初中和高中数学知识点及公式大全.

合集下载

小学初中高中数学公式大全最新整理

小学初中高中数学公式大全最新整理

小学初中高中数学公式大全最新整理小学数学公式:1.加法公式:a+b=b+a2.减法公式:a-b≠b-a3.乘法公式:a×b=b×a4.除法公式:a÷b≠b÷a5.等式公式:a=b6.不等式公式:a≠b7.比例公式:a:b=c:d8. 分数公式:a/b + c/d = (ad + bc)/bd9. 平方公式:a² + b² = (a + b)² = a² + 2ab + b²10. 立方公式:a³ + b³ = (a + b)(a² - ab + b²)11.四则运算优先级公式:括号>乘法与除法>加法与减法初中数学公式:1. 二次方程求根公式:对于ax² + bx + c = 0,x = (-b ± √(b² - 4ac))/(2a)2.勾股定理:直角三角形中,a²+b²=c²3. 正余弦定理:对于三角形ABC,a/sinA = b/sinB = c/sinC = 2R (R为三角形外接圆半径)4.面积公式:矩形面积=长×宽,三角形面积=1/2×底×高,圆面积=πr²5.平方差公式:(a+b)(a-b)=a²-b²6.等比数列求和公式:Sₙ=a(1-qⁿ)/(1-q)7. 三角函数公式:sin(A ± B) = sinAcosB ± cosAsinB,cos(A± B) = cosAcosB ∓ sinAsinB8.判断函数奇偶性公式:奇函数f(x)满足f(-x)=-f(x),偶函数f(x)满足f(-x)=f(x)高中数学公式:1. 极限公式:lim(x→∞) (1 + 1/x)ˣ = e ,lim(x→0) sinx/x =12.泰勒展开公式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)²/2!+...3. 微分公式:(1/x)' = -1/x²,(xⁿ)' = nxⁿ⁻¹,(sinx)' = cosx,(cosx)' = -sinx4. 积分公式:∫(k · f(x))dx = k ∫f(x)dx,∫xⁿdx = xⁿ⁺¹/(n+1) + C5.二项式定理:(a+b)ⁿ=C(n,0)aⁿb⁰+C(n,1)aⁿ⁻¹b¹+...+C(n,r)aⁿ⁻ʳbʳ+...+C(n,n)a⁰bⁿ6. 导数与微分的关系公式:dy = f'(x)dx7. 三角函数的导数公式:(sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec²x8.反函数的导数公式:(f⁻¹(x))'=1/f'(f⁻¹(x))9.拉格朗日中值定理:f(b)-f(a)=f'(c)(b-a),其中a<c<b10. 定积分公式:∫[a,b]f(x)dx = F(b) - F(a),其中F(x)是f(x)的一个原函数。

初高中数学公式定理大全

初高中数学公式定理大全

初高中数学公式定理大全由于数学的公式定理非常多,要一一列举完全是非常困难的。

下面我列举一些初高中数学中常用的公式和定理。

一、代数与函数1.二次方程的求根公式:对于一元二次方程ax² + bx + c = 0,其求根公式为:x = (-b ± √(b² - 4ac)) / (2a)。

其中,当判别式Δ = b² - 4ac > 0时,方程有两个不相等的实根;当Δ = 0时,方程有两个相等的实根;当Δ < 0时,方程没有实根。

2.四则运算性质:加法交换律:a+b=b+a乘法交换律:a×b=b×a加法结合律:(a+b)+c=a+(b+c)乘法结合律:(a×b)×c=a×(b×c)加法与乘法的分配律:a×(b+c)=a×b+a×c(a+b)×c=a×c+b×c3.平方差公式:(a+b)×(a-b)=a²-b²4.二项式定理:对于任意实数a和b以及正整数n,二项式定理表示:(a + b)ⁿ = C(n,0) × aⁿ + C(n,1) × aⁿ⁻¹b + C(n,2) × aⁿ⁻²b²+ ... + C(n,n-1) × abⁿ⁻¹ + C(n,n) × bⁿ其中C(n,i)表示从n中选择i个的组合数。

5.函数性质:函数的定义域和值域:对于函数y=f(x),其定义域是所有满足使函数有意义的x值的集合。

值域是所有可能的y值的集合。

二、数列与级数1.等差数列的通项公式:对于等差数列an = a₁ + (n - 1)d,其中a₁为首项,d为公差,an为第n项,其通项公式为:an = a₁ + (n - 1)d。

2.等差数列的前n项和公式:对于等差数列an = a₁ + (n - 1)d,其中a₁为首项,d为公差,an为第n项,其前n项和公式为:Sn = n/2 (a₁ + an)。

初中高中数学定理公式大全

初中高中数学定理公式大全

初中高中数学定理公式大全1.代数运算定理:-加法交换律:a+b=b+a-减法交换律:a-b≠b-a-乘法交换律:a×b=b×a-除法交换律:a÷b≠b÷a-分配律:a×(b+c)=a×b+a×c2. 平方差公式:(a + b)² = a² + 2ab + b²3. 平方和公式:(a - b)² = a² - 2ab + b²4. 一元二次方程求根公式:x = (-b ± √(b² - 4ac)) / (2a)5. 正弦定理:a/sinA = b/sinB = c/sinC6. 余弦定理:c² = a² + b² - 2abcosC7. 对数公式:loga(ab) = loga(a) + loga(b)8.指数公式:a^m×a^n=a^(m+n)9.相反数的求法:-(-a)=a10. 完全平方公式:(a + b)² = a² + 2ab + b²11. 二项式定理:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n12.绝对值公式:,a×b,=,a,×,b13.分式的乘法公式:(a/b)×(c/d)=(a×c)/(b×d)14.微积分的基本定理:积分与微分是互逆的15.等腰三角形的定理:等腰三角形的底角相等,等腰三角形的两底边相等16.等边三角形的定理:等边三角形的三边相等,等边三角形的三个内角都是60度17.三角函数的和差化积公式:- 正弦的和差化积公式:sin(A ± B) = sinAcosB ± cosAsinB- 余弦的和差化积公式:cos(A ± B) = cosAcosB ∓ sinAsinB18.直角三角形的勾股定理:a²+b²=c²19.等角三角函数的关系式:- 正弦和余弦的关系式:sin²θ + cos²θ = 1- 正切和余切的关系式:tanθ × cotθ = 120.对数函数的性质:-对数函数的底数必须大于0且不等于1- 对数函数的性质:loga(b × c) = loga(b) + loga(c)。

