锐角三角函数-基础+培优
湘教版 九年级数学上册第4章《锐角三角函数》培优试题与答案

湘教版2020—2021学年九年级数学上册第4章《锐角三角函数》培优试题与简答一.选择题(10小题,每小题3分,共30分)1.如图,ABC∆中,90B∠=︒,2BC AB=,则sin(C=)A.52B.12C .255D .552.如图,在ABC∆中,90C∠=︒,4BC=,AB的垂直平分线EF交AC于点D,连接BD,若4sin5BDC∠=,则AC的长是()A.43B.26C.10D.83.如图所示,河堤横断面迎水坡AB的坡比是1:5,堤高4BC m=,则迎水坡宽度AC的长为()A.5m B.45m C.26m D.46m4.已知ABC∆是锐角三角形,若AB AC>,则()A.sin sinA B<B.sin sinB C<C.sin sinA C<D.sin sinC A<5.如图,在Rt ACB∆中,90C∠=︒,sin0.5B=,若6AC=,则BC的长为() A.8B.12C.63D.1236.已知A,B都是锐角、且sin sinA B<,则下列关系正确的是()A.A B∠>∠B.tan tanA B>C.cos cosA B>D.以上都不正确7.如图,在ABC∆中,30A∠=︒,3tan B,23AC=AB的长是()第1题图第2题图第3题图第5题图第7题图A .4B .33+C .5D .223+8.在Rt ABC ∆中,若90ACB ∠=︒,1tan 2A =,则sin (B = ) A .12B .32C .55D .2559.如图,某停车场入口的栏杆AB ,从水平位置绕点O 旋转到A B ''的位置,已知AO 的长为4米.若栏杆的旋转角AOA α∠'=,则栏杆A 端升高的高度为( ) A .4sin α米 B .4sin α米 C .4cos α米 D .4cos α米10.如图,A ,B 两景点相距20km ,C 景点位于A 景点北偏东60︒方向上,位于B 景点北偏西30︒方向上,则A ,C 两景点相距( ) A .10kmB .103kmC .102kmD .2033km 二.填空题(共8小题,每小题3分,共24分) 11.已知3tan(15)α+︒=,则锐角α的度数为 ︒. 12.比较大小:cos45︒ cos55︒(用“>”或“<”填空) 13.在ABC ∆中,若90C ∠=︒,10AB =,2sin 5A =,则BC = 14.如图,在ABC ∆中,1sin 3B =,3tanC =,3AB =,则AC 的长为 .15.已知A ∠为锐角,且1cos 2A,那么A ∠的范围是 . 16.如图,在Rt ABC ∆中,90ACB ∠=︒,2AC =,3tan 4B =,CD 平分ACB ∠交AB 于点D ,DE BC ⊥,垂足为点E ,则DE = .17.如图,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的第9题图第10题图第14题图第16题图俯角α是45︒,旗杆底端D到大楼前梯坎底边的距离DC是10米,梯坎坡长BC是10米,梯坎坡度41:3BCi=,则大楼AB的高为米.18.如图,在菱形ABCD中,AE BC⊥,E为垂足,若4cos5B=,2EC=,P是AB边上的一个动点,则线段PE的长度的最小值是.三.解答题(共6小题,满分46分,其中19、20每小题6分,21、22每小题7分,23、24每小题10分)19.已知032a b=≠,求代数式3cot60(2)cos30tan45a ba b+︒-︒︒的值.20.如图,在ABC∆中,90C∠=︒,3tan3A=,ABC∠的平分线BD交AC于点D,3CD=,求AB的长?21.如图,AD是ABC∆的中线,1tan3B=,2cos C=,2AC=.求:(1)BC的长;(2)sin ADC∠的值.22.如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的长度是19.5米,MN是二楼楼顶,//MN PQ,点C是MN上处在自动扶梯顶端B点正上方的一点,BC MN⊥,在自动扶梯底端点A处测得C点的仰角CAQ∠为45︒,坡角BAQ∠为37︒,求二楼的层高BC(精确到0.1米).(参考数据:sin370.6︒≈,cos370.8︒≈,tan370.75)︒≈第17题图第18题图23.某校九年级数学兴趣小组的学生进行社会实践活动时,想利用所学的解直角三角形的知识测量教学楼的高度,他们先在点D 处用测角仪测得楼顶M 的仰角为30︒,再沿DF 方向前行40米到达点E 处,在点E 处测得楼顶M 的仰角为45︒,已知测角仪的高AD 为1.5米.请根据他们的测量数据求此楼MF 的高.(结果精确到0.1m ,参考数据:2 1.414≈,3 1.732≈,6 2.449)≈24.如图,某防洪指挥部发现长江边一处长500米,高10米,背水坡的坡角为45︒的防洪大堤(横断面为梯形)ABCD 急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF 的坡比1:3i =. (1)求加固后坝底增加的宽度AF ;(2)求完成这项工程需要土石多少立方米?(结果保留根号)湘教版2020—2021学年九年级数学上册第4章《锐角三角函数》培优试题参考简答一.选择题(共10小题)1.D . 2.D . 3.B . 4.B . 5.C . 6.C . 7.C . 8.D . 9.B . 10.B . 二.填空题(共8小题)11. 15 ︒. 12. > . 13. 4 . 14.21. 15. 6090A ︒<︒ . 16.87. 17. 27 . 18. 4.8 . 三.解答题(共6小题)19.已知032a b=≠,求代数式3cot 60(2)cos30tan 45a b a b +︒-︒︒的值. 【解】:032a b=≠, 23a b ∴=,∴23b a =, 原式323323..22322332(2).a a a===-.20.如图,在ABC ∆中,90C ∠=︒,3tan A =,ABC ∠的平分线BD 交AC 于点D ,3CD =,求AB 的长?【解】:在Rt ABC ∆中,90C ∠=︒,3tan A =, 30A ∴∠=︒, 60ABC ∴∠=︒,BD 是ABC ∠的平分线,30CBD ABD ∴∠=∠=︒,又3CD =,3tan30CDBC ∴==︒,在Rt ABC ∆中,90C ∠=︒,30A ∠=︒, 6sin30BCAB ∴==︒. 答:AB 的长为6.21.如图,AD 是ABC ∆的中线,1tan 3B =,2cosC =,2AC =.求:(1)BC 的长; (2)sin ADC ∠的值.【解】:(1)过点A 作AE BC ⊥于点E ,2cos C 45C ∴∠=︒,在Rt ACE ∆中,cos 1CE AC C ==, 1AE CE ∴==,在Rt ABE ∆中,1tan 3B =,即13AE BE =,33BE AE ∴==,4BC BE CE ∴=+=;(2)AD 是ABC ∆的中线,122CD BC ∴==, 1DE CD CE ∴=-=, AE BC ⊥,DE AE =, 45ADC ∴∠=︒,2sin ADC ∴∠=. 22.如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB 的长度是19.5米,MN 是二楼楼顶,//MN PQ ,点C 是MN 上处在自动扶梯顶端B 点正上方的一点,BC MN ⊥,在自动扶梯底端点A 处测得C 点的仰角CAQ ∠为45︒,坡角BAQ ∠为37︒,求二楼的层高BC (精确到0.1米).(参考数据:sin370.6︒≈,cos370.8︒≈,tan370.75)︒≈【解】:延长CB 交AQ 于点D ,则CD AQ ⊥,在Rt BAD ∆中,sin BD BAD AB ∠=,cos ADBAD AB∠=, sin 19.50.611.7BD AB BAD ∴=∠≈⨯=,cos 19.50.815.6AD AB BAD =∠≈⨯=,在Rt CAD ∆中,45CAD ∠=︒, 15.6CD AD ∴==, 3.9BC CD BD ∴=-=,答:二楼的层高BC 约为3.9米.23.某校九年级数学兴趣小组的学生进行社会实践活动时,想利用所学的解直角三角形的知识测量教学楼的高度,他们先在点D 处用测角仪测得楼顶M 的仰角为30︒,再沿DF 方向前行40米到达点E 处,在点E 处测得楼顶M 的仰角为45︒,已知测角仪的高AD 为1.5米.请根据他们的测量数据求此楼MF的高.(结果精确到0.1m,参考数据:2 1.414≈,3 1.732≈,6 2.449)≈【解】:设MC x=,30MAC∠=︒,∴在Rt MAC∆中,3tan3MCAC xMAC===∠.45MBC∠=︒,∴在Rt MCB∆中,MC BC x==,又40AB DE==,40AC BC AB∴-==,即340x x-=,解得:2020354.6x=+≈,54.6 1.556.1MF MC CF∴=+=+=(米),答:楼MF的高56.1米.24.如图,某防洪指挥部发现长江边一处长500米,高10米,背水坡的坡角为45︒的防洪大堤(横断面为梯形)ABCD急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF的坡比1:3i=.(1)求加固后坝底增加的宽度AF;(2)求完成这项工程需要土石多少立方米?(结果保留根号)【解】:(1)分别过点E、D作EG AB⊥、DH AB⊥交AB于G、H.四边形ABCD 是梯形,且//AB CD ,DH ∴平行且等于EG .故四边形EGHD 是矩形. ED GH ∴=.在Rt ADH ∆中,tan 10tan4510AH DH DAH =÷∠=÷︒=(米).在Rt FGE ∆中, 3EGi FG==, 33FG EG ∴=(米).1033101037AF FG GH AH ∴=+-=-=(米);(2)加宽部分的体积AFED V S =⨯梯形坝长 1(31037)105002=⨯+⨯⨯ 25000310000=-(立方米).答:(1)加固后坝底增加的宽度AF 为(1037)米; (2)完成这项工程需要土石310000)立方米.。
数学锐角三角函数的专项培优练习题(含答案)及详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.(1)求观察哨所A 与走私船所在的位置C 的距离;(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)(参考数据:sin37°=cos53°≈,cos37 =sin53°≈去,tan37°≈2,tan76°≈)【答案】(1)观察哨所A 与走私船所在的位置C 的距离为15海里;(2)当缉私艇以每小时617D 处成功拦截. 【解析】 【分析】(1)先根据三角形内角和定理求出∠ACB =90°,再解Rt △ABC ,利用正弦函数定义得出AC 即可;(2)过点C 作CM ⊥AB 于点M ,易知,D 、C 、M 在一条直线上.解Rt △AMC ,求出CM 、AM .解Rt △AMD 中,求出DM 、AD ,得出CD .设缉私艇的速度为x 海里/小时,根据走私船行驶CD 所用的时间等于缉私艇行驶AD 所用的时间列出方程,解方程即可. 【详解】(1)在ABC △中,180180375390ACB B BAC ︒︒︒︒︒∠=-∠-∠=--=. 在Rt ABC 中,sin AC B AB =,所以3sin 3725155AC AB ︒=⋅=⨯=(海里). 答:观察哨所A 与走私船所在的位置C 的距离为15海里.(2)过点C 作CM AB ⊥,垂足为M ,由题意易知,D C M 、、在一条直线上. 在Rt ACM 中,4sin 15125CM AC CAM =⋅∠=⨯=,3cos 1595AM AC CAM =⋅∠=⨯=.在Rt ADM △中,tan MDDAM AM∠=,所以tan 7636MD AM ︒=⋅=. 所以222293691724AD AM MD CD MD MC =+=+==-=,.设缉私艇的速度为v海里/小时,则有2491716=,解得617v=.经检验,617v=是原方程的解.答:当缉私艇以每小时617海里的速度行驶时,恰好在D处成功拦截.【点睛】此题考查了解直角三角形的应用﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.2.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O 于点E.(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)【答案】(1)AE=CE;(2)①;②.【解析】试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于AD=DC,根据垂直平分线的性质可得AE=CE;(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD•AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.试题解析:(1)AE=CE.理由:连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,∴AE=CE;(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD•AF.①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC•3DC=,∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED===;②当CF=aCD(a>0)时,sin∠CAB=.∵CF=aCD,AD=DC,∴AF=AD+DC+CF=(a+2)CD,∴=DC•(a+2)DC=(a+2),∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED==.考点:1.圆的综合题;2.探究型;3.存在型.3.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为 cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.【答案】(1);(2)12cm;(3)cm.【解析】试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案:∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.∵∠ACD=30°,∠DAC=90°,AC=12cm,∴(cm).∵点E为CD边上的中点,∴AE=DC=cm.(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,根据轴对称的性质,此时DP+EP值为最小,进而得出答案.(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.试题解析:解:(1).(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,∵E为CD边上的中点,∴DE=AE.∴△ADE为等边三角形.∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°.∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′.∴点E,D′关于直线AC对称.如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.∵△ADE是等边三角形,AD=AE=,∴,即DP+EP最小值为12cm.(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=.在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′(SSS).∴∠D′BG=∠D′BC=45°.∴D′G=GB.设D′G长为xcm,则CG长为cm,在Rt△GD′C中,由勾股定理得,解得:(不合题意舍去).∴点D′到BC边的距离为cm.考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.4.如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.(1)求tan∠DBC的值;(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.【答案】(1)tan∠DBC=;(2)P(﹣,).【解析】试题分析:(1)连接CD,过点D作DE⊥BC于点E.利用抛物线解析式可以求得点A、B、C、D的坐标,则可得CD//AB,OB=OC,所以∠BCO=∠BCD=∠ABC=45°.由直角三角形的性质、勾股定理和图中相关线段间的关系可得BC=4,BE=BC﹣DE=.由此可知tan∠DBC=;(2)过点P作PF⊥x轴于点F.由∠DBP=45°及∠ABC=45°可得∠PBF=∠DBC,利用(1)中的结果得到:tan∠PBF=.设P(x,﹣x2+3x+4),则利用锐角三角函数定义推知=,通过解方程求得点P的坐标为(﹣,).试题解析:(1)令y=0,则﹣x2+3x+4=﹣(x+1)(x﹣4)=0,解得 x1=﹣1,x2=4.∴A(﹣1,0),B(4,0).当x=3时,y=﹣32+3×3+4=4,∴D(3,4).如图,连接CD,过点D作DE⊥BC于点E.∵C(0,4),∴CD//AB,∴∠BCD=∠ABC=45°.在直角△OBC中,∵OC=OB=4,∴BC=4.在直角△CDE中,CD=3.∴CE=ED=,∴BE=BC﹣DE=.∴tan∠DBC=;(2)过点P作PF⊥x轴于点F.∵∠CBF=∠DBP=45°,∴∠PBF=∠DBC,∴tan∠PBF=.设P(x,﹣x2+3x+4),则=,解得 x1=﹣,x2=4(舍去),∴P(﹣,).考点:1、二次函数;2、勾股定理;3、三角函数5.如图,MN为一电视塔,AB是坡角为30°的小山坡(电视塔的底部N与山坡的坡脚A在同一水平线上,被一个人工湖隔开),某数学兴趣小组准备测量这座电视塔的高度.在坡脚A处测得塔顶M的仰角为45°;沿着山坡向上行走40m到达C处,此时测得塔顶M的仰角为30°,请求出电视塔MN的高度.(参考数据:2≈1.41,3≈1.73,结果保留整数)【答案】95m【解析】【分析】过点C作CE⊥AN于点E, CF⊥MN于点F.在△ACE中,求AE=3m,在RT△MFC中,设MN=x m,则AN=xm.FC3xm,可得x+33 ( x-20),解方程可得答案..【详解】解:过点C作CE⊥AN于点E, CF⊥MN于点F.在△ACE中,AC=40m,∠CAE=30°∴CE=FN=20m,AE=3设MN=x m,则AN=xm.FC3,在RT△MFC中MF=MN-FN=MN-CE=x-20FC=NE=NA+AE=x+3∵∠MCF=30°∴FC3MF,即x+33-20)解得:x =40331- =60+203≈95m答:电视塔MN 的高度约为95m .【点睛】本题考核知识点:解直角三角形.解题关键点:熟记解直角三角形相关知识,包括含特殊角的直角三角形性质.6.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8. (1)求k 的值;(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.【答案】(1)1k =;(2)4m t =+;(3)32BOCMS =.【解析】【分析】(1)先求出A 的坐标,然后利用待定系数法求出k 的值;(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BOPD MO=,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32. 【详解】解:(1)把0x =代入4y kx =+,4y =, ∴4BO =, 又∵4ABO S ∆=,∴142AO BO ⋅=,4AO =, ∴(4,0)A -,把4x =-,0y =代入4y kx =+, 得044k =-+, 解得1k =. 故答案为1;(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,∴90PDO CEO ∠=∠=︒, ∴90POD OPD ∠+∠=︒,∵线段OP 绕点O 顺时针旋转90°至线段OC , ∴90POC ∠=︒,OP OC =, ∴90POD EOC ∠+∠=︒, ∴OPD EOC ∠=∠,∴POD OCE ∆≅∆, ∴OE PD =,4m t =+.故答案为4m t =+.(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,由(1)知,4AO BO ==,90BOA ∠=︒, ∴ABO ∆为等腰直角三角形,∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠, ∴BT TO =, ∵90BTO ∠=︒, ∴90TPO TOP ∠+∠=︒, ∵PO BM ⊥, ∴90BNO ∠=︒, ∴BQT TPO ∠=∠, ∴QTB PTO ∆≅∆, ∴QT TP =,PO BQ =, ∴PQT QPT ∠=∠, ∵PO PK KB =+,∴QB PK KB =+,QK KP =, ∴KQP KPQ ∠=∠,∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠, ∴KPB BPN ∠=∠, 设KPB x ∠=︒, ∴BPN x ∠=︒, ∵2PMB KPB ∠=∠, ∴2PMB x ∠=︒,45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒,∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠,∴PO PM =,过点P 作PD x ⊥轴,垂足为点D ,∴22OM OD t ==,9045OPD POD x BMO ∠=︒-∠=︒-︒=∠,tan tan OPD BMO ∠=∠, OD BO PD MO =,442t t t=+, 14t =,22t =-(舍)∴8OM =,由(2)知,48m t OM =+==,∴CMy 轴, ∵90PNM POC ∠=∠=︒, ∴BMOC , ∴四边形BOCM 是平行四边形, ∴4832BOCM S BO OM =⨯=⨯=.故答案为32.【点睛】本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.7.如图1,以点M (-1,0)为圆心的圆与y 轴、x 轴分别交于点A 、B 、C 、D ,直线y =-x -与⊙M 相切于点H ,交x 轴于点E ,交y 轴于点F .(1)请直接写出OE 、⊙M 的半径r 、CH 的长;(2)如图2,弦HQ 交x 轴于点P ,且DP : PH =3 : 2,求cos ∠QHC 的值;(3)如图3,点K 为线段EC 上一动点(不与E 、C 重合),连接BK 交⊙M 于点T ,弦AT交x 轴于点N .是否存在一个常数a ,始终满足MN·MK =a ,如果存在,请求出a 的值;如果不存在,请说明理由.【答案】(1)OE=5,r=2,CH=2(2);(3)a=4【解析】【分析】(1)在直线y=-x-中,令y=0,可求得E的坐标,即可得到OE的长为5;连接MH,根据△EMH与△EFO相似即可求得半径为2;再由EC=MC=2,∠EHM=90°,可知CH 是RT△EHM斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半即可得出CH的长;(2)连接DQ、CQ.根据相似三角形的判定得到△CHP∽△QPD,从而求得DQ的长,在直角三角形CDQ中,即可求得∠D的余弦值,即为cos∠QHC的值;(3)连接AK,AM,延长AM,与圆交于点G,连接TG,由圆周角定理可知,∠GTA=90°,∠3=∠4,故∠AKC=∠MAN,再由△AMK∽△NMA即可得出结论.【详解】(1)OE=5,r=2,CH=2(2)如图1,连接QC、QD,则∠CQD =90°,∠QHC =∠QDC,易知△CHP∽△DQP,故,得DQ=3,由于CD=4,;(3)如图2,连接AK,AM,延长AM,与圆交于点G,连接TG,则,由于,故,;而,故在和中,;故△AMK∽△NMA;即:故存在常数,始终满足常数a="4"解法二:连结BM,证明∽得8.我市在创建全国文明城市的过程中,某社区在甲楼的A处与E处之间悬挂了一副宣传条幅,在乙楼顶部C点测得条幅顶端A点的仰角为45°,条幅底端E点的俯角为30°,若甲、乙两楼之间的水平距离BD为12米,求条幅AE的长度.(结果保留根号)【答案】AE 的长为(123)+【解析】【分析】在Rt ACF 中求AF 的长, 在Rt CEF 中求EF 的长,即可求解.【详解】过点C 作CF AB ⊥于点F由题知:四边形CDBF 为矩形12CF DB ∴==在Rt ACF 中,45ACF ∠=︒tan 1AF ACF CF∴∠== 12AF ∴=在Rt CEF 中,30ECF ∠=︒tan EF ECF CF∴∠= 3123EF ∴= 43EF ∴=1243AE AF EF ∴=+=+∴求得AE 的长为(1243+【点睛】本题考查了三角函数的实际应用,中等难度,作辅助线构造直角三角形是解题关键.9.如图,AB 是圆O 的直径,O 为圆心,AD 、BD 是半圆的弦,且∠PDA=∠PBD .延长PD 交圆的切线BE 于点E(1)判断直线PD 是否为⊙O 的切线,并说明理由;(2)如果∠BED=60°,3PA 的长;(3)将线段PD 以直线AD 为对称轴作对称线段DF ,点F 正好在圆O 上,如图2,求证:四边形DFBE 为菱形.【答案】(1)证明见解析;(2)1;(3)证明见解析.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.【详解】(1)直线PD为⊙O的切线,理由如下:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD,∵∠PDA=∠PBD,∴∠BDO=∠PDA,∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,∴直线PD为⊙O的切线;(2)∵BE是⊙O的切线,∴∠EBA=90°,∵∠BED=60°,∴∠P=30°,∵PD为⊙O的切线,∴∠PDO=90°,在Rt△PDO中,∠P=30°,PD=3,∴0 tan30ODPD=,解得OD=1,∴22PO PD OD=+=2,∴PA=PO﹣AO=2﹣1=1;(3)如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF,∵∠PDA=∠PBD∠ADF=∠ABF,∴∠ADF=∠PDA=∠PBD=∠ABF,∵AB是圆O的直径,∴∠ADB=90°,设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°,即90°+x+2x=180°,解得x=30°,∴∠ADF=∠PDA=∠PBD=∠ABF=30°,∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°,∴∠DBE=60°,∴△BDE是等边三角形,∴BD=DE=BE,又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,∴BD=DF=BF,∴DE=BE=DF=BF,∴四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.10.如图,AB 为O 的直径,C 、D 为O 上异于A 、B 的两点,连接CD ,过点C 作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒.(2)若2ABD BDC ∠=∠.①求证:CF 是O 的切线.②当6BD =,3tan 4F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =. 【解析】【分析】(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =34,即可求出CF . 【详解】解:(1)AB 是O 的直径,且D 为O 上一点,90ADB ∴∠=︒,CE DB ⊥,90DEC ∴∠=︒,//CF AD ∴,180DAC ACF ∴∠+∠=︒.(2)①如图,连接OC .OA OC =,12∴∠=∠.312∠=∠+∠,321∴∠=∠.42BDC ∠=∠,1BDC ∠=∠,421∴∠=∠,43∴∠=∠,//OC DB ∴.CE DB ⊥,OC CF ∴⊥.又OC 为O 的半径,CF ∴为O 的切线.②由(1)知//CF AD ,BAD F ∴∠=∠,3tan tan 4BAD F ∴∠==, 34BD AD ∴=. 6BD =483AD BD ∴==, 226810AB ∴=+=,5OB OC ==.OC CF ⊥,90OCF ∴∠=︒,3tan 4OC F CF ∴==, 解得203CF =. 【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.。
人教版九年级下册数学《锐角三角函数》培优说课教学复习课件

探究新知
【思考】一般地,当∠A 取其他一定度数的锐角时,它 的对边与斜边的比是否也是一个固定值?
探究新知
任意画 Rt△ABC 和 Rt△A'B'C',使得∠C=∠C'=90°,
∠A=∠A'=α,那么
BC AB
与 B' C'
A' B'
有什么关系?你能解释一
下吗?
B' B
A
C A'
C'
探究新知
因为∠C=∠C'=90°,∠A=∠A'=α, 所以Rt△ABC ∽Rt△A'B'C'. 因此
50m,那么需要准备多长的水管?
B' B
35m 50m
A
C C'
AB'=2B'C' =2×50=100(m).
在一个直角三角形中,如果一个锐角等于30°,那么不管
三角形的大小如何,这个角的对边与斜边的比值都等于
1 2
.
探究新知
如图,任意画一个Rt△ABC,使∠C=90°,A
∠A=45°,计算∠A的对边与斜边的比
AB BC A' B' B' C'
BC B' C' AB A'B'
在直角三角形中,当锐角 A 的度数一定时,不管三角 形的大小如何,∠A 的对边与斜边的比都是一个固定值.
探究新知
归纳: 如图,在 Rt△ABC 中,∠C=90°,我们把锐角 A 的
对边与斜边的比叫做∠A的正弦,记作 sin A 即
OP OA2 AP2 32 42 5.
因此 sin AP 4 .
