凑微分法与分部积分法

凑微分法解不定积分(个人用讲义)

凑微分法 一,凑微分法原理 回忆一下,我们导函数的几种表示方法:f′(x) dy/dx df(x)/dx 等等,那么我们对于同一个函数是否就有如下等式:f′(x)= df(x)/dx 再加以变形可得f′(x) dx=df(x)我们把这个式子称之为凑微分法的原理公式。(我自己定义的,别和别人说哦,教科书上没定义) 为了说明这个式子,我们来看几个例子: 例题一:d(2x+1)= dx 解析:由凑微分法原理公式可知,所填处为2x+1的导函数,既2,所以d(2x+1)= 2 d(x) 例题二:d(e^x)= dx 解析:由凑微分法原理公式可知,所填处为e^x的到函数,既e^x,所以d(e^x)= e^x dx 因为做题目的时候,往往是告诉你们e^x dx要你们求d(e^x)。 我再举一个凑微分法的事例: 例题三:1 2dx x = - ? 解析:我们会求解的,其实都是最原始的积分公式有的,如果这题是要我们求1/x我想你们都会吧,但是这里是x-2所以就很麻烦了,那你们就牢记一点,谁可恨,我们就把谁弄到d 后面去。所以我就想到用d(x-2),根据凑微分法原理公式可知d(x-2)=1*d(x),所以我们可以将这题变为d(x-2),如果你们还看不出来,那你们用t来代替x-2,是不是就是你们会解的题目了,最后再把t还原为x-2就好了。 具体的实例就不举了,多操作。 下面我要重点说说,讨厌,这个问题 二,什么函数可以凑微分,什么函数讨厌 什么函数最讨厌,什么函数一看就是要凑微分

我们知道,凑微分其实是把被积函数的一个部分与dx看作一个整体,运用凑积分法原理公式进行替换。所以被积函数可以表示为两个有求导关系的函数时,一般采用凑微分法。 根据已知的不定积分公式我们可以知道: 1三角函数求导仍为三角函数2反三角函数求导为有理函数3幂函数求导认为幂函数 4对数函数求导为指数幂为-1的幂函数5幂函数求导仍为幂函数所以,当我们发现一个大的函数是由上述关系中的一种构成的,那么我们就会把求导为的那个函数拿去d一下,然后与原来的式子进行比较,缺什么,补什么,有的时候,甚至要进行多次的凑微分,但是不要怕,一步步往下做一定可以。 最后给你们一个提醒:最容易被扔到d后面的函数有e为底的指数函数,1/根号x。而最不能扔的,就是把对数函数,反三角函数想方法扔到d后面去,因为你们想想,什么函数求导会等于对数函数和反三角函数啊对吧。

2凑微分法

第二讲 Ⅰ 授课题目(不定积分): §5.2 凑微分法 Ⅱ 教学目的与要求: 熟练掌握基本的不定积分公式,熟悉“凑微分法”与“变量代换法” 的一般原则。 Ⅲ 教学重点与难点: 重点:凑微分法,变量代换法。 难点:凑微分法, 变量代换法。 Ⅳ 讲授内容: 一、 凑微分法 利用基本性质和基本积分公式,可以解决一些较为简单的函数的积分问题。但是,很多函数是经过复合而成的,无法直接利用公式。来看下面几个例子。 例1 求dx x ?2cos 这个不定积分不直接在表.5.1中,因为x 2cos 不是x 2sin 的导数。 解 因为x x 2cos 2)2(sin =' 而x x 2cos )2sin 21 (=', 所以c x xdx +=?2sin 2 12cos 。 例2 求dx x ?)4sin(3 解 ) 4sin(3))4cos(4 3() 4sin())4cos(4 1()4sin(4])4[cos(x x x x x x =- ?='-?-=' 按照等价命题 c x dx x +-=?)4cos(4 3)4sin(3 例3 求dt t ?+12 这样想:) (12+=' t ,联想到 )(u = ' ,再想到 u u u u u u = '?= = '=')3 2( 2 32 3)()(3 23 23 3 如果12+=t u

