音频功率放大器的设计报告666
音频功率放大器设计实验报告
题目:音频功率放大器电路音频功率放大器设计任务1、基本要求(1)频带范围 200Hz —— 10KHz,失真度 < 5%。
(2)电压增益 >= 20dB。
(3)输出功率 >= 1 W (8欧姆负载)。
(4)功率放大电路部分使用分立元件设计。
发挥部分(1)增加音调控制电路。
(2)增加话筒输入接口,灵敏度 5mV,输入阻抗 >> 20欧姆。
(3)输出功率 >= 10W (8欧姆负载)。
(4)其他。
目录1 引言·····························································2 总体设计方案·····················································2.1 设计思路·······················································2.2 总体设计框图···················································3 设计原理分析·····················································3.1设计总原理图3.2设计的PCB电路图···1 引言在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。
音频功放报告
音频功率放大器课程设计报告设计题目音频功率放大器姓名及学号学院专业班级指导教师2012年04月26日题目:音频功率放大器的设计目录1.前言 ...................................................................................................2.音频功放的组成框图 .........................................................................3.电路分析............................................................................................ 4.系统调试......................................................................................... 5.设计总结......................................................................................... 6.参考文献......................................................................................... 7.附件.................................................................................................附件1 元件清单.............................................................................附件2原理图..................................................................................附件3. PCB排版 ............................................................................一、前言从人类历史中第一台收音机的发明,就和音频功率放大器结下不解之缘。
音频功率放大器设计报告
音频功率放大器设计报告1. 引言音频功率放大器是将低功率的音频信号放大到足够大的功率级别,以驱动扬声器等音频设备的关键电子设备。
本报告旨在介绍音频功率放大器的设计过程,并提供一种逐步思考的方法。
2. 设计目标在开始设计之前,我们需要明确设计目标。
在本次设计中,我们的目标是设计一个能够提供高质量音频输出的功率放大器。
