模糊聚类分析方法

合集下载

模糊聚类分析

模糊聚类分析

模糊聚类分析模糊聚类分析,也被称为模糊聚类或者软聚类,是一种数据分析的方法。

与传统的硬聚类不同,模糊聚类可以将每个观测对象划分到不同的聚类中心,从而更好地反映对象与聚类中心之间的相似性。

模糊聚类的思想源于模糊集理论,该理论引入了概率的概念,使得划定边界变得模糊化。

在传统的硬聚类方法中,每个对象只能属于一个聚类,而在模糊聚类中,每个对象的隶属度被划分为一个实数,表示对象属于每个聚类的程度。

模糊聚类的基本原理是通过最小化目标函数来优化聚类结果。

常见的目标函数包括模糊熵和模糊轮廓系数。

模糊熵用于衡量聚类的混乱程度,值越小表示聚类更好。

模糊轮廓系数则用于评价每个对象的聚类紧密度和分离度,系数范围为[-1, 1],越接近1表示聚类结果越好。

模糊聚类的算法有多种,其中最常用的是模糊C均值(FCM)算法。

FCM算法首先随机初始化聚类中心,然后迭代更新对象的隶属度和聚类中心,直到满足终止条件。

在更新过程中,对象的隶属度和聚类中心根据距离度量进行调整。

模糊聚类在各个应用领域都有广泛的应用。

例如,在市场细分中,模糊聚类可以根据消费者的购买偏好将其划分为不同的细分市场,有助于制定更准确的营销策略。

在医学影像分析中,模糊聚类可以帮助医生根据患者的病情将其归类为不同的疾病类型,有助于做出更准确的诊断。

当然,模糊聚类也存在一些问题和挑战。

首先,模糊聚类的计算复杂度高,特别是在处理大规模数据时。

其次,模糊聚类对初始参数的敏感性较高,不同的初始化可能导致不同的聚类结果。

此外,模糊聚类的结果通常难以解释和理解,需要结合领域知识进行进一步分析。

为了克服这些问题,研究者们一直在不断改进模糊聚类算法。

例如,一些研究探索了基于深度学习的模糊聚类方法,利用神经网络来提高聚类的准确性和效率。

此外,还有一些研究致力于开发新的目标函数和距离度量方法,以更好地满足实际问题的需求。

综上所述,模糊聚类是一种基于模糊集理论的数据分析方法,可以更好地刻画对象之间的相似性。

模糊聚类分析

模糊聚类分析

模糊聚类分析是一种数学方法,它使用模糊数学语言根据某些要求对事物进行描述和分类。

模糊聚类分析通常是指根据研究对象的属性构造模糊矩阵,并在此基础上根据一定隶属度确定聚类关系,即样本之间的模糊关系由样本的数量来确定。

模糊数学方法,以客观,准确地聚类。

聚类是将数据集划分为多个类或群集,以便每个类之间的数据差异应尽可能大,并且该类内的数据差异应尽可能小基本覆盖当涉及事物之间的模糊边界时,模糊聚类分析是一种根据某些要求对事物进行分类的数学方法。

聚类分析是数学统计中的一种多元分析方法是利用数学方法定量确定样品之间的关系,从而客观地分类类型。

事物之间的某些界限是精确的,而其他界限则是模糊的。

人群中人脸的相似度之间的界限是模糊的,多云和晴天之间的界限也是模糊的。

当聚类涉及事物之间的模糊界限时,应使用模糊聚类分析方法。

模糊聚类分析广泛应用于气象预报,地质,农业,林业等领域。

通常,聚类的事物称为样本,一组事物称为样本集。

模糊聚类分析有两种基本方法:系统聚类和逐步聚类。

基本方法基本流程(1)通过计算样本或变量之间的相似系数,建立模糊相似矩阵;(2)通过对模糊矩阵进行一系列综合变换,生成模糊等效矩阵。

(3)最后,根据不同的截获水平λ对模糊等效矩阵进行分类系统聚类方法系统聚类方法是一种基于模糊等价关系的模糊聚类分析方法。

在经典聚类分析方法中,经典等价关系可用于对样本集X进行聚类。

令R为X上的经典等价关系。

对于X中的两个元素x和Y,如果XRY或(x,y)∈R ,然后x和y,否则X和y不属于同一类。

[3]使用这种方法,分类的结果与α的值有关。

α的值越大,划分的类别越多。

当α小于某个值时,X中的所有样本将被归为一类。

该方法的优点是可以根据实际需要选择α值,以获得正确的分类。

系统聚类的步骤如下:①用数字描述样品的特性。

设要聚类的样本为x = {x1,xn}。

每个样本具有p个特征,记录为Xi =(Xi1,xip);i = 1,2,…,N;XIP是描述样本Xi的第p个特征的编号。

模糊聚类分析ppt课件

模糊聚类分析ppt课件

k 1
1 2
m k 1
(
xik
x jk )
m
( xik x jk )
rij
k 1 m
xik .x jk
k 1
5. 求模糊等价矩阵
用上述方法建立起来的模糊矩阵 R ,一般说来只 满足自反性和对称性,不一定满足传递性,即 R 不一 定是模糊等价关系,需要将 R改造成模糊等价矩阵R,
然后再在适当的阈值上进行截取,便可得所需分类。
根据需要可同时选择不同准则分别进行聚类分析,然后 通过综合取交的方法,以做到兼顾多目标,使分类结果更科学。
3、建立数据矩阵
设论域U { x1, x2 ,, xn }为被分类对象, 每个对象又由m 个指标表示其性状:
xi { xi1, xi2 ,, xim } (i 1,2,, n) 则得到原始数据矩阵为 X ( xij )nm .
1, 2,..., m
构造下列形式的F统计量,
r
i
2
ni x x /(r 1)
F i1 r ni
xij
i
x
2
/(n r)
i1 jn1
x x 其中, 为 i x x
m
i
(xk
xk )2
i

的距离, xij x i
i 为第
k 1
类中样本
xij 与
i
x 的距离。
F 统计量分子表征类与类之间的距离, 分母表示类内样本间距离,因此 F 值越大,说
改造的方法是将 R 自乘得 R R R2,再自 乘 R2 R2 R4 ,如此继续下去,得 R8 , R16 ……,至某 一步出现 R2k Rk 为止。则 Rk便是一个模糊等价关系。 这个方法是由所谓“传递闭包”理论而来,我们在此 拿来直接应用,不再作详细介绍。