1 2))12(3 1( 1 22)12(12))12(3 2( 3 3 += '+?+='+?+='+t t t t t t 最后一个等式正是我们想要的。利用等价命题,就可以得到 c t dt t ++= +? 3 )12(3 112。 在以上的例子中,基本想法是找F 使F f '=具体做法是利用链法则,按f 的具体情况凑出了F 。这种计算不定积分的方法叫做凑微分法,或叫换元法(integration by substitution ) 例4 求dx x x ?+212 如果我们能想到)1(22'+=x x 和),1()(,)(2 x x g u u u f +=== 那么这个不定积分就可以看作? ?'=+dx x g x g f dx x x )())((122 如果F 是f 的反导数,根据链法则 )())(())((x g x g f x g F dx d '= 所以,将u 看作是 2 1x +, 由于 c u du u du u f += =?? 23 3 2)( 就可以得到 c x dx x x ++= +?32 2 2 )1(3 212 还可以通过求导数来验证结果是正确的。 把上面的思路理清楚:如果F 是f 的反导数,而)(x g u =是某个可导函数,那么根据链法则 或者 ?? = +=du u f c u F dx dx du u f )()()(, 例5 求? +dx x x 2 32 dx du u f dx du u F u F dx d )()()(='=

不定积分的例题分析及解法[1]

不定积分的例题分析及解法 这一章的基本概念是原函数、不定积分、主要的积分法是利用基本积分公式,换元积分法和分部积分法。对于第一换元积分法,要求熟练掌握凑微分法和设中间变量)(x u ?=,而第二换元积分法重点要求掌握三角函数代换,分部积分法是通过“部分地”凑微分将?υud 转化成?du υ,这种转化应是朝有利于求积分的方向转化。对于不同的被积函数类型应该有针对性地、灵活地采用有效的积分方法,例如)(x f 为有理函数时,通过多项式除法分解成最简分式来积分,)(x f 为无理函数时,常可用换元积分法。 应该指出的是:积分运算比起微分运算来,不仅技巧性更强,而且业已证明,有许多初等函数是“积不出来”的,就是说这些函数的原函数不能用初等函数来表示,例如 dx x x ? sin ;dx e x ?-2 ;dx x ? ln 1;? -x k dx 2 2 sin 1(其中10<

2凑微分法

第二讲 Ⅰ 授课题目(不定积分): §5.2 凑微分法 Ⅱ 教学目的与要求: 熟练掌握基本的不定积分公式,熟悉“凑微分法”与“变量代换法” 的一般原 则。 Ⅲ 教学重点与难点: 重点:凑微分法,变量代换法。 难点:凑微分法, 变量代换法。 Ⅳ 讲授内容: 一、 凑微分法 利用基本性质和基本积分公式,可以解决一些较为简单的函数的积分问题。但是,很多函数是经过复合而成的,无法直接利用公式。来看下面几个例子。 例1 求dx x ?2cos 这个不定积分不直接在表.5.1中,因为x 2cos 不是x 2sin 的导数。 解 因为x x 2cos 2)2(sin =' 而x x 2cos )2sin 2 1 (=', 所以c x xdx += ? 2sin 2 12cos 。 例2 求dx x ?)4sin(3 解 )4sin(3))4cos(4 3()4sin())4cos(41()4sin(4])4[cos(x x x x x x =-?='-?-=' 按照等价命题 c x dx x +-=?)4cos(43)4sin(3 例3 求dt t ?+12 这样想:)( 12+='t ,联想到 )(u =' ,再想到 u u u u u u ='?=='=')3 2(2323)()(32323 3 如果12+=t u