小学初中高中所有数学公式

小学初中高中所有数学公式

小学初中高中所有数学公式一、小学数学公式1、和公式:a+b=c2、差公式:a-b=c3、积公式:a×b=c4、商公式:a÷b=c5、立方公式:a3=a×a×a6、立方根公式:a3=a7、平方公式:a2=a×a8、平方根公式:a2=a9、四则运算公式:a+(b±c)±d…10、乘方公式:(a×b)n=an×bn11、分式加减法公式:a/b±c/d=(ad±bc)/bd12、分式乘除法公式:a/b×c/d=a×c/b×d13、等比数列公式:an=a1×r^n-1二、初中数学公式1、二次函数公式:y=ax2+bx+c2、一元二次方程公式:ax2+bx+c=03、直线方程公式:y=kx+b4、坐标轴公式:x=←→,y=↑↓5、空间直角坐标公式:P(x,y,z)6、一次函数公式:y=fx+c7、抛物线方程公式:y=ax2+bx+c8、点斜式方程公式:y-y1=k(x-x1)9、圆的标准方程公式:(x-a)2+(y-b)2=r210、椭圆的标准方程公式:(x-x1)2/a2+(y-y1)2/b2=111、圆锥体、椎体体积公式:V=1/3πh(a2+ab+b2)12、圆柱体、台阶体体积公式:V=πr2h13、圆面积公式:S=πr214、三角形面积公式:S=1/2a×h15、梯形面积公式:S=1/2(a+b)×h三、高中数学公式1、双曲线标准方程公式:x2/a2-y2/b2=12、极坐标方程公式:(r,θ)=(ρ,α)3、平面向量公式:a=(a1,a2)4、利用积分求面积公式:S=∫abf(x)dx5、叉积公式:a×b=(a1b2-a2b1)。

初高中数学公式大全

初高中数学公式大全

初高中数学公式大全1.直线的方程:点斜式方程、两点式方程、截距式方程、一般式方程等。

2.圆的方程:标准方程、一般方程等。

3.三角形的面积公式:海伦公式、正弦定理、余弦定理等。

4.三角函数的性质:正弦函数、余弦函数、正切函数、余切函数等的周期、对称性质等。

5.平面向量的坐标表示和运算:加法、减法、数量积、向量积等。

6.平面直角坐标系与极坐标系的互相转换。

7.点到直线的距离公式。

8.直线与直线的位置关系:平行、垂直等。

9.弧长、扇形面积、扇形周长的计算公式。

10.椭圆的方程和性质:焦点、离心率、长轴、短轴等。

11.双曲线的方程和性质:焦点、离心率、渐近线等。

12.数列的通项公式和前n项和公式。

13.等差数列的性质和计算公式:通项公式、前n项和公式、公差求和公式等。

14.等比数列的性质和计算公式:通项公式、前n项和公式、求和公式等。

15.二次函数的性质和图像变换公式:顶点、对称轴、开口方向、图像平移、对称、伸缩等。

16.幂函数、指数函数和对数函数的性质和计算公式。

17.三角函数的图像变换:纵向伸缩、横向伸缩、平移等。

18.应用题中常见的几何关系和代数关系的转化公式。

19.二次曲线的一般方程和标准方程的互相转换。

20.整式的运算规则和因式分解公式。

21.分式的运算规则和化简公式。

22.勾股定理及其逆定理的应用。

23.三角恒等式的证明和应用。

24.三角方程的解法:特殊解法、常用角度解法等。

25.极限的定义和计算公式:无穷小量、无穷大量等。

26.正弦定理和余弦定理的证明和应用。

27.导数的定义和计算公式:基本导数、复合函数导数、隐函数导数等。

28.积分的定义和计算公式:基本积分、变换求积法、分部积分法等。

29.三视图的绘制和三维几何体的体积公式。

30.空间直线与平面的位置关系:平行、垂直等。

31.空间平面的方程和性质:一般方程、点法式方程等。

32.空间向量的坐标表示和运算:加法、减法、数量积、向量积等。

33.矩阵的定义和计算公式:加法、减法、乘法、转置等。

从初一到高三的数学公式、定理

从初一到高三的数学公式、定理

从初一到高三的数学公式、定理
初一:
1. 有理数的加法法则
2. 有理数的减法法则
3. 有理数的乘法法则
4. 有理数的除法法则
5. 平方差公式:a^2 - b^2 = (a + b)(a - b)
6. 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2, a^2 - 2ab + b^2 = (a - b)^2
7. 合并同类项法则
8. 去括号法则
9. 移项法则
10. 一元一次方程解法
初二:
1. 角的平分线性质
2. 等腰三角形的性质和判定
3. 等腰梯形的性质和判定
4. 直角三角形全等的判定
5. 勾股定理及其逆定理
6. 一次函数的图像和性质
7. 二次函数的图像和性质
8. 平行四边形的性质和判定
9. 多边形的内角和和外角和公式
10. 全等三角形的判定和性质
初三:
1. 锐角三角函数定义
2. 解直角三角形
3. 圆的性质和判定
4. 圆周角定理
5. 切线的判定和性质
6. 正多边形的性质和判定
7. 二次函数与一元二次方程的关系
8. 二次函数的判别式Δ=b²-4ac的求法与根的情况的判定。

