人教版高中数学必修三练习2-1-3分层抽样

合集下载

人教新课标版数学高一数学必修3练习 2-1-3分层抽样

人教新课标版数学高一数学必修3练习 2-1-3分层抽样

双基限时练(十二)1.问题:①有1000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ.简单随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.其中问题与方法能配对的是()A.①Ⅰ,②ⅡB.①Ⅲ,②ⅠC.①Ⅱ,②ⅢD.①Ⅲ,②Ⅱ解析读题知①用分层抽样法,②用简单随机抽样法.答案 B2.一个单位有职工160人,其中有业务员104人,管理人员32人,后勤服务人员24人,要从中抽取一个容量为20的样本,用分层抽样方法抽出样本,则在20人的样本中管理人员人数为()A.3 B.4C.12 D.7解析由题意可得20160×32=4.答案 B3.某地区为了解居民家庭生活状况,先把居民按所在行业分为几类,然后每个行业抽1100的居民家庭进行调查,这种抽样是() A.简单随机抽样B.系统抽样C.分层抽样D.分类抽样答案 C4.一个总体分为A,B两层,其个体数之比为41,用分层抽样方法从总体中抽取一个容量为10的样本,则A层中抽取的样本个数为()A .8B .6C .4D .2答案 A 5.某大学数学系共有本科生5000人,其中一、二、三、四年级的学生数之比为4:3:2:1.要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽三年级的学生( )A .80人B .40人C .60人D .20人解析 分层抽样应按比例抽取,所以应抽取三年级的学生人数为200×210=40.答案 B6.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工________人.解析 依题意得,抽取超过45岁的职工人数为25200×80=10.答案 107.某工厂生产A ,B ,C 三种不同型号的产品,产品数量之比依次为23 5.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件,那么此样本的容量n =________.解析 由题意得n =16×102=80.答案 808.课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4,12,8.若用分层抽样抽取6个城市,则丙组中应抽取的城市数为________.答案 29.某企业有三个车间,第一车间有x 人,第二车间有300人,第三车间有y 人,采用分层抽样的方法抽取一个容量为45人的样本,第一车间被抽取20人,第三车间被抽取10人,问:这个企业第一车间、第三车间各有多少人?解 x =20×30045-20-10=400(人),y =10×30045-20-10=200(人). 10.某单位有工程师6 人,技术员12 人,技工18 人,要从这些人中抽取一个容量为n 的样本.如果采用系统抽样和分层抽样方法抽取,都不用剔除个体;如果样本容量增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n .解 解法1:总体容量为6+12+18=36(人).当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n 36,抽取工程师人数为n 36×6=n 6人,技术人员人数为n 36×12=n 3人,技工人数为n 36×18=n 2人,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n +1)时,总体容量是35 人,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6,即样本容量n =6. 解法2:总体容量为6+12+18=36(人).当抽取n 个个体时,不论是系统抽样还是分层抽样,都不用剔除个体,所以n 应为6,12,18的公约数,∴n可取2,3,6.当n=2时,n+1=3,用系统抽样不需要剔除个体;当n=3时,n+1=4,用系统抽样也不需要剔除个体;当n=6时,n+1=7,用系统抽样需要剔除一个个体.所以n=6.。

人教B版高中数学必修三 2-1-3分层抽样 测试教师版 精

人教B版高中数学必修三 2-1-3分层抽样 测试教师版 精

2.1.3分层抽样(检测教师版)一、选择题1.为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【解析】选C.结合三种抽样的特点及抽样要求求解.由于三个学段学生的视力情况差别较大,故需按学段分层抽样.2.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为( )A.7B.15C.25D.35【解析】选B.青年职工、中年职工、老年职工三层之比为7∶5∶3,所以样本容量为7÷=15(人).3.简单随机抽样、系统抽样、分层抽样三者的共同特点是( )A.将总体分成几部分,按预先设定的规则在各部分抽取B.抽样过程中每个个体被抽到的机会均等C.将总体分成几层,然后分层按照比例抽取D.没有共同点【解析】选B.由定义知,三种抽样方法都必须保证每个个体被抽到的机会相等.4.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取样本中,青年教师有320人,则该样本的老年教师人数为( )A.90B.100C.180D.300【解析】选C.设样本中老年教师人数为n人,=,解得n=180.5.某橘子园有平地和山地共120亩,现在要估计平均亩产量,按一定的比例用分层抽样的方法共抽取10亩进行调查,如果所抽山地的亩数是平地亩数的2倍多1,则这个橘子园的平地与山地的亩数分别为( )A.45,75B.40,80C.36,84D.30,90【解析】选C.本题考查分层抽样方法.根据条件知所抽山地的亩数为7,所抽平地的亩数为3,则橘子园中山地的亩数为84,平地的亩数为36.6.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A.6B.8C.10D.12【解析】选B.设在高二年级学生中抽取的人数为x,则=,解得x=8.二、填空题7.某地区有农民、工人、知识分子家庭共计2004户,其中农民家庭1600户,工人家庭303户.现要从中抽出容量为40的样本,则在整个抽样过程中,可以用到下列抽样方法中的.(将你认为正确的序号都填上).①简单随机抽样;②系统抽样;③分层抽样.【解析】为了保证抽样的合理性,应对农民、工人、知识分子分层抽样;在各层中采用系统抽样.抽样时还要先用简单随机抽样剔除多余个体.答案:①②③8.防疫站对学生进行身体健康调查.红星中学共有学生1600名,采用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是.【解析】设该校的女生人数是x,则男生人数是1600-x,抽样比是=,则x=(1600-x)-10,解得x=760.答案:760三、解答题9.某学校共有教职工900名,分成三个批次进行教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16.(1)求x的值.(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?【解析】(1)由=0.16,解得x=144.(2)第三批次的人数为y+z=900-(196+204+144+156)=200,设应在第三批次中抽取m名,则=,解得m=12.所以应在第三批次中抽取12名教职工.10.为了对某课题进行讨论研究,用分层抽样的方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)(1)求x,y.(2)若从高校B相关的人中选2人作专题发言,应采用什么抽样法,请写出合理的抽样过程. 【解析】(1)分层抽样是按各层相关人数和抽取人数的比例进行的,所以有:=⇒x=18,=⇒y=2,故x=18,y=2.(2)总体容量和样本容量较小,所以应采用抽签法,过程如下:第一步,将36人随机编号,号码为1,2,3, (36)第二步,将号码分别写在相同的纸片上,揉成团,制成号签;第三步,将号签放入一个不透明的容器中,充分搅匀,依次不放回地抽取2个号码,并记录上面的编号;第四步,把与号码相对应的人抽出,即可得到所要的样本.。