人教版九年级数学下锐角三角函数单元培优教师版

第二十八章 锐角三角函数1. 锐角三角函数(一)预习归纳在直角三角形中,锐角a 的 对边 与 斜边 的比叫做角ɑ的正弦,记作sin ɑ . 例题讲解 【例】(2014·兰州)如图,在Rt △ABC 中,∠C 90°,BC =3,AC =4,那么sin A 的值等于( C ) A .43 B . 54 C . 53 D . 34基础题训练1 .已知Rt △ABC 中,∠C =90°,∠A =60°,则AC :BC :AB =2:3:12 .已知Rt △ABC 中,∠C =90°,AB =2BC ,则∠A = 30° .3 .已知△ABC 中,∠A =∠B =21∠C ,则BC :AC :AB4 .在Rt △ABC 中,∠C =90°,∠A 的正弦是( A ) A .AB BC B . AB AC C . AC BC D . BCAB5 .计算2·sin45°的结果等于( B )A .2 B . 1 C .22D . 32 6 .在△ABC 中,∠C =90°,AC =2BC ,则sinA 的值为( C ) A .552 B . 2 C . 55D . 32 7 . 把Rt △ABC 的三边的长度都扩大为原来的3倍,则锐角A 的正弦值( A )A . 不变B . 缩小为3倍C . 扩大3倍D . 不能确定 8 .如图,在△ABC 中,∠C =90°,AB =13, BC =5,求sinB 的值.ABCABC解:sin B=13129.(2015·包头)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=14,求线段AC的长.解:2中档题训练10 .△ABC中,∠C=90°,AB=15,sinA=31,则BC等于( B )A .45B .5C .51D .45111 .(2014·威海)如图,在右边网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是( D )A.310B.12C.13D.1012.如图,在菱形ABCD中,AE⊥BC于点E,EC=1,sinB=135,求菱形的周长.解:设AE=5x,AB=13x,∴BE=12x,∴12x+1=13x,x=1∴AB=13,∴菱形的周长为52 .ABDCE13 .如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,sinA =54,AC =5,求sinB 及BC 的长.解:sin B =53 BC =32014 .在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,且c =35,若关于x 的方程(35+b )x 2+2ax +35-b =0,有两个相等的实数根. (1)试判断△ABC 的形状; (2)若sin A =53,求△ABC 的面积. 解:(1)由题意知:(a +b )x 2+2ax +c -b =0,△=0,可知a 2+b 2=c 2,∴∠C =90°. (2)S △ABC =18 .综合题训练15 .(2014·上海)如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD 、CB 相交于点H 、E ,AH =2CH .求sin B 的值.解:可证∠B =∠DCB =∠CAE ,又AC 5CH ,故sinB 5.ADC2. 锐角三角函数(二)预习归纳1.在直角三角形中,锐角a 的 邻边 与 斜边 的比叫做角a 的余弦,记作 cosa 2.在直角三角形中,锐角a 的 对边 与 邻边 的比叫做角a 的正切,记作tana 例题讲解【例】如图,在Rt △ABC 中,∠C =90°,AC =12,AB =13,则sinA =513;cosA =1213 ;tanA = 512 ;sinB = 1213 ;cosB = 513;tanB = 125 .基础训练1 .如图,在Rt △ABC 中,∠C =90°,AC =8,tanA =43,则BC = 6 ;AB = 10 ;sinB =45 ;cosB = 35;tanB = 43 . 2 . 在Rt △ABC 中,∠C =90°,tanA =3,则sinAcosA = ;sinB =;、cosB tan = 13. 3.(2015·天津)cos45°的结果等于( B )A .12 B .C . 23 D .4 .(2014·巴中) 在Rt △ABC 中,∠C =90°,sinA =513,则tanB 的值是( D ) A .1213 B . 512 C . 1312 D . 1255 .在△ABC 中,∠C =90°,cosA =54,则tanB 的值为( A ) A . 34 B . 43 C . 53 D . 546 .在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =5, AC =6,则tanB 的值是( C ) A . 54B . 53C . 43D . 34A7 .在△ABC 中,∠C =90°∠A 、∠B 、∠C 的对边分别是a 、b 、c ,下列式子一定成立的是( B ) A . a =c ·sin B B . a =c ·cosB C . a =c ·tanB D . a =Bccos 8 .已知在△ABC 中,∠C =90°,AB =2AC ,求tanA 、tanB 的值.解:tanA =3;tan B33 9.如图,Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,AD =1,BD =4. (1)求CD 的长; (2)求sin A 、tan B 的值. 解:(1)2 (2)255,12中档题训练10.(2014·苏州)如图,在△ABC 中,AB =AC =5, BC =8.若∠BPC=12∠BAC ,则tan ∠BPC = 43. 11.(2015·山西)如图,在网格中,小正方形的边长均为1,点A 、B 、C 都在格点上,则∠ABC 的正切值是( D ). A .2 B .255 C .55 D .12第10题图 第11题图 第12题图 12.如图,△ABC 中,cos B =2,sin C =35,AC =5,则△ABC 的面积是多少? 解:AD ⊥BC ,∵△ABC 中,cos B =2,sin C =35.AC =5,∴cos B =2=BDAB,∴∠B = 45°,∵sin C =35=AD AC =5AD ,∴AD =3,CD =4,∴BD =3,则△ABC 的面积是:12×AD ×BC =12×3×(3+4)=21213.如图,正方形ABCD 中,M 为DC 的中点,N 为BC 上一点,BN =3CN ,求tan ∠MAN 的值.解:连MN ,易证△ADM ≌△MCN ,知∠AMN =90°,∴tan ∠MAN =MN AM =CM AD =12.综合题训练14.如图,直线y=-3x+b与x轴、y轴分别交于点D、A,与双曲线y=kx在第一象限交于B、C两点,且AB·AC=4.(1)求tan∠ADO的值;(2)求k的值.解:(1)过B作BM⊥y轴于M,过C作CN⊥y轴于N,∵A (0,b),D (3b,0),∴tan∠ADO=3b =3.(2)设点B和点C的横坐标分别为m,n,则AB=23m,AC=23n,∴AB·AC=23m·23n=4,∴mn=3,又m,n为方程-3x+b=kx的两根,∴mn=k,∴3=3k,∴k=33.锐角三角函数(三)预习归纳锐角α30°45°60°sinα122232cosα322212tanα3313(1)α的值逐渐增大,α的值逐渐减小,α的值逐渐增大.(2)sin30°=cos60°,sin30°=cos60°;(3) sin230°+cos230°=1;(4)sin30cos30︒︒=tan30°;(5)若sinα=cosα,则锐角α=45°.例题讲解【例】计算:1-2sin30°·cos30°=232-.基础题训练1.计算: sin30°·cos30°+cos60°·sin45°=32+.2.计算:3tan30°·tan45°+2cos60°=3+1.3.若α为锐角,且tanα=1,则α=45°,cosα=22.4.计算:cos601+1+sin60tan30︒︒︒=2.5.(2014·白银)△ABC中,∠A、∠B都是锐角,若sin A=3,co sB=12,则∠C=60°.6.计算:(1) (2011-1)0+18sin45°-22.(2) (2015·长沙) (12)-1+4cos60°-|-3|+9.解:原式=0解:原式=4(3)27-(4-π)0-6cos30°+|-2| (4)(2015·福州) (-1)2015+sin30°+(2-3)(2+3).解:原式=1解:原式=1 2中档题训练7.(2014·凉山州)在△ABC中,若|cos A-12|+(1-tan B)2=0,则∠C的度数是( C)A.45°B.60°C.75°D.105°8.反比例函数y=kx的图象经过点(tan45°,cos60°),则k=12.9.在△ABC中,∠A=30°,sin B=3,AC=23,则AB=4.10.已知2+3是方程x2-5x sinθ+1=0的一个根,且0°<θ<90°,求sinθ的值.解:sinθ=4 511.(2014·连云港)如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N,求tan∠ANE的值.解:设正方形的边长为2a,DH=x,则CH=2a-x,由翻折的性质,DE=12AD=12×2a=a.EH=CH=2a-x,在Rt△DEH中,DE2+DH2=EH2,即a2+x2=(2a-x)2,解得x=34a,∵∠MEH=∠C=90°,∴∠AEN+∠DEH=90°∵∠ANE+∠AEN=90°∴∠ANE=∠DEH,∴tan∠ANE=tan∠DEH=DHDE=34aa=34综合题训练12.如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD 上.(1)求证:△ABF≌△DFE;(2)若sin∠DFE=13,求tan∠EBC的值.(1)略(2) Rt△DFF中,sin∠DFE=DEEF=13,∴设DE=a,EF=3a,DF=22EF DE=22a,∵△BCE沿BE折叠为△BFE,∴CE=EF=3a,CD=DE+CE=4a,AB=4a,∠EBC=∠EBF,又由(1)△ABF≌△DFE,∴EFBF=DFAB=224aa=22,∴tan∠EBF=EFBF=2,tan∠EBC=tan∠EBF=24. 解直角三角形(一)预习归纳在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,则有:(1)三边的关系(勾股定理)是__________ a2+b2=c2;(2)两个锐角之间的关系是__________∠A+∠B=90°;(3)边角之间的关系是:sin A__________ac;sin B__________bc;cos A__________bc;cos B__________ac;tan A__________ab;tan B _________ba.例题讲解【例】在△ABC中,AB=AC=3,BC=2,则cos B的值是(B).A.3B. 13C. 33D.23基础题训练1.在Rt△ABC中,∠C=90°.(1)若c=12,sin A=13,则a=__________4,b=__________;(2)若∠A=30°,a=8,则∠B=__________60°,c=__________16,b=__________;(3)若a=,b=,则∠A=__________60°,∠B=__________30°,c=__________(4)若a=c=4,则∠A=__________45°,∠B=__________45°,b=__________.2. (2015·兰州)如图,△ABC中,∠B=90°,BC=2AB,则cos A=(D)CA.B.12C. D.3. 如图,已知△ABC中,∠C=90°,给出下列四个结论:①a=c·sin A;②a=b·tan A;③c=a·sin C;④sincosAA=tan A,其中正确的结论是(B)BA. ①②③B. ①②④C. ①③④D.②③④4. 如图,Rt△ABC中,∠ABC=90°,BD⊥AC于D,∠CBD=a,AB=3,BC=4.(1)求sinα的值;(2)求AD的长.解:(1)4 5(2)9 55.在Rt△ABC中,∠C=90°,∠A=60°,a-b1,求斜边c的长.解:tan A=ababb-b1,b=1,c=2.中档题训练6.如图,△ABC 中,∠A =30°,∠C =45°,BC,求AC 的长.解:作BD ⊥AC 于D ,CD =BD =1,ADAC+1. 7.如图,在△ABC 中,AD ⊥BC 于D ,如果BD =9,BC =5,cos B =35,E 为AC 的中点,求sin ∠EDC 的值.解:sin ∠EDC =sin ∠C =1213. 8.如图,△ABC 中,∠C =90°,∠B =30°,AD 是△ABC的角平分线,若AC ,求线段AD 的长.解:∵△ABC 中,∠C =90°,∠B =30°, ∴∠BAC =60°,∵AD 是△ABC 的角平分线,∴∠CAD =30°,∴在Rt △ADC 中,AD =cos30AC=2.9.如图,等腰Rt △ABC 中,∠ACB =90°,过BC 的中点D 作DE ⊥AB ,垂足为E ,连接CE ,求sin ∠ACE .E解:过E 作EH ⊥AC ,∴AH =3CH ,∴sin ∠ACE .综合题训练10.如图,在△ABC中,∠C=90°,∠A=15°,(1)求ACBC的值;(2)求sin A的值.解:(1)在AC上取点E,使AE=BE,则∠CEB=30°,设BC=1,则BE=2,CE,AC=2AB2=(2)2+1=8+AB1,ACBC=2(2)sin A=BCAB5. 解直角三角形(二)预习归纳视线与视平线的夹角叫做__________视角;当视线在视平线之上时,此视角叫做__________仰角;当视线在视平线之下时,此视角叫做__________俯角.例题讲解【例】如图,飞机于空中A处探测地面目标B,此时从飞机上看目标B的俯角∠α=30°,飞行高度AC=1200米,则飞机到目标B的距离AB为(B)A.1200米B. 2400米米米基础题训练1.如图,已知一商场自动扶梯的长l为10米,该自动扶梯到达的高度h为6米,自动扶梯与地面所成的角为θ,则tanθ的值等于(A)A. 34B.43C.45D.352.(2014·孝感)如图,在ABCD 中,对角线AC 、BD 相交所成的锐角为a ,若AC =a ,BD =b ,则ABCD 的面积是( A )A. 12ab sinαB. ab sinαC. ab cosαD. 12ab cosα 3. 如图,是意大利著名的比萨斜塔,塔身的中心线与垂直中心线的夹角A 约为5°28',塔身的长为54.5m ,则塔顶中心偏离垂直中心线的距离BC 是( A )A. 54.5×sin5°28'mB. 54.5×cos 5°28'mC. 54.5×tan5°28'mD.o 54.5m sin528'4. (2015·长沙)如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 仰角∠ABO 为α,则树OA 的高度为( C )OAA. 30tan α米 B.30sinα米 C. 30tanα 米 D.30cosα米5. (2015·哈尔滨)如图,某飞机在空中A 处探测到它的正下方地平面上目标C ,此时飞行高度AC =1200m ,从飞机上看到地平面指挥台B 的俯角α=30°,则飞机A 与指挥台B 的距离为( D )1200mαBCAA.1200 m 2 m 3 D.2400 m中档题训练6.如图,为了测量电线杆的高度AB ,在离电线杆20米的C 处,用高1.20米的测角仪CD 测得电线杆顶端B 的仰角α=22°,求电线杆AB 的高.(精确到0.1)(sin22°≈0.3746,cos22°≈0.9272,tan22°≈0.4040).α解:AB =20×tan22°+1.20≈9.3.7.如图,某高速公路建设中需要确定隧道AB 的长度,已知在离地面1500 m 高的C 处有一架飞机,飞行员测得正前方A 、B 两点处的俯角分别为60°和45°,求隧道AB 的长.CD解:∵OA =1500×tan30°=1500×33=5003,OB =OC =1500, ∴AB =1500-5003≈1500-865=635(m ).8.如图,教室窗户的高度AF 为2.5米,遮阳篷外端一点D 到窗户上椽距离为AD ,某一时刻太阳光从教室窗户射入室内,与地面的夹角∠BPC 为30°,PE 为窗户的一部分在教室地面所形成的影子且长为3米,试求AD 的长度.(结果带根号)B F PA D解:AD =332米. 综合题训练 9. (2015·天津)如图,某建筑物BC 顶部有一旗杆AB ,且点A ,B ,C 在同一直线上,小红在D 处观测旗杆顶部A 的仰角为47°,观测旗杆底部B 的仰角为42°.已知点D 到地面的距离DE 为1.56m ,EC =21m ,求旗杆AB 的高度和建筑物BC 的高度(结果保留小数点后一位).参考数据:tan47°≈1.07,tan42°≈0.90.47°42°F A BD解:如图,根据题意,DE =1.56,EC =21,∠ACE =90°,∠DEC =90°,过点D 作DF ⊥AC ,垂足为F ,则∠DFC =90°,∠ADF =47°,∠BDF =42°,可得四边形DECF 为矩形,∴DF =EC =21,FC =DE =1.56,在Rt △DF A 中,tan ∠ADF =AFDF,∴AF =DF ·tan47°≈21×1.07=22.47,在Rt △DFB 中,tan ∠BDF =BFDF,∴BF =DF ·tan42°≈21×0.90=18.90,于是,AB =AF -BF ≈22.47-18.90=3.57≈3.6,BC =BF +FC ≈18.90+1.56=20.46≈20.5. 答:旗杆AB 的高度约为3.6m ,建筑物BC 的高度约为20.5m.6. 解直角三角形(三)预习归纳在一斜坡上,升高的高度h与水平前进的距离l的比叫坡度,用字母i表示,即i=hl.例题讲解【例】如图,在山坡上种树,要求株距(相邻两树间的水平距离)是6米,测得斜坡的坡度为1:2.4,则斜坡上相邻两树间的坡面距离是(C)A.6.2米B.6.4米C. 6.5米D.7.2米基础题训练1. 如图,已知某斜坡的坡度为13,则斜坡的坡角α是(A)i=1:3αA.30°B. 45°C. 60°D.0°<α<30°2. 一艘海轮位于灯塔的北偏红65°方向,那么灯塔位于这艘海轮的(A)A. 南偏西65°方向B. 南偏西25°方向C. 北偏西65°方向D. 北偏西25°方向3. (2014·上海)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为__________26米.4. 河堤横断面如图所示,堤高BC=5米,迎水坡的坡比是3(坡比是坡面的铅直高度BC 与水平宽度AC之比),则AC的长是()ABA. 5米B. 10米C. 15米3米5. 如图,某人从A 点出发,沿着西南方向行了个单位,到达B 后观察到原点O 在它的南偏东60°方向上,则原来A 点的坐标为__________(04).(结果保留根号)6.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为个坡面的坡度为__________1:2.7.如图,水坝的横断面是梯形,背水坡AB:1,坡长AB m ,为加强水坝强度,将坝底从A 处向后延伸到F 处,使新的背水坡BF 的坡度为1:1,求AF 的长度(结果精确到1米,参考数据:≈1.414,≈1.732).解:过B 作BE ⊥AD 于E ,在Rt △ABE中,tan ∠BAE =BEAE则∠BAE =60°,∴AE=3BE =BE =30,tan ∠BFE =BEEF=1,∴BE =EF =30,∴AF =EF -AE =30-13 m中档题训练8.如图,斜坡AC 的坡度为1:3,AC =10米,坡顶有一旗杆BC ,旗杆顶端B 点与点A 有一条彩带AB 相连,AB =14米,试求旗杆BC 的高度. 解:BC =6米9.如图,梯形ABCD 是拦水坝的横断面图(图中1:3i =是指坡面的铅直高度DE 与水平宽度CE 的比),∠B =60°,AB =6,AD =4,求拦水坝的横断面ABCD 的面积.(结果保留三位有效数字,参考数据:3 1.732≈,2 1.414≈) 解:52.010.(2015 南京)如图,轮船甲位于码头O 的正西方向A 处,轮船乙位于码头O 的正北方向C 处,测得∠CAO =45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h 和36km/h .经过0.1h ,轮船甲行驶至B 处,轮船乙行驶至D 处,测得∠DBO =58°,此时B 处距离码头O 有多远?(参考数据:sin 580.85︒≈,cos580.53︒≈,tan 58 1.60︒≈)解:设B 处距离码头O 有x km ,在Rt △CAO 中,∠CAO =45°.∵tan COCAO AO∠=. ∴()tan 450.1tan 45 4.5CO AO CAO x x ︒=∠=⨯+=+,在Rt △DBO 中,∠DBO =58°, ∵tan DODBO BO∠=,∴tan tan 58DO BO DBO x ︒=∠=,∵DC DO CO =-, ∴()360.1tan 58 4.5x x ︒⨯=-+,∴360.1 4.5360.1 4.513.51.601tan 581x ︒⨯+⨯+=≈=--,因此,B 处距离码头O 大约13.5km .综合题训练11.施工队准备在一段斜坡上铺上台阶方便通行,现测得斜坡上铅垂的两棵树间水平距离 AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米. (1)求坡角∠D 的度数.(结果精确到1°)(2)若这段斜坡用厚度为17cm 的长方体台阶来铺,需要铺几级台阶? (参考数据:cos 200.94︒≈,sin 200.34︒≈,sin180.31︒≈,cos180.95︒≈)解:(1)4cos cos 0.944.25AB D ABC BC ∠=∠==≈,∴0.94D ∠≈. (2) sin 85sin 20850.3428.9EF DE D ︒=∠=≈⨯=米,共需台阶28.910017170⨯÷=级.专题三角函数与圆 利用圆转化角求三角函数1.如图,已知⊙O 的半径为1,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,OM ⊥AB 于点M ,则sin ∠CBD 的值等于( A )A .OM 的长B .2OM 的长C .CD 的长 D .2CD 的长2.如图,已知△ABC 的外接圆⊙O 的半径为1,D 、E 分别为AB 、AC 的中点,则 sin ∠BAC 的值等于线段( B )A .BC 的长B .DE 的长C .AD 的长 D .AE 的长3.如图⊙O是△ABC外接圆,AD是⊙O的直径,连CD,若⊙O的半径32r=,AC=2,则cos B的值是(B).A.12B.53C.52D.234.如图,直角梯形ABME中,∠M=90°,BM∥AE,以AB为直径的⊙O与EM切于点C,连BE,若AE=6,AB=10,则tan∠BEM的值为(D).A.12B.2C.13D.65.如图,⊙O与矩形ABCD的边CD切于点E,交BC于点F,M为BF上一点,若7CE=,7AD=,则tan∠M的值为(A).A.7B.34C.7D.356.如图,已知⊙O的半径为10,AB=6,△ABC内接于⊙O,BD⊥AC于D,则sin∠CBD 的值等于(B).A.13B.10C.310D.37.如图,AB为⊙O的直径,弦AC、BD相较于P点,BPC a∠=,则CDAB的值为(B).A.sin aB.cos aC.tan aD.1 cos a专题 三角函数与圆 圆中三角函数的综合运用1.(2011武汉中考)如图,P A 为⊙O 的切线,A 为切点,过A 作OP 的垂线AB ,垂足为点C ,交⊙O 于点B ,延长BO 与⊙O 交于点D ,与P A 的延长线交于点E . (1)求证:PB 为⊙O 的切线; (2)若1tan 2ABE ∠=,求sin E 的值.证:(1)连OA ,证△PBO ≌△P AO .(2)连接AD ,证AD ∥OP ,∴△ADE ∽△POE ,∵EA ADEP OP=由AD ∥OC 得AD =2OC , ∵1tan 2ABE ∠=,∴12OC BC =,设OC t =,则2BC t =,2AD t =,由△PBC ∽△BOC ,得 24PC BC t ==,5OP t =,∴25EA AD EP OP ==,可设2EA m =,5EP m =,则3PA m =, ∴3sin 5PB E EP ==. 2.(2012 武汉中考)在锐角△ABC 中,5BC =,4sin 5A =. (1)如图1,求△ABC 外接圆的直径;(2)如图2,点I 为△ABC 的内心,BA BC =,求AI 的长.解:(1)作直径CD ,连BD ,∴254CD =. (2)延长BI 交AC 于D ,则BD ⊥AC ,IE ⊥BC 于F .∴4BD =,3AD AE CD ===,2BE BF ==,设ID IE IF x ===,在△BIF 中有 ()22224x x +=-,32x =,∴35AI =3.(2013武汉4月调考)在⊙O 中,AB 为直径,PC 为弦,且P A =PC . (1)如图1,求证:OP ∥BC ;(2)如图2,DE 切⊙O 于点C ,若DE ∥AB ,求tan ∠A 的值.解:(1)证△POA ≌△POC ,∠BCP =∠A =∠APO =∠CPO .(2)设PC 交AB 于M ,证△APB ∽△COM ,BP OM AP OC =,∴2BM BC BCOM OP OC===,设OM x =,2BM x =,∴212OM OC x x==-+,∴21BPAP =-.4.(2015 乌鲁木齐)如图,AB 是⊙O 的直径,CD 与⊙O 相切于点C ,与AB 的延长线交于点D ,DE ⊥AD 且与AC 的延长线交于点E . (1)求证:DC =DE ;(2)若1tan 2CAB ∠=,3AB =,求BD 的长.解:(1)连OC ,证∠DCE =∠E 即可. (2)1BD =.5.如图,PT 是⊙O 的切线,T 为切点,P AB 是经过圆心O 的割线. (1)求证:∠PTA =∠BTO ;(2)若4PT =,2PA =,求sin B 的值.解:(1)90PTO ATB ︒∠==∠,∴PTA BTO ∠=∠;(2)在Rt △POT 中,222OP OT PT +=,∴()22242r r +=+,3r =, 由△P AT ∽△PTB ,∴12AT PA TB PT ==,设AT x =,2BT x =,∴5AB x =,∴5sin 5AT B AB ==.6.如图,△ABC 中,以BC 为直径的⊙O 交AB 于点D ,ACD ABC ∠=∠.(1)求证:CA 是⊙O 的切线;(2)若点E 是BC 上一点,已知6BE =,2tan 3ABC ∠=,5tan 3AEC ∠=,求圆的直径. 解:(1)略; (2)5tan 3AC AEC EC ∠==,∴35EC AC =,2tan 3AC ABC BC ∠==,∴32BC AC = 6BE BC EC =-=,∴203AC =,∴3201023BC =⨯=. 7.如图,AB 为⊙O 的直径,CD CB =,CE ⊥AD 于E ,连BE .(1)求证:CE 为⊙O 的切线;(2)若6AE =,⊙O 的半径为5,求tan BEC ∠的值.证:(1)连OC 、BD 交于M ,证四边形EDMC 为矩形.(2)设OM x =,则2AD x =,5CM DE x ==-,∴()256x x +-=,1x =,∴26BM =,46BD =6tan tan 46DE BEC DBE BD ∠=∠==.。