我们希望该放大器具有以下特性: -广泛的频率响应范围 - 低失真和噪声水平 - 高功率输出能力 - 能够适应不同的音频输入源3. 设计步骤3.1. 选择放大器类型第一步是选择适合我们设计目标的放大器类型。
在音频功率放大器中,常见的类型包括A类、AB类、D类等。
我们需要根据设计要求和应用场景选择最合适的放大器类型。
3.2. 确定放大器的工作参数在设计中,我们需要确定放大器的工作参数,包括输入电阻、输出功率、供电电压等。
这些参数将指导我们在后续步骤中进行元件选择和电路设计。
3.3. 元件选择根据放大器类型和工作参数,我们需要选择合适的元件来构建电路。
包括选择适当的功率晶体管、电容、电阻等元件。
我们需要根据元件的参数和特性曲线进行选择,以满足设计要求。
3.4. 电路设计在进行电路设计时,我们需要根据选定的放大器类型和元件进行电路拓扑设计。
这包括放大器的输入阶、放大阶和输出阶等。
我们需要考虑电路的稳定性、能效和音频性能等方面。
3.5. 仿真和优化在设计完成后,我们可以使用电路仿真软件对设计进行验证和优化。
通过仿真,我们可以评估放大器的频率响应、失真水平和功率输出等性能,并进行必要的调整和优化。
3.6. 原型制作和测试在完成仿真和优化后,我们可以制作放大器的原型并进行测试。
通过测试,我们可以验证设计的性能是否符合预期,并进行必要的调整和改进。
4. 结论本报告介绍了音频功率放大器的设计过程,并提供了一种逐步思考的方法。
通过明确设计目标、选择合适的放大器类型、进行元件选择、进行电路设计、进行仿真和优化,最后进行原型制作和测试,我们可以设计出具有高质量音频输出的功率放大器。
音频功率放大电路设计实验报告
音频功率放大电路设计实验报告一、设计任务设计一小功率音频放大电路并进行仿真。
二、设计要求已知条件:电源V或V;输入音频电压峰值为5mV;8/0.5W扬声±Ω9±12器;集成运算放大器(TL084);三极管(9012、9013);二极管(IN4148);电阻、电容若干基本性能指标:P o200mW(输出信号基本不失真);负载阻抗R L=8;截≥Ω止频率f L=300Hz,f H=3400Hz扩展性能指标:P o1W(功率管自选)≥三、设计方案音频功率放大电路基本组成框图如下:音频功放组成框图由于话筒的输出信号一般只有5mV左右,通过话音放大器不失真地放大声音信号,其输入阻抗应远大于话筒的输出阻抗;滤波器用来滤除语音频带以外的干扰信号;功率放大器在输出信号失真尽可能小的前提下,给负载R L(扬声器)提供一定的输出功率。
应根据设计要求,合理分配各级电路的增益,功率计算应采用有效值。
基于运放TL084构建话音放大器与宽带滤波器,频率范围f L=300Hz,f H=3400Hz 在Multisim软件仿真时,用峰值电压为5mV的正弦波信号代替话筒输出的Ω语音信号;用性能相当的三极管替代9012和9013;用8电阻替代扬声器。
由于三极管(9012、9013)最大功率为500mW,要特别注意工作中三极管的功耗,过大会烧毁三极管,最好不超过400mW。
如制作实物,因扬声器呈感性,易引起高频自激,在扬声器旁并入一容性网络(几十欧姆电阻串联100nF电容)可使等效负载呈阻性,改善负载为扬声器时的高频特性。
四、电路仿真与分析1、原理图说明:a、前半部分为带通滤波器,得到实验要求的频率范围为f L=300Hz,f H=3400Hz的信号。
b、后半部分为集成运放与晶体管组成的功放,电压增益为1+(R3+R13)/R2实验原理图2、实验现象a、波特测试仪的测试结果f L=300Hz f H=3400Hz b、输出波形情况及探针测量结果可知,在输出不失真的情况下信号的功率大于了1W,达到了实验要求五、心得体会1、实验中尽量使输出信号在不失真的情况下使得输出功率越大越好,这就要求相关电阻阻值需合理。
音频功率放大器设计报告
音频功率放大器设计报告1. 简介音频功率放大器是一种用于放大音频信号的电子设备,通常用于音响系统、电视和无线电等设备中。
本报告介绍了一个音频功率放大器的设计过程和实现。
2. 设计目标本次设计的目标是实现一个功率放大器,能够放大音频信号并输出高质量的声音。