模糊聚类的分析

模糊聚类的分析

模糊聚类的分析
模糊聚类是一种聚类分析的算法,它采用模糊的方法将数据点归类到不同的类别中,以减少聚类的误差。

模糊聚类是机器学习领域的一种流行的算法,它利用每个数据点的模糊属性来衡量其分布在不同类别中的相似度,使得它能够更加准确的进行聚类分析。

模糊聚类的基本原理是把数据点归类到不同的类别中,每个类别都有一系列模糊属性,每个数据点在不同类别中的分布由它们在每个属性上的值来决定。

模糊聚类的最终目标是找到类别与数据点之间的最佳拟合,从而得到最佳聚类结果。

模糊聚类的实现是通过计算每个数据点与每个类别的模糊相似
度来完成的,模糊相似度是基于数据点和每个类别的模糊属性,通过计算每个数据点与每个类别的模糊相似度,可以找到一个最佳的类别,把每个数据点归入该类别,这样就可以得到最优聚类结果。

模糊聚类方法可以用来解决多维数据集聚类分析的问题,它能够更准确的表示多维数据的特征,这使得它能够更准确的对数据进行聚类分析。

此外,模糊聚类方法还能够处理非均匀分布的数据,它能够有效的处理因类别数量和混乱的环境而难以聚类的数据。

模糊聚类的缺点主要在于它的计算速度较慢,因为它需要计算每个数据点与每个类别的模糊相似度,而这需要大量的计算,模糊聚类也无法用于对超大型数据集进行聚类分析,因为它的计算效率较低。

因此,模糊聚类是一种聚类分析算法,它利用模糊性来更准确的表示数据的特征,能够有效的处理多维和复杂的数据。

但是它的计算
效率较低,也不能用于对超大型数据集进行聚类分析,因此,在使用模糊聚类进行聚类分析时,需要考虑其效率和应用限制。

火灾危险评估中的模糊决策方法有哪些

火灾危险评估中的模糊决策方法有哪些

火灾危险评估中的模糊决策方法有哪些火灾是一种极其危险的灾害,给人们的生命财产安全带来了巨大的威胁。

为了有效地预防和控制火灾,对火灾危险进行准确的评估至关重要。

在火灾危险评估中,模糊决策方法因其能够处理不确定性和模糊性信息而得到了广泛的应用。

一、模糊综合评价法模糊综合评价法是一种基于模糊数学的综合评价方法。

它将多个因素对评价对象的影响进行综合考虑,通过建立模糊评价矩阵和确定权重,最终得出综合评价结果。

在火灾危险评估中,首先需要确定评价因素,如火源特性、可燃物分布、建筑结构、消防设施等。

然后,对每个评价因素划分不同的等级,并赋予相应的模糊隶属度。

例如,火源特性可以分为强、中、弱三个等级,分别对应不同的模糊隶属度。

接下来,通过专家打分或实际数据统计等方式确定各评价因素的权重。

最后,利用模糊运算规则计算出综合评价结果,从而判断火灾危险的程度。

这种方法的优点是能够全面考虑多个因素的影响,并且可以处理评价因素的模糊性和不确定性。

但它也存在一定的局限性,例如权重的确定可能存在主观性,评价结果的准确性依赖于评价因素和等级的划分是否合理。

二、模糊层次分析法模糊层次分析法是将层次分析法与模糊数学相结合的一种方法。

层次分析法通过将复杂问题分解为多个层次和因素,并进行两两比较,确定各因素的相对重要性。

而模糊层次分析法则在此基础上,引入了模糊数来表示两两比较的结果,从而更好地处理不确定性。

在火灾危险评估中,运用模糊层次分析法可以构建火灾危险评估的层次结构模型,包括目标层、准则层和指标层。

目标层即为火灾危险程度的评估;准则层可以包括火灾发生的可能性、火灾的危害程度等;指标层则是具体的评估指标,如火源类型、人员密度等。

通过专家判断或问卷调查等方式,对各层次因素进行两两比较,并用模糊数表示比较结果。

然后,利用模糊数的运算规则计算出各因素的权重。

最后,综合各因素的权重和评价结果,得出火灾危险的评估值。

模糊层次分析法在处理复杂系统的多因素决策问题时具有较好的效果,能够有效地降低主观因素的影响,但计算过程相对较为复杂。

模糊聚类分析

模糊聚类分析

模糊聚类分析是根据客观事物的特征、亲和度和相似度建立模糊相似关系,对客观事物进行聚类的一种分析方法。

当涉及到事物之间的模糊边界时,根据一定的要求对事物进行分类的一种数学方法。

聚类分析是数理统计中的一种多元分析方法,它利用数学方法定量地确定样本之间的亲和力,从而客观地对类型进行分类。

一些事物之间的界限是精确的,而另一些则是模糊的。

人与人之间脸部相似的界限是模糊的,天气之间的界限也是模糊的。

当聚类涉及到事物之间的模糊边界时,应使用模糊聚类分析方法。

模糊聚类分析在天气预报、地质、农业、林业等领域有着广泛的应用。

通常,聚类物称为样本,一组聚类物称为样本集。

模糊聚类分析的基本方法有两种:系统聚类法和逐步聚类法。

概述。

在数据分类中,常用的分类方法包括多元统计中的系统聚类、模糊聚类分析等;在模糊聚类分析中,首先要计算模糊相似矩阵,不同的模糊相似矩阵会产生不同的分类结果;即使使用相同的模糊相似矩阵,不同的阈值也会产生不同的分类结果。

“如何确定这些分类的有效性”成为模糊聚类的关键点。

这是识别研究中的一个重要问题。

在文献中,不能令人满意的有效性归因于数据集的几何结构不令人满意。

但笔者认为,不同的几何结构反映了实际需要。

我们不能排除实际需要,追求所谓的“理想几何结构”。

分类不理想不能归因于数据集的几何结构。

对于相同的模糊相似矩阵,文献建立了一种判断模糊聚类有效性的方法。

在有固定显著性水平的情况下,在不同分类中选择F统一测量临界值与F检验临界值之间的最大差值是一种有效的分类方法。

但是,当显著性水平发生变化时,该方法的结果也会发生变化。

文献引入模糊划分办公室来评价模糊聚类的有效性,并人为规定当两个类别的办公室大于1时,两个类别可以合并,最终通过逐次合并得到有效的分类。

这种方法有较多的人为干预,当指定的数量不同时,会得到不同的结果。

系统聚类法。

系统聚类法是一种基于模糊等价关系的模糊聚类分析方法。

在经典的聚类分析方法中,样本集可以通过经典的等价关系进行聚类。

模糊聚类分析方法

模糊聚类分析方法

模糊聚类分析方法对所研究的事物按一定标准进行分类的数学方法称为聚类分析,它是多元统 计“物以类聚”的一种分类方法。

载科学技术、经济管理中常常要按一定的标准 (相似程度或亲疏关系)进行分类。

例如,根据生物的某些性状可对生物分类, 根据土壤的性质可对土壤分类等。

由于科学技术、经济管理中的分类界限往往不 分明,因此采用模糊聚类方法通常比较符合实际。

一、模糊聚类分析的一般步骤1、第一步:数据标准化[9](1)数据矩阵设论域U ={X i ,X 2,||l,X n }为被分类对象,每个对象又有m 个指标表示其性状,于是,得到原始数据矩阵为Xm 1X m2bI-Xnm」其中X nm 表示第n 个分类对象的第m 个指标的原始数据(2)数据标准化在实际问题中,不同的数据一般有不同的量纲,为了使不同的量纲也能进行 比较,通常需要对数据做适当的变换。