济南市九年级数学下册第二十八章《锐角三角函数》综合经典习题(培优练)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.若菱形的边长为2cm ,其中一内角为60°,则它的面积为( )A .232cmB .23cmC .22cmD .223cm 2.如图,在矩形ABCD 中,G 是AB 边上一点,连结GC ,取线段CG 上点E ,使ED DC =且90AED ∠=︒,AF CG ⊥于F ,2AF =,1FG =,则EC 的长( )A .4B .5C .163D .833.国家电网近来实施了新一轮农村电网改造升级工程,解决了农村供电“最后1公里”问题,电力公司在 改造时把某一输电线铁塔建在了一个坡度为1:0.75的山坡CD 的平台BC 上(如图),测得52.5,5AED BC ︒∠==米,35CD =米,19DE =米,则铁塔AB的高度约为( )(参考数据:52.50.79,52.50.61,52.5 1.30sin cos tan ︒︒︒≈≈≈)A .7.6 米B .27.5 米C .30.5 米D .58.5 米 4.菱形的周长为8cm ,高为1cm ,则该菱形两邻角度数比为( )A .5:1B .4:1C .3:1D .2:1 5.如图,已知第一象限内的点A 在反比例函数2y x=的图象上,第二象限的点B 在反比例函数kyx的图象上,且OA⊥OB,tanA=2,则k的值为()A.4 B.8 C.-4 D.-86.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①CF=2AF;②tan∠CAD=22;③DF=DC;④△AEF∽△CAB;⑤S四边形CDEF=52S△ABF ,其中正确的结论有()A.2个B.3个C.4个D.5个7.如图,在矩形ABCD中,AB=3,做BD的垂直平分线E,F,分别与AD、BC交于点E、F,连接BE,DF,若EF=AE+FC,则边BC的长为()A.23B.33C.63D.93 28.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sinB的值等于()A.43B.34C.45D.359.一把5m长的梯子AB斜靠在墙上,梯子倾斜角α的正切值为34,考虑安全问题,现要求将梯子的倾斜角改为30°,则梯子下滑的距离AA'的长度是()A.34m B.13m C.23m D.12m10.三角形在正方形网格纸中的位置如图所示,则cos 的值是()A.34B.43C.35D.4511.如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.BDBCB.BCABC.ADACD.CDAC12.如图,一块矩形木板ABCD斜靠在墙边,( OC⊥OB,点A、B、C、D、O在同一平面内),已知AB a,AD b,∠BCO=α.则点A到OC的距离等于()A.asinα+bsinαB.acosα+bcosαC.asinα+bcosαD.acosα+bsinα13.如图,在平面直角坐标系中,Rt OAB的斜边OA在第一象限,并与x轴的正半轴夹角为30度,C为OA的中点,BC=1,则A点的坐标为()A .()3,3B .()3,1C .()2,1D .()2,3 14.如图,正方形ABCD 的边长为1,点A 与原点重合,B 在y 轴正半轴上,D 在x 轴负半轴上,将正方形ABCD 绕着点A 逆时针旋转30至AB C D ''',CD 与B C ''相交于点E ,则E 坐标为( )A .31,3⎛⎫- ⎪ ⎪⎝⎭ B .11,2⎛⎫- ⎪⎝⎭ C .31,2⎛- ⎝⎭ D .21,3⎛⎫- ⎪⎝⎭二、填空题15.某斜坡的坡度33i =,则它的坡角是__________度.16.在平面直角坐标系xOy 中,已知一次函数y =kx +b (k ≠0)的图象过点P (1,1),与x 轴交于点A ,与y 轴交于点B ,且tan ∠ABO =2,那么点A 的坐标是_____. 17.某人顺着山坡沿一条直线型的坡道滑雪,当他滑过130米长的路程时,他所在位置的竖直高度下降了50米,则该坡道的坡比是_________.18.如图,某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C 处测得A ,B 两点的俯角分别为45和30.若飞机离地面的高度CH 为1200米,且点H ,A ,B 在同一水平直线上,则这条江的宽度AB 为______米(结果保留根号).19.如图,长方形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C’处,BC’交AD于点E,则线段DE的长为____.20.如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO的值为_____.21.如图,已知直线l:33y x=,过点()0,1A作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点1A;过点1A作y轴的垂线交直线l于点1B,过点1B作直线l的垂线交y轴于点2A;…;按此作法继续下去,则点2020A的坐标为__________.22.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=____.23.如图放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,…都是边长为1的等边三角形,点A 在x 轴上,点O ,B 1,B 2,B 3,…都在直线l 上,则点A 2016的坐标是______.24.如图,矩形ABCD 中,AD=1,CD=3,连接AC ,将线段AC 、AB 分别绕点A 顺时针旋转90°至AE 、AF ,线段AE 与弧BF 交于点G ,连接CG ,则图中阴影部分面积为__.25.如图,已知2AB a =,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE .点P ,C ,E 在一条直线上,60DAP ∠=︒,M 、N 分别是对角线AC 、BE 的中点.当点P 在线段AB 上移动时,点M 、N 之间的距离最短为_______.26.如图,在ABC ∆中10AB AC ==,以AB 为直径的圆O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且12CBF A ∠=∠,1tan 3CBF ∠= ,则BC 的长为__________.三、解答题27.如图,在ABC 中,AD BC ⊥,BE AC ⊥,垂足分别为D ,E ,AD 与BE 相交于点F .(1)求证:ACD △∽BFD △;(2)当tan 1ABD ∠=,3AC =时,求BF 的长.28.我市里运河有一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1:1,文化墙PM 在天桥底部正前方8米处(PB 的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:3.有关部门规定,文化墙距天桥底部小于3米时应拆除,天桥改造后,该文化墙PM 是否需要拆除?请说明理由.(参考数据:2=1.414,3=1.732)29.如图,河对岸有铁塔AB ,在C 处测得塔顶A 的仰角为30°,向塔前进14米到达D ,在D 处测得A 的仰角为45°,求铁塔AB 的高.30.计算:(1)()2222cos30sin 45cos 601tan 60tan 45-+︒+-︒︒︒︒(2)23260x x --=(3)2(1)5(1)140x x -+--=【参考答案】一、选择题1.D2.C3.C4.A5.D6.D7.B8.C9.D10.D11.C12.D13.B14.A二、填空题15.30【分析】根据坡度与坡角的关系及特殊角正切的值可得解答【详解】解:设斜坡的坡角为则有∵故答案为【点睛】本题考查锐角三角函数值的应用正确理解坡度与坡角的意义及特殊角的三角函数值是解题关键16.(﹣10)或(30)【分析】依题意得即可得一次函数解析式为所以由tan∠ABO=2得到且可解得或进而求得结论【详解】解:∵一次函数的图象经过点∴即∴一次函数解析式为∴一次函数与x轴y轴的交点坐标为(17.【分析】首先根据勾股定理求得滑行的水平距离然后根据坡比的定义即可求解【详解】解:滑行的水平距离是:=120(米)故坡道的坡比是:50:120=故答案是:【点睛】本题考查了勾股定理以及坡比的定义正确求18.【解析】【分析】在和中利用锐角三角函数用CH表示出AHBH的长然后计算出AB的长【详解】由于在中米在米米故答案为【点睛】本题考查了解直角三角形的应用——仰角俯角问题题目难度不大解决本题的关键是用含C19.375【分析】首先根据题意得到BE=DE然后根据勾股定理得到关于线段ABAEBE的方程解方程即可解决问题【详解】设ED=x则AE=6﹣x∵四边形ABCD为矩形∴AD∥BC∴∠EDB=∠DBC由题意得20.2+【分析】连接OA过点A作AC⊥OB于点C由题意知AC=1OA=OB=2从而得出OC==BC=OB﹣OC=2﹣在Rt△ABC中根据tan∠ABO=可得答案【详解】如图连接OA过点A 作AC⊥OB于点21.【分析】先求出点B的坐标为(1)得到OA=1OB=求出∠AOB=60°再求出∠得到求出(04);同理得到(0);由此得到规律求出答案【详解】将y=1代入中得x=∴B(1)∴OA=1OB=∴tan∠A22.5【分析】过P作PD⊥OB交OB于点D在直角三角形POD中利用锐角三角函数定义求出OD的长再由PM=PN利用三线合一得到D为MN中点根据MN求出MD的长由OD-MD 即可求出OM的长【详解】过P作PD23.(10091008)【分析】根据题意得出直线OB1的解析式为y=x进而得出OB1B2B3坐标进而得出坐标变化规律进而得出答案【详解】过B1向x轴作垂线B1C垂足为C由题意可得:A(10)AO∥A1B24.﹣【分析】由勾股定理得到AC=2由三角函数的定义得到∠CAB=30°根据旋转的性质得到∠CAE=∠BAF=90°求得∠BAG=60°然后根据图形的面积即可求得【详解】在矩形ABCD中∵AD=1CD=25.【分析】连接PMPN根据菱形的性质求出∠CAP=30°∠MPC=∠CPA=60°∠EPN=∠BPN=∠EPB=30°从而求出∠MPN=90°设AP=x则PB=2a -x然后利用锐角三角函数求出PM和P26.【分析】连接AE根据AB是直径得出AE⊥BCCE=EB依据已知条件得出∠CBF=∠EABFB 是圆的且线进而得出CB的长【详解】解:连接AE∵AB为直径∴AE⊥BC∵AB=AC∴∠EAB=∠CABEB三、解答题27.28.29.30.【参考解析】一、选择题1.D解析:D【分析】连接AC,过点A作AM⊥BC于点M,根据菱形的面积公式即可求出答案.【详解】连接AC,过点A作AM⊥BC于点M,∵菱形的边长为2cm,∴AB=BC=2cm,∵有一个内角是60°,∴∠ABC=60°,∴AM=ABsin60°,∴此菱形的面积为:=2cm ).故选:D .【点睛】本题考查菱形的性质,特殊角的三角函数值,解题的关键是熟练运用菱形的性质. 2.C解析:C【分析】如图,过D 作DP CE ⊥于,P 证明:,EP CP EDP CDP =∠=∠,,DEC DCE ∠=∠再证明,AEF BCG EDP ∠=∠=∠ 结合矩形的性质证明:,AFG EFA ∽利用相似三角形的性质可得4EF =,再求解,AG AE ,设,BG x = 可得2,DE x AD x =+= 利用勾股定理求解,x 再由,BCG EDP ∠=∠可得:1,2EP DP =设,EP m = 则2,DP m = 由勾股定理求解m , 从而可得答案.【详解】解:如图,过D 作DP CE ⊥于,P,DE DC =,EP CP EDP CDP ∴=∠=∠, ,DEC DCE ∠=∠90,AED DCB ∠=︒=∠90,AEF DEC DCE BCG DEC EDP ∴∠+∠=︒=∠+∠=∠+∠,AEF BCG EDP ∴∠=∠=∠,,90AGF CGB AF CG B ∠=∠⊥∠=︒,,FAG BCG ∴∠=∠,FAG AEF ∴∠=∠90AFG EFA ∠=∠=︒,,AFG EFA ∴∽,AF FG EF FA∴= 21AF FG ==,,21,2EF ∴= 4EF ∴=,AE ∴== AG == 设BG x =,则5,AB CD x DE ==+=AEF BCG ∠=∠,1tan tan ,2AF AEF BCG EF ∴∠=∠== 1,2BG BC ∴= 2,BC x AD ∴== ()()()2222255,x x ∴=++235250,x x ∴--=55x ∴=5x = 55855DE ∴== ,EDP BCG ∠=∠1,2EP DP ∴= 设,EP m = 则2,DP m =()22285+2,3m m ⎛∴= ⎝⎭ 83m ∴=(负根舍去) 162.3EC EP ∴==故选:.C【点睛】 本题考查的是矩形的性质,勾股定理的应用,等腰三角形的性质,三角形相似的判定与性质,锐角三角函数的应用,掌握以上知识是解题的关键.3.C解析:C【分析】延长AB交ED于G,过C作CF⊥DE于F,得到GF=BC=5,设DF=3k,CF=4k,解直角三角形得到结论.【详解】解:延长AB交ED于G,过C作CF⊥DE于F,则四边形BGFC是矩形∴GF=BC=5,∵山坡CD的坡度为1:0.75,∴设DF=3k,CF=4k,∴CD=5k=35,∴k=7,∴DF=21,BG=CF=28,∴EG=GF+DF+DE=5+21+19=45,∵∠AED=52.5°,∴AG=EG•tan52.5°=45×1.30=58.5,∴AB=AG-BG=30.5米,答:铁塔AB的高度约为30.5米.故选:C.【点睛】本题考查了解直角三角形的应用-坡度坡角问题和解直角三角形的应用-坡度坡角问题,难度适中,通过作辅助线,构造直角三角形,利用三角函数求解是解题的关键.4.A解析:A【分析】先根据菱形的性质求出菱形的边长,再根据菱形的高与边长的关系求出∠A,进而可求出∠ADC,从而可得答案.【详解】解:如图,DE是菱形ABCD的高,DE=1cm,∵菱形ABCD的周长是8cm,∴AD=2cm,在Rt△ADE中,∵DE=12AD,∴∠A=30°,∵AB∥DC,∴∠A+∠ADC=180°,∴∠ADC=150°,∴∠ADC:∠A=150°:30°=5:1.故选:A.【点睛】本题考查了菱形的性质和30°角的直角三角形的性质,属于基本题型,熟练掌握上述知识是解题的关键.5.D解析:D【分析】过点A、B分别作AC⊥x轴、BD⊥x轴,垂足分别为点C、D,如图,易证△AOC∽△OBD,则根据相似三角形的性质可得214AOCBODS OAS OB⎛⎫==⎪⎝⎭△△,再根据反比例函数系数k的几何意义即可求出k的值.【详解】解:过点A、B分别作AC⊥x轴、BD⊥x轴,垂足分别为点C、D,如图,则∠ACO=∠BDO=90°,∠OAC+∠AOC=90°,∵OA⊥OB,tan∠BAO=2,∴∠AOC+∠BOD=90°,OA:OB=1:2,∴∠OAC=∠BOD,∴△AOC∽△OBD,∴221124 AOCBODS OAS OB⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭△△,∵1212AOCS⨯==,12BODS k=△,∴11142k =,∴8k =, ∵k <0,∴k=﹣8.故选:D .【点睛】本题考查了反比例函数系数k 的几何意义、相似三角形的判定和性质以及三角函数的定义等知识,熟练掌握所学知识、明确解答的方法是解题的关键.6.D解析:D【分析】依据△AEF ∽△CBF ,即可得出CF=2AF ;依据△BAE ∽△ADC ,即可得到tan ∠ ;过D 作DM ∥BE 交AC 于N ,依据DM 垂直平分CF ,即可得出DF=DC ;依据∠EAC=∠ACB ,∠ABC=∠AFE=90°,即可得到△AEF ∽△CAB ;设△AEF 的面积为s ,则△ABF 的面积为2s ,△CEF 的面积为2s ,△CDE 的面积为3s ,四边形CDEF 的面积为5s ,进而得出S 四边形CDEF =52S △ABF 【详解】解:∵AD ∥BC ,∴△AEF ∽△CBF , AE AF BC CF∴= ∵AE=12AD= 12BC , 12AF CF ∴= ∴CF=2AF ,故①正确;设AE=a ,AB=b ,则AD=2a ,∵BE ⊥AC ,∠BAD=90°,∴∠ABE=∠ADC ,而∠BAE=∠ADC=90°,∴△BAE ∽△ADC ,2b aa b∴=,即b ∴=22CD tan CAD AD b a =∠=∴=,故②正确;如图,过D 作DM ∥BE 交AC 于N ,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故④正确;如图,连接CE,由△AEF∽△CBF,可得12AFCF EFBF==设△AEF的面积为s,则△ABF的面积为2s,△CEF的面积为2s,∴△ACE的面积为3s,∵E是AD的中点,∴△CDE的面积为3s,∴四边形CDEF的面积为5s,∴S四边形CDEF=52S△ABF,故⑤正确.故选:D.【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.7.B解析:B【分析】根据矩形的性质和菱形的性质得∠ABE=∠EBD=∠DBC=30°,AB=BO=3,因为四边形BEDF 是菱形,所以可求出BE ,AE ,进而可求出BC 的长.【详解】解:∵四边形ABCD 是矩形,//,DE BF ∴,,DEO BFO EDO FBO ∴∠=∠∠=∠ EF 垂直平分BD ,OB OD ∴=,BOF DOE ∴∆∆≌,,OE OF ∴=∴ 四边形BEDF 是菱形,∵四边形ABCD 是矩形,四边形BEDF 是菱形,∴∠A=90°,AD=BC ,DE=BF ,OE=OF ,EF ⊥BD ,∠EBO=FBO ,∴AE=FC .又EF=AE+FC ,∴EF=2AE=2CF ,又EF=2OE=2OF ,AE=OE ,∴△ABE ≌OBE , ∴∠ABE=∠OBE ,∴∠ABE=∠EBD=∠DBC=30°,∴BE= cos30BO ︒= ∴BF=BE=∴∴BC=BF+CF=故选B .【点睛】本题考查了矩形的性质、菱形的性质以及在直角三角形中30°角所对的直角边时斜边的一半,解题的关键是求出∠ABE=∠EBD=∠DBC=30°. 8.C解析:C【解析】∵∠C=90°,AC=4,BC=3,∴AB=5,∴sinB=45AC AB = , 故选C. 9.D解析:D【分析】设AC=3k,BC=4k,根据勾股定理得到AB=22AC BC+=5k=5,求得AC=3m,BC=4m,根据直角三角形的性质健康得到结论.【详解】解:如图,∵梯子倾斜角α的正切值为34,∴设AC=3k,BC=4k,∴AB=22AC BC+=5k=5,∴k=1,∴AC=3m,BC=4m,∵A′B′=AB=5,∠A′B′C=30°,∴A′C=12A′B′=52,∴AA′=AC﹣A′C=3﹣52=12m,故梯子下滑的距离AA'的长度是12 m,故选:D.【点睛】本题考查了解直角三角形在实际生活中的应用,本题中根据梯子长不会变的等量关系求解是解题的关键,属于中考常考题型.10.D解析:D【分析】根据锐角三角函数的定义得出cosα=BCAB进而求出即可.【详解】解:如图所示:∵AC=3,BC=4,∴AB=5,∴cosα=45BC AB . 故选:D .【点睛】此题主要考查了锐角三角函数的定义以及勾股定理,正确构造直角三角形是解题关键. 11.C解析:C【分析】利用垂直的定义以及互余的定义得出∠α=∠ACD ,进而利用锐角三角函数关系得出答案.【详解】解:∵AC ⊥BC ,CD ⊥AB ,∴∠α+∠BCD =∠ACD +∠BCD ,∴∠α=∠ACD ,∴cosα=cos ∠ACD =BD BC =BC AB =DC AC, 只有选项C 错误,符合题意.故选:C .【点睛】 此题主要考查了锐角三角函数的定义,得出∠α=∠ACD 是解题关键.12.D解析:D【分析】根据题意,做出合适的辅助线,然后利用锐角三角函数即可表示出点A 到OC 的距离即可求解.【详解】解:作AE ⊥OC 于点E ,作AF ⊥OB 于点F ,∵四边形ABCD 是矩形,∴∠ABC=90°,∵∠ABC=∠AEC ,∠BCO=α,∴∠EAB=α,∴∠FBA=α,∵AB=a ,AD=b ,∴FO=FB+BO=a•cosα+b•sinα,故选:D .【点睛】本题考查解直角三角形、三角函数的定义、矩形的性质,解答本题的关键是明确题意,正确做出辅助线,利用数形结合的思想解答.13.B解析:B【分析】根据题画出图形,再根据直角三角形斜边上的中线等于斜边的一半可得AB 的值,再根据勾股定理可得OB 的值,进而可得点A 的坐标.【详解】解:如图,过A 点作AD x ⊥轴于D 点,Rt OAB ∆的斜边OA 在第一象限,并与x 轴的正半轴夹角为30.30AOD ∴∠=︒,12AD OA ∴=, C 为OA 的中点,1AD AC OC BC ∴====,2OA ∴=,3OD ∴=,则点A 的坐标为:(31).故选:B .【点睛】本题考查了解直角三角形、坐标与图形性质、直角三角形斜边上的中线,解决本题的关键是综合运用以上知识.14.A解析:A【分析】连接AE,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADE≌Rt△AB′E得∠DAE=12∠B′AD=30°,由DE=ADtan∠DAE可得答案.【详解】如图:连接AE∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB C D''',∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADE和Rt△A B′E中,∵AD AB AE AE'=⎧⎨=⎩∴Rt△ADE≌Rt△AB′E(HL),∴∠DAE=∠B′AE=12∠B′AD=30°,∴DE=ADtan∠33∴点E的坐标为(-13故选:A【点睛】本题考查了正方形的性质、坐标与图形旋转.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.二、填空题15.30【分析】根据坡度与坡角的关系及特殊角正切的值可得解答【详解】解:设斜坡的坡角为则有∵故答案为【点睛】本题考查锐角三角函数值的应用正确理解坡度与坡角的意义及特殊角的三角函数值是解题关键解析:30【分析】根据坡度与坡角的关系及特殊角正切的值可得解答.【详解】解:设斜坡的坡角为α,则有()tan 3i α==,∵()tan 3030α︒=∴=︒, 故答案为30 .【点睛】本题考查锐角三角函数值的应用,正确理解坡度与坡角的意义及特殊角的三角函数值是解题关键 .16.(﹣10)或(30)【分析】依题意得即可得一次函数解析式为所以由tan ∠ABO =2得到且可解得或进而求得结论【详解】解:∵一次函数的图象经过点∴即∴一次函数解析式为∴一次函数与x 轴y 轴的交点坐标为(解析:(﹣1,0)或(3,0)【分析】依题意得1k b =+,即1b k =-,可得一次函数解析式为1y kx k =+-,所以1k OA k -=,1OB k =-,由tan ∠ABO =2得到121k k k -=-且1k ≠可解得12k =或12k =-,进而求得结论. 【详解】解:∵一次函数y kx b =+的图象经过点()1,1P ,∴1k b =+,即1b k =-,∴一次函数解析式为1y kx k =+-,∴一次函数1y kx k =+-与x 轴、y 轴的交点坐标为(1k k -,0)、(0,1k -), ∴1k OA k-=,1OB k =-, ∵tan 2OA ABO OB ∠==, ∴121k k k-=-且1k ≠, 解得,12k =或12k =-, 当12k =时,OA=1,此时点A 在x 轴负半轴上,所以点A 坐标为(﹣1,0),当12k=-时,OA=3,此时点A在x轴正半轴上,所以点A坐标为(3,0),∴A点的坐标是1,0或3,0故答案为:(﹣1,0)或(3,0).【点睛】本题考查了一次函数图象上点的坐标特征,解答本题的关键是求出函数图象与x轴、y轴的交点坐标.解决本题时要注意点A的坐标有两种情况,不要漏解.17.【分析】首先根据勾股定理求得滑行的水平距离然后根据坡比的定义即可求解【详解】解:滑行的水平距离是:=120(米)故坡道的坡比是:50:120=故答案是:【点睛】本题考查了勾股定理以及坡比的定义正确求解析:5 12【分析】首先根据勾股定理求得滑行的水平距离,然后根据坡比的定义即可求解.【详解】2213050-(米),故坡道的坡比是:50:120=512.故答案是:5 12.【点睛】本题考查了勾股定理,以及坡比的定义,正确求得滑行的水平距离是关键.18.【解析】【分析】在和中利用锐角三角函数用CH表示出AHBH的长然后计算出AB的长【详解】由于在中米在米米故答案为【点睛】本题考查了解直角三角形的应用——仰角俯角问题题目难度不大解决本题的关键是用含C解析:()120031【解析】【分析】在Rt ACH和Rt HCB中,利用锐角三角函数,用CH表示出AH、BH的长,然后计算出AB的长.【详解】由于CD//HB,CAH ACD 45∠∠∴==,B BCD 30∠∠==,在Rt ACH 中,CAH 45∠∴=,AH CH 1200∴==米,在Rt HCB ,CH tan B HB∠=, CH 12001200HB tan B tan303∠∴====米), )AB HB HA 120012001∴=-==米,故答案为)12001. 【点睛】本题考查了解直角三角形的应用——仰角、俯角问题,题目难度不大,解决本题的关键是用含CH 的式子表示出AH 和BH .19.375【分析】首先根据题意得到BE=DE 然后根据勾股定理得到关于线段ABAEBE 的方程解方程即可解决问题【详解】设ED=x 则AE=6﹣x ∵四边形ABCD 为矩形∴AD ∥BC ∴∠EDB=∠DBC 由题意得解析:3.75【分析】首先根据题意得到BE =DE ,然后根据勾股定理得到关于线段AB 、AE 、BE 的方程,解方程即可解决问题.【详解】设ED =x ,则AE =6﹣x .∵四边形ABCD 为矩形,∴AD ∥BC ,∴∠EDB =∠DBC .由题意得:∠EBD =∠DBC ,∴∠EDB =∠EBD ,∴EB =ED =x .由勾股定理得:BE 2=AB 2+AE 2,即x 2=9+(6﹣x )2,解得:x =3.75,∴ED =3.75. 故答案为3.75.【点睛】本题考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.20.2+【分析】连接OA 过点A 作AC ⊥OB 于点C 由题意知AC=1OA=OB=2从而得出OC==BC=OB ﹣OC=2﹣在Rt △ABC 中根据tan ∠ABO=可得答案【详解】如图连接OA 过点A 作AC ⊥OB 于点解析:.【分析】连接OA ,过点A 作AC ⊥OB 于点C ,由题意知AC=1、OA=OB=2,从而得出、BC=OB ﹣OC=2Rt △ABC 中,根据tan ∠ABO=AC BC可得答案.【详解】如图,连接OA ,过点A 作AC ⊥OB 于点C ,则AC=1,OA=OB=2,∵在Rt △AOC 中,222221OA AC -=-3∴BC=OB ﹣OC=23∴在Rt △ABC 中,tan ∠ABO=23AC BC =-3 故答案是:3【点睛】本题考查了解直角三角形,根据题意构建一个以∠ABO 为内角的直角三角形是解题的关键. 21.【分析】先求出点B 的坐标为(1)得到OA=1OB=求出∠AOB=60°再求出∠得到求出(04);同理得到(0);由此得到规律求出答案【详解】将y=1代入中得x=∴B (1)∴OA=1OB=∴tan ∠A解析:()20200,4【分析】先求出点B 31),得到OA=1,3∠AOB=60°,再求出∠130OA B =得到133AA =,求出1A (0,4);同理得到1143A B =1211312A A A B ==,2A (0,24);由此得到规律求出答案.【详解】将y=1代入3y x =中得3 ∴B 3,1),∴OA=1,3∴tan ∠AOB=3AB OA=, ∴∠AOB=60°,∵∠A 1BO=90°, ∴∠130OA B =, ∴133AA =,∴14OA =,∴1A (0,4); 同理:1143A B =,1211312A A AB ==, ∴2OA =1624=,∴2A (0,24);,∴点2020A 的坐标为()20200,4,故答案为:()20200,4. 【点睛】此题考查图形类规律的探究,一次函数的实际应用,锐角三角函数,根据图形的规律求出点的坐标得到点坐标的表示规律是解题的关键. 22.5【分析】过P 作PD ⊥OB 交OB 于点D 在直角三角形POD 中利用锐角三角函数定义求出OD 的长再由PM=PN 利用三线合一得到D 为MN 中点根据MN 求出MD 的长由OD-MD 即可求出OM 的长【详解】过P 作PD解析:5.【分析】过P 作PD ⊥OB ,交OB 于点D ,在直角三角形POD 中,利用锐角三角函数定义求出OD 的长,再由PM=PN ,利用三线合一得到D 为MN 中点,根据MN 求出MD 的长,由OD-MD 即可求出OM 的长.【详解】过P 作PD ⊥OB ,交OB 于点D ,在Rt △OPD 中,cos60°12OD OP ==,OP =12, ∴OD =6.∵PM =PN ,PD ⊥MN ,MN =2,∴MD =ND 12=MN =1, ∴OM =OD ﹣MD =6﹣1=5.故答案为:5.【点晴】本题考查的是勾股定理,含30度直角三角形的性质,等腰三角形的性质等知识,熟练掌握直角三角形的性质是解本题的关键.23.(10091008)【分析】根据题意得出直线OB1的解析式为y=x 进而得出OB1B2B3坐标进而得出坐标变化规律进而得出答案【详解】过B1向x 轴作垂线B1C 垂足为C 由题意可得:A (10)AO ∥A1B解析:(1009,10083) 【分析】 根据题意得出直线OB 1的解析式为y=3x ,进而得出O ,B 1,B 2,B 3坐标,进而得出坐标变化规律,进而得出答案.