2018年高考数学冲刺点对点试卷:数列与三角形
2018版考前三个月高考数学理科(全国通用)总复习文档:中档大题规范练2 Word版含解析
![2018版考前三个月高考数学理科(全国通用)总复习文档:中档大题规范练2 Word版含解析](https://img.taocdn.com/s3/m/085cb5b308a1284ac85043fa.png)
2.数 列1.(2017·原创押题预测卷)已知S n =na 1+(n -1)a 2+…+2a n -1+a n ,n ∈N *. (1)若{a n }是等差数列,且S 1=5,S 2=18,求a n ; (2)若{a n }是等比数列,且S 1=3,S 2=15,求S n .解 (1)设{a n }的公差为d ,则S 1=a 1=5,S 2=2a 1+a 2=10+a 2=18, 所以a 2=8,d =a 2-a 1=3,a n =5+3(n -1)=3n +2.(2)设{a n }的公比为q ,则S 1=a 1=3,S 2=2a 1+a 2=6+a 2=15, 所以a 2=9,q =a 2a 1=3,a n =3×3n -1=3n ,所以S n =n ×3+(n -1)×32+…+2×3n -1+3n ,① 3S n =n ×32+(n -1)×33+…+2×3n +3n +1,②②-①,得2S n =-3n +(32+33+…+3n )+3n +1=-3n +32(1-3n -1)1-3+3n +1=-3n -92+3n +12+3n +1=3n +2-6n -92,所以S n =3n +2-6n -94.2.(2017届黑龙江虎林一中月考)已知等差数列{a n }的前n 项和为S n ,且a 3=5,S 3=9. (1)求数列{a n }的通项公式;(2)设等比数列{b n }的前n 项和为T n ,若q >0且b 3=a 5,T 3=13,求T n ; (3)设c n =1a n a n +1,求数列{c n }的前n 项和S n .解 (1)⎩⎪⎨⎪⎧a 3=a 1+2d =5,S 3=3a 1+3×22d =9,解得⎩⎪⎨⎪⎧a 1=1,d =2, 所以a n =a 1+(n -1)d =2n -1.(2)由题意可知,b 3=a 5=9,T 3=13,所以公比q =3, 从而b 1=1,所以T n =b 1(1-q n )1-q =1×(1-3n )1-3=12(3n-1).(3)由(1)知,a n =2n -1.所以c n =1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,所以S n =c 1+c 2+…+c n=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1=12⎝⎛⎭⎫1-12n +1=n2n +1.3.(2017·广东七校联考)设数列{a n }的前n 项之积为T n ,且log 2T n =n (n -1)2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =λa n -1(n ∈N *),数列{b n }的前n 项之和为S n .若对任意的n ∈N *,总有S n +1>S n ,求实数λ的取值范围.解 (1)由log 2T n =n (n -1)2,n ∈N *,得T n =(1)22n n -,所以T n -1=(1)(2)22n n --(n ∈N *,n ≥2),所以a n =T nT n -1=(1)(1)(1)(2)222(1)(2)2222n n n n n n n n -------==2n -1,n ∈N *,n ≥2.又a 1=T 1=20=1,所以a n =2n -1,n ∈N *.(2)由b n =λa n -1=λ2n -1-1,得S n =λ·1-2n 1-2-n =()2n-1λ-n ,所以S n +1>S n ⇔()2n +1-1λ-()n +1>()2n -1λ-n ⇔2n λ>1⇔λ>12n ,因为对任意的n ∈N *,12n ≤12,故所求的λ的取值范围是⎝⎛⎭⎫12,+∞. 4.(2017·湖北黄冈质检)已知数列{a n }的前n 项和为S n ,向量a =(S n ,n ),b =(9n -7,2),且a 与b 共线.(1)求数列{}a n 的通项公式;(2)对任意m ∈N *,将数列{a n }中落入区间(9m ,92m )内的项的个数记为b m ,求数列{b m }的前m项和T m .解 (1)a 与b 共线,S n =n (9n -7)2=92n 2-72n ,a 1=1,a n =S n -S n -1=9n -8,n ≥2,所以a n =9n -8,n ∈N *. (2)对m ∈N *,若9m <a n <92m , 则9m +8<9n <92m +8. 因此9m -1+1≤n ≤92m -1.故得b m =92m -1-9m -1.于是T m =b 1+b 2+…+b m=(9+93+…+92m -1)-(1+9+…+9m -1)=9(1-81m )1-81-1-9m 1-9=9×92m +1-10×9m80.5.(2017·原创押题预测卷)已知数列{a n }的通项公式为a n =n ·3n3n -1(n ≥1,n ∈N *).(1)求a 1,a 2,a 3的值;(2)求证:对任意的自然数n ∈N *,不等式a 1·a 2·…·a n <2·n !成立. (1)解 将n =1,2,3代入可得a 1=32,a 2=94,a 3=8126.(2)证明 由a n =n ·3n 3n -1=n1-13n(n ≥1,n ∈N *)可得a 1·a 2·…·a n =n !⎝⎛⎭⎫1-13⎝⎛⎭⎫1-132…⎝⎛⎭⎫1-13n ,因此欲证明不等式a 1·a 2·…·a n <2·n !成立,只需要证明对任意非零自然数n ,不等式⎝⎛⎭⎫1-13⎝⎛⎭⎫1-132…⎝⎛⎭⎫1-13n >12恒成立即可,显然左端每个因式都为正数,因为1-⎝⎛⎭⎫13+132+…+13n =1-13⎝⎛⎭⎫1-13n 1-13=1-12⎝⎛⎭⎫1-13n >1-12=12. 故只需证明对每个非零自然数,不等式⎝⎛⎭⎫1-13⎝⎛⎭⎫1-132…⎝⎛⎭⎫1-13n ≥1-⎝⎛⎭⎫13+132+…+13n 恒成立即可.(*)下面用数学归纳法证明该不等式成立: ①显然当n =1时,不等式(*)恒成立;②假设当n =k (k ≥1,k ∈N *)时不等式(*)也成立,即不等式⎝⎛⎭⎫1-13⎝⎛⎭⎫1-132…⎝⎛⎭⎫1-13k ≥1-⎝⎛⎭⎫13+132+…+13k 成立. 那么当n =k +1时,⎝⎛⎭⎫1-13⎝⎛⎭⎫1-132…⎝⎛⎭⎫1-13k ⎝⎛⎭⎫1-13k +1≥⎣⎡⎦⎤1-⎝⎛⎭⎫13+132+…+13k ⎣⎡⎦⎤1-13k +1,即⎝⎛⎭⎫1-13⎝⎛⎭⎫1-132…⎝⎛⎭⎫1-13k +1≥1-⎝⎛⎭⎫13+132+…+13k -13k +1+13k +1⎝⎛⎭⎫13+132+…+13k ,注意到13k +1⎝⎛⎭⎫13+132+…+13k >0,所以⎝⎛⎭⎫1-13⎝⎛⎭⎫1-132…⎝⎛⎭⎫1-13k +1≥1-⎝⎛⎭⎫13+132+…+13k +13k +1,这说明当n =k +1时,不等式(*)也成立.因此由数学归纳法可知,不等式(*)对任意非零自然数都成立,即⎝⎛⎭⎫1-13⎝⎛⎭⎫1-132…⎝⎛⎭⎫1-13n ≥1-⎝⎛⎭⎫13+132+…+13n >12恒成立,故不等式a 1·a 2·…·a n <2·n !对任意非零自然数都成立.6.(2017·北京)设{a n }和{b n }是两个等差数列,记c n =max{b 1-a 1n ,b 2-a 2n ,…,b n -a n n }(n =1,2,3,…),其中max{x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数. (1)若a n =n ,b n =2n -1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,c nn >M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列. (1)解 c 1=b 1-a 1=1-1=0,c 2=max{b 1-2a 1,b 2-2a 2}=max{1-2×1,3-2×2}=-1,c 3=max{b 1-3a 1,b 2-3a 2,b 3-3a 3}=max{1-3×1,3-3×2,5-3×3}=-2. 当n ≥3时,(b k +1-na k +1)-(b k -na k )=(b k +1-b k )-n (a k +1-a k )=2-n <0, 所以b k -na k 在k ∈N *时单调递减.所以c n =max{b 1-a 1n ,b 2-a 2n ,…,b n -a n n }=b 1-a 1n =1-n . 所以对任意n ≥1,c n =1-n ,于是c n +1-c n =-1, 所以{c n }是等差数列.(2)证明 设数列{a n }和{b n }的公差分别为d 1,d 2,则b k -na k =b 1+(k -1)d 2-[a 1+(k -1)d 1]n =b 1-a 1n +(d 2-nd 1)(k -1).所以c n =⎩⎪⎨⎪⎧b 1-a 1n +(n -1)(d 2-nd 1),d 2>nd 1,b 1-a 1n ,d 2≤nd 1.①当d 1>0时,取正整数m >d 2d 1,则当n ≥m 时,nd 1>d 2,因此,c n =b 1-a 1n ,此时,c m ,c m +1,c m +2,…是等差数列. ②当d 1=0时,对任意n ≥1,n ∈N *,c n =b 1-a 1n +(n -1)max{d 2,0}=b 1-a 1+(n -1)(max{d 2,0}-a 1). 此时,c 1,c 2,c 3,…,c n ,…是等差数列. ③当d 1<0时,当n >d 2d 1时,有nd 1<d 2,所以c n n =b 1-a 1n +(n -1)(d 2-nd 1)n =n (-d 1)+d 1-a 1+d 2+b 1-d 2n≥n (-d 1)+d 1-a 1+d 2-|b 1-d 2|. 对任意正数M ,取正整数m >max ⎩⎨⎧⎭⎬⎫M +|b 1-d 2|+a 1-d 1-d 2-d 1,d 2d 1, 故当n ≥m 时,c nn>M .。
高考数学三轮冲刺点对点试卷函数、导数、三角函数(2021年整理)
![高考数学三轮冲刺点对点试卷函数、导数、三角函数(2021年整理)](https://img.taocdn.com/s3/m/0d3cc8ecb90d6c85ed3ac60e.png)
2018年高考数学三轮冲刺点对点试卷函数、导数、三角函数编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考数学三轮冲刺点对点试卷函数、导数、三角函数)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考数学三轮冲刺点对点试卷函数、导数、三角函数的全部内容。
函数、导数、三角函数1.已知函数()21ln 2f x a x x =+,在其定义域内任取两个不等实数1x 、2x ,不等式()()12123f x a f x a x x +-+>-恒成立,则实数a 的取值范围为A. [)2,+∞B. (],2-∞ C 。
9[ ,)4+∞ D 。
90,4⎛⎤ ⎥⎝⎦【答案】A2。
已知函数()()22log f x a x a =++(0a >)的最小值为8,则( )A 。
()5,6a ∈ B. ()7,8a ∈ C. ()8,9a ∈ D. ()9,10a ∈【答案】A3.函数()111x f x n x+=-的大致图象为( ) A 。
B. C 。
D.【答案】D 4.若曲线212y x e=与曲线ln y a x =在它们的公共点(),P s t 处具有公共切线,则实数a =( ) A 。
1 B 。
12 C 。
1- D 。
25.已知角α的顶点与原点O 重合,始边与x 轴的正半轴重合,若它的终边经过点()21P ,,则tan 24πα⎛⎫+= ⎪⎝⎭ A. -7 B. 17- C. 17D 。
7 【答案】A6.已知函数2tan 3y x πω⎛⎫=+ ⎪⎝⎭的最小正周期为2π,将函数2sin (0)6y x πωω⎛⎫=+> ⎪⎝⎭的图象沿x 轴向右平移4π个单位,得到函数()y f x =的图象,则函数()f x 在,44ππ⎡⎤-⎢⎥⎣⎦的值域为( ) A 。
2018年高考数学三轮冲刺点对点试卷三视图程序框图及简单线性规划
![2018年高考数学三轮冲刺点对点试卷三视图程序框图及简单线性规划](https://img.taocdn.com/s3/m/dc5bbbaada38376baf1faea7.png)
三视图、程序框图及简单线性规划1.已知某几何体的三视图如图所示,则该几何体的体积为( )A. 104π+B. 68π+C. 108π+D. 64π+ 【答案】A2.若一个空间几何体的三视图如图所示,且已知该几何体的体积为433π,则其表面积为( )A. 63π+B. 6πC. 3234π+334π+ 【答案】A3.《九章算术》是我国古代内容极为丰富的数学名著,书中提出如下问题:“今有刍童,下广两丈,袤三丈,上广三丈,袤四丈,高三丈,问积几何?”翻译成现代文是“今有上下底面皆为长方形的草垛,下底(指面积较小的长方形)宽2丈,长3丈;上底(指面积较大的长方形)宽3丈,长4丈;高3丈.问它的体积是多少?”现将该几何体的三视图给出如图所示,则该几何体的体积为( )立方丈.A.532B. 24C. 27D. 1862+【答案】A4.如图所示,一个三棱锥的的三视图是三个直角三角形,则该三棱锥的体积为()A. 3B. 4C. 6D. 85.已知实数x,y满足10{10330x yx yx y-+≥+-≥--≤,则使不等式1kx y k-+≤恒成立的实数k的取值集合是()A. (],1-∞ B.1,2⎛⎤-∞⎥⎝⎦C.1,4⎛⎤-∞⎥⎝⎦D.1,8⎛⎤-∞⎥⎝⎦【答案】B6.在由不等式组2140,{3,2,x yxy-+≥≤-≥所确定的三角形区域内随机取一点,则该点到此三角形的三个顶点的距离均不小于1的概率是( )A. 92π- B. 9π- C. 19π- D. 118π-【答案】D7.已知变量x , y 满足2{220 240x y x y x y -≥++≥--≤,若方程2260x y y k ++-=有解,则实数k 的最小值为( )A.45455- B. 295- C. 4533+ D. 165【答案】B8.设,x y 满足约束条件260{20 20x y x y y -+≥-≤-≤,则x y -的取值范围为( )A. []0,4B. []2,4C. []0,2D. []2,6 【答案】A9.执行如图所示的程序框图,则输出的a =( )A. 14-B. 45C. 4D. 5 【答案】D10.执行如图所示的程序框图,如果输入的x 、t 均为3,则输出的M 等于( )A. 23B.113C.196D.436【答案】C11.执行如图所示的程序框图,则输出的S ()A. 17B. 33C. 65D. 129【答案】C12.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为()A. 2B. 4C.D.【答案】D13.【2017届福建省泉州市高三3月质量检测】某几何体的三视图如图所示,则该几何体的侧视图中的虚线部分是 ( )A. 圆弧B. 抛物线的一部分C. 椭圆的一部分D. 双曲线的一部分 【答案】D14.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,若该几何体的顶点都在球O 的球面上,则球O 的表面积为( )A.B.C.D.【答案】A15.若()21log 12,31x y x ≤-+≤-≤,则2x y -的最大值与最小值之和是( ) A. 0 B. -2 C. 2 D. 6 【答案】C16.若变量,x y 满足约束条件{11y xx y y ≤+≤≥-,且2z x y =+的最大值和最小值分别为m 和n ,则m n +=( )A. -2B. -1C. 0D. 1【答案】C17.不等式组20{10220xyx y-≤-≤+-≥表示的平面区域的面积是()A. 1B. 2C. 3D. 4【答案】A18.当4n=时,执行如图所示的程序框图,输出的S值为()A. 6B. 8C. 14D. 30【答案】D19.一种在实数域和复数域上近似求解方程的方法可以设计如图所示的程序框图,若输入的,则输出的结果()A. 4B.1C.D.【答案】C20.右边程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n”表示除以的余数),若输入的,分别为485,135,则输出的=()A. 0B. 5C. 25D. 45【答案】B21. 如图在棱长为1的正方体网格中,粗线画出的是某几何体的三视图,则该几何体的体积为 ( ).A.117 B.111 C.99 D. 75【答案】D22. 某几何体的三视图如图所示,则该几何体的体积为()A.5B.4C.2D.1【答案】A.23.已知不等式组202020x yyx y-+≥⎧⎪+≥⎨⎪++≤⎩表示的平面区域,则231x yzx+-=-的最大值 .【答案】()()22224x y+++=24.已知不等式组⎪⎩⎪⎨⎧≥-≥-≤+11yyxyx所表示的平面区域为D,若直线3y kx=-与平面区域D有公共点,则k的取值范围为是A.[3,3]- B.11(,][,)33-∞-+∞ C.(,3][3,)-∞-+∞ D.11[,]33-【答案】C正视图侧视图。