以下是设计要求:- 输入电压范围:0.2 V - 2 V- 输出功率范围:10 W - 50 W- 频率响应范围:20 Hz - 20 kHz- 输出失真率低于1%3. 设计步骤3.1 选择放大器类型根据设计目标,我们选择了类AB功率放大器作为设计方案。
该放大器能够提供高质量的放大效果,并且具有较低的失真率。
3.2 电路设计经过电路设计和计算,我们决定使用以下主要元件:- BJT(双极型晶体管):NPN型三极管- 电容和电感:用于构建频率响应滤波器- 可调电阻:用于调节放大器的增益和偏置- 电源电路:用于提供适当的电压3.3 PCB设计为了实现电路的稳定性和可靠性,我们进行了PCB(Printed Circuit Board)设计。
通过将元件布局在PCB上并进行连接,可以减少干扰和噪声。
3.4 元器件选择根据设计需求和可靠性要求,我们选择了适当的元器件进行组装。
在选择元器件时,我们重点考虑了其性能指标、价格和供应情况。
3.5 调试和测试完成电路装配后,我们进行了调试和测试。
通过连接音频信号源、功率负载和测试仪器,可以确保放大器能够正常工作,并且满足设计要求。
4. 结果和讨论经过测试,该音频功率放大器满足了设计要求,并且具有很好的音质和稳定性。
其输出功率范围为10 W至50 W,输入电压范围为0.2 V至2 V,频率响应范围为20 Hz至20 kHz。
失真率低于1%,音质清晰、饱满。
5. 总结在本次设计过程中,我们成功实现了一个高性能的音频功率放大器。
通过选择合适的放大器类型、进行电路设计和PCB设计、选择优质的元器件以及进行严格的调试和测试,我们达到了设计要求。
音频功率放大器的设计报告666
音频功率放大器的设计报告目录一、设计任务和要求 (2)二、设计方案的选择与论证 (2)三、电路设计计算与分析 (4)UA741介绍 (4)前级电路原理图及仿真结果 (5)TDA2030介绍 (6)音频功放电路原理图及仿真结果 (7)结果与分析 (8)总原理图 (9)PCB图 (10)四、总结及心得 (12)五、附录 (14)六、参考文献 (15)音频功率放大器的设计一、设计任务和要求1、设计任务设计一音频功率放大器,满足:(1)、输出功率为1W---2W;(2)、输出阻抗8-16欧姆;(3)、带宽:100Hz—10KHz;2、设计要求(1)、根据设计指标,确定电路的理论设计;(2)、学会合理的选择电路的元器件;(3)、利用multisim软件完成对相关电路模块的仿真分析;(4)、按时提交课程设计报告,画出设计电路图,交一份A3的图纸,完成相应的答辩;二、设计方案的选择与论证音频功率放大器,简称音频功放,该设备主要用于推动扬声设备发声,因而,在很多电子设备上均有应用,比如,手机、电脑、电视机、音响设备等,是我们生活、学习不可或缺的重要设备,为我们的生活带来了很多便利。
音频功率放大器实际上就是对比较小的音频信号进行放大,使其功率增加,然后输出。
前置放大主要完成对小信号的放大,使用一个同向放大电路对输入的音频小信号的电压进行放大,得到后一级所需要的输入。
后一级的主要对音频进行功率放大,使其能够驱动电阻而得到需要的音频。
设计时首先根据技术指标要求,对整机电路做出适当安排,确定各级的增益分配,然后对各级电路进行具体的设计。
作为模拟电子课程设计课题设计,本课题提出的音频功率放大器性能指标比较低,主要采用理论课程里介绍的运算放大集成电路和功率放大集成电路来构成音频功率放大器。
功率放大器随着科技的进步是不断发展的,从最初的电子管功率放大器到现在的集成功率放大器,功率放大器经历了几个不同的发展阶段:电子管功放晶体管功放集成功放。
音频功率放大器课程设计报告
课程设计报告设计题目:音频功率放大器系别:电子工程系专业:信息工程班级:09信工班学生姓名:2011年09月29日课程设计任务书目录一、设计要求二、设计总体方案2.1设计思路2.2 音频功放各级的作用和电路结构特征2.3简要原理分析三、选择器件及参数计算3.1电路元件参数及介绍3.2参数计算3.2.1参数计算3.2.2功率的计算四、用multisim仿真音频功率放大器五、实物电路安装调试及使用5.1电路调整与测试5.2通电观察六、设计体会与总结七、参考文献一、设计要求音频功率放大器具体要求:功率5W到10W。
电源电压20V以下。
最后一级功率放大级必须采用三极管电路,中间级可以采用运放等集成电路。
(可选功能)加分频器,输出高频低频两路信号(用于接高音喇叭和低音喇叭)。