但是,即使这样,得到的数据也不一定在 区间[0,1]上。

因此,这里说的数据标准化,就是要根据模糊矩阵的要求,将数据 压缩到区间[0,1]上。

通常有以下几种变换: ① 平移•标准差变换X i = {x i1, X i2,川,X m }X i 1X2 1X n2 IHxik -(i 一 1,21 n, k_;HL 2mS k其中-1 n1 n_ 2xkxi , 2(xik~'兀)。

n i 4: n i 4经过变换后,每个变量的均值为 0,标准差为1,且消除了量纲的影响。

但是,再用得到的x k 还不一定在区间[0,1]上。

② 平移•极差变换显然有0乞x ik 乞1,而且也消除了量纲的影响 ③ 对数变换xk- lg x ik (i = 1,n , k; l [L 2 m取对数以缩小变量间的数量级。

2、第二步:标定(建立模糊相似矩阵)设论域U ={为公2,川,人} , X i ={为1必2,川,心},依照传统聚类方法确定相似 系数,建立模糊相似矩阵,x i 与X j 的相似程度用=R(X j ,X j )。

模糊聚类分析法

模糊聚类分析法

关于模糊聚类法的研究及在空间信息技术中的应用模糊聚类分析 (3)一、简介 (3)1. 简要介绍 (3)2. 分类方法 (3)1. 综述 (3)2. 系统聚类法 (2)逐步聚类法 (3)2.最优分类 (3)模糊聚类分析1. 简要介绍涉及事物之间的模糊界限时按一定要求对事物进行分类的数学方法。

聚类分析是数理统计中的一种多元分析方法,它是用数学方法定量地确定样本的亲疏关系,从而客观地划分类型。

事物之间的界限,有些是确切的,有些则是模糊的。

例如人群中的面貌相像程度之间的界限是模糊的,天气阴、晴之间的界限也是模糊的。

当聚类涉及事物之间的模糊界限时,需运用模糊聚类分析方法。

模糊聚类分析广泛应用在气象预报、地质、农业、林业等方面。

通常把被聚类的事物称为样本,将被聚类的一组事物称为样本集。

模糊聚类分析有两种基本方法:系统聚类法和逐步聚类法。

2. 分类方法1综述数据分类中,常用的分类方法有多元统计中的系统聚类法、模糊聚类分析等.在模糊聚类分析中,首先要计算模糊相似矩阵,而不同的模糊相似矩阵会产生不同的分类结果;即使采用相同的模糊相似矩阵,不同的阑值也会产生不同的分类结果•“如何确定这些分类的有效性”便成为模糊聚类和模糊。

识别研究中的一个重要问题.文献,把有效性不满意的原因归结于数据集几何结构的不理想•但笔者认为,不同的几何结构是对实际需要的反映,我们不能排除实际需要而追求所谓的“理想几何结构”,不理想的分类不应归因于数据集的几何结构.针对同一模糊相似矩阵,文献建立了确定模糊聚类有效性的方法•用固定的显著性水平,在不同分类的F—统计量和F检验临界值的差中选最大者,即为有效分类•但是,当显著性水平变化时,此方法的结果也会变化.文献引进了一种模糊划分嫡来评价模糊聚类的有效性,并人为规定当两类的嫡大于一数时,此两类可合并,通过逐次合并,最终得到有效分类•此方法人为干预较多,当这个规定数不同时,也会得到不同的结果•另外这两种方法也未比较不同模糊相似矩阵的分类结果2•系统聚类法系统聚类法是基于模糊等价关系的模糊聚类分析法。

模糊聚类分析

模糊聚类分析

模糊聚类分析引言模糊聚类分析是一种基于模糊理论的聚类方法,它可以处理数据中的不确定性和模糊性,并将数据点划分到不同的类别中。

相比于传统的硬聚类方法,模糊聚类能够更好地适应现实生活中复杂的数据分布和不完全的信息。

模糊聚类算法模糊聚类算法主要基于模糊C均值(FCM)算法和模糊子空间聚类(FSC)算法。

下面将分别介绍这两种算法的基本原理。

模糊C均值算法(FCM)模糊C均值算法是一种经典的模糊聚类算法,它通过最小化目标函数来找到数据集的最佳划分。

目标函数基于数据点到聚类中心的距离和每个数据点在每个聚类中心上的隶属度。

通过迭代优化隶属度矩阵和聚类中心,FCM算法可以得到最优的聚类结果。

模糊子空间聚类算法(FSC)模糊子空间聚类算法是一种基于模糊理论和子空间聚类的算法。

它考虑了数据在不同子空间中的不完全信息和模糊性,并利用这些信息进行聚类。

FSC算法首先将数据进行主成分分析,得到数据在每个子空间中的投影,然后通过优化模糊聚类目标函数来获得最佳的聚类结果。

模糊聚类的应用领域模糊聚类分析在许多领域都得到了广泛的应用。

下面以几个典型的应用领域为例进行介绍。

图像分割图像分割是计算机视觉领域中一个重要的问题,它的目标是将一个图像划分为不同的区域或物体。

传统的图像分割方法往往需要事先确定分割的类别和特征,而模糊聚类可以自动学习图像的特征并进行分割。

模糊聚类算法在图像分割中已经取得了一定的成果,并被广泛应用于医学图像分割、遥感图像分割等领域。

文本聚类文本聚类是将文本数据根据其语义和主题进行分类的任务。

模糊聚类可以考虑到文本中的模糊性和不确定性,能够更好地处理大规模文本数据并得到较为准确的聚类结果。

模糊聚类在文本挖掘、信息检索等领域有着广泛的应用。

生物信息学生物信息学是研究生物学的大规模数据集和生物信息的学科。

模糊聚类能够发现生物数据中的潜在结构和模式,从而帮助研究人员理解生物学中的复杂关系。

模糊聚类在基因表达数据分析、蛋白质序列分类等生物信息学研究中有重要的应用。

模糊聚类分析法

模糊聚类分析法

模糊聚类分析方法
分类伴随着模糊性,将模糊数学中的有关概念与方法引进聚类分析,通过建立模糊相似关系,进而对客观事物进行分类。

(1)原始数据标准化
要构造模糊关系矩阵,必须对样本进行数据进行预处理,使样本数据压缩到[0,1]闭区间内,首先求出n个样本的第j个指标的平均值和标准差。

原始数据标准化值为
运用极值标准化公式,将标准化数据压缩到[0,1]闭区间内
其中与分别表示中最小值和最大值。

(2)相似系数法——标定
为了建立模糊相似矩阵,引入相似系数
这里表示两个样本与之间相似程度的变量,当接近于1,表明这两个样本越接近。

的确定方法:
相关系数法:
归一化互信息
表示样本的表达数据在个不同表达水平的发生率(概率)
距离法:欧氏距离
C选取适当的正数,使在[0,1]区间内
(3)模糊相似矩阵——聚类
通过上述标定,得到模糊相似矩阵,反映了样本间的相似关系,但它只具有自反性和对
称性,不具有传递性,此时,可以通过平方法得到的传递闭包,而就是论域上
的一个模糊等价矩阵,选择不同的值,得到不同的水平截集,得到动态聚类结果,生成动态聚类树。