【高三数学试题精选】2018高考数学压轴题(文科)及答案
![【高三数学试题精选】2018高考数学压轴题(文科)及答案](https://img.taocdn.com/s3/m/dfef0d4d58fafab068dc0211.png)
2018高考数学压轴题(文科)及答案
5 c PDE的侧面积.
18 在平面直角坐标系上,设不等式组表示的平面区域为,记内的整点(横坐标和纵坐标均为整数的点)的个数为
(1)求数列的通项式;
(2)若,求证数列是等比数列,并求出数列的通项式
19.在中,三个内角,,的对边分别为,,,其中,且
(1)求证是直角三角形;
(2)如图6,设圆过三点,点位于劣弧Ac︿上,求面积最大值
2018年江西省高考压轴卷数学参考答案
cBDAA AABBB 11 40 12 20 13 50 14 3 15 1/2
16.解析(Ⅰ)∵函数的图象的对称轴为
要使在区间上为增函数,
当且仅当且………………………………2分
若则,若则若则……………………4分
记函数在区间上是增函数
则事包含基本事的个数是1+2+2=5,∴ ……6分
(Ⅱ)依条可知试验的全部结果所构成的区域为,
其面积……………………………………8分
事构成的区域
由 ,得交点坐标为………………………………10分
,∴事发生的概率为……12分
17 解(Ⅰ)在Rt△DAE中,AD=3,∠ADE=π6,
∴AE=AD tan∠ADE=3 33= 1.又AB=cD=4,∴BE=3.
在Rt△EBc中,Bc=AD=3,∴tan∠cEB=BcBE=33,∴∠c EB =π6.。
2018年高考数学压轴题数列大题含答案
![2018年高考数学压轴题数列大题含答案](https://img.taocdn.com/s3/m/71ebf00852d380eb62946d99.png)
.
(1)求数列 的通项公式;
(2)证明 为等差数列.
(3)若数列 的通项公式为 ,令 . 为 的前 项的和,求 .
6.已知数列 满足 , .
(Ⅰ)求数列 的通项公式;
(Ⅱ)求证:对任意的 ,都有
① ;
② ( ).
7.在数列 中,若 是整数,且 ( ,且 ).
(Ⅰ)若 , ,写出 的值;
(Ⅱ)若在数列 的前2018项中,奇数的个数为 ,求 得最大值;
(Ⅲ)若数列 中, 是奇数, ,证明:对任意 , 不是4的倍数.
8.设等差数列 的公差为 ,等差数列 的公差为 ,记
,其中 表示 这 个数中最大的数
(1)若 ,求 的值,并猜想数列 的通项公式(不必证明)
(2)设 ,若不等式 对不小于2的一切自然数n都成立,求 的取值范围
⑶设数列 的前 项的和为 ,试求数列 的最大值.
11.(本小题满分16分)已知数列 的奇数项是首项为 的等差数列,偶数项是首项为 的等比数列,数列 前 项和为 ,且满足 .
(1)求数列 的通项公式;
(2)若 ,求正整数 的值;
(3)是否存在正整数 ,使得 恰好为数列 中的一项?若存在,求出所有满足条件的 值,若不存在,说明理由.
(1)求证:数列 为等比数列;
(2)数列 中,是否存在连续的三项,这三项构成等比数列?试说明理由;
(3)设 ,其中 为常数,且 ,
,求 .
19.(本题满分14分)在单调递增数列 中, , ,且 成等差数列, 成等比数列, .
(Ⅰ)(ⅰ)求证:数列 为等差数列;
(ⅱ)求数列 的通项公式.
(Ⅱ)设数列 的前 项和为 ,证明: , .
解三角形、数列2018全国数学高考分类真题[含答案解析]
![解三角形、数列2018全国数学高考分类真题[含答案解析]](https://img.taocdn.com/s3/m/3e2a961158fb770bf78a559c.png)
解三角形、数列2018年全国高考分类真题(含答案)一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.23.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4 4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=.三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解三角形、数列2018年全国高考分类真题(含答案)参考答案与试题解析一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,==,∴S△ABC∴sinC==cosC,∵0<C<π,∴C=.故选:C.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.3.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,a1+a2+a3+a4>a1+a2+a3,a1+a2+a3+a4=ln(a1+a2+a3),不成立,即:a1>a3,a2>a4,a1<a3,a2<a4,不成立,排除A、D.当q=﹣1时,a1+a2+a3+a4=0,ln(a1+a2+a3)>0,等式不成立,所以q≠﹣1;当q<﹣1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立,当q∈(﹣1,0)时,a1>a3>0,a2<a4<0,并且a1+a2+a3+a4=ln(a1+a2+a3),能够成立,故选:B.4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴=a1+a1+d+4a1+d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为9.【解答】解:由题意得acsin120°=asin60°+csin60°,即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=3.【解答】解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1(舍),∴sinB=,c=3.故答案为:,3.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为a n=6n﹣3.【解答】解:∵{a n}是等差数列,且a1=3,a2+a5=36,∴,解得a1=3,d=6,∴a n=a1+(n﹣1)d=3+(n﹣1)×6=6n﹣3.∴{a n}的通项公式为a n=6n﹣3.故答案为:a n=6n﹣3.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=﹣63.【解答】解:S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=﹣1,=2a n﹣1+1,②,当n≥2时,S n﹣1由①﹣②可得a n=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴{a n}是以﹣1为首项,以2为公比的等比数列,∴S6==﹣63,故答案为:﹣63三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【解答】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cosB=﹣,∴sinB===,由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【解答】解:(1)由题意可知|a n﹣b n|≤1对任意n=1,2,3,4均成立,∵a1=0,q=2,∴,解得.即≤d≤.证明:(2)∵a n=a1+(n﹣1)d,b n=b1•q n﹣1,若存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,则|b1+(n﹣1)d﹣b1•q n﹣1|≤b1,(n=2,3,…,m+1),即b1≤d≤,(n=2,3,…,m+1),∵q∈(1,],∴则1<q n﹣1≤q m≤2,(n=2,3,…,m+1),∴b1≤0,>0,因此取d=0时,|a n﹣b n|≤b1对n=2,3,…,m+1均成立,下面讨论数列{}的最大值和数列{}的最小值,①当2≤n≤m时,﹣==,当1<q≤时,有q n≤q m≤2,从而n(q n﹣q n﹣1)﹣q n+2>0,因此当2≤n≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f(x)=2x(1﹣x),当x>0时,f′(x)=(ln2﹣1﹣xln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m时,=≤(1﹣)=f()<1,因此当2≤n≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d的取值范围是d∈[,].14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.【解答】解:(Ⅰ)等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2(舍去),则q的值为2;(Ⅱ)设c n=(b n+1﹣b n)a n=(b n+1﹣b n)2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得c n=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1,上式对n=1也成立,则(b n﹣b n)a n=4n﹣1,+1﹣b n=(4n﹣1)•()n﹣1,即有b n+1可得b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1)=1+3•()0+7•()1+…+(4n﹣5)•()n﹣2,b n=+3•()+7•()2+…+(4n﹣5)•()n﹣1,相减可得b n=+4[()+()2+…+()n﹣2]﹣(4n﹣5)•()n﹣1=+4•﹣(4n﹣5)•()n﹣1,化简可得b n=15﹣(4n+3)•()n﹣2.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).【解答】(Ⅰ)解:设等比数列{a n}的公比为q,由a1=1,a3=a2+2,可得q2﹣q ﹣2=0.∵q>0,可得q=2.故.设等差数列{b n}的公差为d,由a4=b3+b5,得b1+3d=4,由a5=b4+2b6,得3b1+13d=16,∴b1=d=1.故b n=n;(Ⅱ)(i)解:由(Ⅰ),可得,故=;(ii)证明:∵==.∴==﹣2.16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.【解答】解:(1)∵等比数列{a n}中,a1=1,a5=4a3.∴1×q4=4×(1×q2),解得q=±2,当q=2时,a n=2n﹣1,当q=﹣2时,a n=(﹣2)n﹣1,∴{a n}的通项公式为,a n=2n﹣1,或a n=(﹣2)n﹣1.(2)记S n为{a n}的前n项和.当a1=1,q=﹣2时,S n===,由S m=63,得S m==63,m∈N,无解;当a1=1,q=2时,S n===2n﹣1,由S m=63,得S m=2m﹣1=63,m∈N,解得m=6.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【解答】解:(1)∵等差数列{a n}中,a1=﹣7,S3=﹣15,∴a1=﹣7,3a1+3d=﹣15,解得a1=﹣7,d=2,∴a n=﹣7+2(n﹣1)=2n﹣9;(2)∵a1=﹣7,d=2,a n=2n﹣9,∴S n===n2﹣8n=(n﹣4)2﹣16,∴当n=4时,前n项的和S n取得最小值为﹣16.。
热点5 数列与三角形的解答题-2018年高考数学三轮复习重点知识整合与原创题训练
![热点5 数列与三角形的解答题-2018年高考数学三轮复习重点知识整合与原创题训练](https://img.taocdn.com/s3/m/f395d093d0d233d4b14e6919.png)