最后要算出功耗、输出功率和频率响应曲线。
二、设计总体方案2.1设计思路音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。
声音源的种类有很多种,故输出信号的电压差别很大,从零点几毫伏到几百毫伏。
一般动率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器的话,对于输入信号过低的,功率放大器功率输出不足,不能充分发挥功放的作用;加入输入信号的幅值过大,功率放大器的输出信号将严重过载失真。
这样就失去了音频放大的意义了,所以一个实用音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。
最后音频放大器由前置放大器和音调控制电路和功率放大器三部分组成。
组成框架如下图:2.2 音频功放各级的作用和电路结构特征本次设计是基于10瓦音频放大器,由于时间有限,上网找了一些电路图,下幅电路图稍微修改后是最合适的。
由于电路采用NE5532芯片,芯片内部已包含了放大功能和音量控制功能,故省去了前置放大的一部分电路,使电路不用那么复杂。
图中前置放大由芯片NE5532实现,并通过变阻器P1实现音调的控制,最后一级采用互补功率放大电路。
课程设计报告--音频功率放大器设计
课程设计报告--音频功率放大器设计音频功率放大器设计报告一、引言音频功率放大器是电子工程领域中的一个重要组成部分,它能将输入信号放大并驱动扬声器输出高质量的音频信号。
音频功率放大器设计的主要目标是提高音频信号的功率,同时保持音频信号的稳定和高保真度。
本报告将介绍一个音频功率放大器的设计过程,包括电路设计、原理图设计、仿真和测试结果等。
二、电路设计1. 器件选择首先需要选择适合的放大器芯片和其他必要的元件。
在音频功率放大器设计中,常用的芯片有TDA2030、TDA2050等,选择芯片时需考虑芯片的功率输出、输入电压、高保真度等参数。
2. 电路图设计根据所选芯片的数据手册和设计要求,进行电路图的设计。
电路图设计主要包括输入电路、放大电路、输出功率放大电路等部分。
在设计过程中应注意信号的阻抗匹配、滤波等问题。
三、原理图设计根据电路设计,绘制电路的原理图。
原理图将各个部分的连接关系以及元件的数值等信息展示出来,为后续的仿真和测试提供便利。
四、仿真基于设计好的原理图,进行电路仿真。
使用仿真软件(如Proteus、Multisim等)对电路进行仿真,验证放大器的性能指标,包括功率输出、频率响应、失真度等参数。
五、测试结果根据仿真结果,制作音频功率放大器的实物电路,并进行测试。
测试包括输入信号的幅值、频率、输出功率、失真度等参数的测量。
根据测试结果,评估设计的音频功率放大器的性能和有效性。
六、总结通过本次课程设计,了解了音频功率放大器的设计过程,掌握了电路设计、原理图设计、仿真和测试等技能。
同时也深入了解了音频功率放大器的重要性和应用领域。
在今后的学习和工作中,将进一步拓展音频功率放大器设计的知识,不断提高设计水平,为音频领域的发展做出更大的贡献。
音频功率放大电路设计实验报告
音频功率放大电路设计实验报告
本实验旨在设计并完成一个频率增益为50dB的电路,可在实际应用中将输入音频信号功率放大50dB。
本次实验的计算结果显示:输入信号电压为1Vrms,输出信号电压为53.98V rms。
为了设计这样的电路,本实验采用了放大器电路。
为了有效实现50dB的增益,我们使用了具有放大器的运算放大器电路,以满足50dB的频率增益要求。
为了完成这个电路,我们挑选了一些元件,包括:一个12V的直流电源,一个电容,一个四极管,一个反馈回路,一个放大器,一个电阻,和一个场效应管(FET)。
根据真实电路设计,我们使用12V的直流电源为该电路提供动力,然后将一个电容连接到输入端以稳定输出信号的电平,以及一个四极管连接到放大器的输出端,用于实现放大器的回路控制。
之后,我们将一个反馈回路和一个放大器连接到放大器的输入端,它们可为放大器提供反馈信号,保持一定的放大幅度。
此外,为了实现电路的必要性能,我们也连接了一个电阻到放大器的输入端,以阻止多余输入信号,以及一个场效应管(FET),以减少输入电容的影响,以及改善输出电压的增益性能。