模糊聚类方法

模糊聚类方法

模糊聚类方法模糊聚类是一种基于模糊集合理论的聚类算法,它在数据分析和模式识别中得到广泛应用。

与传统的硬聚类方法相比,模糊聚类能够更好地处理数据中的不确定性和模糊性,能够给出每个数据点属于不同聚类的概率,从而更全面地描述数据的特征。

一、模糊聚类的基本原理模糊聚类的基本原理是根据数据点之间的相似性将它们分成不同的聚类。

与传统的硬聚类方法不同,模糊聚类允许数据点属于多个聚类,且给出每个数据点属于不同聚类的权重。

通过引入隶属度函数,模糊聚类能够更好地处理数据的模糊性,给出更丰富的聚类结果。

二、模糊聚类的算法步骤模糊聚类的算法步骤一般包括以下几个方面:1. 初始化隶属度矩阵:隶属度矩阵用于描述每个数据点属于每个聚类的概率,一般通过随机初始化或者根据先验信息进行初始化。

2. 计算聚类中心:根据隶属度矩阵计算每个聚类的中心点,一般采用加权平均的方式计算。

3. 更新隶属度矩阵:根据当前的聚类中心,更新隶属度矩阵,使得每个数据点更准确地属于不同聚类。

4. 判断停止条件:根据一定的准则(如隶属度矩阵的变化程度或者目标函数的收敛性)判断是否达到停止条件,如果未达到,则返回第2步继续迭代。

5. 输出聚类结果:根据最终的隶属度矩阵,确定每个数据点最可能属于的聚类,输出聚类结果。

三、模糊聚类的优势相比传统的硬聚类方法,模糊聚类具有以下优势:1. 能够更好地处理数据的模糊性和不确定性。

在现实世界的数据中,往往存在一些边界模糊或者属于多个类别的情况,传统的硬聚类无法很好地处理这种情况,而模糊聚类能够给出每个数据点属于不同聚类的概率。

2. 能够更全面地描述数据的特征。

传统的硬聚类方法只能将数据点划分为一个聚类,而模糊聚类能够给出每个数据点属于不同聚类的权重,从而更全面地描述数据的特征。

3. 能够适应不同的聚类形状和大小。

传统的硬聚类方法通常假设聚类的形状是凸的,并且假设聚类的大小相等,但在实际应用中,聚类的形状和大小往往是不确定的,而模糊聚类能够更好地适应不同的聚类形状和大小。

Matlab中的模糊聚类分析方法探究

Matlab中的模糊聚类分析方法探究

Matlab中的模糊聚类分析方法探究一、引言近年来,随着数据科学和机器学习的迅速发展,模糊聚类分析成为了处理模糊和不确定性数据的一种重要方法。

而在众多的模糊聚类算法中,Matlab中提供的模糊C-均值聚类算法(Fuzzy C-Means clustering)无疑是其中最受瞩目的。

本文旨在探究Matlab中的模糊聚类分析方法,并对其应用进行深入剖析。

二、模糊聚类分析方法概述模糊聚类分析是一种基于模糊数学的聚类方法。

与传统的硬聚类方法不同,模糊聚类允许数据点属于多个聚类中心,以概率形式给出。

这种灵活性使得模糊聚类能够更好地处理存在模糊性和不确定性的数据。

模糊C-均值算法是模糊聚类中的一种经典算法,也是Matlab中常用的模糊聚类算法。

该算法的基本思想是:通过迭代地分配数据点到聚类中心,并更新聚类中心,不断优化聚类结果。

具体而言,算法的步骤包括初始化聚类中心、计算数据点与聚类中心的距离、根据距离更新模糊划分矩阵和聚类中心等。

三、Matlab中的模糊聚类分析方法在Matlab中,模糊C-均值算法可以通过fuzzy方法或fcm方法进行实现。

这两个方法均提供了一系列参数和选项,以满足不同应用场景的需求。

1. fuzzy方法fuzzy方法是Matlab中的基于模糊理论的聚类方法。

通过设置模糊聚类的目标函数和约束条件,可以实现不同的聚类分析。

该方法对应的函数为fcm函数。

在调用fcm函数时,需要指定数据集、聚类数、迭代次数等参数。

同时,还可以通过设置模糊度指数和终止条件等参数控制聚类的具体过程。

值得一提的是,该方法还支持自动确定聚类数的操作,为聚类分析提供了更大的灵活性。

2. fcm方法fcm方法也是Matlab中的模糊C-均值算法的一种实现方式。

与fuzzy方法相比,fcm方法更加灵活,并且在处理大规模数据时速度更快。

该方法对应的函数为fcm函数。

在使用fcm函数时,需要设置与fuzzy方法类似的参数,例如数据集、聚类数和迭代次数等。

模糊数学2模糊聚类分析方法模糊综合评判方法

模糊数学2模糊聚类分析方法模糊综合评判方法

❖ (1)单层次模糊综合评判模型 设X={x1,x2…xn}是综合评判因素所组成集合,
Y={y1,y2…yn}是评语所组成的集合。
R:X→Y rij=µR(xi,yj) 元素rij表示xi符合yj标准的程度。
A=(a1,a2…an)是各评判因素的权重分配,
则评判结果 B=A◦R.