热点五 数列与三角形的解答题2018年高考数学三轮复习重点知识整合与原创题训练【名师精讲指南篇】【重点知识整合】 1.等差数列的有关概念:(1)等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥. (2)等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-. (3)等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+. (4)等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=. 2.等差数列的性质:(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222n n n d dS na d n a n -=+=+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列. (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.(4) 若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb + (k 、p 是非零常数)、*{}(,)p nq a p q N +∈、232,,n n n n n S S S S S -- ,…也成等差数列,而{}n a a 成等比数列;若{}n a 是等比数列,且0n a >,则{lg }n a 是等差数列.(5)在等差数列{}n a 中,当项数为偶数2n 时,S S nd =偶奇-;项数为奇数21n -时,S S a -=奇偶中,21(21)n S n a -=-⋅中(这里a 中即n a );:(1):奇偶S S k k=+.(6)若等差数列{}n a 、{}n b 的前n 和分别为n A 、n B ,且()n n A f n B =,则2121(21)(21)(21)n n n n n n a n a A f n b n b B ---===--. (7)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和;“首负”的递增等差数列中,前n 项和的最小值是所有非正项之和.法一:由不等式组⎪⎪⎭⎫ ⎝⎛⎩⎨⎧≥≤⎩⎨⎧≤≥++000011n n n n a a a a 或确定出前多少项为非负(或非正);法二:因等差数列前n 项是关于n 的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性*n N ∈.上述两种方法是运用了哪种数学思想?(函数思想),由此你能求一般数列中的最大或最小项吗? 3.等比数列的有关概念:(1)等比数列的判断方法:定义法1(n n a q q a +=为常数),其中0,0n q a ≠≠或11n n n n a aa a +-= (2)n ≥.(2)等比数列的通项:11n n a a q -=或n m n m a a q -=.(3)等比数列的前n 和:当1q =时,1n S na =;当1q ≠时,1(1)1n n a q S q-=-11n a a qq -=-..特别提醒:等比数列前n 项和公式有两种形式,为此在求等比数列前n 项和时,首先要判断公比q 是否为1,再由q 的情况选择求和公式的形式,当不能判断公比q 是否为1时,要对q 分1q =和1q ≠两种情形讨论求解.(4)等比中项:若,,a A b 成等比数列,那么A 叫做a 与b 的等比中项.提醒:不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个4.等比数列的性质:(1)当m n p q +=+时,则有m n p q a a a a =,特别地,当2m n p +=时,则有2m n p a a a =.(2) 若{}n a 是等比数列,则{||}n a 、*{}(,)p nq a p q N +∈、{}n ka 成等比数列;若{}{}n n a b 、成等比数列,则{}n n a b 、{}n nab 成等比数列; 若{}n a 是等比数列,且公比1q ≠-,则数列232,,n n n n n S S S S S -- ,…也是等比数列.当1q =-,且n 为偶数时,数列232,,n n n n n S S S S S -- ,…是常数数列0,它不是等比数列.(3)若10,1a q >>,则{}n a 为递增数列;若10,1a q <>, 则{}n a 为递减数列;若10,01a q ><< ,则{}n a 为递减数列;若10,01a q <<<, 则{}n a 为递增数列;若0q <,则{}n a 为摆动数列;若1q =,则{}n a 为常数列. (4) 当1q ≠时,b aq qaq q a S n n n +=-+--=1111,这里0a b +=,但0,0a b ≠≠,这是等比数列前n 项和公式的一个特征,据此很容易根据n S ,判断数列{}n a 是否为等比数列.(5)如果数列{}n a 既成等差数列又成等比数列,那么数列{}n a 是非零常数数列,故常数数列{}n a 仅是此数列既成等差数列又成等比数列的必要非充分条件. 5.数列的通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式.⑵已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥.⑶已知12()n a a a f n =求n a ,用作商法:(1),(1)(),(2)n f n f n a n =⎧⎪=⎨≥⎪⎩. ⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++-1a +(2)n ≥.⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a aa a a a a a ---=⋅⋅⋅⋅(2)n ≥.⑹已知递推关系求n a ,用构造法(构造等差、等比数列).特别地,(1)形如1n n a ka b -=+、1n n n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a .如(21)已知111,32n n a a a -==+,求n a ;(2)形如11n n n a a ka b--=+的递推数列都可以用倒数法求通项.注意:(1)用1--=n n n S S a 求数列的通项公式时,你注意到此等式成立的条件了吗?(2n ≥,当1n =时,11S a =);(2)一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解.6.数列求和的常用方法:(1)公式法:①等差数列求和公式;②等比数列求和公式,特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.(3)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法). (4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法). (5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有: ①111(1)1n n n n =-++; ②1111()()n n k k n n k=-++;③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k-=<<=-++--;(6)通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和. 7.求角问题(1)内角和定理:三角形三角和为π.任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.(2) 正弦定理:a b c ===2R (R 为三角形外接圆的半径). 正弦定理的变式:sin sin sin A B C ::=a b c ::,sin A =2a R ,sin B =2b R ,sin C =2c R; (3)余弦定理:cos A =2222b c a bc +-,cos B =2222a c b ac +-,cos C =2222b a c ba+-;(4)利用面积公式:sin C =2S ab ,sin B =2S ac ,sin A =2S bc.8.求边问题(1)边与边关系:a + b > c ,b + c > a ,c + a > b ,a -b < c ,b -c < a ,c -a > b ; (2)正弦定理的变式:a =2sin R A ,b =2sin R B ,b =2sin R C ; (3)余弦定理:2a =222cos b c bc A +-.变形式:a b c ++=a b +=sin a A ;(4)利用面积公式:a =2aS h ab =、2sin S C ;(5)射影定理:a =cos cos b C c B +. 9.求三角形的面积问题 三角形的面积公式:(1)S ∆=21ah a =21bh b =12c ch (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)S ∆=1sin 2ab C =1sin 2bc A =1sin 2ac B ;(3)S ∆=1()2r a b c ++(其中r 为三角形内切圆半径),2,S r a b c∆∆=++内切圆r ∆=直角内切圆2a b c +-斜边; (4)OAB S ∆=与向量的数量积联系) 10.求三角形的综合问题(1) 求解三角形中的问题时,一定要注意A B C π++=这个特殊性:,sin()A B C A B π+=-+=sin C ,sin2A B +=cos 2C; cos()A B +=cos C -,cos 2A B +=sin 2C; tan()A B +=tan C -,tan 2A B +=cot 2C; tan tan tan A B C ++=tan tan tan A B C ⋅⋅.(2)求解三角形中含有边角混合关系的问题时,常运用正弦定理、余弦定理实现边角互化,达到角的统一或边的统一.(3)在△ABC 中,熟记并会证明:∠A,∠B,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A 、∠B 、∠C 成等差数列且a b c 、、成等比数列.(4)锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方;钝角角三角形⇔三内角一个为钝角⇔一个角的余弦值为负值⇔两锐角的和仍为锐角⇔两个锐角对应的两边的平方和小于第三边的平方. (5)三角形内常见的不等关系 ①a b A B >⇔>⇔sin sin A B >; ②锐角ABC ∆中,2A B π+>,sin A >cos B ,cos A <sin B ;③钝角ABC ∆中,设C 为钝角,则2A B π+<,sin A <cos B ,cos A >sin B .【应试技巧点拨】1.等差数列的判断与证明的方法(1)利用定义:1n n a a d +-=或1(2,*)n n a a d n n N --=≥∈,其中d 为常数; (2)利用等差中项:112(2,*)n n n a a a n n N +-=+≥∈; (3)利用通项公式:()n a dn c d c =+、为常数; (4)利用前n 项公式:2()n S An Bn A B =+、为常数.注意证明等差数列的方法必须用定义法或等差中项的方法去证明;在选择题和填空题中,可根据题设条件恰当的选择任意一种方法.有时还可以利用“归纳----猜想----证明”的方法去打开解题思路.如果证明数列不是等差数列,可采用举反例的方法,如证明2132a a a ≠+. 2.等差数列前n 项和的最值问题对于等差数列前n 项和的最值问题,取决于首项和公差的正负即:10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值.常用下面两个方法去解决: (1)若已知n S ,可用二次函数最值的求法(n N +∈);(2)若已知n a ,则n S 最值时n 的值(n N +∈)可如下确定100n n a a +≥⎧⎨≤⎩或100n n a a +≤⎧⎨≥⎩.3. 如何判断和证明数列是等比数列判断和证明{}n a 是等比数列常用以下几个方法: (1)利用定义:1n n a q a +=或1n n aq a -=(,2)n N n *∈≥(q 为非零常数); (2)利用等比中项:212n n n a a a ++=⋅;(3)利用通项公式:n n a cq =(0,0c q ≠≠); (4)利用求和公式:n n S kq k =-(11a k q =-,0k ≠,1q ≠). 注意证明数列为等比数列只能用定义和等比中项去证明,但是在选择题或填空题中可以用任何一种方法. 4.利用等比数列求和公式注意的问题在利用等比数列前n 项和公式求和时,如果公比q 未知,且需要利用求和公式列方程时,一定要对公比q 分11q q =≠和两种情况进行讨论.5.如何选择恰当的方法求数列的和在数列求和问题中,由于题目的千变万化,使得不少同学一筹莫展,方法老师也介绍过,就不清楚什么特征用什么方法.为此提供一个通法 “特征联想法”:就是抓住数列的通项公式的特征,再去联想常用数列的求和方法.通项公式作为数列的灵魂,只有抓住它的特征,才能对号入座,得到求和方法.特征一:....++=n n n b a C ,数列{}n C 的通项公式能够分解成几部分,一般用“分组求和法”.特征二:n n n C a b =⋅,数列{}n C 的通项公式能够分解成等差数列和等比数列的乘积,一般用“错位相减法”. 特征三:1n n nC a b =⋅,数列{}n C 的通项公式是一个分式结构,一般采用“裂项相消法”. 特征四:nn n n C C a =⋅,数列{}n C 的通项公式是一个组合数和等差数列通项公式组成,一般采用“倒序相加法”.6. 利用转化,解决递推公式为n S 与n a 的关系式. 数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n n n S n a S S n -=⎧=⎨-⎩≥.通过纽带:12)n n n a S S n -=-≥(,根据题目求解特点,消掉一个n n a S 或.然后再进行构造成等差或者等比数列进行求解.如需消掉n S ,利用已知递推式,把n 换成(n+1)得到递推式,两式相减即可.若消掉n a ,只需把1n n n a S S -=-带入递推式即可.不论哪种形式,需要注意公式1n n n a S S -=-成立的条件 2.n ≥7.由递推关系求数列的通项公式(1)利用“累加法”和“累乘法”求通项公式此解法来源与等差数列和等比数列求通项的方法,递推关系为1()n n a a f n +-=用累加法;递推关系为1()n na f n a +=用累乘法.解题时需要分析给定的递推式,使之变形为1n n a a +-、1n na a +结构,然后求解.要特别注意累加或累乘时,应该为)1(-n 个式子,不要误认为n 个.(2)利用待定系数法,构造等差、等比数列求通项公式求数列通项公式方法灵活多样,特别是对于给定的递推关系求通项公式,观察、分析、推理能力要求较高.通常可对递推式变换,转化成特殊数列(等差或等比数列)来求解,这种方法体现了数学中化未知为已知的化归思想,而运用待定系数法变换递推式中的常数就是一种重要的转化方法.递推公式为q pa a n n +=+1(其中p,q 均为常数,)0)1((≠-p pq ).把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解.8.余弦定理的重要应用三角形的余弦定理作为解决三角形问题的利剑,必须熟练掌握应用.为此,就其常见的几种变形形式,介绍如下. ①联系完全平方式巧过渡:由222()2b c b c bc +=+-则22222cos ()2(1cos )a b c bc A b c bc A =+-=+-+. ②联系重要不等式求范围:由222b c bc +≥,则2222cos 22cos 2(1cos )a b c bc A bc bc A bc A =+-≥-=-当且仅当b c =等号成立. ③联系数量积的定义式妙转化:在ABC ∆中,由222222cos cos 22a b c a b c CA CB CA CB C ab C ab ab +-+-⋅====. 9.如何恰当选择正弦定理与余弦定理解题利用正弦定理解三角形时,可将正弦定理视为方程或方程组,利用方程思想处理已知量与未知量的关系.熟记正弦定理同三角形外接圆半径、三角形面积之间的关系等结论,对于相关问题是十分有益的.利用正弦定理可解决以下两类问题:一是已知两角和一角的对边,求其他边角;二是已知两边和一边对应的角,求其他边角,由于此时的三角形不能确定,应对它进行分类讨论.利用正弦定理解题一般适应的特点(1)如果所给的等式两边有齐次的边的形式或齐次的角的正弦的形式,可以利用正弦定理进行边角互换,这是高考中常见的形式;(2)根据所给条件构造(1)的形式,便于利用正弦定理进行边角互换,体现的是转化思想的灵活应用.余弦定理与平面几何知识、向量、三角函数有着密切的联系,常解决一下两类问题:一是已知两边和它们的夹角,求其他边角;二是已知三边求三角.