在实验完成后,我们对本实验设计的电路进行了测量和分析。
实验结果表明,在输入电压为1Vrms时,输出信号电压达到53.98Vrms,达到了设计的频率增益要求。
总的来说,本次实验得出结论,我们设计的电路可以有效地进行音频信号功率放大,其频率增益达到了设计要求。
音频功率放大器实验报告
音频功率放大器实验报告音频功率放大器实验报告引言:音频功率放大器是一种能够将输入信号放大到足够大的功率输出的电子设备。
它在音响系统、电视机、汽车音响等各种应用中都起到了至关重要的作用。
本实验旨在研究音频功率放大器的工作原理、性能参数以及应用。
一、实验目的本实验的主要目的是通过实际操作,了解音频功率放大器的基本原理和工作过程,掌握其性能参数的测量方法,并对其应用进行初步探索。
二、实验装置与方法实验所需装置包括音频功率放大器、信号发生器、示波器、电阻箱等。
首先,将信号发生器的输出与音频功率放大器的输入相连,通过调节信号发生器的频率和幅度,观察放大器输出的波形和幅度变化。
然后,通过示波器测量放大器的输入输出电压、电流,计算功率放大倍数等性能参数。
三、实验结果与分析在实验过程中,我们观察到音频功率放大器能够将输入信号放大到较大的幅度,并且保持波形的准确性。
通过调节信号发生器的频率,我们发现放大器对不同频率的信号有不同的放大效果。
在低频时,放大器的输出更加稳定,而在高频时,输出波形可能发生畸变。
通过示波器的测量,我们得到了音频功率放大器的输入输出电压、电流数据,并计算出了功率放大倍数。
实验结果显示,放大器的功率放大倍数与输入信号的幅度成正比,而与频率无关。
这说明音频功率放大器对信号的放大是线性的,没有频率响应的变化。
四、实验应用与展望音频功率放大器在现代生活中有着广泛的应用。
它不仅可以用于音响系统、电视机等娱乐设备,还可以应用于医疗设备、通信系统等领域。
在未来的研究中,我们可以进一步探索音频功率放大器的工作原理,优化其性能参数,提高其功率放大倍数和频率响应范围。
此外,随着科技的不断发展,音频功率放大器也在不断更新换代。
新型的功率放大器采用了数字信号处理技术,具有更高的效率和更低的失真。
未来的研究可以关注这些新技术的应用和发展,以满足人们对音频放大器的更高要求。
结论:通过本次实验,我们对音频功率放大器的工作原理、性能参数以及应用有了初步的了解。
音频功率放大电路课程设计报告
一、设计题目:音频功率放大电路二、设计的任务和要求1、主要要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路,负载为扬声器,阻抗8Ω。
2、性能指标:频带宽50HZ ~20kHZ,输出波形基本不失真;电路输出功率大于8W;输入灵敏度为100mV,输入阻抗不低于47KΩ。
三、原理电路和程序设计3.1、方案的确定及论证1、OTA互补对称功率放大器OTL 电路通常由两个对称的异型管构成,因此又称为互补对称电路,图 3-1 为单电源 OTL 互补对称功率放大电路。
电路中 T1 是推动级(电压放大,也叫激励级),其中Rb1、Rb2是 T1 的基极偏置电阻,Re为 T1发射极电阻,Rb为 T1集电极负载电阻,它们共同构成 T1 的稳定静态工作点;T2、T3 组成互补对称功率放大电路的输出级,且 T2、T3工作在乙类状态;C2 为输出耦合电容。
功率放大器采用射极输出器,提高了输入电阻和带负载的能力。
性能分析:乙类互补推挽功放(OTL)的输出功率的计算公式如下:输出功率:Po =UoIo=Uo2/RL输出最大功率:Pom =UoIo=Uo2/RL=Uom2/2RL=VCC2/8RL显然P与电源电压及负载有关om2/8R当输入功率为8w,阻抗8w时,有Pom=VCCV=8*8*8≈22.6v 则电路所需的电源为22.6v。
CC2、用集成器件实现Tda2030简介:TDA2030是德律风根生产的音频功放电路,采用V型5 脚单列直插式塑料封装结构。
该集成电路广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、失真小等特点。
并具有内部保护电路。
电路特点:[1].外接元件非常少。
(基本应用电路图3-2)[2].输出功率大,Po=18W(RL=4Ω)。
[3].采用超小型封装(TO-220),可提高组装密度。
[4].开机冲击极小。