12))12(3 1(122)12(12))12(32(33+='+?+='+?+='+t t t t t t 最后一个等式正是我们想要的。利用等价命题,就可以得到 c t dt t ++=+? 3)12(3 112。 在以上的例子中,基本想法是找F 使F f '=具体做法是利用链法则,按f 的具体情况凑出了F 。这种计算不定积分的方法叫做凑微分法,或叫换元法(integration by substitution ) 例4 求dx x x ? +212 如果我们能想到)1(22'+=x x 和),1()(,)(2x x g u u u f +=== 那么这个不定积分就可以看作??'=+dx x g x g f dx x x )())((122 如果F 是f 的反导数,根据链法则 )())(())((x g x g f x g F dx d '= 所以,将u 看作是 21x +, 由于 c u du u du u f +==??23 32)( 就可以得到 c x dx x x ++=+?3222)1(3 212 还可以通过求导数来验证结果是正确的。 把上面的思路理清楚:如果F 是f 的反导数,而)(x g u =是某个可导函数,那么根据链法则 或者 ??=+=du u f c u F dx dx du u f )()() (, 例5 求?+dx x x 2 32 dx du u f dx du u F u F dx d )()()(='=

凑微分法解不定积分

一,凑微分法原理 回忆一下,我们导函数的几种表示方法:f′(x) dy/dx df(x)/dx 等等,那么我们对于同一个函数是否就有如下等式:f′(x)= df(x)/dx 再加以变形可得f′(x) dx=df(x)我们把这个式子称之为凑微分法的原理公式。(我自己定义的,别和别人说哦,教科书上没定义)为了说明这个式子,我们来看几个例子: 例题一:d(2x+1)= dx 解析:由凑微分法原理公式可知,所填处为2x+1的导函数,既2,所以d(2x+1)= 2 d(x)例题二:d(e^x)= dx 解析:由凑微分法原理公式可知,所填处为e^x的到函数,既e^x,所以d(e^x)= e^x dx 因为做题目的时候,往往是告诉你们e^x dx要你们求d(e^x)。 我再举一个凑微分法的事例: 例题三: 1 2 dx x = - ? 解析:我们会求解的,其实都是最原始的积分公式有的,如果这题是要我们求1/x我想你们都会吧,但是这里是x-2所以就很麻烦了,那你们就牢记一点,谁可恨,我们就把谁弄到d 后面去。所以我就想到用d(x-2),根据凑微分法原理公式可知d(x-2)=1*d(x),所以我们可以将这题变为 d(x-2),如果你们还看不出来,那你们用t来代替x-2,是不是就是你们会解的题目了,最后再把t还原为x-2就好了。 具体的实例就不举了,多操作。 下面我要重点说说,讨厌,这个问题 二,什么函数可以凑微分,什么函数讨厌 什么函数最讨厌,什么函数一看就是要凑微分 我们知道,凑微分其实是把被积函数的一个部分与dx看作一个整体,运用凑积分法原理公式进行替换。所以被积函数可以表示为两个有求导关系的函数时,一般采用凑微分法。 根据已知的不定积分公式我们可以知道: 1三角函数求导仍为三角函数 2反三角函数求导为有理函数 3幂函数求导认为幂函数 4对数函数求导为指数幂为-1的幂函数 5幂函数求导仍为幂函数 所以,当我们发现一个大的函数是由上述关系中的一种构成的,那么我们就会把求导为的那个函数拿去d一下,然后与原来的式子进行比较,缺什么,补什么,有的时候,甚至要进行多次的凑微分,但是不要怕,一步步往下做一定可以。 最后给你们一个提醒:最容易被扔到d后面的函数有e为底的指数函数,1/根号x。而最不能扔的,就是把对数函数,反三角函数想方法扔到d后面去,因为你们想想,什么函数求导会等于对数函数和反三角函数啊对吧。

不定积分解题方法及技巧总结

不定积分解题方法及技巧总结 1、利用基本公式。(这就不多说了~) 2、第一类换元法。(凑微分)设f(μ)具有原函数F(μ)。则其中可微。用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例 1、例2:例1: 【解】 例2: 【解】 3、第二类换元法:设是单调、可导的函数,并且具有原函数,则有换元公式第二类换元法主要是针对多种形式的无理根式。常见的变换形式需要熟记会用。主要有以下几种:(7)当根号内出现单项式或多项式时一般用代去根号。 但当根号内出现高次幂时可能保留根号,(7)当根号内出现单项式或多项式时一般用代去根号。 但当根号内出现高次幂时可能保留根号, 4、分部积分法、公式:分部积分法采用迂回的技巧,规避难点,挑容易积分的部分先做,最终完成不定积分。具体选取