由于这两种情形下三角形是唯一确定的,所以其解也是唯一. 【考场经验分享】1.数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性. 2.由n S 求n a 时{11,(1),(2)n n n S n a S S n -==-≥,注意验证a 1是否包含在后面a n 的公式中,若不符合要单独列出,一般已知条件含a n 与S n 的关系的数列题均可考虑上述公式.3.如果m n p q +=+,,则q p n m a a a a +=+,一般地,p q p q a a a ++≠,必须是两项相加,当然可以是112p p p a a a -++=.4.等差数列的通项公式通常是n 的一次函数,除非公差0d =.5.公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0.若某数列的前n 项和公式是n 的常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列. 6.特别注意1q =时,1n S na =这一特殊情况.7.由1n n a qa +=,0q ≠,并不能立即断言{}n a 为等比数列,还要验证10a ≠.8.因试题难度与位置的调整,数列问题已经变为学生得全分的题目,故需要学生值得花费时间和精力去攻克,在考试过程中,计算出错极易出现,故不论求通项公式还是数列求和问题均可以利用1,2,3n =进行验证,此法切记! 9.对三角形中的不等式,要注意利用正弦、余弦的有界性进行适当“放缩”. 10.在解实际问题时,需注意的两个问题(1)要注意仰角、俯角、方位角等名词,并能准确地找出这些角;(2)要注意将平面几何中的性质、定理与正、余弦定理结合起来,发现题目中的隐含条件,才能顺利解决. 11.利用正弦定理与余弦定理解题时,经常用到转化思想一个是把边转化为角,另一个是把角转化为边,,具体情况应根据题目给定的表达式进行确定,不管哪个途径,最终转化为角的统一或边的统一,也是我们利用正弦定理与余弦定理化简式子的最终目标,对于两个定理都能用的题目,应优先考虑利用正弦定理,会给计算带来相对的简便,根据已知条件中边的大小来确定角的大小,此时利用正弦定理去计算较小边所对的角,可避免分类讨论,利用余弦定理的推论,可根据角的余弦值的正负直接确定所求角是有锐角还是钝角,但计算麻烦. 【热点深度剖析】1.新课标高考对数列的考查重点是考查等差数列、等比数列的概念、性质、通项公式、前n 项和公式,简单递推数列问题、分组求和、拆项相消、错位相减、倒序求和等常见数列求和方法.通过三年的高考试题也可以发现,试题的位置均为第一大题,试题难度中下,主要以等差数列等比数列为背景考查数列的通项公式和数列求和问题,不在考查递推数列问题.. 2016年文理6份试卷5份均为数列,2017年文科3套试题均为数列,从近几年的高考试题来看,等差数列,等比数列作为最基本的数列模型,一直是高考重点考查的对象.难度属中低档的题目,小题突出“小、巧、活”,主要以通项公式、前n 项和公式为载体,结合等差数列的性质考查分类讨论、化归与方程等思想,要注重通性、通法;解答题“大而全”,注重题目的综合与新颖,突出对逻辑思维能力的考查.预测2018年高考解答题考查数列重点是等差等比数列的通项、求和及错位相减法求和、裂项求和.重点考查学生的运算能力与逻辑推理能力.理科可能与不等式恒成立巧妙结合出一大题.2. 三角函数解答题主要考查利用正弦定理、余弦定理解决一些简单的三角形的度量问题,常与同角三角函数的关系、诱导公式、和差角公式,甚至三角函数的图象和性质等交汇命题,多以解答题的形式出现,属解答题中的低档题.预测2018年高考仍将以正弦定理、余弦定理,尤其是两个定理的综合应用为主要考点,可能与三角函数的图象和性质等交汇命题,重点考查计算能力以及应用数学知识分析和解决问题的能力.【名题精选练兵篇】1.【湖南省永州市2018届高三下学期第三次模拟】在锐角ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且()sin20A B C ++=.(1)求A 的值;(2)若b c -=, ABC ∆a 的值.(Ⅱ)由11sin 22ABC S bc A bc ∆===4bc =, 22225b c b c bc -=+-=, 2213b c ∴+=,22212cos 132492a b c bc A ∴=+-=-⨯⨯=, 即3a =.2.【贵州省2018年普高等学校招生适应性考试】在ABC ∆中,角A , B , C 所对应的边分别为a , b , c ,已知()cos 2cos a C b c A =-. (1)求角A 的大小;(2)若2a =, D 为BC 的中点, 2AD =,求ABC ∆的面积. 【解析】(1)∵()cos 2cos a C b c A =-, ∴sin cos 2sin cos sin cos A C B A C A =-, ∴sin cos sin cos 2sin cos A C C A B A +=, ∴()sin 2sin cos A C B A +=, 又A B C π++=,∴sin 2sin cos B B A =, sin 0B >, ∴1cos 2A =, ()0,A π∈,∴3A π=.(2)∵ADB ADC π∠+∠=,∴cos cos 0ADC ADB ∠+∠=,∴221414044b c +-+-+=,∴2210b c +=, 又2222cos b c bc A a +-=, 224b c bc +-=, ∴6bc =,∴11sin 62222S bc A ==⨯⨯=. 3.【2018届东莞市高三毕业班第二次综合考试】已知等比数列与等差数列成等差数列,成等比数列. (Ⅰ)求,的通项公式;(Ⅱ)设分别是数列,的前项和,若,求的最小值.【解析】 (Ⅰ)设数列的公比为,数列的公差为,则解得(舍)或.(Ⅱ)由(Ⅰ)易知.由,得,是单调递增数列,且,的最小值为7.4.【内蒙古鄂伦春自治旗2018届高三下学期二模】设为数列的前项和,已知,.(1)证明:为等比数列;(2)求的通项公式,并判断,,是否成等差数列?【解析】证明:∵,,∴,∴,∴,,∴是首项为公比为的等比数列.(2)解:由(1)知,,∴,∴,∴,∴,即,,成等差数列.5.【天津市红桥区重点中学八校2017届高三4月联考】已知数列{}n a 的前n 项和为n S ,且满足()22n n S n a -=-, (*n N ∈)(1)证明:数列{}1n a -为等比数列.(2)若()2log 1n n n b a a =⋅-,数列{}n b 的前项和为n T ,求n T(2)由(1)11222n n n a --=⨯= ∴21n n a =+ 又 ()2l o g 1n n n b a a =⋅- ∴()21n n b n =+ ∴123n n T b b b b =++++()()231222322123n n n =⨯+⨯+⨯++⨯+++++设()231122232122n n n A n n -=⨯+⨯+⨯+-⨯+⨯()23121222122n n n A n n +=⨯+⨯++-⨯+⨯两式相减2n n ++-∴()1122n n A n +=-⋅+又(n n ++=6.【河北省唐山市2016-2017学年度高三年级第二次模拟】数列{}n a 的前n 项和为n S , ()21nn n S a =-,且11a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若n n b na =,求数列{}n b 的前n 项和n T .【解析】(Ⅰ)由()21n n n S a =-,可得()11121n n n S a ---=-(2n ≥), 两式相减,得()()1112121n n n n n n S S a a ----=---,()()112221nn n n a a ---=-,故{}n a 是一个以1为首项,,123n n T b b b b =+++⋯+①②①-②,7.【2017届湖南省长沙市高三下学期统一模拟】已知数列{}n a 为等差数列,其中23528,3a a a a +==. (Ⅰ)求数列{}na 的通项公式; 设{}nb 的前n 项和为n S.求最小的正整数n ,(Ⅱ)所以 121n ⎛++ -⎝令解得1008n >,故取1009n =.8.【福建省2017届高三4月单科质量检测】某公司生产一种产品,第一年投入资金1000万元,出售产品收入40万元,预计以后每年的投入资金是上一年的一半,出售产品所得收入比上一年多80万元,同时,当预计投入的资金低于20万元时,就按20万元投入,且当年出售产品收入与上一年相等. (1)求第n 年的预计投入资金与出售产品的收入;(2)预计从哪一年起该公司开始盈利?(注:盈利是指总收入大于总投入)(2)由(1)可知当16n ≤≤时,总利润所以,,所以,当23n ≤≤时, 1n n S S ->;当46n ≤≤时, 1n n S S -<, 又因为160,528.750S S <=-<,所以,当16n ≤≤时, 0n S <,即前6年未盈利, 当7n ≥时, ()()()()67788528.754206n n n S S b a b a b a n =+-+-++-=-+-,令0n S >,得8n ≥.综上,预计该公司从第8年起开始盈利.9.【江西省2017届高三下学期调研考试(四)】已知数列{}n a 为公差不为0的等差数列,满足12321a a a ++=,且1621,,a a a 成等比数列. (1)求{}n a 的通项公式; (2)若数列{}n b 满足求数列{}n b 的前n 项和n T .【解析】(1)设数列{}n a 的公差为d ,则()()121113321{205a d aa d a d +=+=+,解得15{2a d ==,∴23n a n =+.(2当2n ≥时,1b b ⎛++- ⎝11a b+++, 1n n ⎛++- ⎝10.【湖南省娄底市2017届高考仿真模拟(二模)】已知ABC 中, 2AC =, 120A =︒,(Ⅰ)求边AB 的长;(Ⅱ)设D 是BC 边上一点,且ACD 的面积为求ADC ∠的正弦值.【解析】(Ⅰ)因为120A =︒,所以60C B =︒-,又060B ︒<<︒,所以30B =︒, 6030C B =︒-=︒,所以2AB AC ==.在ACD 中,由余弦定理得2222AD AC CD AC =+-⋅⋅11.【陕西省汉中市2017届高三下学期第二次教学质量检测(4月模拟)】在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c , (1)求角B 的大小(2)若b =3,sinC=2sinA,求a 、c 的值及△ABC 的面积12.【江西省2017届高三4月新课程教学质量监测】在ABC ∆中,角A , B , C 的对边分别为a , b , c .(1,求函数()f x 的取值范围;(2)若对任意的x R ∈都有()()f x f A ≤, 2b =, 4c =,点D 是边BC 的中点,AD 的值..【解析】(1, 所以()[]0,3f x ∈; 由()222124AD AB AB AC AC =+⋅+= 所以7AD =.13.【河北省五个一联盟(石家庄一中、保定一中等)2017届第一次模拟】已知向量()sin ,cos m A A =,()cos ,sin n B B =, •sin2m n C =,且A , B , C 分别为△ABC 的三边,,a b c 所对的角.(Ⅰ)求角C 的大小;(Ⅱ)若sin A , sin C , sin B 成等比数列,且()18CA AB AC ⋅-=, 求边c 的值.14.【福建省2017届高三4月单科质量检测】如图,有一码头P 和三个岛屿,,A B C ,0120PCB ∠=, 090ABC ∠=. (1)求,B C 两个岛屿间的距离;(2)某游船拟载游客从码头P 前往这三个岛屿游玩,然后返回码头P .问该游船应按何路线航行,才能使得总航程最短?求出最短航程.【解析】(1)在PBC ∆中,由正弦定理得,又因为在PBC ∆中, 00060PBC <∠<,所以030PBC ∠=,所以030BPC ∠=,即,B C 两个岛屿间的距离为. 15. 【四川省资阳市2015届高三第二次诊断】等差数列{}n a 的前n 项和为n S ,数列{}n b 是等比数列,满足13a =,11b =, 2210b S +=,5232a b a -=.(Ⅰ)求数列{}n a 和{}n b 的通项公式;(Ⅱ)令设数列{}n c 的前n 项和n T ,求2n T .【解析】 (Ⅰ)设数列{}n a 的公差为d ,数列{}n b 的公比为q ,则由2252310,2,b S a b a +=⎧⎨-=⎩得610,34232,q d d q d ++=⎧⎨+-=+⎩解得2,2,d q =⎧⎨=⎩所以32(1)21n a n n =+-=+,12n n b -=. (Ⅱ)由13a =,21n a n =+得(2)n S n n =+,则即 21321242()()n n n T c c c c c c -=+++++++32111111[(1)()()](222)3352121n n n -=-+-++-++++-+12(14)12114n n -=-++-22(41)213n n n =+-+. 【名师原创测试篇】111,22,n n c n n -⎧-⎪=+⎨⎪⎩n 为奇数, n 为偶数, n 为奇数, n 为偶数,12,(2)2,n n n n c -⎧⎪+=⎨⎪⎩n 为奇数, n 为偶数,2,,n n nS c b ⎧⎪=⎨⎪⎩1.已知等比数列{}n a 的公比1q >,且1320a a +=, 28a =.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)n S 是数列{}n b 的前n 项和,对任意正整数n 不等式,求实数a的取值范围.【解析】(Ⅰ)设数列{}n a 的公比为q ,则()211120{8a q a q +==,∴22520q q -+= ∵1q >,∴14{2a q ==,∴数列{}n a 的通项公式为12n n a +=. 12n n+++1122n n +-+++4111222n n n++-1122n n n ++-易知()f n 单调递增.综上即实数a 的取值范围是 2.已知数列{}n a 的前n 项和21n n S a =-.{}n b 是公差不为0的等差数列,其前三项和为3,且3b 是25,b b 的等比中项. (1)求,n n a b ; (2)若()112222n n a b a b a b n t +++≥-+,求实数t 的取值范围.(2)由(1),可知, 12,1n n n a b n -==-,从而()112n n n a b n -=-⨯, 令1122n n n T a b a b a b =+++,即()()122112222212n n n T n n --=⨯+⨯++-⨯+-⨯,③×2,得()()231212222212n n n T n n -=⨯+⨯++-⨯+-⨯,④ -④,得()231222212n n n T n --=++++--⨯即()2?22n n T n =-+,故题设不等式可化为()()2?22n n n t -≥-,(*) 当1n =时,不等式(*)可化为2t -≥-,解得2t ≥; 当2n =时,不等式(*)可化为00≥,此时t R ∈;当3n ≥时,不等式(*)可化为2n t ≤,因为数列{}2n 是递增数列,所以8t ≤, 综上, t 的取值范围是[]2,8.3. 设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,n n S a n +=-- ,n N *∈且2514,,a a a 构成等比数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)证明:对一切正整数n ,有1223111112n n a a a a a a ++++<. 