[5].内含各种保护电路,因此工作安全可靠。
主要保护电路有:短路保护、热保护、地线偶然开路、电源极性反接(Vsmax=12V)以及负载泄放电压反冲等。
音频功率放大器的设计报告
高效率音频功率放大器的设计预习报告
一、实验目的
1、了解高效率功率放大器电路的基本构成
2、了解D类功率放大器电路低功耗、低失真、高效率的特点
3、熟悉D类功率放大器的设计过程
4、了解D类功率放大器电路设计的难点
5、熟悉功率放大管等器件
6、掌握小规模电子电路模块调试、联调方法
二、题目背景
D类功率放大器是基于PWM技术的开关放大器一般主要包括三角波发生器、PWM调制器功率电桥和低通滤波器等几部分
正弦波信号和高频三角波信号经过比较后可以产生PWM 信号只要调制平率告,通过低通滤波器后的波形会更接近原来的信号
三、系统组成框图
由运放构成同相比例放大电路对输入音频信号进行放大和增益调整。
三角波发生器产生大于100KHz的三角波信号调制一片信号生成PWM调制波形,通过双向跟随器驱动互补MOS管输出功率调制信号,再通过低通滤波器输出功率信号驱动负载
2 PWM脉冲宽度调制电路。
音频功率放大器设计报告
杭州电子科技大学音频功率放大器设计报告一.设计要求☐设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。
要求直流稳压电源供电,多级电压、功率放大。
输入音频线自备。
☐基本指标:☐频带宽度50Hz~20kHz,输出波形基本不失真;☐电路输出功率大于8W;☐输入阻抗:≥10kΩ;☐放大倍数:≥40dB;☐具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz处有±12dB的调节范围;☐所设计的电路具有一定的抗干扰能力;☐具有合适频响宽度、保真度要好、动态特性好。
二.实验原理音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。
按其构成可分为前置放大级、音调控制级和功率放大级三部分,组成框图如图1-1所示。
图1-1v i三. 设计思路及方案论证 设计思路:首先根据输出功率的确定电源大小和整个系统的增益。
∵音频功率放大器的输出功率P OM ≥8W 。
∴音频功率放大器的输出幅值若输入信号为5mV 时,整个放大系统的电压增益为:,即67dB 。
根据整个放大系统的电压增益,合理分配各级单元电路的增益。
功率放大器级(采用集成功放)电压放大倍数取30倍; 音调控制器放大器在中频(1KHz )处的电压放倍数取1; 前置放大器的电压放大倍数取80(考虑到实际电路中有衰减)。
方案选择: 1. 前置放大器:实验室可为我们提供NE5532运放,所以前置放大器将使用NE5532搭建电路。
为了保证输入电阻足够大,我们选择同相组态,由于同相组态中Av=1+R2/R1,根据设计要求,取R1=910Ω, R2=22K Ω。
具体电路图参见4-12. 音调控制电路:11.3OM V V≥=22601053.113=⨯==-iO M V V V ARp1:高音调节电位器Rp2:低音调节电位器电容C:音频信号输入耦合电容电容C1、C2:低音提升和衰减电容,一般选择C1=C2电容C3:高音提升和衰减作用,要求C3的值远远小于C1。
D类音频功率放大器设计报告
D类音频功率放大器设计报告设计报告:D类音频功率放大器1.引言2.设计目标本次设计的目标是设计一个能够输出15W功率的D类音频功放。
其特点是高效率、低功耗和优质的音质。
3.设计原理D类音频功率放大器的工作原理是将音频信号进行脉冲宽度调制(PWM),并通过一个输出滤波电路转换为模拟音频信号。
具体来说,音频信号首先经过一个比较器,将其与一个高频三角波进行比较,然后产生一个脉冲宽度与音频信号幅度相关的脉冲序列。
这个脉冲序列经过一个电源级输出滤波器,将其转换为模拟音频信号。
4.设计步骤(1)根据设计目标和所选用的功放IC,确定所需的电源电压和电流。
(2)根据音频信号的功率要求,计算所需的输出功率和负载阻抗。
(3)选择合适的比较器和三角波发生器。
(4)设计输出滤波器,使其能够满足所需的频率响应和阻抗匹配。
(5)进行仿真和调试,验证设计的正确性。
(6)根据实际的电路布局和元件参数,进行实际的电路实现。