初高中所有函数的公式及图像大全,八年级函数公式大全及图解

初高中所有函数的公式及图像大全,八年级函数公式大全及图解

初高中所有函数的公式及图像大全,八年级函数公式大全及图解初高中所有函数的公式及图像大全?初中生学习数学应该熟练掌握基本公式,下面总结了初中数学公式,希望能够帮助大家学习数学。

初中数学所有公式总结1一元二次方程求解公式二次函数表达式ax²+bx+c=0;(a≠0),一元二次方程可以参考二次函数进行变形。

求解一元二次方程,我们可以先做出抛物线,然后看与x轴交点。

△=b²-4ac;求解公式:x=(-b±v△)/2a;2因式分解常用公式1、平方差公式:a²-b²=(a+b)(a-b)。

2、完全平方公式:a²+2ab+b²=(a+b)²。

3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。

4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。

5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。

6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。

7、三项完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。

8、三项立方和公式:a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)。

3三角函数公式两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb) ctg(a+b)=(ctgactgb-1)/(ctgb+ctga) ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)倍角公式tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))ctg觉得有用点个赞吧觉得有用点个赞吧八年级函数公式大全?三角函数公式两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb)ctg(a+b)=(ctgactgb-1)/(ctgb+ctga) ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)倍角公式tan2a=2tana/(1-tan2a) ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))ctg(a/2)=√((1+cosa)/((1-cosa)) ctg(a/2)=-√((1+cosa)/((1-cosa))和差化积2sinacosb=sin(a+b)+sin(a-b) 2cosasinb=sin(a+b)-sin(a-b)2cosacosb=cos(a+b)-sin(a-b) -2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosbctga+ctgbsin(a+b)/sinasinb -ctga+ctgbsin(a+b)/sinasinb 函数的种类及公式?一次函数 (1)当k0时,y随x的增大而增大;(2)当k0时,y随x的增大而减小.正比例函数与x、y轴交点是原点(0,0)。

初高中数学公式大全

初高中数学公式大全

初中数学定理、公式大全一、数与代数 1. 数与式(1) 实数 实数的性质:①实数a 的相反数是—a ,实数a 的倒数是a1(a ≠0); ②实数a 的绝对值:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a③正数大于0,负数小于0,两个负实数,绝对值大的反而小。

二次根式:①积与商的方根的运算性质:b a ab ⋅=(a ≥0,b ≥0);ba ba =(a ≥0,b >0);②二次根式的性质:⎩⎨⎧<-≥==)0()0(2a a a a a a (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷(a ≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即nnnb a ab =)((n 为正整数);④零指数:10=a (a ≠0);⑤负整数指数:nna a1=-(a ≠0,n 为正整数); ⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))((b a b a b a -=-+;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即m b m a b a ⨯⨯=;mb ma b a ÷÷=,其中m 是不等于零的代数式;②分式的乘法法则:bdacd c b a =⋅; ③分式的除法法则:)0(≠=⋅=÷c bcadc d b a d c b a ;④分式的乘方法则:n nn ba b a =)((n 为正整数);⑤同分母分式加减法则:c ba cbc a ±=±; ⑥异分母分式加减法则:bccdab b d c a ±=±;2. 方程与不等式①一元二次方程02=++c bx ax (a ≠0)的求根公式:)04(2422≥--+-=ac b aac b b x②一元二次方程根的判别式:ac b 42-=∆叫做一元二次方程02=++c bx ax (a ≠0)的根的判别式:⇔>∆0方程有两个不相等的实数根; ⇔=∆0方程有两个相等的实数根; ⇔<∆0方程没有实数根;③一元二次方程根与系数的关系:设1x 、2x 是方程02=++c bx ax (a ≠0)的两个根,那么1x +2x =ab-,1x 2x =a c ;不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;②不等式两边都乘以(或除以)同一个正数,不等号的方向不变; ③不等式两边都乘以(或除以)同一个负数,不等号的方向改变; 3. 函数一次函数的图象:函数y=kx+b(k 、b 是常数,k ≠0)的图象是过点(0,b )且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k ≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数kx y =的图象是过原点及点(1,k )的一条直线。

初中与高中数学公式大全

初中与高中数学公式大全

初中与高中数学公式大全一、初中数学公式:1.一元一次方程:ax+b=0;2.一元二次方程:ax^2+bx+c=0;3.勾股定理:c^2=a^2+b^2;4.等差数列的通项公式:an=a1+(n-1)d;5.等差数列的求和公式:Sn=(a1+an)n/2;6.等比数列的通项公式:an=a1*q^(n-1);7.等比数列的求和公式:Sn=a1(1-q^n)/(1-q);8.平方差公式:(a+b)^2=a^2+2ab+b^2;9.平方和公式:(a+b)(a-b)=a^2-b^2;10.立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);11.切线的斜率公式:y=k(x-x1)+y1;12.两点间距离公式:AB=√((x2-x1)^2+(y2-y1)^2);13.平行线的判定公式:k1=k2,且b1≠b2;14.垂直线的判定公式:k1*k2=-1;15.面积公式:矩形的面积为长乘以宽,三角形的面积为底乘以高的一半,圆的面积为πr^2二、高中数学公式:1.二次函数:y=ax^2+bx+c;2.导数的基本公式:(k)'=0,(x^n)'=nx^(n-1),(sinx)'=cosx,(cosx)'=-sinx等;3.函数极值点的判定公式:f'(x0)=0,且f''(x0)的符号性质与f'(x0)不变;4.函数单调性的判定公式:f'(x)>0,函数单调递增;f'(x)<0,函数单调递减;5.定积分的基本公式:∫(ax^n)dx=a/(n+1)x^(n+1)+C,∫sinxdx=-cosx+C等;6.牛顿-莱布尼茨公式:∫f'(x)dx=f(x)+C;7.中心极限定理:对于独立同分布的随机变量X1,X2,...,Xn,若E(Xi)=μ,Var(Xi)=σ^2,则当n趋向于无穷大时,n个随机变量的和的分布趋近于正态分布;8.概率的基本公式:P(A∪B)=P(A)+P(B)-P(A∩B);9.二项分布的基本公式:P(X=k)=C(n,k)p^k(1-p)^(n-k),其中C(n,k)表示从n个元素中取出k个元素的组合数;10.正弦定理:a/sinA=b/sinB=c/sinC;11.余弦定理:c^2=a^2+b^2-2abcosC;12.行列式的性质:对角线元素乘积之和减去反对角线元素乘积之和等于行列式的值,即,A,=a11*a22*...*ann-a1n*a2(n-1)*...*ann;13.线性方程组的解法:利用矩阵的行变换进行消元求解;14.三角函数的定义域:sinx和cosx的定义域为R,而tanx,cotx,secx,cscx的定义域为实数集合R与{x,cosx=0}的叉集。