时,通常基于以下两点考虑:(1)降低多项式部分的系数(2)简化被积函数的类型举两个例子吧~!例3: 【解】 观察被积函数,选取变换,则例4: 【解】 上面的例3,降低了多项式系数;例4,简化了被积函数的类型。有时,分部积分会产生循环,最终也可求得不定积分。在中,的选取有下面简单的规律:将以上规律化成一个图就是: (a^xarcsinx)(lnxPm(x)sinx)νμ但是,当时,是无法求解的。对于(3)情况,有两个通用公式:(分部积分法用处多多~在本册杂志的《涉及lnx的不定积分》中,常可以看到分部积分)5 不定积分中三角函数的处理 1、分子分母上下同时加、减、乘、除某三角函数。被积函数上下同乘变形为令,则为 2、只有三角函数时尽量寻找三角函数之间的关系,注意的使用。 三角函数之间都存在着转换关系。被积函数的形式越简单可能题目会越难,适当的使用三角函数之间的转换可以使解题的思路变得清晰。 3、函数的降次①形如积分(m,n为非负整数)当m为奇数时,可令,于是,转化为多项式的积分当n为奇数时,可令,于是,同样转化为多项式的积分。

不定积分第一类换元法

不定积分第一类换元法(凑微分法)
一、 方法简介
设 f (x) 具有原函数 F(u) ,即 F'(u) f (u) , f (u)du F(u) C ,如果U 是
中间变量, u (x) ,且设(x) 可微,那么根据复合函数微分法,有
dF[(x)] f [(x)]'(x)dx 从而根据不定积分的定义得
则有定理:
f [(x)]'(x)dx F[(x)] C [ f (u)du]u(x) .
设 f (u) 具有原函数, u (x) 可导,则有换元公式
f [(x)]'(x)dx [ f (u)du]u(x)
由此定理可见,虽然
f
[ ( x)] ' ( x)dx
是一个整体的记号,但如用导数记号
dy dx
中的 dx 及 dy 可看作微分,被积表达式中的 dx 也可当做变量 x 的微分来对待,从
而微分等式'(x)dx du 可以方便地应用到被积表达式中。 几大类常见的凑微分形式:
○1
f
(ax
b)dx
1 a
f
(ax
b)d (ax
b)
(a 0) ;
○2 f (sin x) cosxdx f (sin x)d sin x , f (cosx)sin xdx f (cosx)d cosx ,
f
(tan x)
dx cos2
x
f
(tan x)d
tan
x,
f
(c ot x)
dx sin 2
x
f
(c ot x)d
cot x ;
○3
f
(ln
x)
1 x
dx
f
(ln
x)d
ln
x,
f
(ex )exdx
f
(ex )dex

○ 4
f (xn )xn1dx 1 f (xn )dxn (n 0) , n
f
(1) x
dx x2
f (1)d(1) xx

f(
x)
dx x
2
f
(
x )d (
x);
○5 f (arcsin x)
dx 1 x2
f (arcsin x)d arcsin x ;