高中数学必修三习题:第二章2.1-2.1.3分层抽样含答案

高中数学必修三习题:第二章2.1-2.1.3分层抽样含答案

第二章 统计 2.1 随机抽样 2.1.3 分层抽样A 级 基础巩固一、选择题1.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法解析:总体(500名学生)中的个体(男、女学生)有明显差异,应采用分层抽样法. 答案:D2.下列实验中最适合用分层抽样法抽样的是( ) A .从一箱3 000个零件中抽取5个入样 B .从一箱3 000个零件中抽取600个入样 C .从一箱30个零件中抽取5个入样D .从甲厂生产的100个零件和乙厂生产的200个零件中抽取6个入样 解析:D 中总体有明显差异,故用分层抽样. 答案:D3.具有A 、B 、C 三种性质的总体,其容量为63,将A 、B 、C 三种性质的个体按1∶2∶4的比例进行分层抽样调查,如果抽取的样本容量为21,则A 、B 、C 三种元素分别抽取的个数是( )A .12、6、3B .12、3、6C .3、6、12D .3、12、6解析:因为A 、B 、C 三种性质的个体按1∶2∶4的比例进行分层抽样, 所以A 种元素抽取的个数为21×17=3,B 种元素抽取的个数为21×27=6,C 种元素抽取的个数为21×47=12.答案:C4.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是( )A .简单随机抽样B.系统抽样C.先从中年人中剔除1人,再用分层抽样D.先从老年人中剔除1人,再用分层抽样解析:总人数为28+54+81=163.样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36∶163取样,无法得到整解,故考虑先剔除1人,抽取比例变为36∶162=2∶9,则中年人取12人,青年人取18人,先从老年人中剔除1人,老年人取6人,组成36的样本.答案:D5.已知某单位有职工120人,其中男职工90人,现采用分层抽样的方法(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为( )A.30 B.36 C.40 D.无法确定解析:分层抽样中抽样比一定相同,设样本容量为n,由题意得,n120=2790,解得n=36.答案:B二、填空题6.(2015·福建卷)某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为______.解析:设男生抽取x人,则有45900=x900-400,解得x=25.答案:257.(2014·湖北卷)甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.解析:设乙设备生产的产品总数为x件,则甲设备生产的产品总数为(4 800-x)件.由分层抽样的特点,结合题意可得5080=4 800-x4 800,解得x=1 800.答案:1 8008.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.解析:高二年级学生人数占总数的310,样本容量为50,则50×310=15.答案:15三、解答题9.某市的3个区共有高中学生20 000人,且3个区的高中学生人数之比为2∶3∶5,现要从所有学生中抽取一个容量为200的样本,调查该市高中学生的视力情况,试写出抽样过程.解:其抽样过程如下:(1)由于该市高中学生的视力有差异,按3个区分成三层,用分层抽样来抽取样本. (2)确定每层抽取个体的个数,在3个区分别抽取的学生人数之比也是2∶3∶5,所以抽取的学生人数分别是200×22+3+5=40;200×32+3+5=60;200×52+3+5=100.(3)在各层分别按系统抽样法抽取样本. (4)综合每层抽样,组成容量为200的样本.10.某市化工厂三个车间共有工人1 000名,各车间男、女工人数见下表:(1)求x 的值;(2)现用分层抽样的方法在全厂抽取50名工人,问应在第三车间抽取多少名? 解:(1)由x1 000=0.15,得x =150.(2)因为第一车间的工人数是173+177=350,第二车间的工人数是100+150=250, 所以第三车间的工人数是1 000-350-250=400.设应从第三车间抽取m 名工人,则由m 400=501 000,得m =20.所以应在第三车间抽取20名工人.B 级 能力提升1.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A .8B .11C .16D .10解析:若设高三学生数为x ,则高一学生数为x 2,高二学生数为x 2+300,所以有x +x2+x2+300=3 500,解得x =1 600.故高一学生数为800,因此应抽取高一学生数为800100=8.答案:A2.某企业3月中旬生产A 、B 、C 三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 产品的数量是________件.解析:抽样比为130∶1 300=1∶10,又A 产品的样本容量比C 产品的样本容量多10,故C 产品的数量是[(3 000-1 300)-100]×12=800(件).答案:8003.某批零件共160个,其中一级品有48人,二级品有64个,三级品有32个,等外品有16个.从中抽取一个容量为20的样本.试简要叙述用简单随机抽样、系统抽样、分层抽样法进行抽样都是等可能抽样.解:(1)简单随机抽样法:可采用抽签法,将160个零件按1~160编号,相应地制作1~160号的160个号签,从中随机抽20个即可.每个个体被抽到的概率为20160=18,每个个体被抽到的可能性相同.(2)系统抽样法:将160个零件按1~160编号,按编号顺序分成20组,每组8个.先在第一组用抽签法抽得k 号(1≤k ≤8),则在其余组中分别抽得第k +8n (n =1,2,3,…,19)号,每个个体被抽到的概率为18,每个个体被抽到的可能性相同.(3)分层抽样法:按比例20160=18,分别在一级品、二级品、三级品、等外品中抽取48×18=6(个),64×18=8(个),32×18=4(个),16×18=2(个),每个个体被抽到的概率分别为648,864,432,216,即都是18,每个个体被抽到的可能性相同. 综上所述,无论采取哪种抽样方式,总体中每个个体被抽到的概率都是18.。