初中高中的数学知识点总结

初中高中的数学知识点总结

初中高中的数学知识点总结初中数学知识点总结1. 数与代数- 自然数、整数、有理数和无理数的概念与性质- 正数和负数的加法、减法、乘法、除法运算规则- 绝对值的概念及其性质- 代数表达式的简化和变形- 一元一次方程、二元一次方程和不等式的解法- 函数的概念,线性函数、二次函数的图像和性质- 比例、百分数、利率的计算- 多项式的概念,加法、减法、乘法运算- 因式分解的基本概念和方法- 有理数的乘方、根式的概念和运算2. 图形与几何- 平面几何图形的基本性质,包括点、线、面的基本特征- 三角形、四边形、圆的基本性质和计算- 相似和全等图形的判定与性质- 直线、射线、线段的性质和计算- 角的概念,包括直角、锐角、钝角、平角、周角的分类和性质- 圆的性质,包括圆周角、圆心角、弦、弧、切线等- 空间几何体的基本概念,如立方体、长方体、圆柱、圆锥、球等- 面积和体积的计算公式,包括三角形、四边形、圆、棱柱、棱锥、圆柱、圆锥、球等3. 统计与概率- 数据的收集、整理和描述- 频数分布表和直方图的绘制与解读- 概率的基本概念和计算方法- 事件的概率,包括必然事件、不可能事件、随机事件- 等可能事件的概率计算- 通过实验来估计概率高中数学知识点总结1. 函数与方程- 函数的概念,包括定义域、值域、单调性、奇偶性- 指数函数、对数函数、三角函数的图像和性质- 函数的复合、反函数、倒函数- 无理方程和参数方程的解法- 含绝对值的方程解法- 二次方程和高次方程的解法,包括因式分解、配方法、二次公式、牛顿法等- 一元多项式和长多项式的因式分解2. 数列与级数- 等差数列、等比数列的通项公式和性质- 数列的极限概念和计算- 无穷等比数列的和- 级数的概念,包括等差级数和等比级数3. 解析几何- 坐标系的基本概念和性质- 直线和圆的方程- 圆锥曲线(椭圆、双曲线、抛物线)的方程和性质- 空间直线和平面的方程- 空间几何体的方程和性质4. 微积分- 导数的概念,包括定义、几何意义和物理意义- 常见函数的导数和高阶导数- 微分的概念和应用- 积分的概念,包括定积分和不定积分- 积分的基本公式和计算方法- 微积分在几何、物理等领域的应用5. 概率论与数理统计- 随机事件的概率,条件概率和独立性- 随机变量及其分布,离散型和连续型分布- 期望值、方差、标准差的概念和计算- 大数定律和中心极限定理- 样本及其分布,样本均值和样本方差的分布- 假设检验和置信区间的概念和方法以上是初中和高中数学的主要知识点总结,每个知识点都有其重要性和应用场景,学生应该在理解的基础上进行记忆和练习,以达到熟练掌握的程度。