我们对于某学校的校园网络一期建设情况进行评判,设包括三个因 素,即硬件建设,软件建设、人员培训,用论域U表示为:
0.38 0.8 0.67
0.49 1375 931源自0.380.80.67
0.93
0.95 0.67 0.94
0.9
0.94 0.67 0.95
1
0.99
0.99 0.45 0.55
0.99
1
0.99 0.45 0.55
0.99
0.45 0.55
0.99
0.45 0.55
1
0.45 0.55
0.45 1
0.49137 5931
0.93
0.9
1 0.67 0.94 0.38
0.38
0.38 0.95 0.94
0.67 1 0.67
0.94 0.67 1
0.8 0.67
0.8 0.67
0.8 0.67
0.67 0.94 0.67 0.95
0.49137 5931
0.38 0.8 0.67
0.49137 5931
较好
40% 30% 10%
可以
10% 20% 30%
不好
0 10% 60%
0.2 R ~
0.7
0.1
0
上表就构成模糊矩阵 R= 0
0.4 0.5 0.1

模糊聚类分析

模糊聚类分析

查德 1965 年给出的定义:
定义:从论域 U 到闭区间0, 1 的任意一个映射:A :U 0, 1 ,对 任意u U ,u A Au , Au 0, 1 ,那么A 叫做 U 的一个模糊
子集, Au 叫做 u 的隶属函数,也记做A u 。
简单地可表达为:
设U是论域,称映射 A(x):U→[0,1]
39 C 以上的一人,x1 ;
如 果 规 定 37.5 C 以 下 的 不 算 发 烧 , 问 有 多 少 发 烧 病 人 ? 医 生 就 可 以 回 答 :
x1, x3, x4 , x5 ,但所谓“发烧”实际上是一个模糊概念,它存在程度上的不同,也就是
说要用隶属函数来描述。如果根据医师的经验规定,对“发烧”来说:
(1) AB AB; (2) ≤ A A; (3) (A∪B)= A∪B,(A∩B)= A∩B.
4、隶属函数的确定
1. 模糊统计方法 与概率统计类似,但有区别:若把概率
统计比喻为“变动的点”是否落在“不动的 圈”内,则把模糊统计比喻为“变动的圈” 是否盖住“不动的点”.
2. 指派方法 一种主观方法,一般给出隶属函数的解
一、模糊集及模糊关系
1、模糊问题的提出
在自然科学或社会科学研究中,存在着许多定义 不很严格或者说具有模糊性的概念。这里所谓的模 糊性,主要是指客观事物的差异在中间过渡中的不 分明性,如某一生态条件对某种害虫、某种作物的 存活或适应性可以评价为“有利、比较有利、不那 么有利、不利”;灾害性霜冻气候对农业产量的影 响程度为“较重、严重、很严重”,等等。这些通 常是本来就属于模糊的概念,为处理分析这些“模 糊”概念的数据,便产生了模糊集合论。
体温39 C 以上的隶属函数 x 1 ; 体温38.5 C 以上不到39 C 的隶属函数 x 0.9 ; 体温38 C 以上不到38.5 C 的隶属函数 x 0.7 ; 体温37.5 C 以上不到38 C 的隶属函数 x 0.4 ; 体温37.5 C 以下的隶属函数 x 0 ;

模糊聚类分析

模糊聚类分析

模糊聚类分析----96845308-7160-11ec-a68e-7cb59b590d7d聚类分析就是将一个没有类别标记的样本集按照某种准则划分成若干个子集(类),使相似的样本尽可能归为一类,而不相似的样本尽可能划分到不同的类中。

由于在对样本集进行聚类的过程中,没有任何关于类别的先验知识,所以聚类分析属于无监督分类的范畴。

传统的聚类分析是一种硬划分,它严格地将每个待识别对象划分为一个类。

阶级划分的界限是明确的,具有非此即彼的性质。

在现实世界中,无论是一组对象根据其亲和力和相似性形成一个组,还是一个对象是否属于一个类别,其边界往往是不明确的,并且具有“这个和那个”的性质。

对于这种具有不确定性的聚类问题,模糊聚类分析提供了一种强有力的分析工具。

模糊聚类分析能够建立样本对于类别的不确定性描述,表达样本类属的中介性,已经成为聚类分析研究的主流。

粗略来讲,模糊聚类分析方法可分为两类:基于模糊等价关系的聚类方法和基于目标函数的聚类方法。

有时,这两类方法也结合起来使用。

一、数据预处理在模糊聚类分析中,我们称待分类的对象为样本。

要对样本进行合理的分类,首先应考虑样本的各种特性指标(观测数据)。

设有n个被分类对象,即样本集为x={x1,x2,…,xn}每一个xi有m个特性指标,即xi可表示为特性指标向量xi={xi1,xi2,…,xim}其中xij表示第i个样本的第j个特性指标。

于是,n个样本的特性指标矩阵为⎜⎜x21⎜M⎜⎜十、⎜n1x12lx1m⎜x22lx2m⎜xn2lxnm⎜⎜通常,我们也将样本集记为特性指标矩阵的形式,即x=(xij)n×m。

如果M个特征指标的维度和数量级不同,在运行过程中可能会突出一些大数量级特征指标的作用,而一些小数量级特征指标的作用可能会减少甚至被排除,导致每个特征指标的分类缺乏统一的尺度。

因此,为了消除不同特征指标单位和数量级的影响,当特征指标的维度和数量级不同时,通常会提前对各种指标值进行数据标准化(归一化),使每个指标值统一在一个共同的数值特征范围内。

模糊聚类分析法

模糊聚类分析法

4.聚类(求动态聚类图)
(1)基于模糊等价矩阵聚类方法 有① 传递闭包法② 布尔矩阵法 (2) 直接聚类法 对上述撤销观测站的问题用基于模 糊等价矩阵的模糊聚类方法进行分 析

注:R是对称矩阵,故只写出它的下三角矩阵
1.000 0.861 0.697 0.861 0.861 R * 0.861 0.994 0.719 0.697 0.688 0.719 1 0.697 1 0.996 0.697 1 0.996 0.697 0.992 1 0.995 0.697 0.922 0.922 1 0.719 1 0.697 0.676 1 0.688 0.688 0.697 1 0.719 0.688 0.697 0.688 1
, 而且也消除了量纲的影响。 ③ 对数变换
显然有

取对数以缩小变量间的数量级。
3.建立模糊相似矩阵
建立模糊相似矩阵,主要借用传统聚类的相似系数法、距离法以及其 他方法。相似系数表示两个对象之间的相似程度.
得到模糊相似矩阵R
1.000 0.839 0.528 0.844 0.828 0.702 0.995 0.671 0.431 0.573 0.712 0.839 1.000 0.542 0.996 0.989 0.899 0.855 0.510 0.475 0.617 0.572 0.528 0.542 1.000 0.562 0.585 0.697 0.571 0.551 0.962 0.642 0.568 0.844 0.996 0.562 1.000 0.992 0.908 0.861 0.542 0.499 0.639 0.607 0.828 0.989 0.585 0.992 1.000 0.922 0.843 0.526 0.512 0.686 0.584 0.702 0.899 0.697 0.908 0.922 1.000 0.726 0.455 0.667 0.596 0.511 0.995 0.855 0.571 0.861 0.843 0.726 1.000 0.676 0.489 0.587 0.719 0.671 0.510 0.551 0.542 0.526 0.455 0.676 1.000 0.467 0.678 0.994 0.431 0.475 0.962 0.499 0.512 0.667 0.489 0.467 1.000 0.487 0.485 0.573 0.617 0.642 0.639 0.686 0.596 0.587 0.678 0.487 1.000 0.688 0.712 0.572 0.568 0.607 0.584 0.511 0.719 0.994 0.485 0.688 1.000

