,则k 的值为 ( )
A.109-
B.109
C.1019-
D.10
19 2. 已知AB AD AC +=,且,AC a BD b ==,用,a b 表示
,AB BD ==
3、已知(1,0),(1,1)a b ==,a b λ+与a 垂直,则λ=
4. 已知|a |=3,|b |=4,且|a -b ,则a 与b
的夹角为 .
5、.已知△ABC 中,A(1,1),B(4,1),C(4,5),则cos A =
6.设两个非零向量1e 、2e 不共线.如果=12e e +, =21e +82e ,=3(1e -2e ) (1)求证:A 、B 、D 共线;(2)试确定实数k,使k 1e +2e 和1e +k 2e 共线.
7、已知平面向量(2,4),(4,),(3,)a b x c y ==-=,且//,a b a c ⊥.
(1)求,x y 的值;(2)若,2m a b n a c =+=+,求向量m 与n 的夹角的余弦值。
8、如图所示,支座A 受12,F F 两个力的作用,已知1||40F N =,与水平线成θ角;2||70F N =,沿水平方向;两个力的合力||100F N =,求角θ以及合力F 与水平线的夹角β.(只需求出角θ和角β的某一三角函数值即可)。