初高中常用数学公式汇总

初高中常用数学公式汇总

初高中常用数学公式一.代数1.绝对值与不等式绝对值定义:, 0||,0a a a a a ≥⎧=⎨-<⎩⑴||a =,||||a a -=⑵ ||||a a a -≤≤⑶ 若|| (0)a b b ≤>,则b a b -≤≤⑷ 若|| (0)a b b ≥>,则a b ≥或a b ≤-⑸ (三角不等式)||||||a b a b +≤+,||||||a b a b -≥-⑹ ||||||ab a b =⋅⑺ |||| (0)||a ab b b =≠ 2.指数运算⑴ x y x y a a a +⋅= ⑵ xx y y a a a-= ⑶ ()x y xy a a = ⑷ ()x x x ab a b =⑸ ()x x x a a b b = ⑹ xy a =⑺ 1x x a a-= ⑻ 01a = 3.对数运算(0,1a a >≠)⑴ 零和负数没有对数 ⑵ log 1a a =⑶ log 10a = ⑷ log ()log log a a a xy x y =+⑸ log log log a a a x x y y=- ⑹ log log b a a x b x =⑺ 对数恒等式log a y a y = ⑻ 换底公式log log log b a b y y a=⑼ 2.718 281 828 459e =⋅⋅⋅⋅⋅⋅⑽ 10lg log 0.434 294 481 903e e ==⋅⋅⋅⋅⋅⋅⑾ ln10log 10 2.30 258 509 299e ==⋅⋅⋅⋅⋅⋅4.乘法及因式分解公式⑴ ()()()x a x b x a b x ab ++=+++⑵ 222()2x y x xy y ±=±+⑶ 33223()33x y x x y xy y ±=±+±⑷ 2222()222x y z x y z xy yz xz ++=+++++⑸ 3333222222()3333336x y z x y z x y xy y z yz x z xz xyz ++=+++++++++⑹ 22()()x y x y x y -=+-⑺ 3322()()x y x y x xy y ±=±+ ⑻ 123221()()n n n n n n n x y x y x x y x y xy y ------=-+++⋅⋅⋅++⑼ 123221()()n n n n n n n x y x y x x y x y xy y ------=+-+-⋅⋅⋅+-(n 为偶数)⑽ 123221()()n n n n n n n x y x y x x y x y xy y -----+=+-+-⋅⋅⋅-+(n 为奇数)⑾ 3332223()()x y z xyz x y z x y z xy yz xz ++-=++++---⑿ 42242222()()x x y y x xy y x xy y ++=++-+5.数列⑴ 等差数列通项公式1(1)n a a n d =+-(1a 为首项,d 为公差)前n 项和11()(1)22n n a a n n n S na d +-==+ 特例: (1)123(1)2n n n n ++++⋅⋅⋅+-+=2135(23)(21)n n n +++⋅⋅⋅+-+-=246(22)2(1)n n n n +++⋅⋅⋅+-+=+⑵ 等比数列通项公式11n n a a q -=(1a 为首项,q 为公比,1q ≠)前n 项和11(1)11n n n a a q a q S q q--==-- ⑶ 22221123(1)(21)6n n n n +++⋅⋅⋅+=++ ⑷ 223333(1)1234n n n ++++⋅⋅⋅+= ⑸ 22222(41)135(21)3n n n -+++⋅⋅⋅+-= ⑹ 333322135(21)(21)n n n +++⋅⋅⋅+-=-⑺ 11(1), 2123(1), 2n n n n n n -⎧+⎪⎪-+-⋅⋅⋅+-=⎨⎪-⎪⎩为奇数为偶数⑻ 1122334(1)(1)(2)3n n n n n ⋅+⋅+⋅+⋅⋅⋅+-=++ 6.牛顿二项公式12233(1)(1)(2)()2!3!n n n n n n n n n n a b a na b a b a b ------+=++++⋅⋅⋅ 10(1)(1)!n n k k n n k n k k n k n n n k a b nab b C a b k ---=-⋅⋅⋅-+++⋅⋅⋅++=∑ 二、三角1.基本关系式⑴ sin tan cos ααα=⑵ cos cot sin ααα= ⑶ 1tan cot αα= ⑷ 1sec cos αα= ⑸ 1csc sin αα= ⑹ 22sin cos 1αα+= ⑺ 221tan sec αα+= ⑻ 221cot csc αα+=2.诱导公式 tan α±tan α cot α± 3.和差公式 ⑴ βαβαβαsin cos cos sin )sin(±=±⑵ βαβαβαsin sin cos cos )cos( =±⑶ tan tan tan()1tan tan αβαβαβ±±=⋅ ⑷ cot cot 1cot()cot cot αβαββα±=± ⑸ 2cos 2sin 2sin sin βαβαβα-+=+ ⑹ 2sin 2cos 2sin sin βαβαβα-+=- ⑺ 2cos 2cos 2cos cos βαβαβα-+=+ ⑻ 2sin 2sin 2cos cos βαβαβα-+-=- ⑼ [])sin()sin(21cos sin βαβαβα-++= ⑽ [])sin()sin(21sin cos βαβαβα--+= ⑾ [])cos()cos(21cos cos βαβαβα-++= ⑿ ()[]βαβαβα--+-=cos )cos(21sin sin 4.倍角和半角公式⑴ sin 22sin cos ααα= ⑵ 22cos 2cos sin ααα=-⑶ 22tan tan 21tan ααα=- ⑷ 2cot 1cot 22cot ααα-=⑸ sin 2α= ⑹ cos 2α=⑺ tan 2α=⑻ cot 2α= 三、初等几何在下列公式中,字母R 、r 表示半径,h 表示高,l 表示斜高,s 表示弧长。

初高中数学公式定理大全

初高中数学公式定理大全

初高中数学公式定理大全初中数学公式:1.两点之间的距离公式:设两点A(x1,y1)和B(x2,y2),则AB的距离为√((x2-x1)²+(y2-y1)²)。

2.线段的中点公式:设线段AB的中点为M,则M的横坐标为(x1+x2)/2,纵坐标为(y1+y2)/23. 一次函数的表示式:设一次函数y=kx+b,则斜率k为直线的斜率,截距b为直线与纵轴的交点。