模糊聚类的概念

模糊聚类的概念

模糊聚类的概念模糊聚类是一种基于模糊理论的聚类分析方法,它用于将具有相似特征的对象分成若干个不相交的类别,并且允许某个对象同时属于多个类别。

相比于传统的硬聚类方法,模糊聚类更能够灵活地处理数据的不确定性和模糊性。

模糊聚类的核心思想是通过计算每个数据点与聚类中心的相似度来决定其属于某个类别的程度。

相似度通常通过某种距离度量来衡量,常用的度量方法包括欧氏距离、曼哈顿距离和余弦相似度等。

通过不断迭代调整聚类中心,使得每个数据点与聚类中心的相似度不断增加,从而找到最优的聚类划分。

与传统的硬聚类方法相比,模糊聚类有以下几个优势。

首先,模糊聚类能够给出每个数据点属于每个类别的程度,而不仅仅是给出一个确定的类别。

这样的结果更符合实际情况,因为有些数据点可能具有多个属性,属于多个类别,而传统的硬聚类无法处理这种情况。

其次,模糊聚类能够更好地处理数据的噪声和不确定性。

对于存在噪声的数据,传统的硬聚类可能会将其归为一个错误的类别,而模糊聚类可以通过计算相似度的程度来减小这种错误的影响。

最后,模糊聚类能够自动确定聚类个数。

传统的硬聚类需要事先确定聚类个数,而模糊聚类能够根据数据的特性自动调整聚类中心的个数。

模糊聚类的算法主要分为以下几个步骤。

首先,选择合适的距离度量方法和定义模糊相似度的方法。

常用的距离度量方法有欧氏距离和曼哈顿距离,而模糊相似度的定义方法有模糊C均值和模糊谱聚类等。

其次,初始化聚类中心。

可以随机选择一些数据点作为初始聚类中心,或者按照某种规则选择一些样本作为初始聚类中心。

然后,计算每个数据点与聚类中心的相似度,并根据相似度重新调整每个数据点的隶属度。

随后,根据新的隶属度计算新的聚类中心,并判断是否满足停止准则。

如果满足停止准则,则停止迭代,算法结束;否则,返回第三步继续迭代。

迭代的停止准则通常是根据聚类中心的变化情况来确定的。

模糊聚类的应用非常广泛。

例如,模糊聚类可以用于图像分割,将图像中相似的像素分到同一个类别中,从而实现图像的分割和识别。

模糊聚类的分析

模糊聚类的分析

模糊聚类的分析模糊聚类是一种新兴的数据挖掘技术,它既可以结合经典聚类方法,又可以采用模糊逻辑理论。

模糊聚类把数据聚类的过程分解为两个阶段:测量和模糊聚类。

它的优点在于可以处理不确定的数据,并且对大量的数据有明显的优势。

模糊聚类是以模糊逻辑理论为基础的一种聚类方法。

与常规的聚类方法不同,模糊聚类的目的是把数据点归类到具有不同程度相似度的聚类中。

模糊聚类可以使用模糊逻辑,捕捉数据点之间不显著的相关性,而绕开实际相关矩阵中的障碍。

模糊聚类的核心过程主要有两种:测量和模糊聚类。

测量过程是模糊聚类中最重要的步骤,其目的是识别数据点之间的相似度。

模糊聚类过程的核心是构建模糊关联矩阵,它可以把数据点归类到不同的相似度类别中。

通常,模糊聚类的测量过程主要采用距离度量和角度度量来完成。

距离度量主要是指以欧氏距离、曼哈顿距离和切比雪夫距离为代表,能够直接测量数据点之间的距离;角度度量则是以余弦相似度为代表,能够衡量数据点之间的角度大小。

模糊聚类的聚类过程是把数据点归类到不同的聚类中。

这一步骤是根据距离或角度度量值来实现的,它把数据点归类到按照相似度排列的聚类中。

通常,模糊聚类的聚类过程主要由两个步骤组成:构建模糊关联矩阵(FCM)和求解模糊关联矩阵(FCM)。

模糊聚类有着很多优点:首先,它可以处理不确定性数据,它可以综合考虑模糊逻辑中不确定性的因素;其次,它对大数据有明显的优势,它可以对大规模的数据进行有效的聚类处理。

在聚类分析的实际应用中,模糊聚类的作用也正在发挥出来,它可以用于汽车维修、航空航行反演分析、银行信用风险分析、智能多媒体表达等多个领域中。

同时,模糊聚类也把聚类自身的边界变得更加模糊,让聚类结果更加灵活,同时也提高了聚类结果的可解释性。

综上所述,模糊聚类是一种新型的数据挖掘方法,它在聚类分析领域有着重要的意义,它的应用可以帮助我们把数据点归类到不同的相似度类别中,使得分析过程更加针对性和高效。

模糊聚类分析

模糊聚类分析

模糊聚类法:把模糊数学方法引入聚类分析即产生了模糊聚类分析方法。

模糊聚类分析方法大致可分为两种:一是基于模糊关系上的模糊聚类法.并称为系统聚类分析法。

另一种称为非系统聚类法,它是先把样品粗略地分一下,然后按其最优原则进行分类,经过多次迭代直到分类比较合理为止,这种方法也称为逐步聚类法。

我们通常讲的模糊聚类分析是指将模糊数学的原理应用到系统聚类分析的方法。

模糊聚类分析的步骤:(1)确定聚类单元全集U;(2)确定聚类准则和聚类因子;(3)根据聚类准则及因子进行数据的调查与整理;(4)将统计数据进行元量纲处理.称为正规化。

模糊聚类分析:模糊聚类分析是一种采用模糊数学语言对事物按一定的要求进行描述和分类的数学方法。

模糊聚类分析一般是指根据研究对象本身的属性来构造模糊矩阵,并在此基础上根据一定的隶属度来确定聚类关系,即用模糊数学的方法把样本之间的模糊关系定量的确定,从而客观且准确地进行聚类。

聚类就是将数据集分成多个类或簇,使得各个类之间的数据差别应尽可能大,类内之间的数据差别应尽可能小,即为“最小化类间相似性,最大化类内相似性”原则。

主要内容:模糊聚类分析是涉及事物之间的模糊界限时按一定要求对事物进行分类的数学方法。

聚类分析是数理统计中的一种多元分析方法,它是用数学方法定量地确定样本的亲疏关系,从而客观地划分类型。

事物之间的界限,有些是确切的,有些则是模糊的。

例人群中的面貌相像程度之间的界限是模糊的,天气阴、晴之间的界限也是模糊的。

当聚类涉及事物之间的模糊界限时,需运用模糊聚类分析方法。

模糊聚类分析广泛应用在气象预报、地质、农业、林业等方面。

通常把被聚类的事物称为样本,将被聚类的一组事物称为样本集。

模糊聚类分析有两种基本方法:系统聚类法和逐步聚类法。

应用实例:在进行证券交易时,可能会获得较高的投资收益,但同时也存在着较大的证券投资风险。

证券市场是一个风险无时不在的市场,所以投资者应当充分深入的了解证券市场蕴含的各项风险并谨慎行事,从各个方面,综合考虑投资的利弊,理性投资。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 模糊聚类分析方法在科学技术、经济管理中常常要按一定的标准(相似程度或亲疏关系)进行分类。