【解析】(Ⅰ)当2n ≥时,()214411n n S a n -=---,22114444n n n n n a S S a a -+=-=--,()2221442n n n n a a a a +=++=+,102n n n a a a +>∴=+ ,∴当2n ≥时,{}n a 是公差2d =的等差数列.2514,,a a a 构成等比数列,25214a a a ∴=⋅,()()2222824a a a +=⋅+,解得23a =,当1n =时,212145=4,1a a a =-∴=,21312a a -=-=∴ {}n a 是首项11a =,公差2d =的等差数列. ∴数列{}n a 的通项公式为21n a n =-. (Ⅱ)()()1223111111111335572121n n a a a a a a n n ++++=++++⋅⋅⋅-+1111111112335572121n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⋅-+-+-+- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 1111.2212n ⎡⎤=⋅-<⎢⎥+⎣⎦ 4. 在ABC ∆中,内角A 、B 、C 所对的边分别为a ,b ,c ,226cos a b ab C +=,且2sin 2sin sin C A B =.(Ⅰ)求角C 的值;(Ⅱ)若点M是ABC ∆中角C 的外角内的一点,且2CM =,过点MF BC ⊥,ME AC ⊥,垂足分别为F ,E .求+MF ME 的最大值.B5.已知数列{}n a 满足0n a ≠,113a =,()1122,n n n n a a a a n n N *---=⋅≥∈. (1)求证:1n a ⎛⎫⎪⎝⎭是等差数列; (2)证明:2221214n a a a ++⋅⋅⋅+<. 【解析】(1)112n n n n a a a a ---=⋅()2n ≥,∴1112n n a a --=()2n ≥ ∴1n a ⎧⎫⎨⎬⎩⎭是以3为首项,2为公差的等差数列.(2)由(1)知:()131221n n n a =+-⋅=+,121n a n ∴=+ ,()222114421n a n n n ∴=<++()11114141n n n n ⎛⎫==- ⎪++⎝⎭, ∴22212n a a a ++⋅⋅⋅+11111111141242341n n ⎛⎫⎛⎫⎛⎫<-+-+⋅⋅⋅+- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭1111111412231n n ⎛⎫<-+-+⋅⋅⋅+- ⎪+⎝⎭1111414n ⎛⎫=-< ⎪+⎝⎭ . 6.ABC ∆中,角,,A B C 的对边分别为,,a b c , 2cos 2b C c a -=.(1)求B 的大小;(2)若3a =,且AC 边上的中线长为求c 的值.(2)由(1)得, 222239b a c ac c c =++=++,①又因为在ABC ∆中,取AC 中点D ,连结BD .在CBD ∆中,②把①代入②,化简得23100c c --=, 解得5c =,或2c =-(舍去),所以5c =.【高考真题再现】1.【2017课标1,文17】记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6. (1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.2.【2017课标II ,文17】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=(1)若335a b += ,求{}n b 的通项公式; (2)若321T =,求3S . 【解析】(2)由得.解得当时,由①得,则. 当时,由①得,则.3.【2017课标3,文17】设数列{}n a 满足123(21)2n a a n a n +++-=.(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和. 【解析】(2)由(1)121121)12)(12(212+--=+-=+n n n n n a n , ∴1221211)121121()5131()311(125321+=+-=+--++-+-=++++=n nn n n n a a a S n n . 4.【2017课标1,理17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.5.【2017课标II ,理17】ABC ∆的内角A B C 、、所对的边分别为,,a b c ,已知()2sin 8sin 2B AC +=, (1)求cos B ;(2)若6a c +=,ABC ∆的面积为2,求b 。
2018年高考数学冲刺点对点试卷:解析几何综合题(无答案)
![2018年高考数学冲刺点对点试卷:解析几何综合题(无答案)](https://img.taocdn.com/s3/m/8f6c1324168884868762d6d6.png)
解析几何综合题1.已知椭圆E : 22221(0)x y a b a b +=>>过点⎛ ⎝,且两个焦点的坐标为()1,0-, ()1,0. (1)求E 的方程;(2)若A , B , P (点P 不与椭圆顶点重合)为E 上的三个不同的点, O 为坐标原点,且OP OA OB =+,求AB 所在直线与坐标轴围成的三角形面积的最小值.2.设抛物线24(0)y mx m =>的准线与x 轴交于1F ,抛物线的焦点2F ,以12,F F 为焦点,离心率12e =的椭圆与抛物线的一个交点为23E ⎛ ⎝;自1F 引直线交抛物线于,P Q 两个不同的点,设11F P FQ λ=. (1)求抛物线的方程椭圆的方程; (2)若1,12λ⎡⎫∈⎪⎢⎣⎭,求PQ 的取值范围.3.在直角坐标系xOy 中,椭圆2222:1x y C a b+= (0)a b >>的左、右焦点分别为12F F 、,点M 在椭圆C 上且2MF x ⊥轴,直线1MF 交y 轴于H 点, OH =Q 为椭圆C 的上顶点, 12F F Q ∆的面积为1. (1)求椭圆C 的方程;(2)过1F 的直线l 交椭圆C 于A , B ,且满足2OA OB BA OB +=-,求ABO ∆的面积.4.已知,A B 分别为椭圆C : 22142x y +=的左、右顶点, P 为椭圆C 上异于,A B 两点的任意一点,直线,PA PB 的斜率分别记为12,k k .(1)求12,k k ;(2)过坐标原点O 作与直线,PA PB 平行的两条射线分别交椭圆C 于点,M N ,问: MON ∆的面积是否为定值?请说明理由.5.已知椭圆E : 22221x y a b +=(0a b >>)的离心率为23, 1F 、2F 分别是它的左、右焦点,且存在直线l ,使1F 、2F 关于l 的对称点恰好是圆C : 22242540x y mx my m +--+-=(R m ∈, 0m ≠)的一条直径的四个端点. (Ⅰ)求椭圆E 的方程;(Ⅱ)设直线l 与抛物线22y px =(0p >)相交于A 、B 两点,射线1F A 、1F B 与椭圆E 分别相交于点M 、N .试探究:是否存在数集D ,当且仅当p D ∈时,总存在m ,使点1F 在以线段MN 为直径的圆内?若存在,求出数集D ;若不存在,请说明理由.6.已知椭圆C 的中心在原点,离心率等于12,它的一个短轴端点恰好是抛物线2x =的焦点 (1)求椭圆C 的方程;(2)已知()23P ,、()23Q -,是椭圆上的两点, A , B 是椭圆上位于直线PQ 两侧的动点.①若直线AB 的斜率为12,求四边形APBQ 面积的最大值;②当A , B 运动时,满足APQ BPQ ∠=∠,试问直线AB 的斜率是否为定值,请说明理由7.已知椭圆E : 22221x y a b+=的焦点在x 轴上,椭圆E 的左顶点为A ,斜率为(0)k k >的直线交椭圆E 于A , B 两点,点C 在椭圆E 上, AB AC ⊥,直线AC 交y 轴于点D . (Ⅰ)当点B 为椭圆的上顶点,ABD 的面积为2ab 时,求椭圆的离心率;(Ⅱ)当b =, 2AB AC =时,求k 的取值范围.8.已知ABC ∆的顶点()1,0A ,点B 在x 轴上移动, AB AC =,且BC 的中点在y 轴上. (Ⅰ)求C 点的轨迹Γ的方程;(Ⅱ)已知轨迹Γ上的不同两点M , N 与()1,2P 的连线的斜率之和为2,求证:直线MN 过定点.9.已知直线l : y kx =与y 轴的交点是椭圆C : 221(0)y x m m+=>的一个焦点.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于A 、B 两点,是否存在k 使得以线段AB 为直径的圆恰好经过坐标原点O ?若存在,求出k 的值;若不存在,请说明理由.10.已知圆22:4O x y +=与x 轴交于,A B 两点,点M 为圆O 上异于,A B 的任意一点,圆O 在点M 处的切线与圆O 在点,A B 处的切线分别交于,C D ,直线AD 和BC 交于点P ,设P 点的轨迹为曲线E .(1)求曲线E 的方程;(2)曲线E 与y 轴正半轴交点为H ,则曲线E 是否存在直角顶点为H 的内接等腰直角三角形Rt GHK ∆,若存在,求出所有满足条件的Rt GHK ∆的两条直角边所在直线的方程,若不存在,请说明理由.11.已知椭圆2222:1(0)x y C a b a b+=>>, O 是坐标原点, 12,F F 分别为其左右焦点, 12F F =M 是椭圆上一点, 12F MF ∠的最大值为23π (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 与椭圆C 交于,P Q 两点,且OP OQ ⊥ (i )求证:2211OPOQ+为定值;(ii )求OPQ ∆面积的取值范围.12.已知过()0,2A 的动圆恒与x 轴相切,设切点为,B AC 是该圆的直径. (Ⅰ)求C 点轨迹E 的方程;(Ⅱ)当AC 不在y 轴上时,设直线AC 与曲线E 交于另一点P ,该曲线在P 处的切线与直线BC 交于Q 点.求证:PQC ∆恒为直角三角形.13.如图,已知圆()22:14E x y +-=经过椭圆2222:1(0)x y C a b a b+=>>的左右焦点12,F F ,与椭圆C 在第一象限的交点为A ,且1F , E , A 三点共线.(1)求椭圆C 的方程;(2)设与直线OA (O 为原点)平行的直线交椭圆C 于,M N 两点,当AMN ∆的面积取取最大值时,求直线l 的方程.14.已知点()1,0F ,直线:1l x =-,直线l '垂直l 于点P ,线段PF 的垂直平分线交l '于点Q . (1)求点Q 的轨迹C 的方程;(2)已知点()1,2H ,过F 且与x 轴不垂直的直线交C 于,A B 两点,直线,AH BH 分别交l 于点,M N ,求证:以MN 为直径的圆必过定点.15.如图,抛物线E : 22(0)y px p =>与圆O : 228x y +=相交于A , B 两点,且点A 的横坐标为2.过劣弧AB 上动点()00,P x y 作圆O 的切线交抛物线E 于C , D 两点,分别以C , D 为切点作抛物线E 的切线1l , 2l , 1l 与2l 相交于点M .(Ⅰ)求p 的值;(Ⅱ)求动点M 的轨迹方程.16.已知1F 、2F 分别是椭圆2214x y +=的左、右焦点.(1)若P 是第一象限内该椭圆上的一点,1254PF PF ⋅=-,求点P 的坐标; (2)设过定点()0,2M 的直线l 与椭圆交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.17.已知圆C : (2216x y += 及点)F,P 为圆C 上一动点,在同一坐标平面内的动点M满足://,CM CP MF MP =.(Ⅰ)求动点M 的轨迹E 的方程;(Ⅱ)设过定点)2,0(Q 的直线l 与椭圆交于不同的两点,G H ,且GOH ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.(Ⅲ)设(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于,T S 两点.求四边形ATBS 面积的最大值18. 已知抛物线C 的顶点为坐标原点,焦点为(1,0)F ,直线l 与抛物线C 相交于,A B 两点,且线段AB 的中点为()2,2M .(I )求抛物线的C 和直线l 的方程;(II )若过()2,0T 且互相垂直的直线12,l l 分别与抛物线交于()()()()11223344,,,,,,,,P x y Q x y R x y S x y 求四边形PRQS 面积的最小值.19. 已知椭圆C :22221x y a b +=()0a b >>,经过点()0,1.(1)求椭圆C 的方程;(2)不经过原点O 的直线:l y kx m =+与椭圆C 交于不同的两点,P Q ,若直线,,OP PQ OQ 的斜率依次成等比数列,求直线l 的斜率k .20. 椭圆:E 22221x y a b +=(0a b >>)过点()0,1,且离心率e =.(Ⅰ)求椭圆E 的标准方程;(Ⅱ)设动直线:l y kx m =+与椭圆E 相切于点P 且交直线2x =于点N ,求椭圆E 的两焦点1F 、2F 到切线l 的距离之积;(Ⅲ)在(II )的条件下,求证:以PN 为直径的圆恒过点2F .5. 如图,在平面直角坐标系 xOy 中,A,B 是圆 O :221x y +=与 x 轴的两个交点(点 B 在点 A 右侧),点 Q(-2,0), x 轴上方的动点 P 使直线 PA,PQ,PB 的斜率存在且依次成等差数列.(I ) 求证:动点 P 的横坐标为定值;(II )设直线 PA,PB 与圆 O 的另一个交点分别为 S,T,求证:点 Q,S,T 三点共线.21. 已知中心在原点,对称轴为坐标轴的椭圆C 的一个焦点F 在抛物线24y x =的准线上,且椭圆C 过点3(1,)2P ,直线l 与椭圆C 交于,A B 两个不同点. (Ⅰ)求椭圆C 的方程; (Ⅱ)若直线l 的斜率为12,且不过点P ,设直线PA ,PB 的斜率分别为12,k k ,求证:12k k +为定值; (Ⅲ)若直线l 过点F ,M 为椭圆C 的另一个焦点,求MAB ∆面积的最大值.。
【精品】2018届高考数学(理)热点题型:数列(含答案解析)
![【精品】2018届高考数学(理)热点题型:数列(含答案解析)](https://img.taocdn.com/s3/m/fd1741254431b90d6c85c747.png)