(7)测试和优化电路性能,确保其能够满足设计要求。
5.设计结果根据上述的设计步骤,设计了一个D类音频功率放大器。
采用了TDA7498E功放IC,输入电压为20V,输出功率为15W,负载阻抗为8Ω。
比较器和三角波发生器选用LM311和LM555、输出滤波器采用LC型,频率响应为20Hz-20kHz。
经过实际制作和测试,该D类音频功率放大器满足了设计要求。
输出功率稳定在15W,失真度低于1%,频率响应平坦度高于±0.5dB。
同时,该功放具有高效率和低功耗的特点,整体性能优良。
6.结论本次设计成功地实现了一个输出功率为15W的D类音频功率放大器。
其设计思路清晰,步骤明确,且实际测试结果良好。
该功放具有高效率、低功耗和优质的音质,适用于各种音频放大场景。
然而,设计中的元件选型、电路布局和参数调整等方面还有待进一步优化和改进。
同时,考虑到市场需求和技术发展,未来的设计可以进一步加入保护电路和调音控制等功能,以提高产品竞争力和用户体验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
音频功率放大器的设计报告
目录
一、设计任务和要求 (2)
二、设计方案的选择与论证 (2)
三、电路设计计算与分析 (4)
UA741介绍 (4)
前级电路原理图及仿真结果 (5)
TDA2030介绍 (6)
音频功放电路原理图及仿真结果 (7)
结果与分析 (8)
总原理图 (9)
PCB图 (10)
四、总结及心得 (12)
五、附录 (14)
六、参考文献 (15)
音频功率放大器的设计
一、设计任务和要求
1、设计任务
设计一音频功率放大器,满足:
(1)、输出功率为1W---2W;
(2)、输出阻抗8-16欧姆;
(3)、带宽:100Hz—10KHz;
2、设计要求
(1)、根据设计指标,确定电路的理论设计;
(2)、学会合理的选择电路的元器件;
(3)、利用multisim软件完成对相关电路模块的仿真分析;
(4)、按时提交课程设计报告,画出设计电路图,交一份A3的图纸,完成相
应的答辩;
二、设计方案的选择与论证
音频功率放大器,简称音频功放,该设备主要用于推动扬声设备发声,因而,在很多电子设备上均有应用,比如,手机、电脑、电视机、音响设备等,是我们生活、学习不可或缺的重要设备,为我们的生活带来了很多便利。
音频功率放大器实际上就是对比较小的音频信号进行放大,使其功率增加,然后输出。
前置放大主要完成对小信号的放大,使用一个同向放大电路对输入的音频小信号的电压进行放大,得到后一级所需要的输入。
后一级的主要对音频进行功率放大,使其能够驱动电阻而得到需要的音频。
设计时首先根据技术
指标要求,对整机电路做出适当安排,确定各级的增益分配,然后对各级电路进行具体的设计。
作为模拟电子课程设计课题设计,本课题提出的音频功率放大器性能指标比较低,主要采用理论课程里介绍的运算放大集成电路和功率放大集成电路来构成音频功率放大器。
功率放大器随着科技的进步是不断发展的,从最初的电子管功率放大器到现在的集成功率放大器,功率放大器经历了几个不同的发展阶段:电子管功放晶体管功放集成功放。
功放按不同的分类方法可分为不同的类型,按所用的放大器件分类,可分为电子管式放大器、晶体管式功率放大器(包括场效应管功率放大器)和集成电路功率放大器(包括厚膜集成功率放大器),目前以晶体管和集成电路式功率放大器为主,电子管功率放大器也占有一席之地。
电子管功率放大器俗称胆机,电子管功放的生产工艺相当成熟,产品的稳定性很高,而离散性极小,特别是它的工作机理决定了它的音色十分温柔,富有人情味,因而成为重要的音响电路形式。
电子管电路的设计、安装、调试都比较简单,期缺点是输出变压器、电源变压器的绕制工艺稍麻烦,耗电大、体积大、有一定的使用期限。
因此在实际使用中有一定的局限性。
现在大功率晶体管种类很多,优质功放电路也层出不穷,因此晶体管功率放大器是应用最广泛的形式。
人们研制出许多优质新型电路使功放的谐波失真,很容易减少到0.05%以下。
场效应管是一种很有潜力的功率放大器件,它具有噪声小、动态范围大、负温度特性等特点,音色和电子管相似,保护电路简单。
场效应管生产技术还在不断发展,场效应管放大器将有更为强大的生命力。
由于集成电路技术的迅速发展,集成电路功率放大器也大量涌现出来,其工艺和指标都达到了很高水平,它的突出特点是体积小、电路简单、性能优越、保护功能齐全等。