人教A版高中数学必修三 第二章2.1.3分层抽样 同步训练B卷

人教A版高中数学必修三 第二章2.1.3分层抽样 同步训练B卷

人教A版高中数学必修三第二章2.1.3分层抽样同步训练B卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A . 30B . 25C . 20D . 152. (2分) (2016高一下·南市期末) 某中学对高一新生进行体质状况抽测,新生中男生有800人,女生有600人,现用分层抽样的方法在这1400名学生中抽取一个样本,已知男生抽取了40人,则女生应抽取人数为()A . 24B . 28C . 30D . 323. (2分)某社区有800户家庭,其中高收入家庭200户,中等收入家庭480户,低收入家庭120户,为了调查社会购买力的某项指标,要从中抽取一个容量为100户的样本,记作1;某学校高一年级有12名音乐特长生,要从中选出3名调查学习训练情况,记作2.那么完成上述两项调查应采用的抽样方法是()A . ①用简单随即抽样②用系统抽样B . ①用分层抽样②用简单随机抽样C . ①用系统抽样②用分层抽样D . ①用分层抽样②用系统抽样4. (2分) (2018高一下·贺州期末) 某公司有1000名员工,其中:高收入者有50人,中等收入者有150人,低收入者有800人,要对这个公司员工的收入进行调查,欲抽取100名员工,应当采用()方法A . 简单呢随机抽样B . 抽签法C . 分层抽样D . 系统抽样5. (2分)一批灯泡400只,其中20 W、40 W、60 W的数目之比为4∶3∶1,现用分层抽样的方法产生一个容量为40的样本,三种灯泡依次抽取的个数为()A . 20 ,10 ,10B . 15 ,20 ,5C . 20,5,15D . 20,15,56. (2分)一个单位有职工120人,其中业务人员60人,管理人员40人,后勤人员20人,为了了解职工健康情况,要从中抽取一个容量为24的样本,如用分层抽样,则管理人员应抽到的人数为A . 4B . 12C . 5D . 8二、填空题 (共4题;共4分)7. (1分) (2019高一下·南通期末) 某校共有学生1600人,其中高一年级400人.为了解各年级学生的兴趣爱好情况,用分层抽样的方法从中抽取容量为80的样本,则应抽取高一学生________人.8. (1分) (2017高三上·南通期末) 一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量(单位:辆)如表:轿车A轿车B轿车C舒适型100150z标准型300450600按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.则z的值为________.9. (1分) (2016高一下·红桥期中) 某校为了解学生的学习情况,采用分层抽样的方法从高一150人、高二120人、高三180人中抽取50人进行问卷调查,则高三抽取的人数是________.10. (1分) (2017高三上·宿迁期中) 某校高三年级500名学生中,血型为O型的有200人,A型的有125人,B型的有125人,AB型的有50人.为研究血型与色弱之间的关系,现用分层抽样的方法从这500名学生中抽取一个容量为60的样本,则应抽取________名血型为AB的学生.三、解答题 (共3题;共25分)11. (5分) (2018高二下·泸县期末) 省环保厅对、、三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如下表所示:城城城优(个)28良(个)3230已知在这180个数据中随机抽取一个,恰好抽到记录城市空气质量为优的数据的概率为0.2.(I)现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在城中应抽取的数据的个数;(II)已知,,求在城中空气质量为优的天数大于空气质量为良的天数的概率.12. (10分) (2017高一下·和平期末) 和谐高级中学共有学生570名,各班级人数如表:一班二班三班四班高一5251y48高二48x4947高三44474643已知在全校学生中随机抽取1名,抽到高二年级学生的概率是.(1)求x,y的值;(2)现用分层抽样的方法在全校抽取114名学生,应分别在各年级抽取多少名?13. (10分)一个总体中的1 000个个体编号为0,1,2,…,999,并依次将其分为10个小组,组号为0,1,2,…,9.要用系统抽样方法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x,那么依次错位地得到后面各组的号码,即第k组中抽取的号码的后两位数为x+33k的后两位数.(1)当x=24时,写出所抽取样本的10个号码;(2)若所抽取样本的10个号码中有一个的后两位数是87,求x的取值范围.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共4题;共4分)7-1、8-1、9-1、10-1、三、解答题 (共3题;共25分)11-1、12-1、12-2、13-1、13-2、。