数列热点一 等差数列、等比数列的综合问题解决等差、等比数列的综合问题时,重点在于读懂题意,灵活利用等差、等比数列的定义、通项公式及前n 项和公式解决问题,求解这类问题要重视方程思想的应用.【例1】已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式;(2)设T n =S n -1S n (n∈N *),求数列{T n }的最大项的值与最小项的值.解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3, 于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .(2)由(1)得S n=1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数,当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n∈N *,总有-712≤S n -1S n ≤56.所以数列{T n }最大项的值为56,最小项的值为-712.【类题通法】解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口.【对点训练】已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项. (1)求数列{a n },{b n }的通项公式; (2)设T n 是数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和,是否存在k∈N *,使得等式1-2T k =1b k成立?若存在,求出k 的值;若不存在,请说明理由. 解 (1)设等差数列{a n }的公差为d(d≠0), ∴⎩⎨⎧⎝ ⎛⎭⎪⎫5a 1+5×42d -2(a 1+d )=25,(a 1+3d )2=a 1(a 1+12d ),解得a 1=3,d =2,∴a n =2n +1. ∵b 1=a 1=3,b 2=a 4=9,∴等比数列{b n }的公比q =3,∴b n =3n . (2)不存在.理由如下:∵1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝⎛⎭⎪⎫12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∴1-2T k =23+12k +3(k∈N *),易知数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫12k +3为单调递减数列, ∴23<1-2T k ≤1315,又1b k =13k ∈⎝ ⎛⎦⎥⎤0,13,∴不存在k∈N *,使得等式1-2T k =1b k 成立.热点二 数列的通项与求和数列的通项与求和是高考必考的热点题型,求通项属于基本问题,常涉及与等差、等比的定义、性质、基本量运算.求和问题关键在于分析通项的结构特征,选择合适的求和方法.常考求和方法有:错位相减法、裂项相消法、分组求和法等.【例2】设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d>1时,记c n =a nb n ,求数列{c n }的前n 项和T n .(1)解 由题意有⎩⎨⎧10a 1+45d =100,a 1d =2,即⎩⎨⎧2a 1+9d =20,a 1d =2, 解得⎩⎨⎧a 1=1,d =2或⎩⎨⎧a 1=9,d =29.故⎩⎨⎧a n =2n -1,b n=2n -1或⎩⎪⎨⎪⎧a n=19(2n +79),b n=9·⎝ ⎛⎭⎪⎫29n -1.(2)解 由d>1,知a n =2n -1,b n =2n -1, 故c n =2n -12n -1, 于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n .②①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n ,故T n =6-2n +32n -1.【类题通法】用错位相减法解决数列求和的模板 第一步:(判断结构)若数列{a n ·b n }是由等差数列{a n }与等比数列{b n }(公比q)的对应项之积构成的,则可用此法求和.第二步:(乘公比)设{a n ·b n }的前n 项和为T n ,然后两边同乘以q. 第三步:(错位相减)乘以公比q 后,向后错开一位,使含有q k (k∈N *)的项对应,然后两边同时作差. 第四步:(求和)将作差后的结果求和,从而表示出T n .【对点训练】设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *.(1)证明:a n +2=3a n ; (2)求S 2n .(1)证明 由条件,对任意n∈N *,有a n +2=3S n -S n +1+3, 因而对任意n∈N *,n ≥2,有a n +1=3S n -1-S n +3. 两式相减,得a n +2-a n +1=3a n -a n +1, 即a n +2=3a n ,n ≥2.又a 1=1,a 2=2, 所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1, 故对一切n∈N *,a n +2=3a n .(2)解 由(1)知,a n ≠0,所以a n +2a n =3.于是数列{a 2n -1}是首项a 1=1,公比为3的等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列. 因此a 2n -1=3n -1,a 2n =2×3n -1.于是S 2n =a 1+a 2+…+a 2n=(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n ) =(1+3+…+3n -1)+2(1+3+…+3n -1) =3(1+3+…+3n -1)=32(3n -1).热点三 数列的综合应用 热点3.1 数列与函数的综合问题数列是特殊的函数,以函数为背景的数列的综合问题体现了在知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解能力,因而一直是高考命题者的首选.【例3-1】 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f(x)=2x 的图象上(n∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f(x)的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f(x)的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 的前n 项和T n .解 (1)由已知,b 7=2a 7,b 8=2a 8=4b 7, 有2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2.所以,S n =na 1+n (n -1)2d =-2n +n(n -1)=n 2-3n.(2)函数f(x)=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 它在x 轴上的截距为a 2-1ln 2. 由题意知,a 2-1ln 2=2-1ln 2, 解得a 2=2.所以,d =a 2-a 1=1.从而a n =n ,b n =2n , 所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n2n -1因此,2T n -T n =1+12+122+…+12n -1-n 2n=2-12n -1-n 2n =2n +1-n -22n. 所以,T n =2n +1-n -22n.热点3.2 数列与不等式的综合问题数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法等.如果是解不等式问题,要使用不等式的各种不同解法,如数轴法、因式分解法. 【例3-2】 在等差数列{a n }中,a 2=6,a 3+a 6=27. (1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n3·2n -1,若对于一切正整数n ,总有T n ≤m 成立,求实数m 的取值范围.解 (1)设公差为d ,由题意得: ⎩⎨⎧a 1+d =6,2a 1+7d =27,解得⎩⎨⎧a 1=3,d =3,∴a n =3n. (2)∵S n =3(1+2+3+…+n)=32n(n +1),∴T n =n (n +1)2n ,T n +1=(n +1)(n +2)2n +1,∴T n +1-T n =(n +1)(n +2)2n +1-n (n +1)2n=(n +1)(2-n )2n +1,∴当n≥3时,T n >T n +1,且T 1=1<T 2=T 3=32,∴T n 的最大值是32,故实数m 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.。
2018年高考数学三轮冲刺专题三角函数的性质解三角形点对点试卷
![2018年高考数学三轮冲刺专题三角函数的性质解三角形点对点试卷](https://img.taocdn.com/s3/m/57cd563a30b765ce0508763231126edb6e1a764e.png)
三角函数的性质、解三角形1.若函数的图象与直线的三个相邻交点的横坐标分别是π/6,2π/3,,则实数w 的值为____.【答案】42.在平面直角坐标系xOy 中,将函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图像向右平移ϕ 02πϕ⎛⎫<< ⎪⎝⎭个单位长度.若平移后得到的图像经过坐标原点,则ϕ的值为_________.【答案】6π3.将函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位,得到函数()y f x =的图象,则23f π⎛⎫ ⎪⎝⎭的值为_______. 【答案】32- 4.已知tan 34πθ⎛⎫+=⎪⎝⎭,则2sin cos 3cos θθθ-的值为__________. 【答案】2-5.已知536ππα⎛⎫∈ ⎪⎝⎭,,且3cos 35πα⎛⎫-= ⎪⎝⎭,则sin α的值是__________. 【答案】43310+ 6.将函数223y cos x π⎛⎫=+ ⎪⎝⎭的图像向右平移(0)2πϕϕ<< 个单位长度后,所得函数为奇函数,则ϕ=__________.【答案】512π 7.已知角,αβ满足tan 7tan 13αβ=,若()2sin 3αβ+=,则()sin αβ-的值为__________. 【答案】15-8.若sin(α-π/6)=3/5,α∈(0,π/2),则cos α的值为________.【答案】 9.【2017届南京市、盐城市高三年级二模】将函数f (x )=sin x 的图象向右平移π/3个单位后得到函数y =g (x )的图象,则函数y =f (x )+g (x )的最大值为________.【答案】10.若,则__________. 【答案】11.已知,则______________. 【答案】12.已知,,则__________. 【答案】 13.函数25tan 56y x π⎛⎫=+⎪⎝⎭的最小正周期是__________ . 【答案】52π 14. 函数的最小正周期为__________. 【答案】115.函数sin 3y x x =的图象可由函数sin 3y x x =的图象至少向右平移 个单位长度得到.【答案】23π 16.在ABC ∆中,6=AC ,2=BC ,060=B ,则=C . 【答案】075【解析】17.将函数 2sin()(0)4y x πωω=->的图象分别向左、向右各平移4π个单位长度后,所得的两个图象对称轴重合,则 ω的最小值为______.【答案】2【解析】()cos sin 3222x x x f x ⎛⎫= ⎪⎝⎭的最小正周期为 . 【答案】2()sin()5f x kx π=+的最小正周期是3π,则正数k 的值为 . 【答案】620.若钝角三角形三个内角的度数成等差数列,且最大边与最小边长度之比为m ,则m 的取值范围是 .【答案】(2,)+∞ ()sin()(0)6f x x πωω=+>图象的两条相邻的对称轴之间的距离为2π,且该函数图象关于点0(,0)x 成中心对称,0[0,]2xπ∈,则x= .【答案】。
高考数学三轮冲刺点对点试卷数列、二项式定理、解析几何(理)(2021年整理)
![高考数学三轮冲刺点对点试卷数列、二项式定理、解析几何(理)(2021年整理)](https://img.taocdn.com/s3/m/69c2c62304a1b0717ed5dd09.png)
2018年高考数学三轮冲刺点对点试卷数列、二项式定理、解析几何(理)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考数学三轮冲刺点对点试卷数列、二项式定理、解析几何(理))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考数学三轮冲刺点对点试卷数列、二项式定理、解析几何(理)的全部内容。
数列、二项式定理、解析几何(理)1.侏罗纪蜘蛛网是一种非常有规则的蜘蛛网,如图,它是由无数个正方形环绕而成,且每一个正方形的四个顶点都恰好在它的外围一层正方形四条边的三等分点上,设外围第一个正方形的边长是m,有人说,如此下去,蜘蛛网的长度也是无限的增大,那么,试问,侏罗纪蜘蛛网的长度真的是无限长的吗?设侏罗纪蜘蛛网的长度为,则()A。
无限大 B。
C。
D。
可以取【答案】B2.已知,若,则( )A. —5 B。
—20 C. 15 D. 35【答案】A3.的展开式中的系数是( )A. 48 B。
C。
D.【答案】B4.若1nxx⎛⎫-⎪⎝⎭的展开式中只有第7项的二项式系数最大,则展开式中含2x项的系数是A。
462- B。
462 C。
792 D. 792-【答案】D5.已知抛物线上的两个动点和,其中且.线段的垂直平分线与x轴交于点 C,则点 C 与圆的位置关系为( )A。
圆上 B. 圆外 C。
圆内 D. 不能确定【答案】C6.已知n S 是等差数列{}n a 的前n 项和,则2()()135810336a a a a a ++++=,则11S =( ) A 。
66 B 。
55 C. 44 D 。
33 【答案】D7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,此日脚痛减一半,六朝才得到其关,要见此日行数里,请公仔仔细算相还",其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问第二天走了( )A. 96里 B 。
2018年高考数学(文)精准押题卷01(全国II卷)试卷(含答案)
![2018年高考数学(文)精准押题卷01(全国II卷)试卷(含答案)](https://img.taocdn.com/s3/m/ac9bdd3de518964bcf847cef.png)
2018年高考精准押题卷01(全国II 卷)数学·文一、选择题1.设集合P= Q= . 则P Q=( ) A. B C. D.2.设复数Z 满足Z · = +1-3i.则 的虚部是( ) A.B.C.-D.-3.对于任意三角形内一点P ,若存在2P A - - = + -P A .则P 点是三角形的( )A.内心B.外心C. 重心D. 垂心4.学校举行春季运动会,百米决赛赛跑共有1 号占位的同学参加。
甲、乙、丙、丁四位同学竞猜第一名,结果只有一名猜中。
甲说:1号肯定是第一名;乙说:肯定不是4、5、6号;丙说:是4、5、6号中的一名;丁说:是2、3号中的一名。
猜中的同学是( ) A.甲 B.丙 C.乙 D.丁5.设a 、b 是空间中不同直线, 、 是不同的平面,则下列说法正确的是( ) A.若a . b 则a 、b 是异面直线。
B.a . b .且 . 则a 。
C.若a . b β⊂,a . 且 . 则a 。
D. 若a . b . a .且 . 则a 。