三、电路设计计算与分析
总体设计思路框图:
计算公式:
P0=V02
R L
⁄;V0=√R L×P0
2√2<V0<4√2
前级电路选择UA741。
UA741是高增益运算放大器,用于军事,工业和商业应用.这类单片硅集成电路器件提供输出短路保护和闭锁自由运作。
还具有广泛的共同模式,差模信号范围和低失调电压调零能力与使用适当的电位。
1和5为偏置(调零端),2为正向输入端,3为反向输入端,4接地,6为输出,7接电源 8空脚。
UA741放大器为运算放大器中最常被使用的一种,拥有反相向与非反相两输入端,由输入端输入欲被放大的电流或电压信号,经放大后由输出端输出。
放大器作动时的最大特点为需要一对同样大小的正负电源,其值由±12Vdc至±18Vdc不等,而一般使用±15Vdc的电压。
UA741运算放大器使用时需于7、4脚位供应一对同等大小的正负电源电压+Vdc与-Vdc,一旦于2、3脚位即两输入端间有电压差存在,压差即会被放大于输出端,唯Op放大器具有一特色,其输出电压值决不会大于正电源电压+Vdc或小于负电源电压-Vdc,输入电压差经放大后若大于外接电源电压+Vdc至-Vdc之范围,其值会等于+Vdc或-Vdc,故一般运算放大器输出电压均具有如图5之特性曲线,输出电压于到达+Vdc和-Vdc后会呈现饱和现象。
该方案的前置放大电路是由UA741放大器组成的一级放大电路,放大倍数
⁄,取R1=30kΩ, R12=100kΩ,所用电源VCC=12V。
为2,即A=1+R2R1
输入信号为
前置放大电路原理图如下:
前置放大电路图
⁄=4.3
放大倍数A1=1+R2R1
音频功放选择TDA2030。
TDA2030介绍:TDA2030A是电话机根生产的音频功放电路,常采用V型5脚单列直插式塑料封装结构。
如图所示,按引脚的形状引可分为H型和V型。
该集成电路广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、失真小等特点。
并具有内部保护电路。
意大利SGS公司、美国RCA公司、日本日立公司、NEC公司等均有同类产品生产,虽然其内部电路略有差异,但引出脚位置及功能均相同,可以互换。
[1].TDA2030具有负载泄放电压反冲保护电路,如果电源电压峰值电压40V的话,那么在5脚与电源之间必须插入LC滤波器,以保证5脚上的脉冲串维持在规定的幅度内。
[2].TDA2030热保护:限热保护有以下优点,能够容易承受输出的过载(甚至是长时间的),或者环境温度超过时均起保护作用。
[3].TDA2030与普通电路相比较,散热片可以有更小的安全系数。
万一结温超过时,也不会对器件有所损害,如果发生这种情况,Po=(当然还有Ptot)和Io 就被减少。
[4].印刷电路板设计时必须较好的考虑地线与输出的去耦,因为这些线路有大的电流通过。
[5].装配时散热片与之间不需要绝缘,引线长度应尽可能短,焊接温度不得超过260℃,12秒。
[6].虽然TDA2030所需的元件很少,但所选的元件必须是品质有保障的元件。
TDA2030电路特点:
[1].外接元件少。
[2].输出功率较大,Po=18W(RL=4Ω)。
[3].采用超小型封装(TO-220),可提高组装密度。
[4].开机冲击极小。
[5].内含各种保护电路,因此工作安全可靠。
主要保护电路有:短路保护、热保护、地线偶然开路、电源极性反接(Vmax=12V)以及负载泄放电压反冲等。
[6].TDA2030A能在±6V到±22V的电压下工作。
在±19V、8Ω阻抗时能够输出16W的有效功率,THD≤0.1%。
无疑,用它来做低成本电脑有源音箱的功率放大部分或小型功放再合适不过了。
TDA2030引脚:
[1]脚是正向输入端
[2]脚是反向输入端
[3]脚是负电源输入端
[4]脚是功率输出端
[5]脚是正电源输入端。
音频功放电路图
输出波形
输出电流、电压
TDA2030的放大倍数A2=R1
R3
⁄=91
总放大倍数A=A1×A2;A=391。
实际输出电压U O=3.97V,输入电压为U I=0.01V。
实际放大倍数A=397。
计算值与实际值在误差范围内。
根据公式P O=U O×I O;计算得到P O=1.96w;符合题目要求。
电路原理图。