人教A版高中数学必修三 2-1-3 分层抽样 学案 精品

人教A版高中数学必修三 2-1-3 分层抽样 学案 精品

§2.1.3分层抽样、三种抽样方法的联系一、学习目标1.能够熟练说出三种抽样方法,并且会根据不同情况判断使用哪一种;2. 能够熟练说出分层抽样的概念能够判断使用分层抽样的条件;二、预习课本,自主掌握:1.常用的抽样方法有:;;。

2.最常用的简单随机抽样方法有两种:;。

3.分层抽样的概念:一般地,在抽样时,将总体分成,然后,从抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样。

4.当总体是由组成时,往往选用分层抽样的方法。

5.分层抽样时,每个个体被抽到的机会是。

6.在抽样方法中,如果总体的个数较少时,一般采用,总体中个体较多的的时候,宜采用,总体由差异明显的几部分组成,应采用。

7. 简单随机抽样、系统抽样、分层抽样的联系和区别三、基础自测:1.1.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为() A.30 B.25 C.20 D.152.某公司甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成①②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法3.某校为了了解高三年级学生的视力状况,按男生和女生分层抽样,从全部600名学生中抽取60名进行检查,在抽取的学生中有男生36名,则高三年级中共有__________名女生.4.某大型超市销售的乳类商品有四种:纯奶、酸奶、婴幼儿奶粉、成人奶粉,且纯奶、酸奶、婴幼儿奶粉、成人奶粉分别有30种、10种、35种、25种不同的品牌.现采用分层抽样的方法从中抽取一个容量为n的样本进行三聚氰胺安全检测,若抽取的婴幼儿奶粉的品牌数是7,则n=________.答案:1.C设样本中松树苗的数量为x,由15030000=x4000,得x=20.2.B①因为抽取的销售点与地区有关,因此要采用分层抽样法;②从20个特大型销售点中抽取7个调查,总体和样本容量都比较少,适合采用简单随机抽样法.3.24060060×36=360(名),∴女生有600-360=240(名).4.20根据分层抽样规则有n100=735,则n=20.四、合作、探究、展示:题型一:分层抽样的概念例1. (1)某政府机关在编人员共100人,其中副处级以上干部10人,一般干部70人,工人20人,上级部门为了了解该机关对政府机构改革的意见,要从中抽取20人,用下列哪种方法最合适()A.系统抽样法B.简单随机抽样法C.分层抽样法D.随机数法(2)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每类抽取若干个个体构成样本,所以分层抽样为保证每个个体等可能抽样,必须进行()A.每层等可能抽样B .每层可以不等可能抽样C .所有层按同一抽样比等可能抽样D .所有层抽个体数量相同[解析] (1)总体由差异明显的三部分构成,应选用分层抽样.(2)保证每个个体等可能的被抽取是三种基本抽样方式的共同特征,为了保证这一点,分层抽样时必须在所有层都按同一抽样比等可能抽取.[答案] (1)C (2)C题型二:分层抽样的步骤:(1)分层:按某种特征(一定的标准)将总体进行分层;(2)按比例确定每层抽取个体的个数,即确定各层容量;(3)各层分别按简单随机抽样或系统抽样的方法抽取。(4)综合每层抽样,组成样本。例2. 某企业共有3200名职工,其中,老、中、青职工的比为5:3:2,从所有职工中抽取一个样本容量为400的样本,采用哪种抽样方法更合理?并求出老、中、青职工的人数。

【精准解析】2021人教A版数学必修3:2.1.3 分层抽样

【精准解析】2021人教A版数学必修3:2.1.3 分层抽样

率均为 .
答案 D 2.某学校高一、高二、高三共有学生 3 500 人,其中高三学生人数是高一学生人数的两倍,高二
学生人数比高一学生人数多 300,现在按1010的抽样比用分层抽样的方法抽取样本,则抽取高一学
生的人数为( )
A.8
B.11
C.16
D.10
解析设高一有 x 人,则高三有 2x 人,高二有(x+300)人, ∵高一、高二、高三共有学生 3500 人, ∴x+2x+x+300=3500,∴x=800.
-1-
A.4
B.5
C.6
D.7
解析四类食品的比例为 4∶1∶3∶2,则抽取的植物油类的种数为 20×110=2,抽取的果蔬类的种数
为 20×120=4,二者之和为 6,故选 C.
答案 C 5.分层抽样是将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个 体,组成一个样本的抽样方法.在《九章算术》中有如下问题:“今有甲持钱五百六十,乙持钱三百 五十,丙持钱一百八十,凡三人俱出关,关税百钱,欲以钱数多少衰出之,问各几何?”其译文为:今有 甲持 560 钱,乙持 350 钱,丙持 180 钱,甲、乙、丙三人一起出关,关税共 100 钱,要按照各人带多 少的比例进行交税,问三人各应付多少税?则下列说法错误的是( )
答案 10
7.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四
个年级的本科生中抽取一个容量为 300 的样本进行调查,已知该校一年级、二年级、三年级、
四年级的本科生人数之比为 4∶5∶5∶6,则应从一年级本科生中抽取
名学生.
解析 根据题意,应从一年级本科生中抽取的人数为4+5+4 5+6×300=60.