6.在等差数列}{n a 中,已知201=a ,前n 项和n S (*∈N n )且1510S S =当n S 取最大值时n 为( ) A. 12 B.13 C.12或13 D.11或127.已知直线1:+=x y l ,圆上2)3(22=+-y x 有一点P ,使得P 到直线l 的距离最近,则P 点坐标是( ) A.(2,1) B.(4,-7) C(1,2) D(-7,4) 8.如图所示,为某几何体的三视图,则其体积为( )A. 72B. 48C. 30D.249.若程序框图如图所示,则该程序运行后输出k 的值是( )A.5B.6C.7D.810. 函数x e e x f xx cos 2)(--=在]2,2[ππ-上的大致图像是( )11.已知F 1、F 2为椭圆的两个焦点,若椭圆上存在点p 使得,则离心率e 的取值范围是( )A. , )B.(0, )C.(0,D. , )12.已知函数.0),1ln(,0),1ln({)(22<-+++≥++++=--x x x e e x x x e e x f x x x x 若)12()1(+<-x f x f ,则实数x 的取值范围为( )A.(),0+∞ B.]21,(-∞ C)21,(-∞ D]0,(-∞ 二.填空题13.设x 、y 满足条件则z=4x-2y 最小值是______。
2018年高考数学三轮冲刺点对点试卷立体几何综合题文
![2018年高考数学三轮冲刺点对点试卷立体几何综合题文](https://img.taocdn.com/s3/m/488369883b3567ec112d8a9b.png)
立体几何综合题(文)1.如图所示,在多面体111ABC A B C -中, ,,D E F 分别是1,,AC AB CC 的中点, 4AC BC ==, 42AB =,12CC =,四边形11BB C C 为矩形,平面ABC ⊥平面11BB C C , 11//AA CC(1)求证:平面DEF ⊥平面11AAC C ; (2)求直线EF 与平面ABC 所成的角的正切值.2.如图,在四棱锥P ABCD -中,侧棱PA ⊥底面ABCD ,底面ABCD 是菱形,且23BAD π∠=,点M 是侧棱PC 的中点.(1)求证:直线PA 平面MDB ;(2)若PB PD ⊥,三棱锥P ABD -的体积是63,求PA 的值. 3.如图,在所有棱长均为2的三棱柱111ABC A B C -中, D 、1D 分别是BC 和11B C 的中点. (1)求证: 11A D ∥平面1AB D ;(2)若平面ABC⊥平面11BCC B , 160O B BC ∠=,求三棱锥1B ABC -的体积.4.如图,矩形ABCD 中, 22AB =, 2AD =, M 为DC 的中点,将DAM ∆沿AM 折到D AM ∆'的位置,AD BM '⊥.(1)求证:平面D AM '⊥平面ABCM ;(2)若E 为D B '的中点,求三棱锥A D EM -'的体积.5.如图,以A 、B 、C 、D 、E 为顶点的六面体中, ABC ∆和ABD ∆均为等边三角形,且平面ABC ⊥平面ABD ,EC ⊥平面ABC , 3,2EC AB ==.(Ⅰ)求证: //DE 平面ABC ;(Ⅱ)求此六面体的体积.6.在四棱锥P ABCD -中,底面是边长为2的菱形, 060BAD ∠=, 3PB PD ==, 11PA =, AC BD O ⋂=.(1)设平面ABP ⋂平面DCP l =,证明: //l AB ; (2)若E 是PA 的中点,求三棱锥P BCE -的体积P BCE V -.7.在三棱柱111ABC A B C -中,侧棱1BB ⊥底面111A B C , D 为AC 的中点, 1112A B BB ==, 111AC BC =,1160AC B ∠=︒.(1)求证: 1//AB 平面1BDC ; (2)求多面体111A B C DBA 的体积.8.如图,在正三棱柱111ABC A B C -中, 4AB =, 16AA =, E , F 分别为1BB , AC 的中点.(1)求证:平面1A EC ⊥平面11ACC A ; (2)求几何体1AA EBC 的体积.9.如图,在四棱锥P ABCD -中,底面ABCD 是正方形, PA ⊥底面ABCD , PA PB =, ,E F 分别是,PA PB 的中点.(1)在图中画出过点,E F 的平面α,使得//α平面PCD (须说明画法,并给予证明);(2)若过点,E F 的平面//α平面PCD 且截四棱锥P ABCD -所得截面的面积为322,求四棱锥P ABCD -的体积.10.如图,在三棱柱111ABC A B C -中,底面△ABC 是等边三角形,且1AA ⊥平面ABC , D 为AB 的中点. (Ⅰ) 求证:直线1BC ∥平面A 1CD ;(Ⅱ) 若12AB BB ==,E 是1BB 的中点,求三棱锥1A CDE -的体积.11.如图, AB 为圆O 的直径,点E F 、在圆O 上, //AB EF ,矩形ABCD 所在平面和圆O 所在的平面互相垂直.已知2AB =, 1EF =.(Ⅰ)求证:平面DAF ⊥平面CBF ;(Ⅱ)设几何体F ABCD -、F BCE -的体积分别为12V V 、,求12V V :的值.12.在四棱锥P ABCD -中, PA ⊥平面ABCD , //AD BC , AD DC ⊥, 2AD DC PA ===, 4BC =, E 为PA 的中点, M 为棱BC 上一点.(Ⅰ)当BM 为何值时,有//EM 平面PCD ; (Ⅱ)在(Ⅰ)的条件下,求点P 到平面DEM 的距离.13.如图,四棱锥P ABCD -中,底面ABCD 是矩形,平面PAD ⊥底面ABCD ,且PAD ∆是边长为2的等边三角形,13,PC M =在PC 上,且PA 面MBD .(1)求证: M 是PC 的中点; (2)求多面体PABMD 的体积.14.如图1,在矩形ABCD 中, 4,2AB AD ==, E 是CD 的中点,将ADE ∆沿AE 折起,得到如图2所示的四棱锥1D ABCE -,其中平面1D AE ABCE ⊥平面.(I )证明: 1BE D AE ⊥平面; (II )求三棱锥1C BD E -的体积.15.已知三棱锥P ABC -中,PA ⊥面ABC ,D 是PC 的中点,PD DB ⊥,2, 4.PA AC AB === (Ⅰ)求证:AB AC ⊥(Ⅱ)若G 是PB 的中点,则平面ADG 将三棱锥P ABC -分成的两部分的体积之比.16. 如图,已知矩形CDEF 所在的平面与直角梯形ABCD 所在的平面垂直,且////1,,1,2,, 3.,2AB CD BC CD AB BC CD MB FC MB FC P Q =⊥====分别为,BC AE 的中点.(I )求证://PQ 平面MAB ;(II )求证:平面EAC ⊥平面MBD .17. 如图,在三棱锥CP-AB中,PA⊥PB,C CA⊥B,PA=PB,C CA=B,D、E、F分别是CP、CA、CB 的中点.(I)证明:平面D F//E平面PAB;(II)若2C2AB=P=,求三棱锥CP-AB的体积.18. 如图,在矩形11CCDD中,111////CCBBAA,2,1,21====AABCADAB,将在矩形11CCDD沿11,BBAA分别将四边形CCBBDDAA1111,折起,使1CC与1DD重合(如图所示)(Ⅰ)在三棱柱111CBAABC-中,取AB的中点F,求证:⊥CF平面11AABB;(Ⅱ)当E为棱1CC中点时,求证://CF平面1AEB.CC1A1B1E19. 如图所示,在边长为12的正方形11ADD A中,点,B C在线段AD上,且3,4AB BC==,作11//BB AA ,分别交111,A D AD于点1B,P .作11//CC AA,分别交111,A D AD于点1C,Q.将该正方形沿11,BB CC折叠,使得1DD与1AA重合,构成如图的三棱柱111ABC A B C-.(1)求证:AB⊥平面11BCC B;(2)求四棱锥A BCQP-的体积.。
热点05 数列与三角形的解答题-2018年高考数学三轮讲练
![热点05 数列与三角形的解答题-2018年高考数学三轮讲练](https://img.taocdn.com/s3/m/94f6a2200740be1e640e9a1f.png)
2018年高考三轮复习系列:讲练测之核心热点 【全国通用版】热点五 数列与三角形的解答题【名师精讲指南篇】【高考真题再现】1.【2017课标1,文17】记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6. (1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.2.【2017课标II ,文17】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=(1)若335a b += ,求{}n b 的通项公式; (2)若321T =,求3S . 【解析】(2)由错误!未找到引用源。
得错误!未找到引用源。
. 解得错误!未找到引用源。
当错误!未找到引用源。
时,由①得错误!未找到引用源。
,则错误!未找到引用源。
. 当错误!未找到引用源。
时,由①得错误!未找到引用源。
,则错误!未找到引用源。
. 3.【2017课标3,文17】设数列{}n a 满足123(21)2n a a n a n +++-=.(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.【解析】(2)由(1)121121)12)(12(212+--=+-=+n n n n n a n ,∴1221211)121121()5131()311(125321+=+-=+--++-+-=++++=n nn n n n a a a S n n . 4.【2017课标1,理17】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.5.【2017课标II ,理17】ABC ∆的内角A B C 、、所对的边分别为,,a b c ,已知()2sin 8sin 2B AC +=, (1)求cos B ;(2)若6a c +=,ABC ∆的面积为2,求b 。
高考数学三轮冲刺专题数列点对点试卷(无答案)(2021年整理)
![高考数学三轮冲刺专题数列点对点试卷(无答案)(2021年整理)](https://img.taocdn.com/s3/m/89f36424aef8941ea66e05d7.png)
(江苏专版)2018年高考数学三轮冲刺专题数列点对点试卷(无答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专版)2018年高考数学三轮冲刺专题数列点对点试卷(无答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专版)2018年高考数学三轮冲刺专题数列点对点试卷(无答案)的全部内容。
数列1.已知等差数列满足,,则的值为____.2.在各项均为正数的等比数列{}n a 中,若21a =, 8646a a a =+,则3a 的值为_________.3.设数列{}n a 为等差数列, n S 为数列{}n a 的前n 项和,已知3159,225,n S S B ==为数列n S n ⎧⎫⎨⎬⎩⎭的前n 项和,则n B =__________.4.数列{}n a 为等比数列, 11a =且1351,4,7a a a +++成等差数列,则公差d =__________. 5.设数列{}n a 的首项11a =,且满足212121n n a a +-=+与2211n n a a -=+,则数列{}n a 的前20项和为__________.6.等比数列{}n a 中, 1473692,18a a a a a a ++=++=,则{}n a 的前9项和9S =__________. 7.设数列{}n a 满足2410a a +=,点(),n n P n a 对任意的n N +∈,都有向量()11,2n n P P +=,则数列{}n a 的前n 项和n S =__________.8.已知数列{}n α满足221221,2,1cos sin ,22n n n n a a a a ππ+⎛⎫===++ ⎪⎝⎭则该数列的前21项的和为__________.9.已知数列{}n a 的前n 项和n S 满足21n n S a =-,则1210181818=a a a -+-+-_______.10.已知各项都为整数的数列{}n a 中, 12a =,且对任意的*N n ∈,满足1122n n n a a +-<+, 2n n a a +-321n >⨯-,则2017a =__________.11.设等差数列{}n a 的前n 项和为n S ,若1378S =, 71210a a +=,则17a =_______; 12.设等比数列{a n }中,S n 是前n 项和,若36270a a -=,则=__________。
解三角形、数列2018年全国数学高考分类真题(含答案)(精编文档).doc
![解三角形、数列2018年全国数学高考分类真题(含答案)(精编文档).doc](https://img.taocdn.com/s3/m/8dcefead14791711cd791792.png)
【最新整理,下载后即可编辑】解三角形、数列2018年全国高考分类真题(含答案)一.选择题(共4小题)1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为,则C=( ) A . B . C . D .2.在△ABC 中,cos =,BC=1,AC=5,则AB=( )A .4B .C .D .2 3.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则( )A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 44.记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .﹣12B .﹣10C .10D .12二.填空题(共4小题)5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC=120°,∠ABC 的平分线交AC 于点D ,且BD=1,则4a+c 的最小值为 .6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a=,b=2,A=60°,则sinB= ,c= .7.设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为 .8.记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6= . 三.解答题(共9小题)9.在△ABC 中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.10.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (﹣,﹣).(Ⅰ)求sin (α+π)的值;(Ⅱ)若角β满足sin (α+β)=,求cosβ的值.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知bsinA=acos (B ﹣).(Ⅰ)求角B 的大小;(Ⅱ)设a=2,c=3,求b 和sin (2A ﹣B )的值.12.在平面四边形ABCD 中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos ∠ADB ;(2)若DC=2,求BC .13.设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列.(1)设a 1=0,b 1=1,q=2,若|a n ﹣b n |≤b 1对n=1,2,3,4均成立,求d 的取值范围;(2)若a 1=b 1>0,m ∈N*,q ∈(1,],证明:存在d ∈R ,使得|a n ﹣b n |≤b 1对n=2,3,…,m+1均成立,并求d 的取值范围(用b 1,m ,q 表示).14.