例如,根据生物的某些性状可对生物分类,根据土壤的性质可对土壤分类等。

对所研究的事物按一定标准进行分类的数学方法称为聚类分析,它是多元统计“物以类聚”的一种分类方法。

由于科学技术、经济管理中的分类界限往往不分明,因此采用模糊聚类方法通常比较符合实际。

一、模糊聚类分析的一般步骤1、第一步:数据标准化[9](1) 数据矩阵设论域12{,,,}n U x x x =为被分类对象,每个对象又有m 个指标表示其性状,即12{,,,}i i i im x x x x = (1,2,,)i n =,于是,得到原始数据矩阵为111212122212m m n n nm x x x x x x x x x ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭。

其中nm x 表示第n 个分类对象的第m 个指标的原始数据。

(2) 数据标准化在实际问题中,不同的数据一般有不同的量纲,为了使不同的量纲也能进行比较,通常需要对数据做适当的变换。

但是,即使这样,得到的数据也不一定在区间[0,1]上。

因此,这里说的数据标准化,就是要根据模糊矩阵的要求,将数据压缩到区间[0,1]上。

通常有以下几种变换: ① 平移·标准差变换ik kikkx x x s -'= (1,2,,;1,2,,)i n k m ==其中 11n k ik i x x n ==∑,k s = 经过变换后,每个变量的均值为0,标准差为1,且消除了量纲的影响。

但是,再用得到的ikx '还不一定在区间[0,1]上。

② 平移·极差变换111min{}max{}min{}ikik i nikikik i ni nx x x x x ≤≤≤≤≤≤''-''=''-,(1,2,,)k m =显然有01ikx ''≤≤,而且也消除了量纲的影响。

③ 对数变换lg ikik x x '= (1,2,,;1,2,,)i n k m ==取对数以缩小变量间的数量级。

2、第二步:标定(建立模糊相似矩阵)设论域12{,,,}n U x x x =,12{,,,}i i i im x x x x =,依照传统聚类方法确定相似系数,建立模糊相似矩阵,i x 与j x 的相似程度(,)ij i j r R x x =。

确定(,)ij i j r R x x =的方法主要借用传统聚类的相似系数法、距离法以及其他方法。

具体用什么方法,可根据问题的性质,选取下列公式之一计算。

(1) 相似系数法① 夹角余弦法21mikjkij mikjkk xx r x==∑∑。

② 最大最小法11()()mikjk k ij mikjk k x x r xx ==∧=∨∑∑。

③ 算术平均最小法112()()mik jk k ij mikjk k x x r xx ==∧=+∑∑。

④ 几何平均最小法12()mik jk k ij mik jkk x x r x ==∧=∑。

以上3种方法中要求0ij x >,否则也要做适当变换。

⑤ 数量积法11,,1,,m ij ik jk k i j r x x i j M ==⎧⎪=⎨≠⎪⎩∑,其中 1max()mik jk i jk M x x ≠==∑。

⑥ 相关系数法21(miki jk jij mjkk xx x x r x=--=-∑∑其中 11m i ik k x x m ==∑,11mj jk k x x m ==∑。

⑦ 指数相似系数法221()13exp[]4m ik jk ij k kx x r m s =-=-∑, 其中 211()nk ik ik i s x x n ==-∑,而 11nk ik i x x n ==∑ (1,2,,)k m =。

(2) 距离法① 直接距离法1(,)ij i j r cd x x =-,其中c 为适当选取的参数,使得01ij r ≤≤,(,)i j d x x 表示他们之间的距离。

经常用的距离有 ● 海明距离1(,)mi j ik jk k d x x x x ==-∑。

● 欧几里得距离(,)i j d x x =● 切比雪夫距离1(,)mi j ik jk k d x x x x ==∨-。

② 倒数距离法1,,,,(,)ij i j i j M r i j d x x =⎧⎪=⎨≠⎪⎩。

其中M 为适当选取的参数,使得01ij r ≤≤。

③ 指数距离法exp[(,)]ij i j r d x x =-。

3、第三步:聚类(求动态聚类图)(1)基于模糊等价矩阵聚类方法① 传递闭包法根据标定所得的模糊矩阵R 还要将其改造称模糊等价矩阵*R 。

用二次方法求R 的传递闭包,即()t R =*R 。

再让λ由大变小,就可形成动态聚类图。

② 布尔矩阵法[10]布尔矩阵法的理论依据是下面的定理: 定理2.2.1 设R 是12{,,,}n U x x x =上的一个相似的布尔矩阵,则R 具有传递性(当R 是等价布尔矩阵时)⇔矩阵R 在任一排列下的矩阵都没有形如11111001,,,10011111⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的特殊子矩阵。

布尔矩阵法的具体步骤如下: ① 求模糊相似矩阵的λ-截矩阵R λ.② 若R λ按定理2.2.1判定为等价的,则由R λ可得U 在λ水平上的分类,若R λ判定为不等价,则R λ在某一排列下有上述形式的特殊子矩阵,此时只要将其中特殊子矩阵的0一律改成1直到不再产生上述形式的子矩阵即可。

如此得到的*R λ为等价矩阵。

因此,由*R λ可得λ水平上的分类(2) 直接聚类法所谓直接聚类法,是指在建立模糊相似矩阵之后,不去求传递闭包()t R ,也不用布尔矩阵法,而是直接从模糊相似矩阵出发求得聚类图。

其步骤如下: ① 取11λ=(最大值),对每个i x 作相似类[]i R x ,且 []i R x ={|1}j ij x r =,即将满足1ij r =的i x 与j x 放在一类,构成相似类。

相似类与等价类的不同之处是,不同的相似类可能有公共元素,即可出现[]{,}i R i k x x x =,[]{,}i R j k x x x =,[][]i j x x ⋂≠∅.此时只要将有公共元素的相似类合并,即可得11λ=水平上的等价分类。

② 取2λ为次大值,从R 中直接找出相似度为2λ的元素对(,)i j x x (即2ij r λ=),将对应于11λ=的等价分类中i x 所在的类与j x 所在的类合并,将所有的这些情况合并后,即得到对应于2λ的等价分类。

③ 取3λ为第三大值,从R 中直接找出相似度为3λ的元素对(,)i j x x (即3ij r λ=),将对应于2λ的等价分类中i x 所在的类与j x 所在的类合并,将所有的这些情况合并后,即得到对应于3λ的等价分类。