高中数学人教A版必修3-2.1.3分层抽样-课件

高中数学人教A版必修3-2.1.3分层抽样-课件

在起始部分时采 用简单随机抽样
抽样 2.每次抽出个 分抽取
体后不再将它 2.总体中个体较多
放回,即不放 1.将总体分成几层,分层进行 各层抽样时采
分层
回抽样
等比例抽取
用简单随机抽
抽样
2.总体由差异明显的几部分 样或系统抽样
组成
例题分析
例2 某社区有700户家庭,其中高收入家庭225户,中等收入家庭 400户,低收入家庭75户,为了调查社会购买力的某项指标,要从 中抽取一个容量为100户的样本,记作①;某中学高二年级有12名 足球运动员,要从中选出3人调查学习负担情况,记②;从某厂生 产的802辆轿车中抽取8辆测试某项性能,记作③.则完成上述3项应
840
760
高一
高二
高三
800
84
76
80
高一 高二 高三
发现样本结构与总体结构保持一致,用 分层抽样方法能让样本更具有代表性。
思考归纳
1.分层抽样的定义 2. 分层抽样的步骤 3.分层抽样有哪些特点?
1.分层抽样的定义
一般地,在抽样时,将总体分成 互不交叉 的层, 然后按照 一定的比例,从各层 独立 地抽取一定数量 的个体,将各层取出的个体合在一起作为样本,这种 抽样方法是一种分层抽样.
采用的抽样方法是 ( B )
A.①用简单随机抽样,②用系统抽样,③用分层抽样 B.①用分层抽样,②用简单随机抽样,③用系统抽样 C.①用简单随机抽样,②用分层抽样,③用系统抽样 D.①用分层抽样,②用系统抽样,③用简单随机抽样
1.知识点
(1).分层抽样的定义及其步骤 (2).简单随机抽样、系统抽样、分层抽样的区分与联系
2.分层抽样的步骤:
(1) 将总体按一定的标准分层; (2)确定抽样比; (3) 确定各层抽取的样本数;

高中数学人教B版必修3练习2.1.3 分层抽样 课堂强化 Word版含解析

高中数学人教B版必修3练习2.1.3 分层抽样 课堂强化 Word版含解析

.某校高三年级有男生人,女生人,为了解该年级学生的健康情况,从男生中任意抽取人,从女生中任意抽取人进行调查,这种抽样方法是( ).简单随机抽样法.抽签法.随机数表法.分层抽样法解析:因为男生和女生的健康情况不一样,所以宜采用分层抽样,且有==.故该抽样方法为分层抽样.答案:.甲校有名学生,乙校有名学生,丙校有名学生.为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为人的样本,应在这三校分别抽取学生( ).人,人,人.人,人,人.人,人,人.人,人,人解析:样本容量与总体容量的比为=,∴甲校抽取×=(人),乙校抽取×=(人),丙校抽取×=(人).答案:.在个零件中,有一级品个、二级品个、三级品个,从中抽取个作为样本.()采用简单随机抽样法,将零件编号为,…,,抽签取出个;()采用系统抽样法,将所有零件分成组,每组个,然后从每组中随机抽取个;()采用分层抽样法,从一级品中随机抽取个,从二级品中随机抽取个,从三级品中随机抽取个.则下列说法正确的是( ).不论采用哪一种抽样方法,这个零件中每一个被抽取的机率都是.()()两种抽样方法,这个零件中每一个被抽到的机率为,()并非如此.()()两种抽样方法,这个零件中每一个被抽到的机率为,()并非如此.采用不同的抽样方法,这个零件中每一个零件被抽到的机率是各不相同的解析:()()()都属随机抽样,每个个体被抽到的概率均相等,且都为=.答案:.现有甲、乙两种产品共件,现按一定的比例用分层抽样的方法共抽取件进行产品质量调查,如果所抽取的甲产品的数量是乙产品的倍还多件,那么甲、乙产品的总件数分别为、.解析:设抽取乙产品件,则抽取甲产品(+)件,由+(+)=,得=.∴+=.∴共有甲产品×=(件),乙产品×=(件).答案:件件.一个田径队,有男运动员人,女运动员人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为的样本进行尿样兴奋检查,其中男运动员应抽人.解析:总体容量为,抽取比例为=,∴男运动员应抽×=人.答案:.某县有个乡镇,其中山区有个,丘陵地区有个,平原地区有个,要用分层抽样的方法从中抽取个乡镇进行调查,试写出抽样过程.解:()将样本分成三层.()确定各类地区各自的抽样个数.∵样本容量与总体的个数的比为∶=∶,∴山区抽=个乡镇,丘陵地区抽=个乡镇,平原地区抽=个乡镇.()用简单随机抽样(如抽签法)抽出作为样本的各乡镇.()将各层所得样本汇合在一起便得所需样本.。

人教A版高中数学必修3:2.1.3 分层抽样(1)

人教A版高中数学必修3:2.1.3 分层抽样(1)