【详解】过B 1向x 轴作垂线B 1C ,垂足为C ,由题意可得:A (1,0),AO ∥A 1B 1,∠B 1OC =30°,∴CB 1=OB 1cos30°=32, ∴B 1的横坐标为:12,则B 1的纵坐标为:32, ∴点B 1,B 2,B 3,…都在直线y =3x 上,∴B 1(12,32), 同理可得出:A 的横坐标为:1,∴y =3,∴A 2(2,3),…A n (1+2n ,32n ). ∴A 2016(1009,10083),故答案为:(1009,10083)【点睛】此题主要考查了一次函数图象上点的坐标特征以及规律探究,得出A 点横纵坐标变化规律是解题关键.24.﹣【分析】由勾股定理得到AC=2由三角函数的定义得到∠CAB=30°根据旋转的性质得到∠CAE=∠BAF=90°求得∠BAG=60°然后根据图形的面积即可求得【详解】在矩形ABCD 中∵AD=1CD=解析:2π【分析】由勾股定理得到AC=2,由三角函数的定义得到∠CAB=30°,根据旋转的性质得到∠CAE=∠BAF=90°,求得∠BAG=60°,然后根据图形的面积即可求得.【详解】在矩形ABCD 中,∵AD=1,,∵AC=2,tan ∠CAB=3BC AD AB CD ==, ∴∠CAB=30°,∵线段AC 、AB 分别绕点A 顺时针旋转90°至AE 、AF ,∴∠CAE=∠BAF=90°,∴∠BAG=60°,∵,∴阴影部分面积=S △ABC +S 扇形ABG -S △ACG 1112222π=+=-故答案为:2π 【点睛】考查了扇形的面积计算,解题关键是灵活运用矩形、旋转的性质和熟记扇形的面积计算公式. 25.【分析】连接PMPN 根据菱形的性质求出∠CAP=30°∠MPC=∠CPA=60°∠EPN=∠BPN=∠EPB=30°从而求出∠MPN=90°设AP=x 则PB=2a -x 然后利用锐角三角函数求出PM 和P【分析】连接PM 、PN ,根据菱形的性质求出∠CAP=12∠=DAP 30°,∠MPC=12∠CPA=60°,∠EPN=∠BPN=12∠EPB=30°,从而求出∠MPN=90°,设AP=x ,则PB=2a -x ,然后利用锐角三角函数求出PM 和PN ,然后利用勾股定理求出MN 2与x 的函数关系式,化为顶点式即可求出MN 2的最小值,从而求出结论.【详解】解:连接PM 、PN∵四边形APCD 和四边形PBFE 为菱形,60DAP ∠=︒∴∠CPA=180°-∠DAP=120°,∠EPB=∠DAP=60°,PM ⊥AC ,PN ⊥EB ,AC 平分∠DAP ,PM 平分∠APC ,PN 平分∠EPB∴∠CAP=12∠=DAP 30°,∠MPC=12∠CPA=60°,∠EPN=∠BPN=12∠EPB=30° ∴∠MPN=∠MPC +∠EPN=90°设AP=x ,则PB=2a -x ∴PM=AP·sin ∠CAP=12x ,PN=PB·cos ∠32a -x ) 在Rt △MON 中MN 2= PM 2+PN 2=214x +34(2a -x )2=(x -32a )2+34a 2 当x=32a 时,MN 2取最小值,最小为34a 2 ∴MN 3 3. 【点睛】 此题考查的是菱形的性质、锐角三角函数、勾股定理和二次函数的应用,掌握菱形的性质、锐角三角函数、勾股定理和利用二次函数求最值是解决此题的关键.26.【分析】连接AE 根据AB 是直径得出AE ⊥BCCE=EB 依据已知条件得出∠CBF=∠EABFB 是圆的且线进而得出CB 的长【详解】解:连接AE ∵AB 为直径∴AE ⊥BC ∵AB=AC ∴∠EAB=∠CABEB 解析:10【分析】连接AE ,根据AB 是直径,得出AE ⊥BC ,CE=EB ,依据已知条件得出∠CBF=∠EAB ,FB 是圆的且线,进而得出CB 的长.【详解】解:连接AE ,∵AB 为直径,∴AE ⊥BC ,∵AB=AC ,∴∠EAB=12∠CAB ,EB=CE=12CB , ∵∠CBF=12∠CAB ,tan ∠CBF=13, ∴∠CBF=∠EAB ,tan ∠EAB=EB AE =13, ∴∠CBF+∠ABC=∠EAB+∠ABC=90°,∴FB 是⊙O 的切线,∴FB 2=FD•FA ,在RT △AEB 中,AB=10, ∴10,∴10,故答案为:10.【点睛】此题考查圆周角的性质,解直角三角形,求得FB 是圆的切线是解题的关键.三、解答题27.(1)见解析;(2)3【分析】(1)由90C DBF ∠+∠=︒,90C DAC ∠+∠=︒,推出DBF DAC ∠=∠,由此即可证明;(2)先证明AD BD =,由ACD △∽BFD △,得1AC AD BF BD ==,即可解决问题. 【详解】(1)证明:∵AD BC ⊥,BE AC ⊥,∴90BDF ADC BEC ∠=∠=∠=︒,∴90C DBF ∠+∠=︒,90C DAC ∠+∠=︒,∴DBF DAC ∠=∠,∴ACD △∽BFD △.(2)∵tan 1ABD ∠=,90ADB ∠=︒, ∴1AD BD=, ∴AD BD =,∵ACD △∽BFD △, ∴1AC AD BF BD==, ∴3BF AC ==.【点睛】 本题考查相似三角形的判定和性质、三角函数等知识,解题的关键是熟练掌握相似三角形的判定和性质,属于中考常考题型.28.该文化墙PM 不需要拆除,见解析【分析】首先过点C 作CD ⊥AB 于点D ,则天桥高CD=6,由新坡面的坡度为13tanα=tan ∠CAB=33==,然后由特殊角的三角函数值来求AD ,BD 的长;由坡面BC 的坡度为1:1,新坡面的坡度为13AD ,BD 的长,继而求得AB=AD-BD 的长,则可求得PA 答案.【详解】解:该文化墙PM 不需要拆除,理由:设新坡面坡角为α,新坡面的坡度为13, ∴tanα33==,∴α=30°.作CD ⊥AB 于点D ,则CD =6米, ∵新坡面的坡度为13∴tan ∠CAD CD 6AD AD 3===解得,AD =63,∵坡面BC 的坡度为1:1,CD =6米,∴BD =6米,∴AB =AD ﹣BD =(3-6)米,又∵PB =8米,∴PA =PB ﹣AB =8﹣(3-6)=14﹣63≈14﹣6×1.732≈3.6米>3米,∴该文化墙PM 不需要拆除.【点睛】此题考查了坡度坡角的知识.注意根据题意构造直角三角形,利用好坡比,会解直角三角形是关键.29. AB=7)31米. 【分析】首先根据题意分析图形;本题涉及到两个直角三角形,设AB=x (米),再利用CD=BC-BD=14的关系,进而可解即可求出答案.【详解】解:在Rt △ABD 中,∵∠ADB=45°,∴3.在Rt △ABC 中,∵∠ACB=30°, ∴BC=AB .设AB=x (米),∵CD=14,∴BC=x+14.∴3x∴x=7)31 即铁塔AB 的高为7)31米. 【点睛】 本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.30.(1)15342--2)11193x +=,21193x -=;(3)13x =,26x =-; 【分析】(1)原式利用特殊角的三角函数值,以及乘方的意义计算即可得到结果;(2)利用求根公式计算即可;(3)将(x -1)看作整体,然后利用因式分解法解方程即可.【详解】(1)解:222cos30sin 45cos 60tan 45-+︒+︒︒︒=214()1222-++⨯=14++1)124---=1542--; (2)解:23260x x --=,∵3,2,6a b c ==-=-,∴2(2)43(6)472760,∆=--⨯⨯-=+=>∴方程有两个不相等的实根,∴x ==∴113x =,213x =; (3)解:2(1)5(1)140x x -+--=,[][](1)7(1)20,x x -+--=∴60x +=或30x -=,∴126,3x x =-=.【点睛】本题考查了特殊角的三角函数值、实数的运算以及一元二次方程的解法,常用的解一元二次方程的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握运算法则是解本题的关键.。
初三数学锐角三角函数的专项培优练习题(含答案)含答案

初三数学锐角三角函数的专项培优练习题(含答案)含答案一、锐角三角函数1.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP的长为62或23.【解析】【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.【详解】(1)如图1中,延长EO交CF于K,∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,∵△EFK是直角三角形,∴OF=12EK=OE;(2)如图2中,延长EO交CF于K,∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,∵|CF﹣AE|=2,3AE=CK,∴FK=2,在Rt△EFK中,tan∠3∴∠FEK=30°,∠EKF=60°,∴EK=2FK=4,OF=12EK=2,∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,在Rt△PHF中,PH=12PF=1,3OH=23∴()2212362+-=如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°, ∴∠BOP=90°, ∴OP=33OE=233, 综上所述:OP 的长为62 或233. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.2.如图1,四边形ABCD 是正方形,点E 是边BC 上一点,点F 在射线CM 上,∠AEF=90°,AE=EF ,过点F 作射线BC 的垂线,垂足为H ,连接AC . (1) 试判断BE 与FH 的数量关系,并说明理由; (2) 求证:∠ACF=90°;(3) 连接AF ,过A ,E ,F 三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.图1 图2【答案】(1)BE="FH" ;理由见解析 (2)证明见解析 (3)=2π【解析】试题分析:(1)由△ABE ≌△EHF (SAS )即可得到BE=FH(2)由(1)可知AB=EH ,而BC=AB ,FH=EB ,从而可知△FHC 是等腰直角三角形,∠FCH 为45°,而∠ACB 也为45°,从而可证明(3)由已知可知∠EAC=30°,AF 是直径,设圆心为O ,连接EO ,过点E 作EN ⊥AC 于点N ,则可得△ECN 为等腰直角三角形,从而可得EN 的长,进而可得AE 的长,得到半径,得到所对圆心角的度数,从而求得弧长试题解析:(1)BE=FH.理由如下:∵四边形ABCD是正方形∴∠B=90°,∵FH⊥BC ∴∠FHE=90°又∵∠AEF=90°∴∠AEB+∠HEF="90°" 且∠BAE+∠AEB=90°∴∠HEF=∠BAE ∴∠AEB=∠EFH 又∵AE=EF∴△ABE≌△EHF(SAS)∴BE=FH(2)∵△ABE≌△EHF∴BC=EH,BE=FH 又∵BE+EC=EC+CH ∴BE="CH"∴CH=FH∴∠FCH=45°,∴∠FCM=45°∵AC是正方形对角线,∴∠ACD=45°∴∠ACF=∠FCM +∠ACD =90°(3)∵AE=EF,∴△AEF是等腰直角三角形△AEF外接圆的圆心在斜边AF的中点上.设该中点为O.连结EO得∠AOE=90°过E作EN⊥AC于点NRt△ENC中,EC=4,∠ECA=45°,∴EN=NC=Rt△ENA中,EN =又∵∠EAF=45°∠CAF=∠CEF=15°(等弧对等角)∴∠EAC=30°∴AE=Rt△AFE中,AE== EF,∴AF=8AE所在的圆O半径为4,其所对的圆心角为∠AOE=90°=2π·4·(90°÷360°)=2π考点:1、正方形;2、等腰直角三角形;3、圆周角定理;4、三角函数3.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB 的延长线于切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=,求FG的长.【答案】(1)证明见解析;(2)AC∥EF,证明见解析;(3)FG= .【解析】试题分析:(1)如图1,连接OG.根据切线性质及CD⊥AB,可以推出∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;(2)AC与EF平行,理由为:如图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;(3)如图3所示,连接OG,OC,先求出KE=GE,再求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.试题解析:(1)如图1,连接OG.∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.(2)AC∥EF,理由为连接GD,如图2所示.∵KG2=KD•GE,即,∴,又∵∠KGE=∠GKE,∴△GKD∽△EGK,∴∠E=∠AGD,又∵∠C=∠AGD,∴∠E=∠C,∴AC∥EF;(3)连接OG,OC,如图3所示,∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.∵sinE=sin∠ACH=,设AH=3t,则AC=5t,CH=4t,∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即(3t)2+t2=(2)2,解得t=.设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,由勾股定理得:OH2+CH2=OC2,即(r-3t)2+(4t)2=r2,解得r= t=.∵EF为切线,∴△OGF为直角三角形,在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH=,∴FG=【点睛】此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.4.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)【答案】(1)证明见解析;(2);(3).【解析】试题分析:(1)应用圆周角定理证明∠APD=∠FPC,得到∠APC=∠FPD,又由∠PAC=∠PDC,即可证明结论.(2)由AC=2BC,设,应用勾股定理即可求得BC,AC的长,则由AC=2BC得,由△ACE∽△ABC可求得AE,CE的长,由可知△APB是等腰直角三角形,从而可求得PA的长,由△AEF是等腰直角三角形求得EF=AE=4,从而求得DF的长,由(1)△PAC∽△PDF得,即可求得PD的长.(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.又∵∠PAC=∠PDC,∴△PAC∽△PDF.(2)连接BP,设,∵∠ACB=90°,AB=5,∴.∴.∵△ACE∽△ABC,∴,即. ∴.∵AB⊥CD,∴.如图,连接BP,∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.由(1)△PAC∽△PDF得,即.∴PD的长为.(3)如图,连接BP,BD,AD,∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.∵,∴.∵△AGP∽△DGB,∴.∵△AGD∽△PGB,∴.∴,即.∵,∴.∴与之间的函数关系式为.考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.5.在正方形ABCD中,BD是一条对角线.点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH、PH.(1)若点P在线CD上,如图1,①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)【答案】(1)①如图;②AH=PH,AH⊥PH.证明见解析(2)或【解析】试题分析:(1)①如图(1);②(1)法一:轴对称作法,判断:AH=PH,AH⊥PH.连接CH,根据正方形的每条对角线平分一组对角得:△DHQ等腰Rt△,根据平移的性质得DP=CQ,证得△HDP≌△△HQC,全等三角形的对应边相等得PH=CH,等边对等角得∠HPC=∠HCP,再结合BD是正方形的对称轴得出∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.四点共圆作法,同上得:∠HPC=∠DAH,∴A、D、P、H共向,∴∠AHP=90°,∠APH=∠ADH=45°,∴△APH等腰Rt△.(2)轴对称作法同(1)作HR⊥PC于R,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°∴∠DCH=17°.设DP=x,则.由代入HR,CR解方程即可得出x的值. 四点共圆作法,A、H、D、P共向,∴∠APD=∠AHB=62°,∴.试题解析:(1)①法一:轴对称作法,判断:AH=PH,AH⊥PH证:连接CH,得:△DHQ等腰Rt△,又∵DP=CQ,∴△HDP≌△△HQC,∴PH=CH,∠HPC=∠HCPBD为正方形ABCD对称轴,∴AH=CH,∠DAH=∠HCP,∴AH=PH,∠DAH=∠HPC,∴∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.法二:四点共圆作法,同上得:∠HPC=∠DAH,∴A、D、P、H共向,∴∠AHP=90°,∠APH=∠ADH=45°,∴△APH等腰Rt△.(2)法一:轴对称作法考虑△DHQ等腰Rt△,PD=CQ,作HR⊥PC于R,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°∴∠DCH=17°.设DP=x,则.由得:,∴.即PD=法二:四点共向作法,A、H、D、P共向,∴∠APD=∠AHB=62°,∴.考点:全等三角形的判定;解直角三角形;正方形的性质;死电脑共圆6.如图,二次函数y=x2+bx﹣3的图象与x轴分别相交于A、B两点,点B的坐标为(3,0),与y轴的交点为C,动点T在射线AB上运动,在抛物线的对称轴l上有一定点D,其纵坐标为23,l与x轴的交点为E,经过A、T、D三点作⊙M.(1)求二次函数的表达式;(2)在点T的运动过程中,①∠DMT的度数是否为定值?若是,请求出该定值:若不是,请说明理由;②若MT=12AD,求点M的坐标;(3)当动点T在射线EB上运动时,过点M作MH⊥x轴于点H,设HT=a,当OH≤x≤OT 时,求y的最大值与最小值(用含a的式子表示).【答案】(1)y=x2﹣2x﹣3(2)①在点T的运动过程中,∠DMT的度数是定值②(0,3)(3)见解析【解析】【分析】(1)把点B的坐标代入抛物线解析式求得系数b的值即可;(2)①如图1,连接AD.构造Rt△AED,由锐角三角函数的定义知,tan∠DAE=3.即∠DAE=60°,由圆周角定理推知∠DMT=2∠DAE=120°;②如图2,由已知条件MT=12AD,MT=MD,推知MD=12AD,根据△ADT的外接圆圆心M 在AD 的中垂线上,得到:点M 是线段AD 的中点时,此时AD 为⊙M 的直径时,MD =12AD .根据点A 、D 的坐标求得点M 的坐标即可; (3)如图3,作MH ⊥x 于点H ,则AH =HT =12AT .易得H (a ﹣1,0),T (2a ﹣1,0).由限制性条件OH≤x≤OT 、动点T 在射线EB 上运动可以得到:0≤a ﹣1≤x≤2a ﹣1. 需要分类讨论:(i )当2111(1)211a a a -⎧⎨----⎩……,即413a <„,根据抛物线的增减性求得y 的极值. (ii )当0112111(1)211a a a a <-⎧⎪->⎨⎪--<--⎩„,即43<a≤2时,根据抛物线的增减性求得y 的极值. (iii )当a ﹣1>1,即a >2时,根据抛物线的增减性求得y 的极值.【详解】解:(1)把点B (3,0)代入y =x 2+bx ﹣3,得32+3b ﹣3=0,解得b =﹣2,则该二次函数的解析式为:y =x 2﹣2x ﹣3;(2)①∠DMT 的度数是定值.理由如下:如图1,连接AD .∵抛物线y =x 2﹣2x ﹣3=(x ﹣1)2﹣4.∴抛物线的对称轴是直线x =1.又∵点D 的纵坐标为∴D (1,由y =x 2﹣2x ﹣3得到:y =(x ﹣3)(x+1),∴A (﹣1,0),B (3,0).在Rt △AED 中,tan ∠DAE=2DE AE ==. ∴∠DAE =60°.∴∠DMT =2∠DAE =120°.∴在点T 的运动过程中,∠DMT 的度数是定值;②如图2,∵MT =12AD .又MT =MD , ∴MD =12AD . ∵△ADT 的外接圆圆心M 在AD 的中垂线上, ∴点M 是线段AD 的中点时,此时AD 为⊙M 的直径时,MD =12AD . ∵A (﹣1,0),D (1,∴点M的坐标是(0,3).(3)如图3,作MH⊥x于点H,则AH=HT=12AT.又HT=a,∴H(a﹣1,0),T(2a﹣1,0).∵OH≤x≤OT,又动点T在射线EB上运动,∴0≤a﹣1≤x≤2a﹣1.∴0≤a﹣1≤2a﹣1.∴a≥1,∴2a﹣1≥1.(i)当2111(1)211aa a-⎧⎨----⎩……,即14a3剟时,当x=a﹣1时,y最大值=(a﹣1)2﹣2(a﹣1)﹣3=a2﹣4a;当x=1时,y最小值=4.(ii)当0112111(1)211aaa a<-⎧⎪->⎨⎪--<--⎩„,即43<a≤2时,当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=1时,y最小值=﹣4.(iii)当a﹣1>1,即a>2时,当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=a﹣1时,y最小值=(a﹣1)2﹣2(a﹣1)﹣3=a2﹣4a.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系;另外,解答(3)题时,一定要分类讨论,以防漏解或错解.7.水库大坝截面的迎水坡坡比(DE与AE的长度之比)为1:0.6,背水坡坡比为1:2,大坝高DE=30米,坝顶宽CD=10米,求大坝的截面的周长和面积.【答案】故大坝的截面的周长是(345)米,面积是1470平方米.【解析】试题分析:先根据两个坡比求出AE和BF的长,然后利用勾股定理求出AD和BC,再由大坝的截面的周长=DC+AD+AE+EF+BF+BC,梯形的面积公式可得出答案.试题解析:∵迎水坡坡比(DE与AE的长度之比)为1:0.6,DE=30m,∴AE=18米,在RT △ADE 中,AD=22DE AE +=634米∵背水坡坡比为1:2,∴BF=60米,在RT △BCF 中,BC=22CF BF +=305米,∴周长=DC+AD+AE+EF+BF+BC=634+10+305+88=(634+305+98)米,面积=(10+18+10+60)×30÷2=1470(平方米).故大坝的截面的周长是(634+305+98)米,面积是1470平方米.8.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8.(1)求k 的值;(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y .【解析】【分析】(1)先求出A 的坐标,然后利用待定系数法求出k 的值;(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BO PD MO =,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32.【详解】解:(1)把0x =代入4y kx =+,4y =,∴4BO =,又∵4ABO S ∆=, ∴142AO BO ⋅=,4AO =, ∴(4,0)A -,把4x =-,0y =代入4y kx =+,得044k =-+,解得1k =.故答案为1;(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,∴90PDO CEO ∠=∠=︒,∴90POD OPD ∠+∠=︒,∵线段OP 绕点O 顺时针旋转90°至线段OC ,∴90POC ∠=︒,OP OC =,∴90POD EOC ∠+∠=︒,∴OPD EOC ∠=∠,∴POD OCE ∆≅∆,∴OE PD =,4m t =+.故答案为4m t =+.(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,由(1)知,4AO BO ==,90BOA ∠=︒,∴ABO ∆为等腰直角三角形,∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠,∴BT TO =,∵90BTO ∠=︒,∴90TPO TOP ∠+∠=︒,∵PO BM ⊥,∴90BNO ∠=︒,∴BQT TPO ∠=∠,∴QTB PTO ∆≅∆,∴QT TP =,PO BQ =,∴PQT QPT ∠=∠,∵PO PK KB =+,∴QB PK KB =+,QK KP =,∴KQP KPQ ∠=∠,∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠,∴KPB BPN ∠=∠,设KPB x ∠=︒,∴BPN x ∠=︒,∵2PMB KPB ∠=∠,∴2PMB x ∠=︒,45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠,∴PO PM =,过点P 作PD x ⊥轴,垂足为点D ,∴22OM OD t ==,9045OPD POD x BMO ∠=︒-∠=︒-︒=∠,tan tan OPD BMO ∠=∠, OD BO PD MO =,442t t t=+, 14t =,22t =-(舍)∴8OM =,由(2)知,48m t OM =+==,∴CM y P 轴,∵90PNM POC ∠=∠=︒,∴BM OC P ,∴四边形BOCM 是平行四边形,∴4832BOCM S BO OM =⨯=⨯=Y .故答案为32.【点睛】本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.9.如图,AB 是⊙O 的直径,E 是⊙O 上一点,C 在AB 的延长线上,AD ⊥CE 交CE 的延长线于点D ,且AE 平分∠DAC .(1)求证:CD 是⊙O 的切线;(2)若AB =6,∠ABE =60°,求AD 的长.【答案】(1)详见解析;(2)92【解析】【分析】 (1)利用角平分线的性质得到∠OAE =∠DAE ,再利用半径相等得∠AEO =∠OAE ,等量代换即可推出OE ∥AD ,即可解题,(2)根据30°的三角函数值分别在Rt △ABE 中,AE =AB·cos30°, 在Rt △ADE 中,AD=cos30°×AE 即可解题.【详解】证明:如图,连接OE ,∵AE 平分∠DAC ,∴∠OAE =∠DAE .∵OA =OE ,∴∠AEO =∠OAE .∴∠AEO =∠DAE .∴OE ∥AD .∵DC ⊥AC ,∴OE ⊥DC .∴CD 是⊙O 的切线.(2)解:∵AB 是直径,∴∠AEB =90°,∠ABE =60°.∴∠EAB =30°,在Rt △ABE 中,AE =AB·cos30°=6×3=33, 在Rt △ADE 中,∠DAE =∠BAE =30°,∴AD=cos30°×AE=3×33=92. 【点睛】本题考查了特殊的三角函数值的应用,切线的证明,中等难度,利用特殊的三角函数表示出所求线段是解题关键.10.如图,直线y =12x +2与x 轴交于点A ,与y 轴交于点B ,抛物线y =﹣12x 2+bx +c 经过A 、B 两点,与x 轴的另一个交点为 C .(1)求抛物线的解析式; (2)根据图象,直接写出满足12x +2≥﹣12x 2+bx +c 的x 的取值范围; (3)设点D 为该抛物线上的一点、连结AD ,若∠DAC =∠CBO ,求点D 的坐标.【答案】(1)213222y x x =--+;(2)当x ≥0或x ≤﹣4;(3)D 点坐标为(0,2)或(2,﹣3).【解析】【分析】(1)由直线y =12x +2求得A 、B 的坐标,然后根据待定系数法即可求得抛物线的解析式;(2)观察图象,找出直线在抛物线上方的x 的取值范围;(3)如图,过D 点作x 轴的垂线,交x 轴于点E ,先求出CO =1,AO =4,再由∠DAC =∠CBO ,得出tan ∠DAC =tan ∠CBO ,从而有,DE CO AE BO =,最后分类讨论确定点D 的坐标. 【详解】解:(1)由y =12x +2可得: 当x =0时,y =2;当y =0时,x =﹣4,∴A (﹣4,0),B (0,2),把A 、B 的坐标代入y =﹣12x 2+bx +c 得: 322b c ⎧=-⎪⎨⎪=⎩,, ∴抛物线的解析式为:213222y x x =--+ (2)当x ≥0或x ≤﹣4时,12x +2≥﹣12x 2+bx +c (3)如图,过D 点作x 轴的垂线,交x 轴于点E , 由213222y x x =-+令y =0, 解得:x 1=1,x 2=﹣4,∴CO =1,AO =4,设点D 的坐标为(m ,213222m m --+), ∵∠DAC =∠CBO ,∴tan ∠DAC =tan ∠CBO ,∴在Rt △ADE 和Rt △BOC 中有DE CO AE BO =, 当D 在x 轴上方时,213212242--+=+m m m 解得:m 1=0,m 2=﹣4(不合题意,舍去),∴点D 的坐标为(0,2).