4.两条直线的交点公式:设直线y=k₁x+b₁和y=k₂x+b₂的交点为(x,y),则x=(b₂-b₁)/(k₁-k₂),y=k₁x+b₁。

5.垂直和平行直线的性质:-垂直直线的斜率乘积等于-1-平行直线的斜率相等。

6.三角形的面积公式:- 三角形面积公式一:设三角形的底为a,高为h,则面积S=1/2ah。

-三角形面积公式二:设三角形的三边分别为a、b、c,则面积S=√(s(s-a)(s-b)(s-c)),其中s为三角形的半周长。

7.直角三角形性质:-勾股定理:设直角三角形的两个直角边分别为a和b,斜边为c,则a²+b²=c²。

- 正弦定理:设直角三角形的一个锐角为A,对边为a,斜边为c,则sinA=a/c。

- 余弦定理:设直角三角形的一个锐角为A,对边为a和斜边为c,则cosA=a/c。

8.等腰三角形性质:-等腰三角形的两底角相等。

-等腰三角形的底角平分顶角。

-等腰三角形的高也是中线和角平分线。

9.角平分线的性质:-角平分线将一个角分成两个相等的角。

-角平分线上的点到角两边的距离相等。

-角平分线的两个相邻内角互补。

10.圆的性质:-圆的面积公式:设圆的半径为r,则面积S=πr²。

-圆周长公式:设圆的半径为r,则周长C=2πr。

高中数学公式:1. 二次函数的一般形式:设二次函数f(x)=ax²+bx+c,则抛物线的顶点坐标为(-b/2a,f(-b/2a))。

2.幂函数的性质:-aⁿ*aᵐ=aⁿ⁺ᵐ-(aⁿ)ᵐ=aⁿᵐ- (ab)ⁿ = aⁿbⁿ3.指数函数的性质:-a⁰=1-aⁿ⁺ᵐ=aⁿ*aᵐ-(aⁿ)ᵐ=aⁿᵐ4.对数函数的性质:- logₐ(xy) = logₐx + logₐy- logₐ(x/y) = logₐx - logₐy- logₐxⁿ = n * logₐx5.三角函数的性质:- sin(A ± B) = sinAcosB ± cosAsinB- cos(A ± B) = cosAcosB ∓ sinAsinB- tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)6.同角三角函数的关系:- tanA = sinA / cosA- cotA = 1 / tanA- secA = 1 / cosA- cscA = 1 / sinA7.三角函数的周期性:- sin(x + 2π) = sinx- cos(x + 2π) = cosx- tan(x + π) = tanx8.弧长和扇形面积公式:-弧长L=θr,其中θ为圆心角的大小,r为半径。

(完整版)初中和高中数学知识点及公式大全

(完整版)初中和高中数学知识点及公式大全

初中和高中数学知识点及公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等4 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

小学初中高中数学公式大全_数学基础知识

小学初中高中数学公式大全_数学基础知识

小学初中高中数学公式大全_数学基础知识一、初中数学公式(1)代数:1、两个数的积:a*b2、二次方程的一般解:x=(-b±√(b²-4ac))/2a3、三角函数的基本公式:sin A=opp/hyp;cos A=adj/hyp;tan A=opp/adj4、比例公式:a/b=c/d(2)几何:1、直角三角形的勾股定理:a²+b²=c²2、三角形的面积公式:S=1/2a×b×sin A3、平行四边形的面积公式:S=ab4、圆的面积公式:S=πr²5、球体的面积公式:S=4πr²6、棱柱和圆柱的体积公式:V=sh7、球体的体积公式:V=4/3πr³二、高中数学公式(1)代数:1、一次函数的一般解:y=ax+b2、二次函数的一般解:y=ax²+bx+c(2)几何:1、体积:V=Ah(A为底面积,h为高)2、交叉体积:V=p(a+b+c+d+…)3、几何体的表面积公式:S=2πrh+ 2πr²4、共轭矩形的面积:S=2ab5、球的表面积公式:S=4πr²6、椭圆的面积公式:S=πab三、中学数学公式(1)代数:1、一次函数的一般解:y=ax+b2、二次函数的一般解:y=ax²+bx+c3、指数函数的一般解:y=a·bⁿ4、对数函数的一般解:y=a·logbx(2)几何:1、正方形的面积公式:S=a²2、正方体的体积公式:V=a³3、长方形的面积公式:S=ab4、圆柱的体积公式:V=πr²h5、椭圆的面积公式:S=πab。