已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n+1﹣b n )a n }的前n 项和为2n 2+n .(Ⅰ)求q 的值;(Ⅱ)求数列{b n }的通项公式.15.设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N*),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6. (Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设数列{S n }的前n 项和为T n (n ∈N*),(i )求T n ;(ii )证明=﹣2(n ∈N*).16.等比数列{a n }中,a 1=1,a 5=4a 3.(1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .17.记S n 为等差数列{a n }的前n 项和,已知a 1=﹣7,S 3=﹣15.(1)求{a n }的通项公式;(2)求S n ,并求S n 的最小值.解三角形、数列2018年全国高考分类真题(含答案)参考答案与试题解析一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B. C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,==,∴S△ABC∴sinC==cosC,∵0<C<π,∴C=.故选:C.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A .3.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),若a 1>1,则( )A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4【解答】解:a 1,a 2,a 3,a 4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a 1>1,设公比为q ,当q >0时,a 1+a 2+a 3+a 4>a 1+a 2+a 3,a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),不成立,即:a 1>a 3,a 2>a 4,a 1<a 3,a 2<a 4,不成立,排除A 、D . 当q=﹣1时,a 1+a 2+a 3+a 4=0,ln (a 1+a 2+a 3)>0,等式不成立,所以q ≠﹣1;当q <﹣1时,a 1+a 2+a 3+a 4<0,ln (a 1+a 2+a 3)>0,a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3)不成立,当q ∈(﹣1,0)时,a 1>a 3>0,a 2<a 4<0,并且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3),能够成立,故选:B .4.记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .﹣12B .﹣10C .10D .12【解答】解:∵S n 为等差数列{a n }的前n 项和,3S 3=S 2+S 4,a 1=2, ∴=a 1+a 1+d+4a 1+d ,把a 1=2,代入得d=﹣3∴a 5=2+4×(﹣3)=﹣10.故选:B .二.填空题(共4小题)5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC=120°,∠ABC 的平分线交AC 于点D ,且BD=1,则4a+c 的最小值为 9 .【解答】解:由题意得acsin120°=asin60°+csin60°, 即ac=a+c ,得+=1, 得4a+c=(4a+c )(+)=++5≥2+5=4+5=9, 当且仅当=,即c=2a 时,取等号,故答案为:9.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a=,b=2,A=60°,则sinB= ,c= 3 .【解答】解:∵在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==. 由余弦定理得:cos60°=,解得c=3或c=﹣1(舍),∴sinB=,c=3.故答案为:,3.7.设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为 a n =6n ﹣3 .【解答】解:∵{a n }是等差数列,且a 1=3,a 2+a 5=36,∴,解得a 1=3,d=6,∴a n =a 1+(n ﹣1)d=3+(n ﹣1)×6=6n ﹣3.∴{a n }的通项公式为a n =6n ﹣3.故答案为:a n =6n ﹣3.8.记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6= ﹣63 .【解答】解:S n 为数列{a n }的前n 项和,S n =2a n +1,①当n=1时,a 1=2a 1+1,解得a 1=﹣1,当n ≥2时,S n ﹣1=2a n ﹣1+1,②, 由①﹣②可得a n =2a n ﹣2a n ﹣1,∴a n =2a n ﹣1,∴{a n }是以﹣1为首项,以2为公比的等比数列,∴S 6==﹣63,故答案为:﹣63三.解答题(共9小题)9.在△ABC 中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.【解答】解:(Ⅰ)∵a <b ,∴A <B ,即A 是锐角,∵cosB=﹣,∴sinB===, 由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.13.设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列.(1)设a 1=0,b 1=1,q=2,若|a n ﹣b n |≤b 1对n=1,2,3,4均成立,求d 的取值范围;(2)若a 1=b 1>0,m ∈N*,q ∈(1,],证明:存在d ∈R ,使得|a n ﹣b n |≤b 1对n=2,3,…,m+1均成立,并求d 的取值范围(用b 1,m ,q 表示).【解答】解:(1)由题意可知|a n ﹣b n |≤1对任意n=1,2,3,4均成立, ∵a 1=0,q=2,∴,解得.即≤d ≤.证明:(2)∵a n =a 1+(n ﹣1)d ,b n =b 1•q n ﹣1,若存在d ∈R ,使得|a n ﹣b n |≤b 1对n=2,3,…,m+1均成立,则|b 1+(n ﹣1)d ﹣b 1•q n ﹣1|≤b 1,(n=2,3,…,m+1), 即b 1≤d ≤,(n=2,3,…,m+1),∵q ∈(1,],∴则1<q n ﹣1≤q m ≤2,(n=2,3,…,m+1),∴b 1≤0,>0,因此取d=0时,|a n ﹣b n |≤b 1对n=2,3,…,m+1均成立, 下面讨论数列{}的最大值和数列{}的最小值, ①当2≤n≤m时,﹣==,当1<q ≤时,有q n ≤q m ≤2,从而n (q n ﹣q n ﹣1)﹣q n +2>0, 因此当2≤n ≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f (x )=2x (1﹣x ),当x >0时,f′(x )=(ln2﹣1﹣xln2)2x <0,∴f (x )单调递减,从而f (x )<f (0)=1, 当2≤n ≤m 时,=≤(1﹣)=f ()<1,因此当2≤n ≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d 的取值范围是d ∈[,].14.已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n+1﹣b n )a n }的前n 项和为2n 2+n . (Ⅰ)求q 的值;(Ⅱ)求数列{b n }的通项公式.【解答】解:(Ⅰ)等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项, 可得2a 4+4=a 3+a 5=28﹣a 4, 解得a 4=8,由+8+8q=28,可得q=2(舍去), 则q 的值为2;(Ⅱ)设c n =(b n+1﹣b n )a n =(b n+1﹣b n )2n ﹣1, 可得n=1时,c 1=2+1=3,n ≥2时,可得c n =2n 2+n ﹣2(n ﹣1)2﹣(n ﹣1)=4n ﹣1, 上式对n=1也成立, 则(b n+1﹣b n )a n =4n ﹣1,即有b n+1﹣b n =(4n ﹣1)•()n ﹣1,可得b n =b 1+(b 2﹣b 1)+(b 3﹣b 2)+…+(b n ﹣b n ﹣1) =1+3•()0+7•()1+…+(4n ﹣5)•()n ﹣2, b n =+3•()+7•()2+…+(4n ﹣5)•()n ﹣1,相减可得b n =+4[()+()2+…+()n ﹣2]﹣(4n ﹣5)•()n ﹣1=+4•﹣(4n ﹣5)•()n ﹣1,化简可得b n =15﹣(4n+3)•()n ﹣2.15.设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N*),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6. (Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设数列{S n }的前n 项和为T n (n ∈N*), (i )求T n ; (ii )证明=﹣2(n ∈N*).【解答】(Ⅰ)解:设等比数列{a n }的公比为q ,由a 1=1,a 3=a 2+2,可得q 2﹣q ﹣2=0. ∵q >0,可得q=2. 故.设等差数列{b n }的公差为d ,由a 4=b 3+b 5,得b 1+3d=4,由a 5=b 4+2b 6,得3b 1+13d=16, ∴b 1=d=1. 故b n =n ;(Ⅱ)(i )解:由(Ⅰ),可得, 故=;(ii )证明:∵==.∴==﹣2.16.等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 【解答】解:(1)∵等比数列{a n }中,a 1=1,a 5=4a 3. ∴1×q 4=4×(1×q 2), 解得q=±2, 当q=2时,a n =2n ﹣1, 当q=﹣2时,a n =(﹣2)n ﹣1,∴{a n }的通项公式为,a n =2n ﹣1,或a n =(﹣2)n ﹣1. (2)记S n 为{a n }的前n 项和. 当a 1=1,q=﹣2时,S n ===,由S m =63,得S m ==63,m ∈N ,无解;当a 1=1,q=2时,S n ===2n ﹣1,由S m =63,得S m =2m ﹣1=63,m ∈N , 解得m=6.17.记S n 为等差数列{a n }的前n 项和,已知a 1=﹣7,S 3=﹣15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.【解答】解:(1)∵等差数列{a n }中,a 1=﹣7,S 3=﹣15, ∴a 1=﹣7,3a 1+3d=﹣15,解得a 1=﹣7,d=2, ∴a n =﹣7+2(n ﹣1)=2n ﹣9; (2)∵a 1=﹣7,d=2,a n =2n ﹣9, ∴S n ===n 2﹣8n=(n ﹣4)2﹣16,∴当n=4时,前n 项的和S n 取得最小值为﹣16.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列与三角形
1.在锐角ABC 中,内角,,A B C 的对边分别为,,a b c ,且3cos sin20A B C .
(1)求A 的值;
(2)若5b c ,ABC 的面积为3,求a 的值.
2.在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知cos 2cos a C b c A .
(1)求角A 的大小;
(2)若2a ,D 为BC 的中点,2AD ,求ABC 的面积.
3.已知等比数列与等差数列成等差数列,成等比数列.
(Ⅰ)求,的通项公式;
(Ⅱ)设分别是数列,的前项和,若,求n 的最小值.
4.设为数列的前n 项和,已知,.
(1)证明:为等比数列;
(2)求的通项公式,并判断,,是否成等差数列?
5.已知数列n a 的前n 项和为n S ,且满足22n n S n a , (*n N )
(1)证明:数列1n a 为等比数列.
(2)若2log 1n n n b a a ,数列n b 的前项和为n T ,求n
T 6.数列n a 的前n 项和为n S , 21n n n S a ,且11a .
(Ⅰ)求数列n a 的通项公式;
(Ⅱ)若n n b na ,求数列n b 的前n 项和n T .
7.已知数列n a 为等差数列,其中23528,3a a a a .
(Ⅰ)求数列n a 的通项公式;
(Ⅱ)记12
n n n b a a ,设n b 的前n 项和为n S .求最小的正整数n ,使得2016
2017n
S .
8.某公司生产一种产品,第一年投入资金1000万元,出售产品收入40万元,预计以后每年的投入资金是上一年的一半,
出售产品所得收入比上一年多80万元,同时,当预计投入的资金低于20万元时,就按20万元投入,且当年出售产品收入与上一年相等.
(1)求第n 年的预计投入资金与出售产品的收入;
(2)预计从哪一年起该公司开始盈利?(注:盈利是指总收入大于总投入)
9.已知数列
n a 为公差不为0的等差数列,满足12321a a a ,且1621,,a a a 成等比数列. (1)求n a 的通项公式;学科*网
(2)若数列n b 满足*11
1n n n a n N b b ,且113b ,求数列n b 的前n 项和n T .
10.已知ABC 中, 2AC , 120A , cos 3sin B C . (Ⅰ)求边AB 的长;
(Ⅱ)设D 是BC 边上一点,且ACD 的面积为33
4,求ADC 的正弦值.
11.在△ABC 中,内角A 、B 、C 的对边分别为
a 、
b 、c,且3bsinA acosB
(1)求角B 的大小(2)若b =3,sinC=2sinA,求a 、c 的值及△ABC 的面积
12.已知函数4sin sin 3f x x x ,在ABC 中,角A , B , C 的对边分别为a , b , c .
(1)当0,2x 时,求函数f x 的取值范围;
(2)若对任意的x R 都有f x f A , 2b , 4c ,点D 是边BC 的中点,求AD 的值..
13.已知向量
sin ,cos m A A , cos ,sin n B B , ?sin2m n C ,且A , B , C 分别为△ABC 的三边,,a b c 所对的角.
(Ⅰ)求角
C 的大小;(Ⅱ)若sinA , sinC , sinB 成等比数列,且18CA AB AC , 求边c 的值.
14.如图,有一码头P 和三个岛屿,,A B C , 303,90mi ,30PC n mile PB
n le AB n mile , 0120PCB , 0
90ABC . (1)求,B C 两个岛屿间的距离;
(2)某游船拟载游客从码头
P 前往这三个岛屿游玩,然后返回码头P .问该游船应按何路线航行,才能使得总航程最短?求出最短航程.。