④ 以此类推,直到合并到U 成为一类为止。

二、最佳阈值λ的确定在模糊聚类分析中对于各个不同的[0,1]λ∈,可得到不同的分类,许多实际问题需要选择某个阈值λ,确定样本的一个具体分类,这就提出了如何确定阈值λ的问题。

一般有以下两个方法:① 按实际需要,在动态聚类图中,调整λ的值以得到适当的分类,而不需要事先准确地估计好样本应分成几类。

当然,也可由具有丰富经验的专家结合专业知识确定阈值λ,从而得出在λ水平上的等价分类 ② 用F 统计量确定λ最佳值。

[11] 设论域12{,,,}n U x x x =为样本空间(样本总数为n ),而每个样本i x 有m 个特征:12{,,,}i i i im x x x x =,(1,2,,)i n =。

于是得到原始数据矩阵,如下表所示,其中11(1,2,,)nk ik i x x k m n ===∑,x 称为总体样本的中心向量。

2in x x x111()i n x x x x x设对应于λ值的分类数为r ,第j 类的样本数为j n ,第j 类的样本记为:()()()12,,,jj j j n x x x ,第j 类的聚类中心为向量()()()()112(,,,)j j j j m x x x x =,其中()j k x 为第k 个特征的平均值,即()()11jn j j kiki jx xn ==∑,(1,2,,)k m =,作F 统计量()1()()11(1)()jrj jj n r j j i j i nx x r F x x n r ===--=--∑∑∑,其中()j xx -=为()j x 与x 间的距离,()()j j i x x -为第j 类中第i 个样本()j x 与其中心()j x 间的距离。

称为F 统计量,它是遵从自由度为1r -,n r -的F 分布。

它的分子表征类与类之间的距离,分母表征类内样本间的距离。

因此,F 值越大,说明类与类之间的距离越大;类与类间的差异越大,分类就越好。

基于模糊聚类分析的多属性 决策方法的实际应用聚类分析是将事物根据一定的特征,并按某种特定要求或规律分类的方法。

由于聚类分析的对象必定是尚未分类的群体,而且现实的分类问题往往带有模糊性,对带有模糊特征的事物进行聚类分析,分类过程中不是仅仅考虑事物之间有无关系,而是考虑事物之间关系的深浅程度,显然用模糊数学的方法处理更为自然,因此称为模糊聚类分析。

第一节 雨量站问题一、问题的提出某地区设置有11个雨量站,其分布图见图1,10年来各雨量站所测得的年降雨量列入表1中。

现因经费问题,希望撤销几个雨量站,问撤销那些雨量站,而不会太多的减少降雨信息?图1 雨量站分布图二、问题的分析应该撤销那些雨量站,涉及雨量站的分布,地形,地貌,人员,设备等众多因素。

我们仅考虑尽可能地减少降雨信息问题。

一个自然的想法是就10年来各雨量站所获得的降雨信息之间的相似性,对全部雨量站进行分类,撤去“同类”(所获降雨信息十分相似)的雨量站中“多余”的站。

问题求解假设为使问题简化,特作如下假设①每个观测站具有同等规模及仪器设备;②每个观测站的经费开支均等;具有相同的被裁可能性。

分析:对上述撤销观测站的问题用基于模糊等价矩阵的模糊聚类方法进行分析,原始数据如上。

三、问题的解决求解步骤:1、数据的收集原始数据如表1所示。

2、建立模糊相似矩阵利用相关系数法,构造模糊相似关系矩阵1111)(⨯αβr ,其中ij r =2111221])()([|)(||)(|∑∑∑=-=-⋅---n k nk j jk i ik nk j jk i ikx x x x x x x x其中i x =∑=101101k ik x ,i =1,2, (11)j x =∑=nk jk x n 11,j =1,2, (11)取2,1i j ==,代入公式得21r =0.839,由于运算量巨大用C 语言编程计算出其余数值,得模糊相似关系矩阵1111)(⨯αβr ,具体程序如下 #include<stdio.h> #include<math.h>double r[11][11]; double x[11]; void main(){ int i,j,k; double fenzi=0,fenmu1=0,fenmu2=0,fenmu=0;int year[10][11]={276,324,159,413, 292 ,258,311,303,175,243,320,251 ,287,349,344,310,454,285,451,402,307,470,192 ,433,290,563,479,502,221,220,320,411,232,246 ,232,243,281,267,310,273,315,285,327,352,291,311,502,388 ,330,410,352,267,603,290,292,466 ,158,224,178,164,203,502,320,240,278,350,258,327,432 ,401,361,381,301,413,402,199,421,453,365,357 ,452,384,420,482,228,360,316,252,158 ,271,410,308,283,410,201,179,430,342,185,324,406,235,520 ,442,520,358,343,251,282,371};for(i=0;i<11;i++){ for(k=0;k<10;k++){ x[i]=x[i]+year[k][i];}x[i]=x[i]/10;}for(i=0;i<11;i++){for(j=0;j<11;j++){ for(k=0;k<10;k++){ fenzi=fenzi+fabs((year[k][i]-x[i])*(year[k][j]-x[j]));fenmu1=fenmu1+(year[k][i]-x[i])*(year[k][i]-x[i]);fenmu2=fenmu2+(year[k][j]-x[j])*(year[k][j]-x[j]);fenmu=sqrt(fenmu1)*sqrt(fenmu2);r[i][j]=fenzi/fenmu;}fenmu=fenmu1=fenmu2=fenzi=0;}}for(i=0;i<11;i++){ for(j=0;j<11;j++){printf("%6.3f",r[i][j]);}printf("\n");}getchar();}得到模糊相似矩阵R1.000 0.839 0.528 0.844 0.828 0.702 0.995 0.671 0.431 0.573 0.712 0.839 1.000 0.542 0.996 0.989 0.899 0.855 0.510 0.475 0.617 0.572 0.528 0.542 1.000 0.562 0.585 0.697 0.571 0.551 0.962 0.642 0.568 0.844 0.996 0.562 1.000 0.992 0.908 0.861 0.542 0.499 0.639 0.607 0.828 0.989 0.585 0.992 1.000 0.922 0.843 0.526 0.512 0.686 0.584 0.702 0.899 0.697 0.908 0.922 1.000 0.726 0.455 0.667 0.596 0.511 0.995 0.855 0.571 0.861 0.843 0.726 1.000 0.676 0.489 0.587 0.719 0.671 0.510 0.551 0.542 0.526 0.455 0.676 1.000 0.467 0.678 0.994 0.431 0.475 0.962 0.499 0.512 0.667 0.489 0.467 1.000 0.487 0.485 0.573 0.617 0.642 0.639 0.686 0.596 0.587 0.678 0.487 1.000 0.688 0.712 0.572 0.568 0.607 0.584 0.511 0.719 0.994 0.485 0.688 1.000对这个模糊相似矩阵用平方法作传递闭包运算,求442:R R R −→−即4*()t R R R ==。

相关文档
最新文档