当D 在x 轴下方时,213(2)12242---+=+m m m解得:m1=2,m2=﹣4(不合题意,舍去),∴点D的坐标为(2,﹣3),故满足条件的D点坐标为(0,2)或(2,﹣3).【点睛】本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式.解题的关键是能够熟练掌握一次函数和二次函数的有关知识解决问题,分类讨论是第(3)题的难点.11.现有一个“Z“型的工件(工件厚度忽略不计),如图所示,其中AB为20cm,BC为60cm,∠ABC=90,∠BCD=60°,求该工件如图摆放时的高度(即A到CD的距离).(结果精确到0.1m,参考数据:≈1.73)【答案】工件如图摆放时的高度约为61.9cm.【解析】【分析】过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C =60°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.【详解】解:如图,过点A作AP⊥CD于点P,交BC于点Q,∵∠CQP=∠AQB,∠CPQ=∠B=90°,∴∠A=∠C=60°,在△ABQ中,∵AQ=(cm),BQ=AB tan A=20tan60°=20(cm),∴CQ=BC﹣BQ=60﹣20(cm),在△CPQ中,∵PQ=CQ sin C=(60﹣20)sin60°=30(﹣1)cm,∴AP=AQ+PQ=40+30(﹣1)≈61.9(cm),答:工件如图摆放时的高度约为61.9cm.【点睛】本题主要考查解直角三角形的应用,熟练掌握三角函数的定义求得相关线段的长度是解题的关键.12.如图,△ABC中,AC=BC=10,cosC=35,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409R=;(2)25880320xy x xx=-++(3)505-【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxxy-+--=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,解得:R=409;(2)在△ABC中,AC=BC=10,cosC=35,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,AB=5tan∠CAB=2,BP228+(4)x-2880x x-+DA 25x,则BD=525x,如下图所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则cosβ=5,sinβ=5,EB =BDcosβ=(45﹣25x )×5=4﹣25x ,∴PD ∥BE ,∴EB BFPD PF=,即:2024588x y x xx -+--=,整理得:y =25xx 8x 803x 20-++;(3)以EP 为直径作圆Q 如下图所示,两个圆交于点G ,则PG =PQ ,即两个圆的半径相等,则两圆另外一个交点为D , GD 为相交所得的公共弦, ∵点Q 是弧GD 的中点, ∴DG ⊥EP , ∵AG 是圆P 的直径, ∴∠GDA =90°, ∴EP ∥BD ,由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形, ∴AG =EP =BD ,∴AB =DB+AD =AG+AD =5 设圆的半径为r ,在△ADG 中,AD =2rcosβ=5,DG =5,AG =2r , 5+2r =45,解得:2r =51+, 则:DG =5=50﹣105, 相交所得的公共弦的长为50﹣105. 【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.13.如图,在平面直角坐标系xOy 中,抛物线y =﹣14x 2+bx +c 与直线y =12x ﹣3分别交x 轴、y 轴上的B 、C 两点,设该抛物线与x 轴的另一个交点为点A ,顶点为点D ,连接CD 交x 轴于点E .(1)求该抛物线的表达式及点D 的坐标; (2)求∠DCB 的正切值;(3)如果点F 在y 轴上,且∠FBC =∠DBA +∠DCB ,求点F 的坐标.【答案】(1)21y 234x x =-+-,D (4,1);(2)13;(3)点F 坐标为(0,1)或(0,﹣18). 【解析】 【分析】 (1)y =12x ﹣3,令y =0,则x =6,令x =0,则y =﹣3,求出点B 、C 的坐标,将点B 、C 坐标代入抛物线y =﹣14x 2+bx+c ,即可求解; (2)求出则点E (3,0),EH =EB•sin ∠OBC 5CE =2,则CH 5解;(3)分点F 在y 轴负半轴和在y 轴正半轴两种情况,分别求解即可. 【详解】 (1)y =12x ﹣3,令y =0,则x =6,令x =0,则y =﹣3,则点B、C的坐标分别为(6,0)、(0,﹣3),则c=﹣3,将点B坐标代入抛物线y=﹣14x2+bx﹣3得:0=﹣14×36+6b﹣3,解得:b=2,故抛物线的表达式为:y=﹣14x2+2x﹣3,令y=0,则x=6或2,即点A(2,0),则点D(4,1);(2)过点E作EH⊥BC交于点H,C、D的坐标分别为:(0,﹣3)、(4,1),直线CD的表达式为:y=x﹣3,则点E(3,0),tan∠OBC=3162OCOB==,则sin∠OBC5,则EH=EB•sin∠OBC5CE=2CH5则tan∠DCB=13 EHCH=;(3)点A、B、C、D、E的坐标分别为(2,0)、(6,0)、(0,﹣3)、(4,1)、(3,0),则BC=5∵OE=OC,∴∠AEC=45°,tan∠DBE=164-=12,故:∠DBE=∠OBC,则∠FBC=∠DBA+∠DCB=∠AEC=45°,①当点F在y轴负半轴时,过点F作FG⊥BG交BC的延长线与点G,则∠GFC=∠OBC=α,设:GF=2m,则CG=GFtanα=m,∵∠CBF=45°,∴BG=GF,即:5=2m,解得:m=5CF225=15,GF CG故点F(0,﹣18);②当点F在y轴正半轴时,同理可得:点F(0,1);故:点F坐标为(0,1)或(0,﹣18).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3),确定∠FBC=∠DBA+∠DCB=∠AEC=45°,是本题的突破口.14.已知:如图,在Rt△ABO中,∠B=90°,∠OAB=30°,OA=3.以点O为原点,斜边OA 所在直线为x轴,建立平面直角坐标系,以点P(4,0)为圆心,PA长为半径画圆,⊙P 与x轴的另一交点为N,点M在⊙P上,且满足∠MPN=60°.⊙P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:(发现)(1)MN n的长度为多少;(2)当t=2s时,求扇形MPN(阴影部分)与Rt△ABO重叠部分的面积.(探究)当⊙P和△ABO的边所在的直线相切时,求点P的坐标.(拓展)当MN n与Rt△ABO的边有两个交点时,请你直接写出t的取值范围.【答案】【发现】(1)MN n的长度为π3;(2)重叠部分的面积为38;【探究】:点P 的坐标为10(,);或303()或2303-();【拓展】t 的取值范围是23t ≤<或45t ≤<,理由见解析.【解析】 【分析】发现:(1)先确定出扇形半径,进而用弧长公式即可得出结论; (2)先求出PA =1,进而求出PQ ,即可用面积公式得出结论; 探究:分圆和直线AB 和直线OB 相切,利用三角函数即可得出结论;拓展:先找出·MN和直角三角形的两边有两个交点时的分界点,即可得出结论. 【详解】 [发现](1)∵P (4,0),∴OP =4.∵OA =3,∴AP =1,∴·MN的长度为6011803ππ⨯=. 故答案为3π; (2)设⊙P 半径为r ,则有r =4﹣3=1,当t =2时,如图1,点N 与点A 重合,∴PA =r =1,设MP 与AB 相交于点Q .在Rt △ABO 中,∵∠OAB =30°,∠MPN =60°. ∵∠PQA =90°,∴PQ 12=PA 12=,∴AQ =AP ×cos30°3=∴S 重叠部分=S △APQ 12=PQ ×AQ 38= 3[探究]①如图2,当⊙P 与直线AB 相切于点C 时,连接PC ,则有PC ⊥AB ,PC =r =1. ∵∠OAB =30°,∴AP =2,∴OP =OA ﹣AP =3﹣2=1; ∴点P 的坐标为(1,0);②如图3,当⊙P 与直线OB 相切于点D 时,连接PD ,则有PD ⊥OB ,PD =r =1,∴PD ∥AB ,∴∠OPD =∠OAB =30°,∴cos ∠OPD PD OP =,∴OP 123303cos ==︒,∴点P 的坐标为(233,0); ③如图4,当⊙P 与直线OB 相切于点E 时,连接PE ,则有PE ⊥OB ,同②可得:OP 233=; ∴点P 的坐标为(233-,0);[拓展]t 的取值范围是2<t ≤3,4≤t <5,理由:如图5,当点N 运动到与点A 重合时,·MN与Rt △ABO 的边有一个公共点,此时t =2; 当t >2,直到⊙P 运动到与AB 相切时,由探究①得:OP =1,∴t 411-==3,·MN与Rt △ABO 的边有两个公共点,∴2<t ≤3.如图6,当⊙P 运动到PM 与OB 重合时,·MN与Rt △ABO 的边有两个公共点,此时t =4; 直到⊙P 运动到点N 与点O 重合时,·MN与Rt △ABO 的边有一个公共点,此时t =5; ∴4≤t <5,即:t 的取值范围是2<t ≤3,4≤t <5.【点睛】本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.15.如图,半圆O 的直径AB =20,弦CD ∥AB ,动点M 在半径OD 上,射线BM 与弦CD 相交于点E (点E 与点C 、D 不重合),设OM =m . (1)求DE 的长(用含m 的代数式表示); (2)令弦CD 所对的圆心角为α,且sin4=25α. ①若△DEM 的面积为S ,求S 关于m 的函数关系式,并求出m 的取值范围;②若动点N 在CD 上,且CN =OM ,射线BM 与射线ON 相交于点F ,当∠OMF =90° 时,求DE 的长.【答案】(1)DE =10010m m -;(2)①S =2360300m m m-+,(5013<m <10),②DE =52. 【解析】 【分析】(1)由CD ∥AB 知△DEM ∽△OBM ,可得DE DMOB OM=,据此可得; (2)①连接OC 、作OP ⊥CD 、MQ ⊥CD ,由OC =OD 、OP ⊥CD 知∠DOP =12∠COD ,据此可得sin ∠DOP =sin ∠DMQ =45、sin ∠ODP =35,继而由OM =m 、OD =10得QM =DM sin ∠ODP =35(10﹣m ),根据三角形的面积公式即可得;如图2,先求得PD =8、CD =16,证△CDM ∽△BOM 得CD DM BO OM =,求得OM =5013,据此可得m 的取值范围; ②如图3,由BM =OB sin ∠BOM =10×35=6,可得OM =8,根据(1)所求结果可得答案. 【详解】 (1)∵CD ∥AB , ∴△DEM ∽△OBM , ∴DE DM OB OM =,即1010DE mm-=,∴DE =10010m m -; (2)①如图1,连接OC 、作OP ⊥CD 于点P ,作MQ ⊥CD 于点Q ,∵OC =OD 、OP ⊥CD ,∴∠DOP =12∠COD , ∵sin 2α=45, ∴sin ∠DOP =sin ∠DMQ =45,sin ∠ODP =35, ∵OM =m 、OD =10,∴DM =10﹣m ,∴QM =DM sin ∠ODP =35(10﹣m ), 则S △DEM =12DE •MQ =12×10010m m -×35(10﹣m )=2360300m m m-+, 如图2,∵PD =OD sin ∠DOP =10×45=8, ∴CD =16,∵CD ∥AB ,∴△CDM ∽△BOM ,∴CD DM BO OM =,即1610=10OM OM-, 解得:OM =5013,∴5013<m <10, ∴S =2360300m m m-+,(5013<m <10). ②当∠OMF =90°时,如图3,则∠BMO =90°,在Rt △BOM 中,BM =OB sin ∠BOM =10×35=6, 则OM =8,由(1)得DE =100108582-⨯=. 【点睛】本题主要考查圆的综合题,解题的关键是熟练掌握圆的有关性质、相似三角形的判定与性质及解直角三角形的能力.。
数学培优竞赛新方法-第14讲 锐角三角函数

第14讲锐角三角函数知识纵横古希腊数学家和古代中国数学家为了测量的需要,他们发现并经常利用下列几何结论:在两个大小不同的直角三角形中,只要有一个锐角相等,那么这两个三角形的对应边的比值一定相等。
正是古人对天文观察和测量的需要才引起人们对三角函数的研究,1748年经过瑞士的著名数学家欧拉的应用,才逐渐形成现在的cot tan cos sin 、、、的通用形式。
三角函数揭示了直角三角形中边与锐角之间的关系,是数学结合的桥梁之一,有一下丰富的性质:1.单调性2.互余三角函数间的关系3.同角三角函数之间的关系。
平方关系1cos sin 22=+a a 商数关系aa a a a sin cos cot ,cos sin tan ==倒数关系1cot tan =a a 例题求解【例1】(1)如图,在正方形ABCD 中,N 是DC 的中点,M 是AD 上异于D 的点,且MBC NMB ∠=∠,则ABM ∠tan 的值为.(2)已知在ABC ∆中,B A ∠∠、是锐角,且135sin =A ,则ABC S ∆=.【例2】如图,在ABC ∆中,︒=∠90ACB ,︒=∠15ABC ,1=BC 则AC =A.32+ B.32- C.3.0 D.23-【例3】如图,在直角坐标系中,已知ABC Rt ∆中,︒=∠90ACB ,点C A 、的坐标分别为43tan ),01()0,3(=∠-BAC C A ,、(1)求过点B A 、直线的函数表达式.(2)在x 轴上找一点D ,连接DB ,使得ADB ∆与ABC ∆相似(不包括全等),并求点D 的坐标.(3)在(2)的条件下,如果Q P 、分别是AB 和AD 的动点,连接PQ ,设m DQ AP ==,问是否存在这样的m 使得APQ ∆与ADB ∆相似,如存在,求出m 的值,如不存在,请说明理由。
【例4】已知⊙O 过点3),D(4,点H 与点D 关于y 轴对称,过H 作⊙O 的切线交y 轴于点A (如图1).(1)求⊙O 半径;(2)HAO ∠sin 的值;(3)如图2,设⊙O 与y 轴正半轴交点P ,点F E 、是线段OP 上的动点(与P 点不重合),连接并延长DF DE ,交⊙O 于点C B ,,直线BC 交y 轴于点G ,若DEF ∆是以EF 为底的等腰三角形,试探索CGO ∠sin 的大小怎样变化?请说明理由.【例5】已知:在ABC Rt ∆中,︒=∠90C ,B A sin ,sin 是方程02=++q px x 的两个根.(1)求实数q p 、应满足的条件;(2)若q p 、满足(1)的条件,方程02=++q px x 的两个根是否等于ABC Rt ∆中两锐角A、B 的正弦?正弦、余弦的有界性【例6】设c b a 、、是直角三角形的三边,c 为斜边,整数3≥n ,求证:nn n c b a =+学历训练基础夯实1.如图,已知AB 是的直径,弦AB CD ⊥,22=AC ,1=BC ,那么ABD ∠sin 的值是2.如图2,AOB ∠是放置在正方形网格中的一个角,则AOB ∠cos 的值是。
初三培优锐角三角函数辅导专题训练含答案解析

初三培优锐角三角函数辅导专题训练含答案解析一、锐角三角函数1.已知在平面直角坐标系中,点()()()3,0,3,0,3,8A B C --,以线段BC 为直径作圆,圆心为E ,直线AC 交E e 于点D ,连接OD .(1)求证:直线OD 是E e 的切线;(2)点F 为x 轴上任意一动点,连接CF 交E e 于点G ,连接BG :①当1an 7t ACF ∠=时,求所有F 点的坐标 (直接写出); ②求BG CF的最大值. 【答案】(1)见解析;(2)①143,031F ⎛⎫⎪⎝⎭,2(5,0)F ;② BG CF 的最大值为12. 【解析】【分析】(1)连接DE ,证明∠EDO=90°即可;(2)①分“F 位于AB 上”和“F 位于BA 的延长线上”结合相似三角形进行求解即可; ②作GM BC ⊥于点M ,证明1~ANF ABC ∆∆,得12BG CF ≤,从而得解. 【详解】(1)证明:连接DE ,则:∵BC 为直径∴90BDC ∠=︒∴90BDA ∠=︒∵OA OB =∴OD OB OA ==∴OBD ODB ∠=∠∵EB ED =∴EBD EDB ∠=∠∴EBD OBD EDB ODB ∠+∠=∠+∠即:EBO EDO ∠=∠∵CB x ⊥轴∴90EBO ∠=︒∴90EDO ∠=︒∴直线OD 为E e 的切线.(2)①如图1,当F 位于AB 上时:∵1~ANF ABC ∆∆ ∴11NF AF AN AB BC AC == ∴设3AN x =,则114,5NF x AF x == ∴103CN CA AN x =-=-∴141tan 1037F N x ACF CN x ∠===-,解得:1031x = ∴150531AF x == 1504333131OF =-= 即143,031F ⎛⎫⎪⎝⎭如图2,当F 位于BA 的延长线上时:∵2~AMF ABC ∆∆∴设3AM x =,则224,5MF x AF x ==∴103CM CA AM x =+=+∴241tan 1037F M x ACF CM x ∠===+ 解得:25x =∴252AF x ==2325OF =+=即2(5,0)F②如图,作GM BC ⊥于点M ,∵BC 是直径∴90CGB CBF ∠=∠=︒∴~CBF CGB ∆∆ ∴8BG MG MG CF BC == ∵MG ≤半径4= ∴41882BG MG CF =≤= ∴BG CF 的最大值为12.【点睛】本题考查了圆的综合题:熟练掌握切线的判定定理、解直角三角形;相似三角形的判定和性质和相似比计算线段的长;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.2.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,【答案】(1)∠BPQ=30°;(2)该电线杆PQ的高度约为9m.【解析】试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.试题解析:延长PQ交直线AB于点E,(1)∠BPQ=90°-60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,BE=33PE=33x米,∵AB=AE-BE=6米,则3,解得:3则BE=(3)米.在直角△BEQ中,QE=33BE=33(33+3)=(3+3)米.∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米).答:电线杆PQ的高度约9米.考点:解直角三角形的应用-仰角俯角问题.3.如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4,直角边CD在y轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME 的度数.(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.【答案】(1)∠BME=15°;(2BC=4;(3)h≤2时,S=﹣h2+4h+8,当h≥2时,S=18﹣3h.【解析】试题分析:(1)如图2,由对顶角的定义知,∠BME=∠CMA,要求∠BME的度数,需先求出∠CMA的度数.根据三角形外角的定理进行解答即可;(2)如图3,由已知可知∠OBC=∠DEC=30°,又OB=6,通过解直角△BOC就可求出BC的长度;(3)需要分类讨论:①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,S=S△EDC﹣S△EFM;②当h≥2时,如图3,S=S△OBC.试题解析:解:(1)如图2,∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).∴OA=OB,∴∠OAB=45°,∵∠CDE=90°,CD=4,DE=4,∴∠OCE=60°,∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,∴∠BME=∠CMA=15°;如图3,∵∠CDE=90°,CD=4,DE=4,∴∠OBC=∠DEC=30°,∵OB=6,∴BC=4;(3)①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,∵CD=4,DE=4,AC=h,AN=NM,∴CN=4﹣FM,AN=MN=4+h﹣FM,∵△CMN∽△CED,∴,∴,解得FM=4﹣,∴S=S△EDC﹣S△EFM=×4×4﹣(44﹣h)×(4﹣)=﹣h2+4h+8,②如图3,当h≥2时,S=S△OBC=OC×OB=(6﹣h)×6=18﹣3h.考点:1、三角形的外角定理;2、相似;3、解直角三角形4.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:(1)如图1,若k=1,则∠APE的度数为;(2)如图2,若k=3,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.(3)如图3,若k=3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.【解析】分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形,∴BD=AF ,BF=AD .∵AC=BD ,CD=AE ,∴AF=AC .∵∠FAC=∠C=90°,∴△FAE ≌△ACD ,∴EF=AD=BF ,∠FEA=∠ADC .∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EHD .∵AD ∥BF ,∴∠EFB=90°.∵EF=BF ,∴∠FBE=45°,∴∠APE=45°.(2)(1)中结论不成立,理由如下:如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形,∴BD=AF ,BF=AD .∵3BD ,3AE , ∴3AC CD BD AE==. ∵BD=AF , ∴3AC CD AF AE==. ∵∠FAC=∠C=90°,∴△FAE ∽△ACD ,∴3AC AD BF AF EF EF===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EMD .∵AD ∥BF , ∴∠EFB=90°. 在Rt △EFB 中,tan ∠FBE=3EF BF =, ∴∠FBE=30°,∴∠APE=30°,(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,∴∠APE=∠ADH ,∠HEC=∠C=90°,四边形EBDH 是平行四边形,∴BE=DH ,EH=BD .∵3BD ,3AE ,∴3AC CD BD AE==. ∵∠HEA=∠C=90°,∴△ACD ∽△HEA , ∴3AD AC AH EH==∠ADC=∠HAE . ∵∠CAD+∠ADC=90°,∴∠HAE+∠CAD=90°,∴∠HAD=90°. 在Rt △DAH 中,tan ∠ADH=3AH AD = ∴∠ADH=30°,∴∠APE=30°.点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.5.如图,在Rt △ABC 中,∠BAC=90°,∠B=60°,BC=16cm ,AD 是斜边BC 上的高,垂足为D,BE=1cm.点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M 同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH.点M到达点D 时停止运动,点N到达点C时停止运动.设运动时间为t(s).(1)当t为何值时,点G刚好落在线段AD上?(2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围.(3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,△CPD是等腰三角形?【答案】(1)3;(2);(3)t=9s或t=(15﹣6)s.【解析】试题分析:(1)求出ED的距离即可求出相对应的时间t.(2)先求出t的取值范围,分为H在AB上时,此时BM的距离,进而求出相应的时间.同样当G在AC上时,求出MN的长度,继而算出EN的长度即可求出时间,再通过正方形的面积公式求出正方形的面积.(3)分DP=PC和DC=PC两种情况,分别由EN的长度便可求出t的值.试题解析:∵∠BAC=90°,∠B=60°,BC=16cm∴AB=8cm,BD=4cm,AC=8cm,DC=12cm,AD=4cm.(1)∵当G刚好落在线段AD上时,ED=BD﹣BE=3cm∴t=s=3s.(2)∵当MH没有到达AD时,此时正方形MNGH是边长为1的正方形,令H点在AB 上,则∠HMB=90°,∠B=60°,MH=1∴BM=cm.∴t=s.当MH到达AD时,那么此时的正方形MNGH的边长随着N点的继续运动而增大,令G点在AC上,设MN=xcm,则GH=DH=x,AH=x,∵AD=AH+DH=x+x=x=4,∴x=3.当≤t≤4时,S MNGN=1cm2.当4<t≤6时,S MNGH=(t﹣3)2cm2∴S关于t的函数关系式为:.(3)分两种情况:①∵当DP=PC时,易知此时N点为DC的中点,∴MN=6cm∴EN=3cm+6cm=9cm.∴t=9s故当t=9s的时候,△CPD为等腰三角形;②当DC=PC时,DC=PC=12cm∴NC=6cm∴EN=16cm﹣1cm﹣6cm=(15﹣6)cm∴t=(15﹣6)s故当t=(15﹣6)s时,△CPD为等腰三角形.综上所述,当t=9s或t=(15﹣6)s时,△CPD为等腰三角形.考点:1.双动点问题;2.锐角三角函数定义;3.特殊角的三角函数值;4.正方形的性质;5.由实际问题列函数关系式;6.等腰三角形的性质;7.分类思想的应用.6.(2013年四川攀枝花12分)如图,在平面直角坐标系中,四边形ABCD是梯形,AB∥CD,点B(10,0),C(7,4).直线l经过A,D两点,且sin∠DAB=2.动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于x轴,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.(1)点A的坐标为,直线l的解析式为;(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围;(3)试求(2)中当t为何值时,S的值最大,并求出S的最大值;(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.【答案】解:(1)(﹣4,0);y=x+4.(2)在点P、Q运动的过程中:①当0<t≤1时,如图1,过点C作CF⊥x轴于点F,则CF=4,BF=3,由勾股定理得BC=5.过点Q作QE⊥x轴于点E,则BE=BQ•cos∠CBF=5t•35=3t.∴PE=PB﹣BE=(14﹣2t)﹣3t=14﹣5t,S=12PM•PE=12×2t×(14﹣5t)=﹣5t2+14t.②当1<t≤2时,如图2,过点C、Q分别作x轴的垂线,垂足分别为F,E,则CQ=5t﹣5,PE=AF﹣AP﹣EF=11﹣2t﹣(5t﹣5)=16﹣7t.S=12PM•PE=12×2t×(16﹣7t)=﹣7t2+16t.③当点M与点Q相遇时,DM+CQ=CD=7,即(2t﹣4)+(5t﹣5)=7,解得t=167.当2<t<167时,如图3,MQ=CD﹣DM﹣CQ=7﹣(2t﹣4)﹣(5t﹣5)=16﹣7t,S=12PM•MQ=12×4×(16﹣7t)=﹣14t+32.综上所述,点Q与点M相遇前S与t的函数关系式为()()225t14t0<t1S{7t16t1<t21614t322<t<7-+≤=-+≤⎛⎫-+ ⎪⎝⎭.