初高中数学常用公式

初高中数学常用公式

初高中数学常用公式初中数学常用公式:1. 两个数的和的平方等于它们的平方和加上它们的2倍乘积:(a+b)² = a² + b² + 2ab2. 两个数的差的平方等于它们的平方和减去它们的2倍乘积:(a-b)² = a² + b² - 2ab3.两个数的平方差等于它们的和乘以差:a²-b²=(a+b)(a-b)4. 平方根的乘积等于被开方数的平方根:√(a) ∙ √(b) = √(ab)5.平方根的商等于被开方数的平方根的商:√(a)/√(b)=√(a/b)6.平方根的和或差等于被开方数的平方根的和或差:√(a)±√(b)=√(a±b)7.分数乘以整数等于分子乘以整数:a∙(b/c)=(a∙b)/c8.分数乘以分数等于分子相乘,分母相乘:(a/b)∙(c/d)=(a∙c)/(b∙d)9.分数除以整数等于分子除以整数:(a/b)/c=a/(b∙c)10.分数除以分数等于分子相除,分母相除:(a/b)/(c/d)=(a∙d)/(b∙c)11.分数的倒数等于分子和分母互换位置:1/(a/b)=b/a12.两个数的倒数之和等于它们的和的倒数:1/a+1/b=(a+b)/(a∙b)13.两个数的倒数之差等于它们的差的倒数:1/a-1/b=(b-a)/(a∙b)14.两个数的倒数的和等于它们的和的倒数:1/(1/a+1/b)=(a∙b)/(a+b)15.两个数的倒数的差等于它们的差的倒数:1/(1/a-1/b)=(b∙a)/(b-a)16.非零数的倒数的倒数等于它本身:(1/a)的倒数=a17.平行线与横截线的夹角等于对顶角:∠a=∠b18.两个角的补角之和等于90°:∠a+∠b=90°19.两个角的余角之和等于90°:∠a+∠b'=90°20.同位角相等,对位角相等,即∠a=∠c,∠b=∠d21.同位角和对位角的对应角互补:∠a+∠b=180°,∠c+∠d=180°22.两个相交直线的内错角互补:∠a+∠b=180°,∠c+∠d=180°23.平行线上的内错角互补:∠a+∠d=180°,∠b+∠c=180°24.同位角、对位角、内错角互补的线同位线:∠a+∠c=180°,∠b+∠d=180°25.线到平行线上的一条截线上的内错角相等:∠a=∠e,∠b=∠f26.线到平行线上的一条截线上的同位角、对位角相等:∠a=∠c',∠b=∠d'27.两条相交直线的外错角相等:∠a=∠c,∠b=∠d28.最内侧与最外侧的两个角互补:∠a+∠d=180°,∠b+∠c=180°29.等腰三角形的底角相等:∠a=∠b30.等腰三角形的底边中点连线平分顶角:CD平分∠b31.一条直线垂直于平行线,则它与平行线所成的角都是直角:∠a=90°,∠b=90°32.同弧上的两个角及弧上邻角互补:∠c=∠e,∠d=∠f33.圆的圆心角是两倍其所对弧的角:∠c=2∠a,∠d=2∠b34.圆周角等于其所对弧的角:∠c=∠a,∠d=∠b35.圆的半弧对应角相等:∠ACB=∠ADB36.外切圆的切线和半径垂直:∠ACB=90°37.内切圆半径连接点与切点垂直:∠ACB=90°38.三角形两边之和大于第三边:AB+BC>AC,AB+AC>BC,AC+BC>AB39.三角形两边之差小于第三边:AC-BC<AB,AB-AC<BC,BC-AC<AB 高中数学常用公式:1.两点之间的距离公式:d=√((x₂-x₁)²+(y₂-y₁)²)2.点到直线的距离公式:d=,Ax₁+By₁+C,/√(A²+B²)3.二次函数的顶点坐标公式:(h,k)=(-b/2a,f(-b/2a))4.二次函数的对称轴公式:x=-b/2a5. 二次函数的判别式公式:Δ = b² - 4ac6.一次函数的斜率公式:k=(y₂-y₁)/(x₂-x₁)7.直线的方程式(点斜式):y-y₁=k(x-x₁)8. 直线的方程式(斜截式):y = kx + b9.垂直直线的斜率乘积为-1:k₁∙k₂=-110.等差数列的通项公式:aₙ=a₁+(n-1)d11.等差数列的求和公式:Sₙ=(a₁+aₙ)∙n/212.等差数列前n项和的公式:Sₙ=n/2(2a₁+(n-1)d)13.等比数列的通项公式:aₙ=a₁∙r^(n-1)14.等比数列的求和公式(无穷项):S=a₁/(1-r),,r,<115.等比数列前n项和的公式:Sₙ=a₁(1-rⁿ)/(1-r)16. 三角函数正弦定理:a/sinA = b/sinB = c/sinC17. 三角函数余弦定理:c² = a² + b² - 2abcosC18. 三角函数正切定理:tanA = (b - c) / (b + c)19.扇形面积公式:S=(θ/360)πr²20. 弦长公式:l = 2r sin(θ/2)21.正多边形内角和公式:S=(n-2)×180°22.二次方程求根公式:x=(-b±√Δ)/2a23. 立方公式:(a + b + c)³ = a³ + b³ + c³ + 3ab(a + b) + 3bc(b + c) + 3ca(c + a)24. 平方差公式:(a-b)² = a² - 2ab + b²25.求圆面积:S=πr²26.求圆周长:C=2πr27. 重要三角函数值:sin(30°) = 1/2,sin(45°) = √2/2,sin(60°) = √3/228. 计算三角函数值:tan(x) = sin(x) / cos(x),csc(x) = 1/sin(x),sec(x) = 1/cos(x),cot(x) = 1/tan(x)29. 正弦函数与余弦函数关系:sin²(x) + cos²(x) = 1,1 + tan²(x) = sec²(x),1 + cot²(x) = csc²(x)30.等腰三角形的高公式:h=√(a²-(b/2)²)31.二次函数的平移变换公式:(x-h)²=4a(y-k)32.勾股定理:c²=a²+b²33. 欧拉公式:e^(iθ) = cos(θ) + i sin(θ)。

初中到高一数学公式知识点

初中到高一数学公式知识点

初中到高一数学公式知识点数学公式是解决问题、推导结论、证明定理等数学活动的重要工具。

掌握数学公式对于学习数学具有重要意义。

以下是初中到高一阶段数学中常用的公式知识点。

一、初中数学公式知识点1. 代数公式- 二次根式的展开公式: $(a + b)^2 = a^2 + 2ab + b^2$- 平方差公式: $(a - b)(a + b) = a^2 - b^2$- 一元二次方程的求根公式: 对于一元二次方程 $ax^2 + bx + c = 0$,它的根可以通过公式 $x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}$ 求得。

2. 几何公式- 面积公式:- 矩形的面积: 长方形的面积为长与宽的乘积,即$S = l \cdot w$。

- 三角形的面积: 三角形的面积可以通过海伦公式或底边高的关系进行计算。

- 圆的面积: 圆的面积公式为$S = \pi r^2$,其中$r$为圆的半径。

- 体积公式:- 立方体的体积: 立方体的体积为边长的立方,即$V = a^3$。

- 圆柱的体积: 圆柱的体积公式为$V = \pi r^2 h$,其中$r$为底面圆的半径,$h$为圆柱的高度。

3. 概率公式- 事件的概率: 事件 $A$ 的概率可以通过 $P(A) =\frac{{\text{有利结果数}}}}{{\text{总结果数}}}$ 计算得到。

- 互斥事件的概率: 若事件 $A$ 和事件 $B$ 互斥(即不可能同时发生),则 $P(A \cup B) = P(A) + P(B)$。

- 相互独立事件的概率: 若事件 $A$ 和事件 $B$ 相互独立(即事件 $A$ 的发生与否对事件 $B$ 的发生概率无影响),则 $P(A\cap B) = P(A) \cdot P(B)$。

二、高中数学公式知识点1. 数列与数列求和公式- 等差数列: 等差数列的通项公式为 $a_n = a_1 + (n-1)d$,其中$a_n$表示第$n$个数,$a_1$表示第一个数,$d$为公差。