③系统抽样比简单随机抽样的应用范围更广, 它可以应用到个体有自然编号,但是总体中个 体的数目却在抽样时无法确定的情况(如生产 线上产品的质量检验)。
(3)分层抽样:充分利用了已知的总体信息, 得到的样本比前两种方法有更好的代表性,并 且可得到各层的子样本以估计各层的信息。
比较简单随机抽样、系统抽样、分层抽样
具体过程如下: (1)将 3 万人分为 5 层,其中一个乡镇为一层. (2)按照样本容量的比例求得各乡镇应抽取的人数分别为 60 人、40 人、100 人、40 人、60 人. (3)按照各层抽取的人数随机抽取各乡镇应抽取的样本. (4)将 300 人合到一起,即得到一个样本.
三、三种抽样方法的比较
很喜爱 喜爱 一般 不喜爱 2 435 4 567 3 926 1 072 电视台为了进一步了解观众的具体想法和意见,打算从中再 抽取 60 人进行更为详细的调查,应怎样进行抽样?
[思路点拨] 确定每层
人数多,差异大 → 分层抽样 → 抽取比例 → 在各层中 合在一起 分别抽取 → 得样本
[解析] 采用分层抽样的方法,抽样比为1260000. “很喜爱”的有 2 435 人,应抽取 2 435×1260000≈12(人); “喜爱”的有 4 567 人,应抽取 4 567×1260000≈23(人); “一般”的有 3 926 人,应抽取 3 926×1260000≈20(人); “不喜爱”的有 1 072 人,应抽取 1 072×1260000≈5(人). 因此,采用分层抽样的方法在 “很喜爱”“喜爱”“一 般”“不喜爱”的人中分别抽取 12 人、23 人、20 人和 5 人.
分层进行抽取
机抽样或系
统抽样
总体个数 较少
总体个数 较多

人教A版高中数学必修三 2-1-3 分层抽样 测试教师版 精

人教A版高中数学必修三 2-1-3 分层抽样 测试教师版 精

第二章-2.1.3 分层抽样(检测教师版)班级:姓名:一、单选题1.为了解某地区的“微信健步走”活动情况,拟从该地区的人群中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段人员的“微信健步走”活动情况有较大差异,而男女“微信健步走”活动情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A. 简单随机抽样B. 按性别分层抽样C. 按年龄段分层抽样D. 系统抽样【答案】C【解析】我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,事先已了解到该地区老、中、青三个年龄段人员的“微信健步走”活动情况有较大差异,而男女“微信健步走”活动情况差异不大.了解某地区的“微信健步走”活动情况,,按年龄分层抽样,这种方式具有代表性,比较合理.故选:C.2.某社区有600个家庭,其中高收入家庭120户,中等收入家庭420户,低收入家庭60户.为调查社会购买力的某项指标,要从中抽取一个容量为100户的样本,记作①;某学校高中二年级有15名男篮球运动员,要从中选出3人调查学习负担情况,记作②.那么完成上述两项调查应采用的抽样方法是()A. ①简单随机抽样②系统抽样B. ①分层抽样②简单随机抽样C. ①系统抽样②分层抽样D. ①分层抽样②系统抽样【答案】B【解析】对于①,∵社会购买力的某项指标,受到家庭收入的影响,而社区中各个家庭收入差别明显,∴要从中抽一个样本容量是100的样本应该用分层抽样法;对于②,由于样本容量不大,且抽取的人数较少,故采用简单随机抽样法故选:B.3.某单位有职工161人,其中业务员有104人,管理人员33人,后勤服务人员24人,现用分层抽样法从中抽取一个容量为20的样本,则抽取管理人员()A. 3人B. 4人C. 5人D. 13人【答案】B【解析】由于=8,故从管理人员中剔除1人,从而抽样比为,则抽取的管理人员为32×=4(人).故选;B4.某城市有大型、中型与小型超市共1 500个,它们的个数之比为1∶5∶9,为调查超市每日的零售额情况,需通过分层抽样抽取30个超市进行调查,那么抽取的小型超市个数为() A. 5 B. 9 C. 18 D. 20【答案】C【解析】小型超市的总个数占超市总数的,则抽取的小型超市的个数占样本容量的,故抽取的小型超市的个数为30×=18故选:C5.某超市有三类食品,其中果蔬类、奶制品类及肉制品类分别有20种、15种和10种, 现采用分层抽样的方法抽取一个容量为n的样本进行安全检测,若果蔬类抽取4种,则n为A. 3 B. 2 C. 5 D. 9【答案】D【解析】超市有三类食品,其中果蔬类、奶制品类及肉制品类分别有种、种和种,其比例为,采用分层抽样的方法抽取样本进行安全检测,若果蔬类抽取种,则奶制品类应抽取的种数为,故选D.6.某工厂的三个车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a、b、c,且2b a c=+,则第二车间生产的产品数为()A. 800 B. 1000 C. 1200 D. 1500【答案】C【解析】由分层抽样可得第二车间应抽取的产品数为:1 3600360012003ba b c⨯=⨯=++二、填空题7.某企业三月中旬生产A,B,C三种产品共3 000件,根据分层抽样的结果,该企业统计员制作了如下的统计表:由于疏忽,表格中A,C产品的有关数据已被污染看不清楚,统计员记得A产品的样本容量比C 产品的样本容量多10.根据以上信息,可得C产品有_____件.【答案】800【解析】设出变量,结合分层抽样的特点确定C产品的数量.设C产品的数量为x,则A产品的数量为(1 700-x),C产品的样本容量为a,则A产品的样本容量为(10+a),由分层抽样的定义可知,解得x=800.故答案为:8008.某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取_______名学生.【答案】15【解析】应从高二年级抽取35015334⨯=++9.公司有职工代表120人,公司有职工代表100人,现因两公司合并,需用分层抽样的方法在这两个公司的职工代表中选取11人作为企业资产评估监督员,应在公司中选取__________人.【答案】6【解析】由题意可得:应在公司中选取人.10.我国古代数学名著《九章算术》有一抽样问题:“今有北乡若干人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,而北乡需遣一百零八人,问北乡人数几何?“其意思为:“今有某地北面若干人,西面有7488人,南面有6912人,这三面要征调300人,而北面共征调108人(用分层抽样的方法),则北面共有__________人.”【答案】8100【解析】因为共抽调300人,北面抽掉了108人,所以西面和南面共14400人中抽出了192人,所以抽样比为,所以北面共有人,故填8100.。