(3)①当0<t≤1时,22749S5t14t5t55⎛⎫=-+=--+⎪⎝⎭,∵a=﹣5<0,抛物线开口向下,对称轴为直线t=75,∴当0<t≤1时,S随t的增大而增大.∴当t=1时,S有最大值,最大值为9.②当1<t≤2时,22864S7t16t7t77⎛⎫=-+=--+⎪⎝⎭,∵a=﹣7<0,抛物线开口向下,对称轴为直线t=87,∴当t=87时,S有最大值,最大值为647.③当2<t<167时,S=﹣14t+32∵k=﹣14<0,∴S随t的增大而减小.又∵当t=2时,S=4;当t=167时,S=0,∴0<S<4.综上所述,当t=87时,S有最大值,最大值为647.(4)t=209或t=125时,△QMN为等腰三角形.【解析】(1)利用梯形性质确定点D的坐标,由sin∠DAB=2,利用特殊三角函数值,得到△AOD为等腰直角三角形,从而得到点A的坐标;由点A、点D的坐标,利用待定系数法求出直线l的解析式:∵C(7,4),AB∥CD,∴D(0,4).∵sin∠,∴∠DAB=45°.∴OA=OD=4.∴A(﹣4,0).设直线l的解析式为:y=kx+b,则有4k b0{b4-+==,解得:k1{b4==.∴y=x+4.∴点A坐标为(﹣4,0),直线l的解析式为:y=x+4.(2)弄清动点的运动过程分别求解:①当0<t≤1时,如图1;②当1<t≤2时,如图2;③当2<t<167时,如图3.(3)根据(2)中求出的S表达式与取值范围,逐一讨论计算,最终确定S的最大值.(4)△QMN为等腰三角形的情形有两种,需要分类讨论:①如图4,点M在线段CD上,MQ=CD﹣DM﹣CQ=7﹣(2t﹣4)﹣(5t﹣5)=16﹣7t,MN=DM=2t﹣4,由MN=MQ,得16﹣7t=2t﹣4,解得t=209.②如图5,当点M运动到C点,同时当Q刚好运动至终点D,此时△QMN为等腰三角形,t=125.∴当t=209或t=125时,△QMN为等腰三角形.考点:一次函数综合题,双动点问题,梯形的性质,锐角三角函数定义,特殊角的三角函数值,由实际问题列函数关系式,一次函数和二次函数的性质,等腰三角形的性质,分类思想的应用.7.许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A,B两点之间的距离他沿着与直线AB 平行的道路EF 行走,走到点C 处,测得∠ACF=45°,再向前走300米到点D 处,测得∠BDF=60°.若直线AB 与EF 之间的距离为200米,求A ,B 两点之间的距离(结果保留一位小数)【答案】215.6米. 【解析】 【分析】过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点,根据Rt △ACM 和三角函数tan BDF ∠求出CM 、DN ,然后根据MN MD DN AB =+=即可求出A 、B 两点间的距离. 【详解】解:过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点在Rt △ACM 中,∵45ACF ∠=︒, ∴AM=CM=200米,又∵CD=300米,所以100MD CD CM =-=米, 在Rt △BDN 中,∠BDF=60°,BN=200米 ∴115.6tan 60BNDN =≈o米,∴215.6MN MD DN AB =+=≈米 即A ,B 两点之间的距离约为215.6米. 【点睛】本题主要考查三角函数,正确做辅助线是解题的关键.8.水库大坝截面的迎水坡坡比(DE 与AE 的长度之比)为1:0.6,背水坡坡比为1:2,大坝高DE=30米,坝顶宽CD=10米,求大坝的截面的周长和面积.【答案】故大坝的截面的周长是(345)米,面积是1470平方米. 【解析】试题分析:先根据两个坡比求出AE 和BF 的长,然后利用勾股定理求出AD 和BC ,再由大坝的截面的周长=DC+AD+AE+EF+BF+BC ,梯形的面积公式可得出答案.试题解析:∵迎水坡坡比(DE 与AE 的长度之比)为1:0.6,DE=30m , ∴AE=18米,在RT △ADE 中,AD=22DE AE +=634米 ∵背水坡坡比为1:2, ∴BF=60米,在RT △BCF 中,BC=22CF BF +=305米,∴周长=DC+AD+AE+EF+BF+BC=634+10+305+88=(634+305+98)米, 面积=(10+18+10+60)×30÷2=1470(平方米).故大坝的截面的周长是(634+305+98)米,面积是1470平方米.9.如图,已知,在O e 中,弦AB 与弦CD 相交于点E ,且»»AC BD=. (1)求证:AB CD =;(2)如图,若直径FG 经过点E ,求证:EO 平分AED ∠;(3)如图,在(2)的条件下,点P 在»CG上,连接FP 交AB 于点M ,连接MG ,若AB CD ⊥,MG 平分PMB ∠,2MG =,FMG ∆的面积为2,求O e 的半径的长.【答案】(1)见解析;(2)见解析;(3)O e 10. 【解析】 【分析】(1) 利用相等的弧所对的弦相等进行证明;(2)连接AO 、DO ,过点O 作OJ AB ⊥于点J ,OQ CD ⊥于点Q ,证明AOJ DOQ ∆≅∆得出OJ OQ =,根据角平分线的判定定理可得结论;(3)如图,延长GM 交O e 于点H ,连接HF ,求出2FH =,在HG 上取点L ,使HL FH =,延长FL 交O e 于点K ,连接KG ,求出22FL =,设HM n =,则有22LK KG n ==,2222FK FL LK n =+=+,再证明KFG EMG HMF ∠=∠=∠,从而得到tan tan KFG HMF ∠=∠,KG HFFK HM=,再代入LK 和FK 的值可得n=4,再求得FG 的长,最后得到圆的半径为10. 【详解】解:(1)证明:∵»»AC BD =,∴»»»»AC CBBD CB +=+, ∴»»AB CD =, ∴AB CD =.(2)证明:如图,连接AO 、DO ,过点O 作OJ AB ⊥于点J ,OQ CD ⊥于点Q ,∴90AJO DQO ∠=∠=︒,1122AJ AB CD DQ ===, 又∵AO DO =, ∴AOJ DOQ ∆≅∆, ∴OJ OQ =,又∵OJ AB ⊥,OQ CD ⊥, ∴EO 平分AED ∠.(3)解:∵CD AB ⊥,∴90AED ∠=︒,由(2)知,1452AEF AED ∠=∠=︒, 如图,延长GM 交O e 于点H ,连接HF ,∵FG 为直径,∴90H ∠=︒,122MFG S MG FH ∆=⨯⋅=, ∵2MG =,∴2FH =,在HG 上取点L ,使HL FH =,延长FL 交O e 于点K ,连接KG , ∴45HFL HLF ∠=∠=︒,45KLG HLF ∠=∠=︒, ∵FG 为直径,∴90K ∠=︒,∴9045KGL KLG KLG ∠=︒-∠=︒=∠,∴LK KG =, 在Rt FHL ∆中,222FL FH HL =+,22FL = 设HM n =,2HL MG ==,∴GL LM MG HL LM HM n =+=+==, 在Rt LGK ∆中,222LG LK KG =+,22LK KG ==,222FK FL LK =+=, ∵GMP GMB ∠=∠,∵PMG HMF ∠=∠,∴HMF GMB ∠=∠, ∵1452AEF AED ∠=∠=︒, ∴45MGF EMG MEF ∠+∠=∠=︒,45MGF KFG HLF ∠+∠=∠=︒, ∴KFG EMG HMF ∠=∠=∠, ∴tan tan KFG HMF ∠=∠,∴KG HFFK HM=,∴2222222nn =+,4n =, ∴6HG HM MG =+=,在Rt HFG ∆中,222FG FH HG =+,210FG =10FO = 即O e 10 【点睛】考查了圆的综合题,本题是垂径定理、圆周角定理以及三角函数等的综合应用,适当的添加辅助线是解题的关键.10.3米/秒 =65.88千米/小时>60千米/小时.∴此车超过限制速度.…4分11.如图,AB 为O e 的直径,C 、D 为O e 上异于A 、B 的两点,连接CD ,过点C 作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒. (2)若2ABD BDC ∠=∠. ①求证:CF 是O e 的切线. ②当6BD =,3tan 4F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =. 【解析】 【分析】(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =34,即可求出CF . 【详解】解:(1)AB 是O e 的直径,且D 为O e 上一点,90ADB ∴∠=︒, CE DB ⊥Q , 90DEC ∴∠=︒, //CF AD ∴,180DAC ACF ∴∠+∠=︒. (2)①如图,连接OC .OA OC =Q ,12∴∠=∠. 312∠=∠+∠Q , 321∴∠=∠.42BDC Q ∠=∠,1BDC ∠=∠, 421∴∠=∠, 43∴∠=∠, //OC DB ∴. CE DB ⊥Q , OC CF ∴⊥.又OC Q 为O e 的半径, CF ∴为O e 的切线.②由(1)知//CF AD ,BAD F ∴∠=∠,3tan tan 4BAD F ∴∠==, 34BD AD ∴=. 6BD =Q483AD BD ∴==, 226810AB ∴=+=,5OB OC ==. OC CF Q ⊥, 90OCF ∴∠=︒,3tan 4OC F CF ∴==,解得203CF =. 【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.12.现有一个“Z“型的工件(工件厚度忽略不计),如图所示,其中AB为20cm,BC为60cm,∠ABC=90,∠BCD=60°,求该工件如图摆放时的高度(即A到CD的距离).(结果精确到0.1m,参考数据:≈1.73)【答案】工件如图摆放时的高度约为61.9cm.【解析】【分析】过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C =60°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.【详解】解:如图,过点A作AP⊥CD于点P,交BC于点Q,∵∠CQP=∠AQB,∠CPQ=∠B=90°,∴∠A=∠C=60°,在△ABQ中,∵AQ=(cm),BQ=AB tan A=20tan60°=20(cm),∴CQ=BC﹣BQ=60﹣20(cm),在△CPQ中,∵PQ=CQ sin C=(60﹣20)sin60°=30(﹣1)cm,∴AP =AQ+PQ=40+30(﹣1)≈61.9(cm),答:工件如图摆放时的高度约为61.9cm.【点睛】本题主要考查解直角三角形的应用,熟练掌握三角函数的定义求得相关线段的长度是解题的关键.13.抛物线y=ax²+bx+4(a≠0)过点A(1, ﹣1),B(5, ﹣1),与y轴交于点C.(1)求抛物线表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC下方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,①求点P坐标;②过此二点的直线交y轴于F, 此直线上一动点G,当GB+2GF2最小时,求点G坐标.(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值【答案】(1)y=x²﹣6x+4(2)①P(2, -4)或P(3, -5) ②G(0, -2)(3)313【解析】【分析】(1)把点A(1,-1),B(5,-1)代入抛物线y=ax2+bx+4解析式,即可得出抛物线的表达式;(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,可求得直线BC的解析式为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),因为▱CBPQ的面积为30,所以S△PBC=1 2×(−t+4−t2+6t−4)×5=15,解得t的值,即可得出点P的坐标;②当点P为(2,-4)时,求得直线QP的解析式为:y=-x-2,得F(0,-2),∠GOR=45°,因为2GF=GB+GR,所以当G于F重合时,GB+GR最小,即可得出点G的坐标;当点P为(3,-5)时,同理可求;(3)先用面积法求出sin∠213tan∠ACB=23,在Rt△ABE中,求得圆的直径,因为MB⊥NB,可得∠N=∠AEB=∠ACB,因为tanN=MBBN=23,所以BN=32MB,当MB为直径时,BN的长度最大.【详解】(1) 解:(1)∵抛物线y=ax2+bx+4(a≠0)过点A(1,-1),B(5,-1),∴1412554a ba b-++⎧⎨-++⎩=,=解得16ab⎧⎨-⎩=,=∴抛物线表达式为y=x²﹣6x+4.(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,设直线BC的解析式为y=kx+m,∵B(5,-1),C(0,4),∴154k mm-+⎧⎨⎩==,解得14km=,=-⎧⎨⎩∴直线BC的解析式为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),∵▱CBPQ的面积为30,∴S△PBC=12×(−t+4−t2+6t−4)×5=15,解得t=2或t=3,当t=2时,y=-4当t=3时,y=-5,∴点P坐标为(2,-4)或(3,-5);②当点P为(2,-4)时,∵直线BC解析式为:y=-x+4, QP∥BC,设直线QP的解析式为:y=-x+n,将点P代入,得-4=-2+n,n=-2,∴直线QP的解析式为:y=-x-2,∴F(0,-2),∠GOR=45°,∴2GF=GB+GR当G于F重合时,GB+GR最小,此时点G的坐标为(0,-2),同理,当点P为(3,-5)时,直线QP的解析式为:y=-x-2,同理可得点G的坐标为(0,-2),(3) )∵A(1,-1),B(5,-1)C(0,4),∴26,2,∵S△ABC=12AC×BCsin∠ACB=12AB×5,∴sin∠213tan∠ACB=23,∵AE为直径,AB=4,∴∠ABE=90°,∵sin∠AEB=sin∠ACB=21313=4AE,∴AE=213,∵MB⊥NB,∠NMB=∠EAB,∴∠N=∠AEB=∠ACB,∴tanN=MBBN =23,∴BN=32MB,当MB为直径时,BN的长度最大,为313.【点睛】题考查用到待定系数法求二次函数解析式和一次函数解析式,圆周角定理,锐角三角函数定义,平行四边形性质.解决(3)问的关键是找到BN与BM之间的数量关系.14.如图,在航线l的两侧分别有观测点A和B,点B到航线l的距离BD为4km,点A位于点B北偏西60°方向且与B相距20km处.现有一艘轮船从位于点A南偏东74°方向的C 处,沿该航线自东向西航行至观测点A的正南方向E处.求这艘轮船的航行路程CE的长度.(结果精确到0.1km)(参考数据:3≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)【答案】20.9km【解析】分析:根据题意,构造直角三角和相似三角形的数学模型,利用相似三角形的判定与性质和解直角三角形即可.详解:如图,在Rt△BDF中,∵∠DBF=60°,BD=4km,∴BF=cos 60BD o =8km , ∵AB=20km ,∴AF=12km , ∵∠AEB=∠BDF ,∠AFE=∠BFD ,∴△AEF ∽△BDF ,∴AE BD AF BF=, ∴AE=6km , 在Rt △AEF 中,CE=AE•tan74°≈20.9km .故这艘轮船的航行路程CE 的长度是20.9km .点睛:本题考查相似三角形,掌握相似三角形的概念,会根据条件判断两个三角形相似.15.已知:在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,BE :AB=3:5,若CE= 2 ,cos ∠ACD= 45,求tan ∠AEC 的值及CD 的长.【答案】tan ∠AEC=3, CD=12125【解析】 解:在RT △ACD 与RT △ABC 中∵∠ABC+∠CAD=90°, ∠ACD+∠CAD=90°∴∠ABC=∠ACD, ∴cos ∠ABC=cos ∠ACD=45 在RT △ABC 中,45BC AB = 令BC=4k,AB=5k 则AC=3k 由35BE AB = ,BE=3k 则CE=k,且2 则2,2 ∴RT △ACE 中,tan ∠AEC=AC EC=3CD AC ,,∵RT△ACD中cos∠ACD=45。
数学九年级培优第25讲 《锐角三角函数》

第二十八章锐角三角函数第25讲锐角三角函数知识导航1.正弦、余弦、正切的概念及表示方法.2.特殊角的三角函数值.【板块一】求锐角三角函数值方法技巧1.结合图形,理解并牢记三角函数的定义.2.数形结合法熟记特殊角的三角函数值.3.求一个角的三角函数值,一般利用已有的或构造的直角三角形,也可以利用等角转化等,结合三角函数定义求解.题型一紧扣定义求三角函数值【例1】已知锐角α满足tanα=12,求sinα的值.【解析】在Rt△ABC中,∠C=90°,∠A=α,∵tanα=12BCAC=,∴设BC=x,AC=2x,∴AB,∴sinBCABα===【点评】由于三角函数的定义是基于直角三角形,所以要画出符合题意的直角三角形,结合勾股定理和三角函教的定义求解.【例2】如图,在正方形ABCD中,点M为AD的中点,点E为AB上一点,且BE=3AE,求cos∠ECM 的值.【解析】首先确定△EMC为直角三角形,设AE=x,则BE=3x,AM=MD=2x,CD=4x.∴AE MDAM CD=,又∠A=∠D=90°,∴△AEM∽△DMC,可得∠EMC=90°,由勾股定理可求CM=x,CE=5x,在Rt△CEM中,cos∠ECM=CMCE=.题型二等角转换求三角函数值【例3】如图,半径为3的⊙A经过原点O和点C(0,2),点B是y轴左侧⊙A优弧上一点,求tan∠OBC 的值.αA BCCBEA M D【解析】作直径CD,在Rt△OCD中.CD=6.OC=2.∴ODtan∠CDO=OCOD=,由圆周角定理得∠OBC=∠CDO,则tan∠OBC【点评】在圆中经常利用同弧或等弧所对的圆周角相等进行角的转换,用直径所对的圆周角去构造直角三角形.题型三构造直角求三角函数值【例4】如图,在Rt△BAD中,tan∠B=53,延长斜边BD到点C,使DC=12BD,连接AC,求tan∠CAD 的值.【解析】要求tan∠CAD,必须将∠CAD放在直角三角形中,考虑∠BAD=90°,故过点D作DE∥AB交AC于点E.则∠ADE=90°,且有△CDE∽△CBA可利用,由tan∠B=53ADAB=,设AD=5x,AB=3x,而13DE CDAB BC==,∴DE=x,∴tan∠CAD=155DE xAD x==.【点评】求一个角的三角函数值,必须将所求的角放在直角三角形中.题型四等比转化求三角函数值【例5】如图,等腰直角△ABC中,∠ACB=90°,过BC的中点D作DE⊥AB,垂足为点E,连接CE,求tan∠ACE的值.CDBACDEBAA BDEC【解析】过点E 作EH ⊥AC 于点H ,易证AH =HE ,∴tan ∠ACE =HE AH AECH CH EB==,设BE =x ,则BD =CD,∴BC =x ,AB =4x ,∴AE =AB -BE =3x ,∴tan ∠ACE =AEEB=3.【例6】如图,AB 是⊙O 的直径,且AB =10,CD 是⊙O 的弦,AD 与BC 相交于点P ,若弦CD =6,试求cos ∠APC 的值.【解析】连接AC ,∵AB 是⊙O 的直径,∴∠ACP =90°,∴cos ∠APC =PCPA,又易证△PCD ∽△P AB ,∴63105PC CD PA AB ===,∴cos ∠APC =35. 【点评】在直角三角形中,锐角的三角函数值等于两边的比值,当这个比值无法直接求解时,可利用相似三角形对应线段成比例进行转化.题型五 利用特殊角求三角函数值【例7】利用45°角的正切,求tan 22.5°的值,方法如下:解:构造Rt △ABC ,其中∠C =90°,∠B =45°,如图,延长CB 到点D ,使BD =AB ,连接AD ,则∠D =12∠ABC =22.5°,设AC =a ,AB =BDa a ,∴CD =(1)a ,∴tan 22.5°=tan ∠D=AC CD =-1.A BE DHCAACA请你依照此法求tan 15°的值.【解析】构造如图所示的∠A =15°的直角三角形,∠C =90°,并过点B 作∠ABD =15°交AC 于点D ,则∠BDC =30°,设BC =x ,则BD =AD =2x ,CD,∴AC =(2x ,∴tan 15°=BC AC=2针对练习11.如图,△ABC 的顶点是正方形网格的格点,则sin A =.2.在Rt △ABC 中,∠C =90°,sin A =513,则tan B = 125 .3.如图,将边长为2的正方形ABCD 沿 EF 和ED 折叠,使得点B ,C 两点折叠后重合于点G ,则tan ∠FEG =12.4.如图,直线MN 与⊙O 相切于点M ,ME =EF ,EF ∥MN ,则cos ∠E =12. A D CBABCDG F DCBA E5.如图,在△ABC 中,∠C =90°,BC =1,AC =tan 2A的值.解:AB=7.延长CA 到点D ,使AD =AB =7,则CD =7+tan2A=tan ∠D=7- 6.如图,AC 为⊙O 的直径,△ABD 内接于⊙O ,BD 交AC 于点F ,过点B 的切线BE ∥AD 交AC 的延长线于点E ,若CF =2,AF =8,求sin ∠E 的值.解:连接OB ,CD ,∵CF =2,AF =8,∴AC =10.∴OB =5.易证CD ⊥AD ,OB ⊥AD ,∴OB ∥CD ,∴△BOF ∽△DCF .∴32OB OF CD CF ==.CD =103.sin ∠E =sin ∠CAD =CD AC =13. 7.将一副三角尺(Rt △ABC 与Rt △BDC )按如图所示摆放在一起,连接AD ,试求∠ADB 的正切值.解:过点A 作AM ⊥DB 交DB 的延长线于点M ,易证∠MBA =45°,∴设AM =BM =x,则AB x .∴BC,BD .∴tan ∠ADB =AMDM8.如图,在△ABC 中,BC =4,AC =6,AB =5,求tan12∠BAC ·tan 12∠CBA 的值.ABCDEAAEDCBABCDM解:过点C作CH⊥AB于点H,延长BA到点D,使AD=AC,延长AB到点E,使BE=BC,设AH=x,则BH=5-x,∴42-(5-x)2=62-x2,∴x=92.∴BH=12,CH∴tan12∠BAC=tan∠D=CHDH=2962+.tan12∠CBA=tan∠E=CHHE=2142+,∴tan12∠BAC·tan12∠CBA=13.方法技巧:深刻理解三角函数的定义,画出符合题意的示意图,充分运用数形结合的思想解题.▶题型一利用已知三角函数,求其他角的三角函数值【例1】同学们,在我们进入高中以后,将会学到三角函数公式:sin2α=2sinα·cosα,则当锐角a的正切值为12时,sin2a=.【解析】如图,在Rt△ABC中.∠C=90°,∠A=α,由tanα=BCAC=12,设BC=1,AC=2,则AB.sinα=BCAB,cosα=ACAB,由公式sin2α=2sinα·cosα=2=45.【点评】紧扣定义,运用公式解题.▶题型二利用已知三角函数,求线段长【例2】如图,点D是△ABC的边AC上一点,BD=8,sin∠CBD=34,AE⊥BC于点E,若CD=2AD,求AE的长.BACEDCBA HC BADBAO OFAB CDE【解析】过点D作DF⊥BC于点F,则DF=BD·sin∠CBD=8×2=6,由AE⊥B C.DF⊥BC,∴DF∥AE.∴△CDF∽△CAE.∴CDAC=DFAE=23.∴AE=32DF=9.【点评】因三角函数的本质是线段比,故与三角函数相关的计算常与相似三角形联系在一起.▶题型三利用已知三角函数,求线段比【例3】如图,在Rt△ABC中,CD,CE分别为斜边AB上的高和中线,BC=a,AC=b(b>a),若tan∠DCE=12,求ab的值.【解析】易证△BCD∽△BAC,∴BC2=BD·BA,又BA,∴BD2,同理CD=DE=BE-BD222,又∵谈∠DCE=DECD=222b aab-=12,∴a2+ab-b2=0,∴ab▶题型四利用已知三角函数,求面积【例4】如图,在四边形ABCD中,∠BAC=90°,tan∠CAD=12,cos∠ACD,AC与BD交于点E,CDBE=2ED,求四边形ABCD的面积.【解析】过点D作DF⊥ACC于点F,则AB∥DF.∴△ABE∽△FDE.∴ABDF=AEEF=BEED=2,设EF=2a,AE=4a.∴AF=6a,在Rt△AFD中.tan∠F AD=FDAF=12,∴DF=3a,在Rt△CFD中,cos∠ACD =CFCD.∴CF=1,DF=3a=3,∴a=1,AC=7,AB=2DF=6,∴S四边形ABCD=S△ABC+S△AC=12AB·AC+12AC·DF=12×6×7+12×7×3=632.针对练习21.在△ABC中,∠A为锐角,BC=12.tan A=34.∠B=30°,则AB2.如图,点E是正方形ABCD的边CB的延长线上的一点,且tan∠DEC=34,则tan∠AED的值为EDCBAABCDEFE DCBA913.3.已知△ABC中,AB=10,AC=B=30°,则△ABC4.如图,在四边形ABCD中,BD是对角线,∠ABC=90”,tan∠ABD=34,AB=20,BC=10,AD=13,求CD的长.解:分别过点A,C作AH⊥BD于点H,CG⊥BD于点G,∵tan∠ABD=AHBH=34,∴设AH=3x,BH=4x,(3x)2+(4x)2=202,∴x=4.∴AH=12,BH=16.∴HD=5,BD=21,易证∠BCG=∠ABD,..tan∠BCG=GBGC=34,又BC=10,∴BG=6,CG=8,∴DG=BD-BG=15,∴CD==17.5.如图,在△ABC中,AB=BC=5,tan∠ABC=34.边BC的重直平分线与AB的交点为点D.求ADDB的值.解:过点D作DF⊥BC于点F,连接CD,则BD=CD,BF=CF=52,tan∠DBF=DFBF=34.∴DF =158,在Rt△BFD中,BD=258,∴AD=5-258=158,∴ADDB=35.6.如图,已知四边形ABCD的一组对边AD,BC的延长线相交于点E,∠ABC=120°,cos∠ADC=35,CD=5,AB=12,ACDE的面积为6,求四边形ABCD的面积.EDCBAAB CDGHDCBAAB CDF CBA解:过点C作CF⊥AD于点F,过点A作AG⊥EB于点G,在Rt△ACDF中,cos∠ADC=DF CD=3 5.又CD=5,DF=3,CF=4,∵S△CDE=12ED·CF=6,∴ED=3,∴EF=6,在Rt△BAG中,∠BAG=30°,AB=12,∴AG=EFC∽△EAG,得EFEG=CFAG,可求EG=BE=EG-BG=9 6.∴S四边形ABCD=S△ABE-S△CED=126)×6=75-E DCBA ABCDE FG。
锐角三角函数培优题目