不定积分解法汇总

1、 换元积分法 1.1、第一换元法(凑微分法) 令)(x u u =,若已知?+=C x F dx x f )()(,则有[][]C x F dx x x f +='?)()()(??? 其中)(x ?是可微函数,C 是任意常数。 (1)a b ax d a b x d dx )((1 )(+=+=、)0≠,a b 为常数 具体应用为 ? ?++=+)()(1)(b ax d b ax a dx b ax m m =???????+++++?+C b ax a C m b ax a m ln 11)(11 )1()1(-=-≠m m (2))(111b x d a dx x a a ++= +)()1(1 1b ax d a a a ++=+ a (、 b 、a 均为常数,且)1,0-≠≠a a 。 例如:x d dx x x x d dx x dx xdx 21 ), (32,212=== (3))ln (1 ln 1b x a d a x d dx x +==b a ,(为常数,)0≠a (4),0(ln ) (,>= =a a a d dx a de dx e x x x x 且)1≠a ; (5));(sin cos ),(cos sin x d xdx x d xdx =-= (6))cot (csc ),(tan sec 22x d xdx x d xdx -== (7)x sin d dx x 2sin 2= (8) )(arctan 112x d dx x =+)(arcsin 11 2x d dx x =- (9) 2 2 x 1d dx x -1x --=, 22 x 1d dx x 1x +=+

凑微分法怎么理解 [浅谈凑微分法的理解及应用]

凑微分法怎么理解[浅谈凑微分法的理解及应用] 【摘要】凑微分法是微积分学中重要的积分法,初学者难以熟练掌握.本文主要讨论其一般规律,并通过举例来说明如何凑微分. 【关键词】基本积分公式;凑微分;不定积分计算不定积分的方法很多,凑微分法是比较重要而且常用的方法之一,深刻理解并熟练应用这种方法是学习后继微积分知识的基础.本文主要讨论其一般规律,并通过举例来说明如何凑微分. 一、凑微分法的理论依据例1求∫2cos2xdx. 分析因为cos2x是复合函数,这个不定积分不能用直接积分法求出结果,但可以考虑套用公式∫cosxdx=sinx+C来计算. ∫2cos2xdx=∫cos2xd2x令2x=u1∫cosudu=sinu+C回代u=2x1sin2x+C. 验证积分结果的正确性:sin2x+C′=2cos2x,积分结果的导数等于被积函数,说明这种积分思路及过程是正确的. 解设u=2x,则du=2dx. ∫2cos2xdx=∫cos2xd2x=∫cosudu=sinu+C=sin2x+C. 解题特点引入新变量u=2x,把原被积表达式化成基本初等函数的微分形式cosudu,再用基本积分公式求出积分结果∫cosudu=sinu+C=sin2x+C. 这种求不定积分的方法具有一般性,其理论依据如下:设y=F(u)及u=φ(x)都是可导函数,且F′(u)=f(u),则由y=F(u)和u=φ(x)构成的复合函数是y=F[φ(x)]. 对函数y=F(u),dy=F′(u)du=f(u)du,则∫f(u)du=F(u)+C;对复合函数y=F[φ(x)],dy=y′xdx=F′(u)u′xdx=f(u)φ′(x)du=f(u)du,

5.2-2常用公式与常见凑微分形式

常用公式与常见凑微分形式 第五章不定积分第2节换元积分法 主讲韩华

常用公式与常见凑微分形式 一、常用公式(1)及推导

例5求??.cot tan xdx xdx 和. cos ln )(cos cos 1 cos sin tan c x x d x dx x x xdx +-=-==???解 . sin ln )(sin sin 1sin cos cot c x x d x dx x x xdx +===???c x xdx c x xdx +=+-=??sin ln cot cos ln tan

例6求.1 2 2dx x a ?+解dx x a ?+2 21dx a x a ?+=22 211 1 ??? ???? ? ??+=?a x d a x a 2111.arctan 1 C a x a +=c a dx x a a x +=+?arctan 112 2

例7求2 2 1.(0) dx a a x >-?解 221 arcsin x dx C a a x =+-? .arcsin 11 1111 22 2 2c a x a x d a x dx a x a dx x a +=??? ???? ? ??-=??? ??-=-? ??

例8求.1 2 2dx x a ?-解 c x a x a a dx x a +-+=-?ln 21122()()().ln 21ln ln 2111211121122c x a x a a c x a x a a x a d x a x a d x a a dx x a x a a dx x a +-+=+++--=??????+??? ??++-??? ??--=?? ? ??++-=-????

相关文档
最新文档