高中数学《2.1.3分层抽样》练习 必修3

高中数学《2.1.3分层抽样》练习 必修3

2.1.3 分层抽样双基达标 限时20分钟1.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取几名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为 ( ).A .10B .9C .8D .7解析 2107=300x,得x =10. 答案 A2.为了保证分层抽样时每个个体等可能地被抽取,必须要求 ( ).A .每层不等可能抽样B .每层抽取的个体数相等C .每层抽取的个体可以不一样多,但必须满足抽取n i =n N i N (i =1,2,…,k )个个体.(其中k 是层数,n 是抽取的样本容量,N i 是第i 层中个体的个数,N 是总体的容量)D .只要抽取的样本容量一定,每层抽取的个体数没有限制解析 A 不正确.B 中由于每层的容量不一定相等,每层抽同样多的个体数,显然从整个总体来看,各层之间的个体被抽取的可能性就不一样了,因此B 也不正确.C 中对于第i 层的每个个体,它被抽到的可能性与层数无关,即对于每个个体来说,被抽取的可能性是相同的,故C 正确.D 不正确.答案 C3.某工厂生产A 、B 、C 三种不同型号的产品,产品的数量之比依次为3∶4∶7,现在用分层抽样的方法抽出容量为n 的样本,样本中A 型号产品有15件,那么样本容量n 为( ).A .50B .60C .70D .80解析 由分层抽样方法得:33+4+7×n =15.解得n =70. 答案 C4.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.解析 应抽取的亩数分别为210×17510=7,120×17510=4,180×17510=6. 答案 7,4,65.将一个总体分为A 、B 、C 三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.解析由题意可设A、B、C中个体数分别为5k,3k,2k,所以C中抽取个体数为2k5k+3k+2k ×100=20.答案206.某市的3个区共有高中学生20 000人,且3个区的高中学生人数之比为2∶3∶5,现要从所有学生中抽取一个容量为200的样本,调查该市高中学生的视力情况,试写出抽样过程.解用分层抽样来抽取样本,步骤是:(1)分层:按区将20 000名高中生分成三层;(2)确定每层抽取个体的个数.在这3个区抽取的学生数目分别是40、60、100.(3)在各层分别按随机数法抽取样本;(4)综合每层抽样,组成样本.综合提高限时25分钟7.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为 ( ).A.9 B.18 C.27 D.36解析设老、中、青职工分别为x人,y人,z人,则{x+y+z=430,z=160,y=2x,解得{x=90,y=180,z=160,由比例可得该单位老年职工共有90人,用分层抽样的比例应抽取18人.答案 B8.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②.完成①②这两项调查采用的抽样方法依次为( ).A.分层抽样法、系统抽样法B.分层抽样法、简单随机抽样法C.系统抽样法、分层抽样法D.简单随机抽样法、分层抽样法解析在①中,销售情况差异较大,应采用分层抽样,在②中,由于个体数量不多,故采用简单随机抽样法.答案 B9.某学校有教师300人,其中高级教师90人,中级教师150人,初级教师60人,为了了解教师健康状况,从中抽取40人进行体检.用分层抽样方法抽取高级、中级、初级教师人数分别为________.解析 抽取比例为40300=215,故分别抽取人数为90×215=12,150×215=20,60×215=8. 答案 12,20,810.一个总体分为A ,B 两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率都为112,则总体中的个体数为________. 解析 设总体中的个体数为x ,则10x =112⇒x =120. 答案 12011.在120个零件中,一级品24个,二级品36个,三级品60个,从中抽取容量为20的样本,分别用三种方法计算总体中每个个体被抽到的可能性.解 法一 简单随机抽样法:因为总体中的个体数N =120,样本容量n =20,故每个个体被抽到的可能性均为16. 法二 系统抽样法:将120个零件分组,k =12020=6,即6个零件一组,每组取1个,显然每个个体被抽到的可能性均为16. 法三 分层抽样法:一、二、三级品的个数之比为2∶3∶5,20×210=4,20×310=6,20×510=10,故分别从一、二、三级品中抽取4个、6个、10个,每个个体被抽到的可能性分别为424、636、1060,即都是16. 12.(创新拓展)某校有在校高中生共1600人,其中高一年级学生520人,高二年级学生500人,高三年级学生580人.如果想通过抽查其中的80人来调查学生的消费情况,考虑到不同年级学生的消费情况有明显差别,而同一年级内消费情况差异较小,问应采用怎样的抽样方法?高三年级学生中应抽查多少人?解 因不同年级的学生消费情况有明显差别,所以应采用分层抽样.因为520∶500∶580=26∶25∶29,于是将80分成比例为26∶25∶29的三部分.设三部分各抽个体数分别为26x,25x,29x ,由26x +25x +29x =80,得x =1.所以高三年级学生中应抽查29人.。