锐角三角函数培优题目三角函数揭示了直角三角形中边与锐角之间的关系,是数形结合的桥梁之一,有以下丰富的性质:1.单调性;2.互余三角函数间的关系;3.同角三角函数间的关系.平方关系:sin 2α+cos 2α=1;商数关系:tgα=ααcos sin ,ctgα=ααsin cos ; 倒数关系:tgαctgα=1.【例题求解】【例1】 已知在△ABC 中,∠A 、∠B 是锐角,且sinA =135,tanB=2,AB=29cm , 则S △ABC = .思路点拨 过C 作CD ⊥AB 于D ,这样由三角函数定义得到线段的比,sinA=135=AC CD ,tanB=2=BDCD ,设CD=5m ,AC =13m ,CD =2n ,BD =n ,解题的关键是求出m 、n 的值. 注:设△ABC 中,a 、b 、c 为∠A 、∠B 、∠C 的对边,R 为△ABC 外接圆的半径,不难证明:与锐角三角函数相关的几个重要结论:(1) S △ABC =C ab B ac A bc sin 21sin 21sin 21==; (2)R Cc B b A a 2sin sin sin ===.【例2】 在△ABC 中.∠ACB =90°,∠ABC =15°,BC=1,则AC=( )A .32+B .32-C .D .23-思路点拨 由15°构造特殊角,用特殊角的三角函数促使边角转化.注:(1)求(已知)非特角三角函数值的关是构造出含特殊角直角三角形.(2)求(已知)锐角角函数值常根据定转化为求对应线段比,有时需通过等的比来转换.【例3】 如图,已知△ABC 是等腰直角三角形,∠ACB =90°,过BC 的中点D 作DE ⊥AB 于E ,连结CE ,求sin ∠ACE 的值.思路点拨 作垂线把∠ACE 变成直角三角形的一个锐角,将问题转化成求线段的比.【例4】 如图,在△ABC 中,AD 是BC 边上的高,tanB=cos ∠DAC ,(1)求证:AC =BD ;(2)若sinC=1312,BC=12,求AD 的长. 思路点拨 (1)把三角函数转化为线段的比,利用比例线段证明;(2) sinC=ACAD =1312,引入参数可设AD=12k ,AC =13k .【例5】 已知:在Rt △ABC 中,∠C=90°,sinA 、sinB 是方程02=++q px x 的两个根.(1)求实数p 、q 应满足的条件;(2)若p 、q 满足(1)的条件,方程02=++q px x 的两个根是否等于Rt △ABC 中两锐角A 、B 的正弦?思路点拨 由韦达定理、三角函数关系建立p 、q 等式,注意判别式、三角函数值的有界性,建立严密约束条件的不等式,才能准确求出实数p 、q 应满足的条件.学历训练 A 组 1.已知α为锐角,下列结论①sinα+cosα=l ;②如果α>45°,那么sinα>cosα;③如果cosα>21 ,那么α<60°; ④αsin 11)-(sin 2-=α.正确的有 .2.如图,在菱形ABCD 中,AE ⊥BC 于E ,BC=1,cosB 135,则这个菱形的面积为 .3.如图,∠C=90°,∠DBC=30°,AB =BD ,利用此图可求得tan75°= .4.化简:(1)263tan 27tan 22-+ = .(2)sin 2l°+sin 22°+…+sin 288°+sin 289°= .5.身高相等的三名同学甲、乙、丙参加风筝比赛.三人放出风筝线长、线与地面夹角如下表(假设风筝线是拉直的),则三人所放的风筝中( )A .甲的最高B .丙的最高C .乙的最低D .丙的最低6.已知 sinαcosα=81,且0°<α<45°则coα-sinα的值为( ) A .23 B .23- C .43 D .43- 7.在△ABC 中,∠C =90°,∠ABC =30°,D 是AC 的中点,则ctg ∠DBC 的值是( ) A .3 B .32 C . 23 D .43 8.在等腰Rt △ABC 中.∠C =90°,AC =6,D 是AC 上一点,若tan ∠DBA=51,则AD 的长为( )A .2B .2C . 1D .229.已知关于x 的方程0)1(242=++-m x m x 的两根恰是某直角三角形两锐角的正弦,求m 的值.10.D 是△ABC 的边AC 上的一点,CD=2AD ,AE ⊥BC 于E ,若BD =8,sin ∠CBD=43,求AE 的长.B 组 11.若0°<α<45°,且sinαconα=1673,则sinα= . 12.已知关于x 的方程0)cos 1(2sin 423=-+⋅-ααx x 有两个不相等的实数根,α为锐角,那么α的取值范围是 .13.已知是△ABC 的三边,a 、b 、c 满足等式))((4)2(2a c a c b -+=,且有035=-c a ,则sinA+sinB+sinC 的值为 .14.设α为锐角,且满足sinα=3cosα,则sinαcosα等于( )A .61B .51 C .92 D .103 15.如图,若两条宽度为1的带子相交成30°的角,则重叠部分(图中阴影部分)的面积是( )A .2B .23C .1D .21 16.如图,在△ABC 中,∠A =30°,tanB=23,AC=32,则AB 的长是( ) A .33+ B .322+ C .5 D .29 17.己在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,且c=35,若关于x 的方程0)35(2)35(2=-+++b ax x b 有两个相等的实根,又方程0sin 5)sin 10(22=+-A x A x 的两实根的平方和为6,求△ABC 的面积.18.如图,已知AB=CD=1,∠ABC =90°,∠CBD°=30°,求AC 的长.19.设 a 、b 、c 是直角三角形的三边,c 为斜边,n 为正整数,试判断n n b a +与n c 的关系,并证明你的结论.20.如图,已知边长为2的正三角形ABC 沿直线l 滚动.(1)当△ABC 滚动一周到△A l B 1C 1的位置,此时A 点所运动的路程为 ,约为 (精确到,π=(2)设△ABC 滚动240°,C 点的位置为Cˊ,△ABC 滚动480°时,A 点的位置在Aˊ,请你利用三角函数中正切的两角和公式tan(α+β)=(tanα+tanβ)÷(1-tanα·tanβ),求出∠CACˊ+∠CAAˊ的度数.。
锐角三角函数培优讲义33113

讲义编号:组长签字:签字日期:(2)正弦、余弦、正切是在一个直角三角形中引入的,实际上是两条边的比,它们是正实数,没单位,其大小只与角的大小有关,而与所在直角三角形无关。
2、坡角与坡度坡面与水平面的夹角称为坡角,坡面的铅直高度与水平宽度的比为坡度(或坡比),即坡度等于坡角的正切。
3、锐角三角函数关系:(1)平方关系: sin 2A + cos 2A = 1; 4、互为余角的两个三角函数关系若∠A+∠B=∠90,则sinA=cosB,cosA=sinB. 5、特殊角的三角函数:00 300450 600sin α2122 23 cos α 1 23 22 21 tan α33 1 (1)锐角的正弦值随角度的增加(或减小)而增加(或减小); (2)锐角的余弦值随角度的增加(或减小)而减小(或增加); (3)锐角的正切值随角度的增加(或减小)而增加(或减小)。
三、典型例题考点一:锐角三角函数的定义 1、在Rt △ABC 中,∠C=90°,cosB=54,则AC :BC :AB=( )A 、3:4:5B 、5:3:4C 、4:3:5D 、3:5:42、已知锐角α,cos α=35,sin α=_______,tan α=_______。
3、在△ABC 中,∠C=90°,若4a=3c ,则cosB=______.tanA = ______。
4、在△ABC 中,∠C=90°,AB=15,sinA=13,则BC 等于_______。
5、在△ABC 中,∠C=90°,若把AB 、BC 都扩大n 倍,则cosB 的值为( )A 、ncosBB 、1ncosB C 、cos nBD 、不变考点二:求某个锐角的三角函数值——关键在构造以此锐角所在的直角三角形1、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE 。
(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值。
初中数学锐角三角函数提高题与常考题型和培优题

锐角三角函数提升题与常考题和培优题(含分析 )一.选择题(共11 小题)1.假如把一个锐角△ ABC的三边的长都扩大为本来的 3 倍,那么锐角 A 的余切值()A.扩大为本来的 3 被B.减小为本来的C.没有变化D.不可以确立2.在△ ABC中,∠ C=90°, AB=5,BC=4,那么∠ A 的正弦值是()A.B.C. D.3.已知在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于()A.B.2sin αC.D.2cosα4.假如锐角α的正弦值为,那么以下结论中正确的选项是()A.α =30° B.α =45° C.30°<α< 45° D.45°<α< 60°5.如图,在 4× 4 的正方形方格中,△ ABC和△ DEF的极点都在边长为 1 的小正方形极点上,则tan ∠ACB的值为()A.B.C. D.3)6.在 Rt△ ABC中,各边都扩大 3 倍,则角 A 的正弦值(A.扩大 3 倍 B.减小 3 倍 C.不变 D.不可以确立7.如图,港口 A 在观察站 O的正东方向, OA=6km,某船从港口 A 出发,沿北偏东 15°方向航行一段距离后抵达 B 处,此时从观察站 O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.3km B.3km C.4 km D.(3﹣3)km8.如图,在 2× 2 的网格中,以极点O为圆心,以 2 个单位长度为半径作圆弧,交图中格线于点A,则 tan ∠ ABO的值为()A. B.2C. D.39.如图,在网格中,小正方形的边长均为1,点 A,B,C 都在格点上,则∠ ABC 的正切值是()A.2B. C. D.10.如图,点 D( 0,3),O(0,0), C( 4, 0)在⊙ A 上, BD是⊙ A 的一条弦,则 sin ∠OBD=()A. B. C. D.11.如图,已知在 Rt△ ABC中,∠ ABC=90°,点 D沿 BC自 B 向 C运动(点 D 与点 B、C 不重合),作 BE⊥AD于 E,CF⊥AD于 F,则 BE+CF的值()A.不变B.增大C.减小D.先变大再变小二.填空题(共12 小题)12.假如等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于.13.如图,△ ABC中∠ C=90°,若 CD⊥ AB于 D,且 BD=4,AD=9,则 tanA=.14.如图,在△ ABC中,∠ C=90°, AC=3, BC=2,边 AB的垂直均分线交 AC边于点 D,交 AB边于点 E,联络 DB,那么 tan ∠DBC的值是.15.如图,小明家所在小区的前后两栋楼 AB、CD,小明在自己所住楼 AB的底部A 处,利用对面楼 CD墙上玻璃(与地面垂直)的反光,测得楼 AB顶部B 处的仰角是α,若 tan α=,两楼的间距为 30 米,则小明家所住楼 AB的高度是米.16.如图,在边长同样的小正方形网格中,点A、B、C、 D 都在这些小正方形的极点上, AB,CD订交于点 P,则的值 =,tan∠APD的值=.17.如图,在半径为 3 的⊙ O中,直径 AB与弦 CD订交于点 E,连结 AC,BD,若AC=2,则 tanD=.18.如图,在直角坐标系中,点A,B 分别在 x 轴,y 轴上,点 A 的坐标为(﹣ 1,0),∠ ABO=30°,线段 PQ的端点 P 从点 O出发,沿△ OBA的边按 O→B→A→O运动一周,同时另一端点 Q随之在 x 轴的非负半轴上运动,假如 PQ=,那么当点 P运动一周时,点Q运动的总行程为.19.如图,丈量河宽AB(假定河的两岸平行),在 C 点测得∠ ACB=30°, D 点测得∠ ADB=60°,又 CD=60m,则河宽 AB为m(结果保存根号).20.如图,∠ AOB是搁置在正方形网格中的一个角,则cos∠AOB的值是.21.如图,P(12,a)在反比率函数图象上, PH⊥x 轴于 H,则 tan ∠POH的值为.22.已知 cosα=,则的值等于.23.如图,△ ABC 的三个极点分别在边长为 1 的正方形网格的格点上,则tan(α +β)tan α +tan β.(填“>”“ =”“<”)三.解答题(共17 小题)24.计算: cos245° +﹣ ? tan30 °.25.计算: 2cos230°﹣ sin30 ° +.26.如图,在△ ABC中,∠ C=150°, AC=4, tanB=.(1)求 BC的长;(2)利用此图形求 tan15 °的值(精准到,参照数据: =,=,=)27.如图,已知四边形 ABCD中,∠ ABC=90°,∠ ADC=90°, AB=6,CD=4,BC的延伸线与 AD的延伸线交于点 E.(1)若∠ A=60°,求 BC的长;(2)若 sinA= ,求 AD的长.(注意:本题中的计算过程和结果均保存根号)28.如图,在四边形 ABCD中,∠ BCD是钝角, AB=AD,BD均分∠ ABC,若CD=3,BD=, sin ∠DBC=,求对角线 AC的长.29.如图,在 Rt △ABC中,∠ ACB=90°, AC=BC=3,点 D在边 AC上,且 AD=2CD,DE⊥AB,垂足为点 E,联络 CE,求:(1)线段 BE的长;(2)∠ ECB的余切值.30.如图,在正方形ABCD中, M是 AD的中点, BE=3AE,试求 sin ∠ECM的值.31.如图,△ ABC中,∠ ACB=90°, sinA= , BC=8,D 是 AB中点,过点 B 作直线CD的垂线,垂足为点E.(1)求线段 CD的长;(2)求 cos∠ABE的值.32.如图,已知∠ MON=25°,矩形 ABCD的边 BC在 OM上,对角线 AC⊥ON.当AC=5 时,求 AD的长.(参照数据: sin25 ° =;cos25°=;tan25 °=,结果精准到)33.一副直角三角板如图搁置,点 C 在 FD的延伸线上,AB∥ CF,∠F=∠ACB=90°,∠E=45°,∠ A=60°, BC=10,试求 CD的长.34.已知:如图,在△ ABC中,∠ ABC=45°, AD是 BC边上的中线,过点D作 DE ⊥AB于点 E,且 sin ∠DAB=,DB=3.求:(1) AB的长;(2)∠ CAB的余切值.35.数学老师部署了这样一个问題:假如α,β都为锐角.且 tan α=,tan β=.求α+β的度数.甲、乙两位同学想利用正方形网格构图来解决问题.他们分别设计了图 1 和图 2.(1)请你分别利用图 1,图 2 求出α+β的度数,并说明原因;(2)请参照以上思虑问题的方法,选择一种方法解决下边问题:假如α,β都为锐角,当 tan α=5,tan β=时,在图 3 的正方形网格中,利用已作出的锐角α,画出∠MON,使得∠MON=α﹣β.求出α﹣β的度数,并说明原因.36.如图,点 P、M、Q在半径为 1 的⊙ O上,依据已学知识和图中数据(、为近似数),解答以下问题:( 1)sin60 °=;cos75°=;(2)若 MH⊥x 轴,垂足为 H, MH交 OP于点 N,求 MN的长.(结果精准到,参照数据:≈,≈)37.阅读下边的资料:某数学学习小组碰到这样一个问题:假如α,β都为锐角,且 tan α=,tan β=,求α+β的度数.该数学课外小组最后是这样解决问题的:如图1,把α,β放在正方形网格中,使得∠ ABD=α,∠ CBE=β,且 BA,BC在直线 BD的双侧,连结 AC.(1)察看图象可知:α +β= °;(2)请参照该数学小组的方法解决问题:假如α,β都为锐角,当 tan α=3,tan β=时,在图 2 的正方形网格中,画出∠MON=α﹣β,并求∠ MON的度数.38.阅读以下资料:在学习完锐角三角函数后,老师提出一个这样的问题:如图1,在 Rt △ABC中,∠ACB=90°, AB=1,∠ A=α,求 sin2 α(用含 sin α, cosα的式子表示).聪慧的小雯同学是这样考虑的:如图2,取 AB的中点 O,连结 OC,过点 C 作 CD ⊥AB于点 D,则∠ COB=2α,而后利用锐角三角函数在 Rt△ ABC中表示出 AC,BC,在 Rt△ ACD中表示出 CD,则能够求出sin2 α====2sin α ? cosα.阅读以上内容,回答以下问题:在 Rt△ ABC中,∠ C=90°, AB=1.( 1)如图 3,若 BC=,则 sin α=,sin2α=;(2)请你参照阅读资猜中的推导思路,求出 tan2 α的表达式(用含 sin α,cosα的式子表示).39.图 1 是小明在健身器械长进行仰卧起坐锻炼时情形.图2是小明锻炼时上半身由 EM 地点运动到与地面垂直的EN 地点时的表示图.已知BC=米, AD=米,α=18°.(sin18 °≈, cos18°≈, tan18 °≈)(1)求 AB的长(精准到米);(2)若测得 EN=米,试计算小明头顶由 M点运动到 N点的路径弧 MN的长度(结果保存π)40.某厂家新开发的一种电动车如图,它的大灯 A 射出的光芒 AB,AC 与地面 MN 所夹的锐角分别为 8°和 10°,大灯 A 与地面离地面的距离为 1m求该车大灯照亮地面的宽度 BC.(不考虑其余要素)(参数数据: sin8 °=,tan8 °=,sin10 °=,tan10 °=)锐角三角函数常考题型与分析参照答案与试题分析一.选择题(共 11 小题)1.( 2017? 奉贤区一模)假如把一个锐角△ ABC的三边的长都扩大为本来的 3 倍,那么锐角 A 的余切值()A.扩大为本来的 3 被B.减小为本来的C.没有变化D.不可以确立【剖析】依据△ ABC三边的长度都扩大为本来的 3 倍所得的三角形与原三角形相像,获得锐角 A 的大小没改变和余切的观点解答.【解答】解:因为△ ABC三边的长度都扩大为本来的 3 倍所得的三角形与原三角形相像,因此锐角 A 的大小没改变,因此锐角 A 的余切值也不变.应选: C.【评论】本题考察了锐角三角函数的定义,掌握在直角三角形中,一个锐角的余切等于它的邻边与对边的比值是解题的重点.2.(2017? 金山区一模)在△ ABC中,∠ C=90°, AB=5, BC=4,那么∠ A 的正弦值是()A. B. C. D.【剖析】依据 sinA= 代入数据直接得出答案.【解答】解:∵∠ C=90°, AB=5,BC=4,∴sinA== ,应选 D.【评论】本题考察了锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.( 2017? 浦东新区一模)已知在Rt△ ABC中,∠ C=90°,∠ A=α, BC=2,那么AB的长等于()A. B.2sin αC. D.2cosα【剖析】依据锐角三角函数的定义得出sinA= ,代入求出即可.【解答】解:∵在 Rt△ ABC中,∠ C=90°,∠ A=α, BC=2,∴sinA= ,∴AB==,应选 A.【评论】本题考察了锐角三角函数的定义,能熟记锐角三角函数的定义是解本题的重点,注意:在 Rt△ ACB中,∠ ACB=90°,则 sinA= , cosA=,tanA=.4.( 2017? 静安区一模)假如锐角α 的正弦值为,那么以下结论中正确的选项是()A.α =30° B.α =45° C.30°<α< 45° D.45°<α< 60°【剖析】正弦值跟着角度的增大(或减小)而增大(或减小),可得答案.【解答】解:由<<,得30°<α< 45°,应选: C.【评论】本题考察了锐角三角形的增减性,当角度在0°~90°间变化时,①正弦值跟着角度的增大(或减小)而增大(或减小);②余弦值跟着角度的增大(或减小)而减小(或增大);③正切值跟着角度的增大(或减小)而增大(或减小).也考察了互余两角的三角函数之间的关系.5.( 2017? 莒县模拟)如图,在 4× 4 的正方形方格中,△ ABC和△ DEF的极点都在边长为 1 的小正方形极点上,则tan ∠ ACB的值为()A. B. C. D.3【剖析】依据勾股定理即可求出AC、BC、DE、DF的长度,而后证明△ FDE∽△ ABC,因此【解答】解:由勾股定理可求出:BC=2,AC=2,DF=,DE=,∴,,,∴,∴△ FDE∽△ CAB,∴∠ DFE=∠ACB,∴tan ∠DFE=tan∠ACB=,应选( B)【评论】本题考察解直角三角形,波及勾股定理,相像三角形的判断与性质.6.(2017 春?兰陵县校级月考)在Rt△ABC中,各边都扩3 倍,则角 A 的正大弦值()A.扩大 3 倍B.减小3 倍C.不变D.不可以确立【剖析】依据锐角三角函数的定义,可得答案.【解答】解:由题意,得Rt △ABC中,各边都扩大3 倍,则角 A 的正弦值不变,应选: C.【评论】本题考察了锐角三角函数的定义,利用锐角三角函数的定义是解题重点.7.( 2017? 兴化市校级一模)如图,港口 A 在观察站 O的正东方向, OA=6km,某船从港口 A 出发,沿北偏东 15°方向航行一段距离后抵达 B 处,此时从观察站 O 处测得该船位于北偏东60°的方向,则该船航行的距离(即 AB的长)为()A.3km B.3km C.4 km D.(3﹣3)km【剖析】依据题意,能够作协助线AC⊥OB于点 C,而后依据题目中的条件,可以求得 AC和 BC的长度,而后依据勾股定理即可求得AB的长.【解答】解:作 AC⊥OB于点 C,如右图所示,由已知可得,∠COA=30°, OA=6km,∵AC⊥OB,∴∠ OCA=∠BCA=90°,∴OA=2AC,∠ OAC=60°,∴AC=3km,∠ CAD=30°,∵∠ DAB=15°,∴∠ CAB=45°,∴∠CAB=∠B=45°,∴BC=AC,∴AB=,应选 A.【评论】本题考察解直角三角形的应用﹣方向角问题,解答此类问题的重点是明确题意,利用在直角三角形中 30°所对的边与斜边的关系和勾股定理解答.8.(2017 春? 萧山区月考)如图,在2× 2 的网格中,以极点O 为圆心,以 2 个单位长度为半径作圆弧,交图中格线于点A,则 tan ∠ABO的值为()A. B.2C. D.3【剖析】连结 OA,过点 A 作 AC⊥ OB于点 C,由题意知 AC=1、OA=OB=2,从而得出 OC==、BC=OB﹣OC=2﹣,在 Rt △ABC中,依据 tan ∠ABO=可得答案.【解答】解:如图,连结 OA,过点 A 作 AC⊥OB于点 C,则 AC=1,OA=OB=2,∵在Rt △AOC中,OC===,∴ BC=OB﹣OC=2﹣,∴在 Rt △ABC中, tan ∠ABO===2+,应选: C.【评论】本题主要考察解直角三角形,依据题意建立一个以∠ ABO为内角的直角三角形是解题的重点.9.(2016?安顺)如图,在网格中,小正方形的边长均为1,点A,B, C 都在格点上,则∠ABC的正切值是()A.2B. C. D.【剖析】依据勾股定理,可得AC、AB的长,依据正切函数的定义,可得答案.【解答】解:如图:,由勾股定理,得AC=, AB=2, BC=,∴△ ABC为直角三角形,∴tan ∠B==,应选: D.【评论】本题考察了锐角三角函数的定义,先求出 AC、AB的长,再求正切函数.10.( 2016? 攀枝花)如图,点D( 0, 3), O(0,0),C(4, 0)在⊙ A 上, BD 是⊙ A 的一条弦,则 sin ∠OBD=()A. B. C. D.【剖析】连结CD,可得出∠OBD=∠OCD,依据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出sin ∠ OBD 即可.【解答】解:∵ D(0,3),C(4,0),∴OD=3, OC=4,∵∠ COD=90°,∴CD==5,连结 CD,如下图:∵∠ OBD=∠OCD,∴sin ∠OBD=sin∠OCD==.应选: D.【评论】本题考察了圆周角定理,勾股定理、以及锐角三角函数的定义;娴熟掌握圆周角定理是解决问题的重点.11.( 2016? 娄底)如图,已知在Rt △ABC中,∠ ABC=90°,点 D 沿 BC自 B 向 C运动(点 D与点 B、C 不重合),作 BE⊥ AD于 E,CF⊥AD于 F,则 BE+CF的值()A.不变B.增大C.减小D.先变大再变小【剖析】设 CD=a,DB=b,∠DCF=∠DBE=α,易知 BE+CF=BC? cosα,依据 0<α<90°,由此即可作出判断.【解答】解:∵ BE⊥AD于 E,CF⊥AD于 F,∴CF∥BE,∴∠ DCF=∠DBF,设 CD=a, DB=b,∠ DCF=∠DBE=α,∴CF=DC? cosα, BE=DB? cosα,∴BE+CF=(DB+DC)cosα=BC?cosα,∵∠ ABC=90°,∴O<α< 90°,当点 D 从 B→D运动时,α是渐渐增大的,∴c osα的值是渐渐减小的,∴BE+CF=BC? cosα的值是渐渐减小的.应选 C.【评论】本题考察三角函数的定义、三角函数的增减性等知识,利用三角函数的定义,获得 BE+CF=BC? cosα,记着三角函数的增减性是解题的重点,属于中考常考题型.二.填空题(共12 小题)12.( 2017? 普陀区一模)假如等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于.【剖析】如图,△ ABC中, AB=AC,AC:BC=5:6,作 AE⊥BC于 E,则 BE=EC,在Rt △AEC中,依据 cos∠C===,即可解决问题.【解答】解:如图,△ ABC中, AB=AC,AC:BC=5:6,作 AE⊥BC于 E,则 BE=EC,,在 Rt△ AEC中, cos∠ C===,故答案为.【评论】本题考察等腰三角形的性质,解直角三角形锐角三角函数等知识,解题的重点是娴熟掌握所学知识,掌握等腰三角形中的常用协助线,属于中考常考题型.13.( 2017? 宝山区一模)如图,△ ABC中∠ C=90°,若 CD⊥AB于 D,且 BD=4,AD=9,则 tanA=.CD的长度,而后根【剖析】先证明△ BDC∽△ CDA,利用相像三角形的性质求出据锐角三角函数的定义即可求出 tanA 的值.【解答】解:∵∠ BCD+∠ DCA=∠ DCA+∠A=90°,∴∠ BCD=∠A,∵ CD⊥AB,∴∠ BDC=∠CDA=90°,∴△ BDC∽△ CDA,2∴ CD=BD? AD,∴ CD=6,∴ tanA==故答案为:【评论】本题考察解直角三角形,波及锐角三角函数,相像三角形的判断与性质.14.( 2017? 青浦区一模)如图,在△ABC中,∠ C=90°, AC=3,BC=2,边 AB的垂直均分线交 AC边于点 D,交 AB边于点 E,联络 DB,那么 tan ∠DBC的值是.【剖析】由 DE垂直均分 AB,获得 AD=BD,设 CD=x,则有 BD=AD=3﹣ x,在直角三角形 BCD中,利用勾股定理求出 x 的值,确立出 CD的长,利用锐角三角函数定义求出所求即可.【解答】解:∵边 AB的垂直均分线交 AC边于点 D,交 AB边于点 E,∴AD=BD,设 CD=x,则有 BD=AD=AC﹣CD=3﹣x,在 Rt△ BCD中,依据勾股定理得:( 3﹣ x)2=x2 +22,解得: x=,则 tan ∠DBC==,故答案为:【评论】本题考察认识直角三角形,以及线段垂直均分线性质,娴熟掌握性质及定理是解本题的重点.15.( 2017? 黄浦区一模)如图,小明家所在小区的前后两栋楼 AB、CD,小明在自己所住楼 AB的底部 A 处,利用对面楼 CD墙上玻璃(与地面垂直)的反光,测得楼 AB顶部 B 处的仰角是α,若 tan α=,两楼的间距为 30 米,则小明家所住楼AB的高度是 27 米.【剖析】作 PE⊥ AB于点 E,在直角△ AEP中,利用三角函数求得 AE的长,依据AB=2AE即可求解.【解答】解:作 PE⊥AB于点 E,在直角△ AEP中,∠ APE=∠α,则 AE=PE? tan ∠ APE=30×=(米),则 AB=2AE=27(米).故答案是: 27.【评论】本题考察解直角三角形、仰角、俯角的定义,解题的重点是记着特别三角形的边之间关系,学会把问题转变为方程解决,属于中考常考题型.16.(2016? 自贡)如图,在边长同样的小正方形网格中,点A、B、C、D都在这些小正方形的极点上, AB,CD订交于点 P,则的值 = 3,tan∠APD的值=2.【剖析】第一连结 BE,由题意易得 BF=CF,△ACP∽△ BDP,而后由相像三角形的对应边成比率,易得 DP:CP=1:3,即可得 PF: CF=PF:BF=1:2,在 Rt△ PBF 中,即可求得 tan ∠ BPF的值,既而求得答案.【解答】解:∵四边形 BCED是正方形,∴DB∥AC,∴△ DBP∽△ CAP,∴==3,连结 BE,∵四边形 BCED是正方形,∴DF=CF=CD,BF=BE, CD=BE,BE⊥CD,∴BF=CF,依据题意得: AC∥BD,∴△ ACP∽△ BDP,∴DP:CP=BD:AC=1: 3,∴DP:DF=1:2,∴DP=PF=CF=BF,在 Rt△ PBF中, tan ∠BPF==2,∵∠ APD=∠BPF,∴ tan ∠APD=2,故答案为: 3,2.【评论】本题考察了相像三角形的判断与性质与三角函数的定义.本题难度适中,解题的重点正确作出协助线,注意转变思想与数形联合思想的应用.17.(2016? 枣庄)如图,在半径为 3 的⊙ O中,直径 AB与弦 CD订交于点 E,连接 AC, BD,若 AC=2,则 tanD= 2 .【剖析】连结 BC可得 RT△ACB,由勾股定理求得 BC的长,从而由 tanD=tanA= 可得答案.【解答】解:如图,连结 BC,∵ AB是⊙ O的直径,∴∠ ACB=90°,∵ AB=6, AC=2,∴ BC===4,又∵∠ D=∠A,∴ tanD=tanA===2.故答案为: 2.BC构【评论】本题考察了三角函数的定义、圆周角定理、解直角三角形,连结造直角三角形是解题的重点.18.( 2016? 舟山)如图,在直角坐标系中,点 A,B 分别在 x 轴, y 轴上,点 A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P 从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x 轴的非负半轴上运动,假如PQ=,那么当点 P 运动一周时,点Q运动的总行程为4.【剖析】第一依据题意正确画出从O→B→A运动一周的图形,分四种状况进行计算:①点 P 从 O→B时,行程是线段 PQ的长;②当点 P 从 B→C时( QC⊥AB,C为垂足),点 Q从 O运动到 Q,计算 OQ的长就是运动的行程;③点 P 从 C→A时,点Q由 Q向左运动,行程为 QQ′;④点 P 从 A→O时,点 Q运动的行程就是点 P 运动的行程;最后相加即可.