高初中数学知识点全总结

高初中数学知识点全总结

高初中数学知识点全总结一、初中数学知识点总结1. 数与代数- 整数和有理数:包括整数的四则运算、有理数的定义及其运算。

- 整式与分式:涉及单项式、多项式的概念,以及分式的化简和分解。

- 代数方程:一元一次方程、一元二次方程的解法,包括配方法、公式法、因式分解法。

- 不等式:一元一次不等式和一元二次不等式的解集求解。

- 函数:函数的概念、性质、图象,包括一次函数、二次函数、反比例函数等。

2. 几何- 平面几何:点、线、面的基本性质,角的概念及其分类,三角形、四边形的性质和计算。

- 圆的性质:圆的基本性质,圆周角、圆心角、弦、切线等的关系。

- 相似与全等:全等三角形的判定和性质,相似三角形的判定和性质。

- 解析几何:坐标系的建立,点的坐标,直线和圆的方程。

3. 统计与概率- 统计:数据的收集、整理和描述,平均数、中位数、众数的计算。

- 概率:概率的基本概念,计算简单事件的概率。

二、高中数学知识点总结1. 函数与方程- 函数的极限与连续性:极限的概念、性质和计算,函数的连续性。

- 导数与微分:导数的定义、几何意义和物理意义,常见函数的导数,微分的概念和应用。

- 积分:不定积分和定积分的概念、性质和计算,积分的应用问题。

- 高阶函数:高阶导数、泰勒公式、麦克劳林公式。

- 常微分方程:一阶微分方程和二阶微分方程的解法。

2. 数列与级数- 数列的极限:数列的概念,极限的定义和性质。

- 等差数列与等比数列:通项公式、求和公式。

- 级数:级数的概念,等差级数和等比级数的性质和求和公式,级数的收敛性。

3. 空间几何- 立体几何:空间直线和平面的位置关系,多面体和旋转体的性质和计算。

- 向量:向量的加法、数乘、数量积和向量积,向量的坐标表示和运算。

- 空间解析几何:直线和平面的方程,二次曲面的方程。

4. 概率与统计- 概率论:随机事件的概率,条件概率,独立事件,贝叶斯公式。

- 随机变量:随机变量的定义,离散型和连续型随机变量,概率分布函数。

初中高中数学知识点全总结

初中高中数学知识点全总结

初中高中数学知识点全总结初中数学知识点总结一、数与代数1. 有理数- 整数与分数- 正数、负数、零- 有理数的加法、减法、乘法、除法- 绝对值与有理数的比较2. 整数的性质- 质数与合数- 奇数与偶数- 整数的因数与倍数- 最大公约数和最小公倍数3. 代数表达式- 单项式与多项式- 同类项与合并同类项- 代数式的加减运算4. 一元一次方程- 方程的建立与解法- 解方程的步骤- 方程的应用问题5. 二元一次方程组- 代入法与消元法- 方程组的解的讨论6. 不等式与不等式组- 不等式的基本性质- 解一元一次不等式- 解一元一次不等式组7. 平面直角坐标系- 坐标系的基本概念- 点的坐标表示- 直线与曲线的方程8. 函数的初步认识- 函数的定义与表示- 函数的图象- 函数的性质二、几何1. 平面图形- 点、线、面的基本性质 - 角的概念与分类- 三角形的分类与性质- 四边形的分类与性质2. 圆的基本性质- 圆的定义- 圆的半径、直径、弦、弧 - 圆周角与圆心角的关系3. 相似形- 相似三角形的判定与性质- 相似多边形- 比例与相似的关系4. 解析几何- 直线的斜率与方程- 圆的方程- 点、直线与圆的位置关系5. 几何变换- 平移、旋转、对称- 坐标系中的几何变换- 几何图形的组合与分割三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读2. 概率- 随机事件的概念- 概率的计算- 事件的可能性高中数学知识点总结一、集合与逻辑1. 集合的概念- 集合的定义与表示- 子集、并集、交集、补集2. 逻辑与命题- 命题的定义- 逻辑联结词- 命题的真值表二、函数1. 函数的概念与性质- 函数的定义与域、值域- 函数的单调性与奇偶性- 反函数2. 二次函数- 二次函数的图像与性质- 二次方程与二次函数的关系 - 二次函数的应用3. 指数与对数- 指数函数的性质- 对数函数的性质- 指数与对数的运算法则4. 三角函数- 三角函数的定义与关系- 三角函数的图像与性质- 三角恒等变换5. 数列- 等差数列与等比数列- 数列的极限- 数列的求和公式三、解析几何1. 空间几何- 平面与直线的方程- 空间向量- 直线与平面的夹角2. 圆锥曲线- 圆的方程- 椭圆、双曲线、抛物线的方程 - 圆锥曲线的性质四、微积分1. 导数- 导数的定义与几何意义- 常见函数的导数- 微分的运算法则2. 极限与连续- 极限的概念与性质- 函数的连续性- 极限的运算法则3. 积分- 不定积分的概念与性质- 定积分的计算与应用- 微积分基本定理五、概率论与数理统计1. 概率论- 随机事件的概率- 条件概率与独立事件- 贝叶斯定理2. 数理统计-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中和高中数学知识点及公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等4 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c 有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷2 67菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n ≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d<r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r ②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r) ?④两圆内切d=R-r(R>r) ⑤两圆内含d<R-r(R>r) 136定理相交两圆的连心线垂直平分两圆的公*弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n 边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n 140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长扑愎?剑篖=n兀R/180145扇形面积公式:S扇形=n兀R^2/360=LR/2 146内公切线长= d-(R-r) 外公切线长= d-(R+r)(还有一些,大家帮补充吧)实用工具:常用数学公式公式分类公式表达式乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) •a^3-b^3=(a-b(a^2+ab+b^2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b ≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b^2-4ac=0 注:方程有两个相等的实根b^2-4ac>0 注:方程有两个不等的实根?b^2-4ac<0 注:方程没有实根,有*轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA ?cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) ?cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) ?和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B) )2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2 -2+4+6+8+10+12+14+…+(2n)=n(n+1) 51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角圆的标准方程(x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标圆的一般方程x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0抛物线标准方程y^2=2px y^2=-2px x^2=2pyx^2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h ?斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h希望对你有帮助!!!初中代数【实数的分类】【自然数】表示物体个数的1、2、3、4···等都称为自然数【质数与合数】一个大于1的整数,如果除了它本身和1以外不能被其它正整数所整除,那么这个数称为质数。

相关文档
最新文档