(人教b版)数学必修三练习:2.1.3分层抽样(含答案)-推荐下载

(人教b版)数学必修三练习:2.1.3分层抽样(含答案)-推荐下载

A.101
C.1 212
[答案] B
[解析] 本题考查了分层抽样知识.
96
由题意得, N =12+21+25+43,
12
B.808
D.2 012
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.3 分层抽样
双基达标 (限时20分钟)
1.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样
的方法从这三个年级的学生中随机抽取几名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为 ( ).
A .10
B .9
C .8
D .7
解析 2107=300x
,得x =10. 答案 A
2.为了保证分层抽样时每个个体等可能地被抽取,必须要求 ( ).
A .每层不等可能抽样
B .每层抽取的个体数相等
C .每层抽取的个体可以不一样多,但必须满足抽取n i =n N i N
(i =1,2,…,k )个个体.(其中k 是层数,n 是抽取的样本容量,N i 是第i 层中个体的个数,N 是总体的容量)
D .只要抽取的样本容量一定,每层抽取的个体数没有限制
解析 A 不正确.B 中由于每层的容量不一定相等,每层抽同样多的个体数,显然从整个总体来看,各层之间的个体被抽取的可能性就不一样了,因此B 也不正确.C 中对于第i 层的每个个体,它被抽到的可能性与层数无关,即对于每个个体来说,被抽取的可能性是相同的,故C 正确.D 不正确.
答案 C
3.某工厂生产A 、B 、C 三种不同型号的产品,产品的数量之比依次为3∶4∶7,现在用分
层抽样的方法抽出容量为n 的样本,样本中A 型号产品有15件,那么样本容量n 为( ).
A .50
B .60
C .70
D .80
解析 由分层抽样方法得:
33+4+7
×n =15.解得n =70. 答案 C
4.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量
时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.
解析 应抽取的亩数分别为210×17510=7,120×17510=4,180×17510
=6. 答案 7,4,6
5.将一个总体分为A 、B 、C 三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为
100的样本,则应从C 中抽取________个个体.
解析 由题意可设A 、B 、C 中个体数分别为5k,3k,2k ,所以C 中抽取个体数为
2k 5k +3k +2k
×100=20.
答案 20
6.某市的3个区共有高中学生20 000人,且3个区的高中学生人数之比为2∶3∶5,现要
从所有学生中抽取一个容量为200的样本,调查该市高中学生的视力情况,试写出抽样过程.
解 用分层抽样来抽取样本,步骤是:
(1)分层:按区将20 000名高中生分成三层;
(2)确定每层抽取个体的个数.在这3个区抽取的学生数目分别是40、60、100.
(3)在各层分别按随机数法抽取样本;
(4)综合每层抽样,组成样本. 综合提高 (限时25分钟)
7.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人
数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为 ( ).
A .9
B .18
C .27
D .36
解析 设老、中、青职工分别为x 人,y 人,z 人,则
{ x +y +z =430,
z =160,y =2x ,解得{ x =90,y =180,z =160,由比例可得该单位老年职工共有90人,用分层抽样的比例应抽取18人.
答案 B 8.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司
为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②.完成①②这两项调查采用的抽样方法依次为 ( ).
A .分层抽样法、系统抽样法
B .分层抽样法、简单随机抽样法
C .系统抽样法、分层抽样法
D .简单随机抽样法、分层抽样法
解析 在①中,销售情况差异较大,应采用分层抽样,在②中,由于个体数量不多,故采用简单随机抽样法.
答案 B
9.某学校有教师300人,其中高级教师90人,中级教师150人,初级教师60人,为了了
解教师健康状况,从中抽取40人进行体检.用分层抽样方法抽取高级、中级、初级教师人数分别为________.
解析 抽取比例为40300=215,故分别抽取人数为90×215=12,150×215=20,60×215
=8. 答案 12,20,8
10.一个总体分为A ,B 两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B
层中每个个体被抽到的概率都为112
,则总体中的个体数为________. 解析 设总体中的个体数为x ,则10x =112
⇒x =120. 答案 120
11.在120个零件中,一级品24个,二级品36个,三级品60个,从中抽取容量为20的样
本,分别用三种方法计算总体中每个个体被抽到的可能性.
解 法一 简单随机抽样法:因为总体中的个体数N =120,样本容量n =20,故每个个
体被抽到的可能性均为16
. 法二 系统抽样法:将120个零件分组,k =12020
=6,即6个零件一组,每组取1个,显然每个个体被抽到的可能性均为16
. 法三 分层抽样法:一、二、三级品的个数之比为2∶3∶5,20×210=4,20×310=6,20×510
=10,故分别从一、二、三级品中抽取4个、6个、10个,每个个体被抽到的可能性分
别为424、636、1060,即都是16
. 12.(创新拓展)某校有在校高中生共1600人,其中高一年级学生520人,高二年级学生500
人,高三年级学生580人.如果想通过抽查其中的80人来调查学生的消费情况,考虑到不同年级学生的消费情况有明显差别,而同一年级内消费情况差异较小,问应采用怎样的抽样方法?高三年级学生中应抽查多少人?
解 因不同年级的学生消费情况有明显差别,所以应采用分层抽样.因为520∶500∶580=26∶25∶29,于是将80分成比例为26∶25∶29的三部分.设三部分各抽个体数分别为26x,25x,29x ,由26x +25x +29x =80,得x =1.所以高三年级学生中应抽查29人.。

相关文档
最新文档