【解答】解:在 Rt△AOB中,∵∠ ABO=30°, AO=1,∴AB=2, BO==,①当点 P 从 O→B时,如图 1、图 2 所示,点 Q运动的行程为,②如图 3 所示, QC⊥AB,则∠ ACQ=90°,即 PQ运动到与 AB垂直时,垂足为P,当点 P 从 B→C时,∵∠ ABO=30°∴∠ BAO=60°∴∠ OQD=90°﹣ 60°=30°∴c os30°=∴AQ==2∴OQ=2﹣ 1=1则点 Q运动的行程为 QO=1,③当点 P 从 C→A时,如图 3 所示,点 Q运动的行程为 QQ′=2﹣,④当点 P 从 A→O时,点 Q运动的行程为 AO=1,∴点 Q运动的总行程为: +1+2﹣ +1=4故答案为: 4【评论】本题主假如应用三角函数定义来解直角三角形,本题的解题重点是理解题意,正确画出图形;线段的两个端点当作是两个动点,将线段挪动问题转变为点挪动问题.19.(2016? 新疆)如图,丈量河宽AB(假定河的两岸平行),在C 点测得∠ACB=30°, D点测得∠ ADB=60°,又 CD=60m,则河宽 AB为 30 m(结果保存根号).【剖析】先依据三角形外角的性质求出∠ CAD的度数,判断出△ ACD的形状,再由锐角三角函数的定义即可求出 AB的值.【解答】解:∵∠ ACB=30°,∠ ADB=60°,∴∠ CAD=30°,∴AD=CD=60m,在 Rt△ ABD中,AB=AD? sin ∠ADB=60×=30 (m).故答案为: 30 .【评论】本题考察的是解直角三角形的应用﹣方向角问题,波及到三角形外角的性质、等腰三角形的判断与性质、锐角三角函数的定义及特别角的三角函数值,难度适中.20.(2016? 港南区二模)如图,∠ AOB是搁置在正方形网格中的一个角,则cos ∠ AOB的值是.222222222【剖析】第一连结 AB,由勾股定理易求得 OA=1 +3 =10,AB=1 +3 =10,OB=2 +4 =20,而后由勾股定理的逆定理,可证得△AOB是等腰直角三角形,既而可求得cos∠AOB的值.【解答】解:连结 AB,222222222∵ OA=1 +3 =10, AB=1 +3 =10,OB=2+4 =20,222∴ OA+AB=OB,OA=AB,∴△ AOB是等腰直角三角形,即∠OAB=90°,∴∠ AOB=45°,∴cos∠AOB=cos45°=.故答案为:.【评论】本题考察了锐角三角函数的定义、勾股定理以及勾股定理的逆定理.本题难度不大,注意掌握协助线的作法,注意数形联合思想的应用.21.( 2016? 于田县校级模拟)如图,P( 12,a)在反比率函数图象上,PH⊥x 轴于 H,则 tan ∠POH的值为.【剖析】利用锐角三角函数的定义求解, tan ∠POH为∠ POH的对边比邻边,求出即可.【解答】解:∵ P(12,a)在反比率函数图象上,∴a==5,∵ PH⊥x 轴于 H,∴PH=5, OH=12,∴tan ∠POH=,故答案为:.【评论】本题主要考察了反比率函数图象上点的坐标特点,锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.22.( 2016? 雅安校级模拟)已知 cosα=,则的值等于0.【剖析】先利用 tan α=获得原式 ==,而后把 cosα=代入计算即可.【解答】解:∵ tan α=,∴==,∵cosα=,∴==0.故答案为 0.【评论】本题考察了同角三角函数的关系:平方关系: sin 2 A+cos2A=1;正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比,即tanA=或 sinA=tanA ? cosA.23.( 2016?鞍山二模)如图,△ABC的三个极点分别在边长为 1 的正方形网格的格点上,则tan (α +β)>tan α +tan β.(填“>”“=”“<”)【剖析】依据正切的观点和正方形网格图求出tan α和 tan β,依据等腰直角三角形的性质和 tan45 °的值求出 tan (α +β),比较即可.【解答】解:由正方形网格图可知,tan α=,tan β=,则 tan α +tan β=+=,∵AC=BC,∠ ACB=90°,∴α +β=45°,∴ tan (α +β) =1,∴ tan (α +β)> tan α +tan β,故答案为:>.【评论】本题考察的是特别角的三角函数值、锐角三角函数的定义以及等腰直角三角形的性质,熟记特别角的三角函数值、正确理解锐角三角函数的定义是解题的重点.三.解答题(共17 小题)24.( 2017? 普陀区一模)计算: cos245°+﹣? tan30 °.【剖析】依据特别角三角函数值,可得答案.2=+﹣1=.【评论】本题考察了特别角三角函数值,熟记特别角三角函数值是解题重点.25.( 2017? 浦东新区一模)计算: 2cos230°﹣ sin30 ° +.【剖析】依据特别角三角函数值,可得答案.2=1++.【评论】本题考察了特别角三角函数值,熟记特别角三角函数值是解题重点.26.( 2016? 连云港)如图,在△ ABC中,∠ C=150°, AC=4,tanB=.(1)求 BC的长;(2)利用此图形求 tan15 °的值(精准到,参照数据: =,=,=)【剖析】(1)过 A 作 AD⊥BC,交 BC的延伸线于点 D,由含 30°的直角三角形性质得 AD=AC=2,由三角函数求出 CD=2,在 Rt △ABD中,由三角函数求出 BD=16,即可得出结果;(2)在 BC 边上取一点 M,使得 CM=AC,连结 AM,求出∠ AMC=∠MAC=15°,tan15 °=tan ∠ AMD=即可得出结果.【解答】解:(1)过 A 作 AD⊥ BC,交 BC的延伸线于点 D,如图 1 所示:在Rt△ADC中,AC=4,∵∠ C=150°,∴∠ ACD=30°,∴ AD=AC=2,CD=AC? cos30°=4× =2,在Rt△ABD中,tanB===,∴ BD=16,∴BC=BD﹣CD=16﹣2;(2)在 BC边上取一点 M,使得 CM=AC,连结 AM,如图 2 所示:∵∠ ACB=150°,∴∠ AMC=∠MAC=15°,tan15 °=tan ∠ AMD====2﹣≈≈.【评论】本题考察了锐角三角函数、含 30°的直角三角形性质、三角形的内角和、等腰三角形的性质等知识;娴熟掌握三角函数运算是解决问题的重点.27.(2016? 包头)如图,已知四边形 ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延伸线与 AD的延伸线交于点 E.(1)若∠ A=60°,求 BC的长;(2)若 sinA= ,求 AD的长.(注意:本题中的计算过程和结果均保存根号)【剖析】(1)要求 BC 的长,只需求出 BE和 CE 的长即可,由题意能够获得 BE 和CE的长,本题得以解决;(2)要求 AD的长,只需求出 AE和 DE的长即可,依据题意能够获得 AE、 DE的长,本题得以解决.【解答】解:(1)∵∠ A=60°,∠ ABE=90°, AB=6,tanA=,∴∠ E=30°, BE=tan60° ? 6=6,又∵∠ CDE=90°, CD=4, sinE= ,∠ E=30°,∴CE==8,∴BC=BE﹣CE=6﹣8;(2))∵∠ ABE=90°, AB=6,sinA== ,∴设 BE=4x,则 AE=5x,得AB=3x,∴3x=6,得x=2,∴ BE=8, AE=10,∴tanE====,解得, DE=,∴AD=AE﹣DE=10﹣=,即 AD的长是.【评论】本题考察解直角三角形,解题的重点是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答.28.( 2016? 厦门)如图,在四边形ABCD中,∠ BCD是钝角, AB=AD,BD均分∠ABC,若 CD=3,BD=,sin ∠ DBC=,求对角线 AC的长.【剖析】过 D 作 DE⊥BC交 BC的延伸线于 E,获得∠ E=90°,依据三角形函数的定义获得 DE=2,推出四边形 ABCD是菱形,依据菱形的性质获得 AC⊥BD,AO=CO,BO=DO=,依据勾股定理获得结论.【解答】解:过 D 作 DE⊥BC交 BC的延伸线于 E,则∠ E=90°,∵sin ∠DBC=,BD=,∴DE=2,∵ CD=3,∴CE=1, BE=4,∴BC=3,∴BC=CD,∴∠ CBD=∠CDB,∵BD均分∠ ABC,∴∠ABD=∠DBC,∴∠ABD=∠CDB,∴ AB∥CD,同理 AD∥BC,∴四边形 ABCD是菱形,连结AC交 BD于 O,则 AC⊥ BD,AO=CO,BO=DO=,∴ OC==,∴ AC=2.【评论】本题考察了菱形的判断和性质,解直角三角形,正确的作出协助线是解题的重点.29.( 2016? 上海)如图,在 Rt△ ABC中,∠ ACB=90°, AC=BC=3,点 D 在边AC 上,且 AD=2CD, DE⊥AB,垂足为点 E,联络 CE,求:(1)线段 BE的长;(2)∠ ECB的余切值.【剖析】( 1)由等腰直角三角形的性质得出∠ A=∠B=45°,由勾股定理求出 AB=3,求出∠ ADE=∠A=45°,由三角函数得出 AE=,即可得出 BE的长;(2)过点 E 作 EH⊥BC,垂足为点 H,由三角函数求出 EH=BH=BE? cos45°=2,得出 CH=1,在 Rt△CHE中,由三角函数求出 cot ∠ECB==即可.【解答】解:(1)∵ AD=2CD,AC=3,∴AD=2,∵在 Rt △ABC中,∠ ACB=90°, AC=BC=3,∴∠ A=∠B=45°, AB===3,∵DE⊥AB,∴∠ AED=90°,∠ ADE=∠A=45°,∴AE=AD? cos45°=2× =,∴BE=AB﹣AE=3﹣=2,即线段 BE的长为 2;( 2)过点 E 作 EH⊥ BC,垂足为点 H,如下图:∵在 Rt △BEH中,∠ EHB=90°,∠ B=45°,∴EH=BH=BE? cos45° =2×=2,∵BC=3,∴ CH=1,在 Rt△ CHE中, cot ∠ ECB==,即∠ ECB的余切值为.【评论】本题考察认识直角三角形、勾股定理、等腰直角三角形的性质、三角函数;娴熟掌握等腰直角三角形的性质,经过作协助线求出 CH是解决问题( 2)的重点.30.( 2016? 厦门校级模拟)如图,在正方形ABCD中, M是 AD的中点, BE=3AE,试求 sin ∠ ECM的值.【剖析】依题意设 AE=x,则 BE=3x, BC=4x,AM=2x, CD=4x,先证明△ CEM 是直角三角形,再利用三角函数的定义求解.【解答】解:设 AE=x,则 BE=3x,BC=4x, AM=2x,CD=4x,∴EC==5x,EM==x,CM==2x,222∴ EM+CM=CE,∴△ CEM是直角三角形,∴sin ∠ECM==.【评论】本题考察了锐角三角函数值的求法.重点是利用勾股定理的逆定理证明直角三角形,把问题转变到直角三角形中求解.31.( 2016? 江西模拟)如图,△ ABC 中,∠ ACB=90°, sinA= ,BC=8,D 是AB 中点,过点 B 作直线 CD的垂线,垂足为点 E.(1)求线段 CD的长;(2)求 cos∠ABE的值.【剖析】(1)在△ ABC中依据正弦的定义获得 sinA== ,则可计算出 AB=10,而后依据直角三角形斜边上的中线性质即可获得 CD=AB=5;( 2)在 Rt △ABC中先利用勾股定理计算出 AC=6,在依据三角形面积公式获得S△ BDC=S△ ADC,则S△BDC=S△ABC,即 CD? BE=? AC? BC,于是可计算出BE=,而后在 Rt△BDE中利用余弦的定义求解.【解答】解:(1)在△ ABC中,∵∠ ACB=90°,∴sinA== ,而 BC=8,∴AB=10,∵D是AB中点,∴ CD=AB=5;( 2)在 Rt △ABC中,∵ AB=10,BC=8,∴ AC==6,∵D是 AB中点,∴BD=5, S△BDC=S△ADC,∴S△BDC=S△ABC,即 CD? BE=? AC? BC,∴BE==,在 Rt△ BDE中, cos∠ DBE===,即 cos∠ABE的值为.【评论】本题考察认识直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考察了直角三角形斜边上的中线性质和三角形面积公式.32.( 2016? 启东市二模)如图,已知∠MON=25°,矩形 ABCD的边 BC在 OM上,对角线 AC⊥ON.当 AC=5时,求 AD的长.(参照数据: sin25 °=;cos25°=;tan25 °=,结果精准到)【剖析】延伸 AC交 ON于点 E,如图,利用互余计算出∠OCE=65°,再利用对顶角相等获得∠ ACB=∠OCE=65°,接着在 Rt△ ABC中利用∠ ACB的余弦可计算出 BC,而后依据矩形的性质即可获得AD的长.【解答】解:延伸 AC交 ON于点 E,如图,∵AC⊥ON,∴∠ OEC=90°,在 Rt△ OEC中,∵∠ O=25°,∴∠ OCE=65°,∴∠ ACB=∠OCE=65°,∵四边形 ABCD是矩形,∴∠ ABC=90°, AD=BC,在Rt△ABC中,∵cos∠ACB=,∴ BC=AC? cos65°=5× =,∴ AD=BC=.【评论】本题考察认识直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.灵巧因为勾股定理、互余关系和三角函数关系.33.(2016? 松阳县二模)一副直角三角板如图搁置,点C在 FD的延伸线上, AB∥CF,∠ F=∠ACB=90°,∠ E=45°,∠ A=60°, BC=10,试求 CD的长.【剖析】过点 B 作 BM⊥ FD于点 M,依据题意可求出BC的长度,而后在△ EFD中可求出∠ EDF=45°,从而可得出答案.【解答】解:过点 B 作 BM⊥FD于点 M,在△ ACB中,∠ ACB=90°,∠ A=60°, BC=10,∴∠ ABC=30°, AC=10,∵AB∥CF,∴BM=BC×sin30 °=10× =5,CM=BC×cos30°=15,在△ EFD中,∠ F=90°,∠ E=45°,∴∠ EDF=45°,∴MD=BM=5,∴CD=CM﹣MD=15﹣5.【评论】本题考察认识直角三角形的性质及平行线的性质,难度较大,解答此类题目的重点依据题意成立三角形利用所学的三角函数的关系进行解答.34.(2016? 闸北区二模)已知:如图,在△ ABC中,∠ ABC=45°, AD是 BC 边上的中线,过点 D 作 DE⊥ AB于点 E,且 sin ∠DAB=,DB=3.求:(1) AB的长;(2)∠ CAB的余切值.【剖析】(1)在 Rt△BDE中,求得 BE=DE=3,在 Rt △ADE中,获得 AE=4,依据线段的和差即可获得结论;( 2)作 CH⊥AB 于 H,依据已知条件获得BC=6,由等腰直角三角形的性质获得BH=CH=6,依据三角函数的定义即可获得结论.【解答】解:(1)在 Rt △BDE中, DE⊥ AB,BD=3∠ABC=45°,∴BE=DE=3,在 Rt△ ADE中, sin ∠ DAB=, DE=3,∴ AE=4, AB=AE+BE=4+3=7;(2)作 CH⊥AB于 H,∵AD是BC边上是中线,BD=3,∴ BC=6,。
人教数学锐角三角函数的专项培优练习题(含答案)含详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且MD=CM,DE⊥AB于点E,连结AD、CD.(1)求证:△MED∽△BCA;(2)求证:△AMD≌△CMD;(3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2=175S1时,求cos∠ABC的值.【答案】(1)证明见解析;(2)证明见解析;(3)cos∠ABC=5 7 .【解析】【分析】(1)易证∠DME=∠CBA,∠ACB=∠MED=90°,从而可证明△MED∽△BCA;(2)由∠ACB=90°,点M是斜边AB的中点,可知MB=MC=AM,从而可证明∠AMD=∠CMD,从而可利用全等三角形的判定证明△AMD≌△CMD;(3)易证MD=2AB,由(1)可知:△MED∽△BCA,所以2114ACBS MDS AB⎛⎫==⎪⎝⎭,所以S△MCB=12S△ACB=2S1,从而可求出S△EBD=S2﹣S△MCB﹣S1=25S1,由于1EBDS MES EB=,从而可知52MEEB=,设ME=5x,EB=2x,从而可求出AB=14x,BC=72,最后根据锐角三角函数的定义即可求出答案.【详解】(1)∵MD∥BC,∴∠DME=∠CBA,∵∠ACB=∠MED=90°,∴△MED∽△BCA;(2)∵∠ACB=90°,点M是斜边AB的中点,∴MB=MC=AM,∴∠MCB=∠MBC,∵∠DMB=∠MBC,∴∠MCB=∠DMB=∠MBC,∵∠AMD=180°﹣∠DMB ,∠CMD=180°﹣∠MCB ﹣∠MBC+∠DMB=180°﹣∠MBC , ∴∠AMD=∠CMD , 在△AMD 与△CMD 中,MD MD AMD CMD AM CM =⎧⎪∠=∠⎨⎪=⎩, ∴△AMD ≌△CMD (SAS ); (3)∵MD=CM , ∴AM=MC=MD=MB , ∴MD=2AB ,由(1)可知:△MED ∽△BCA , ∴2114ACB S MD SAB ⎛⎫== ⎪⎝⎭,∴S △ACB =4S 1, ∵CM 是△ACB 的中线, ∴S △MCB =12S △ACB =2S 1, ∴S △EBD =S 2﹣S △MCB ﹣S 1=25S 1, ∵1EBDS MESEB=, ∴1125S MEEB S =,∴52ME EB =, 设ME=5x ,EB=2x , ∴MB=7x , ∴AB=2MB=14x ,∵12MD ME AB BC ==, ∴BC=10x ,∴cos ∠ABC=105147BC x AB x ==. 【点睛】本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.2.下图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 m,AB=6 m,中间平台宽度DE=1 m,EN ,DM ,CB 为三根垂直于AB 的支柱,垂足分别为N ,M ,B ,∠EAB=31°,DF ⊥BC 于点F ,∠CDF=45°,求DM 和BC 的水平距离BM 的长度.(结果精确到0.1 m .参考数据:sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)【答案】2.5m. 【解析】试题分析:设DF=x ,在Rt △DFC 中,可得CF=DF=x ,则BF=4-x ,根据线段的和差可得AN=5-x ,EN=DM=BF=4-,在Rt △ANE 中,∠EAB=,利用∠EAB 的正切值解得x 的值.试题解析:解:设DF=,在Rt △DFC 中,∠CDF=,∴CF=tan ·DF=,又∵CB=4, ∴BF=4-,∵AB=6,DE=1,BM= DF=, ∴AN=5-,EN=DM=BF=4-, 在Rt △ANE 中,∠EAB=,EN=4-,AN=5-,tan==0.60,解得=2.5,答:DM 和BC 的水平距离BM 为2.5米. 考点:解直角三角形.3.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP =【解析】 【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去. 【详解】(1)联结OD ,∵OC OD =, ∴OCD ODC ∠=∠, ∵//CD AB , ∴OCD COA ∠=∠, ∴POA QDO ∠=∠. 在AOP ∆和ODQ ∆中,{OP DQPOA QDO OA DO=∠=∠=, ∴AOP ∆≌ODQ ∆, ∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =,∴132AOP S AO PH x ∆=⋅=. ∵//CD AB , ∴PFC ∆∽PAO ∆, ∴2210()()AOPy CP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时,∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =, ∴2360300x x y x-+=50(10)13x <<; (3)①当90OPE ∠=时,90OPA ∠=, ∴4cos 1085OP OA AOC =⋅∠=⨯=; ②当90POE ∠=时,1010254cos cos 25OC CQ QCO AOC ====∠∠,∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=时,∵//CD AB , ∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆, ∴DQO APO ∠=∠, ∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.4.如图,抛物线C 1:y=(x+m )2(m 为常数,m >0),平移抛物线y=﹣x 2,使其顶点D 在抛物线C 1位于y 轴右侧的图象上,得到抛物线C 2.抛物线C 2交x 轴于A ,B 两点(点A 在点B 的左侧),交y 轴于点C ,设点D 的横坐标为a .(1)如图1,若m=.①当OC=2时,求抛物线C2的解析式;②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).【答案】(1) ①y=﹣x2+x+2.②.(2)P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).【解析】试题分析:(1)①首先写出平移后抛物线C2的解析式(含有未知数a),然后利用点C (0,2)在C2上,求出抛物线C2的解析式;②认真审题,题中条件“AP=BP”意味着点P在对称轴上,“点B与点C到直线OP的距离之和最大”意味着OP⊥BC.画出图形,如图1所示,利用三角函数(或相似),求出a的值;(2)解题要点有3个:i)判定△ABD为等边三角形;ii)理论依据是角平分线的性质,即角平分线上的点到角两边的距离相等;iii)满足条件的点有4个,即△ABD形内1个(内心),形外3个.不要漏解.试题解析:(1)当m=时,抛物线C1:y=(x+)2.∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+)2).∴抛物线C2:y=﹣(x﹣a)2+(a+)2(I).①∵OC=2,∴C(0,2).∵点C在抛物线C2上,∴﹣(0﹣a)2+(a+)2=2,解得:a=,代入(I)式,得抛物线C2的解析式为:y=﹣x2+x+2.②在(I)式中,令y=0,即:﹣(x﹣a)2+(a+)2=0,解得x=2a+或x=﹣,∴B(2a+,0);令x=0,得:y=a+,∴C(0,a+).设直线BC的解析式为y=kx+b,则有:,解得,∴直线BC的解析式为:y=﹣x+(a+).假设存在满足条件的a值.∵AP=BP,∴点P在AB的垂直平分线上,即点P在C2的对称轴上;∵点B与点C到直线OP的距离之和≤BC,只有OP⊥BC时等号成立,∴OP⊥BC.如图1所示,设C2对称轴x=a(a>0)与BC交于点P,与x轴交于点E,则OP⊥BC,OE=a.∵点P在直线BC上,∴P(a,a+),PE=a+.∵tan∠EOP=tan∠BCO=,∴,解得:a=.∴存在a=,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP="BP"(3)∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+m)2).∴抛物线C2:y=﹣(x﹣a)2+(a+m)2.令y=0,即﹣(x﹣a)2+(a+m)2=0,解得:x1=2a+m,x2=﹣m,∴B(2a+m,0).∵OB=2﹣m,∴2a+m=2﹣m,∴a=﹣m.∴D(﹣m,3).AB=OB+OA=2﹣m+m=2.如图2所示,设对称轴与x轴交于点E,则DE=3,BE=AB=,OE=OB﹣BE=﹣m.∵tan∠ABD=,∴∠ABD=60°.又∵AD=BD,∴△ABD为等边三角形.作∠ABD的平分线,交DE于点P1,则P1E=BE•tan30°=×=1,∴P1(﹣m,1);在△ABD形外,依次作各个外角的平分线,它们相交于点P2、P3、P4.在Rt△BEP2中,P2E=BE•tan60°=•=3,∴P2(﹣m,﹣3);易知△ADP3、△BDP4均为等边三角形,∴DP3=DP4=AB=2,且P3P4∥x轴.∴P3(﹣﹣m,3)、P4(3﹣m,3).综上所述,到△ABD的三边所在直线的距离相等的所有点有4个,其坐标为:P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).【考点】二次函数综合题.5.如图,在△ABC中,∠A=90°,∠ABC=30°,AC=3,动点D从点A出发,在AB边上以每秒1个单位的速度向点B运动,连结CD,作点A关于直线CD的对称点E,设点D运动时间为t(s).(1)若△BDE是以BE为底的等腰三角形,求t的值;(2)若△BDE为直角三角形,求t的值;(3)当S△BCE≤92时,所有满足条件的t的取值范围(所有数据请保留准确值,参考数据:tan15°=23【答案】(133;(23秒或3秒;(3)6﹣3【解析】【分析】(1)如图1,先由勾股定理求得AB的长,根据点A、E关于直线CD的对称,得CD垂直平分AE,根据线段垂直平分线的性质得:AD=DE,所以AD=DE=BD,由3,可得t 的值;(2)分两种情况:①当∠DEB=90°时,如图2,连接AE,根据3t的值;②当∠EDB=90°时,如图3,根据△AGC≌△EGD,得AC=DE,由AC∥ED,得四边形CAED 是平行四边形,所以AD=CE=3,即t=3;(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,①当△BCE在BC的下方时,②当△BCE在BC的上方时,分别计算当高为3时对应的t的值即可得结论.【详解】解:(1)如图1,连接AE,由题意得:AD=t,∵∠CAB=90°,∠CBA=30°,∴BC=2AC=6,∴∵点A、E关于直线CD的对称,∴CD垂直平分AE,∴AD=DE,∵△BDE是以BE为底的等腰三角形,∴DE=BD,∴AD=BD,∴;(2)△BDE为直角三角形时,分两种情况:①当∠DEB=90°时,如图2,连接AE,∵CD垂直平分AE,∴AD=DE=t,∵∠B=30°,∴BD=2DE=2t,∴∴②当∠EDB=90°时,如图3,连接CE,∵CD垂直平分AE,∴CE=CA=3,∵∠CAD=∠EDB=90°,∴AC∥ED,∴∠CAG=∠GED,∵AG=EG,∠CGA=∠EGD,∴△AGC≌△EGD,∴AC=DE,∵AC∥ED,∴四边形CAED是平行四边形,∴AD=CE=3,即t=3;综上所述,△BDE为直角三角形时,t3秒;(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,①当△BCE在BC的下方时,过B作BH⊥CE,交CE的延长线于H,如图4,当AC=BH=3时,此时S△BCE=12AE•BH=12×3×3=92,易得△ACG≌△HBG,∴CG=BG,∴∠ABC=∠BCG=30°,∴∠ACE=60°﹣30°=30°,∵AC=CE,AD=DE,DC=DC,∴△ACD≌△ECD,∴∠ACD=∠DCE=15°,tan∠ACD=tan15°=t3=2﹣3,∴t=6﹣33,由图形可知:0<t<6﹣33时,△BCE的BH越来越小,则面积越来越小,②当△BCE在BC的上方时,如图3,CE=ED=3,且CE⊥ED,此时S△BCE=12CE•DE=12×3×3=92,此时t=3,综上所述,当S△BCE≤92时,t的取值范围是6﹣33≤t≤3.【点睛】本题考查三角形综合题、平行四边形的判定和性质、直角三角形的性质、三角形的面积问题、轴对称等知识,解题的关键是灵活运用所学知识,学会用分类讨论的思想思考问题,学会寻找特殊点解决问题,属于中考压轴题.6.3米/秒 =65.88千米/小时>60千米/小时.此车超过限制速度.…4分7.在Rt△ABC中,∠ACB=90°,7AC=2,过点B作直线m∥AC,将△ABC绕点C 顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P 与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC 的交点为M ,当M 为A′B′的中点时,求线段PQ 的长; (3)在旋转过程中,当点P ,Q 分别在CA′,CB ′的延长线上时,试探究四边形PA'B′Q 的面积是否存在最小值.若存在,求出四边形PA′B′Q 的最小面积;若不存在,请说明理由.【答案】(1)60°;(2)PQ =72;(3)存在,S 四边形PA 'B ′Q =33【解析】 【分析】(1)由旋转可得:AC =A 'C =2,进而得到BC 3=∠A 'BC =90°,可得cos ∠A 'CB 3'2BC A C ==,即可得到∠A 'CB =30°,∠ACA '=60°; (2)根据M 为A 'B '的中点,即可得出∠A =∠A 'CM ,进而得到PB 32=BC 32=,依据tan ∠Q =tan ∠A 3=BQ =BC3=2,进而得出PQ =PB +BQ 72=; (3)依据S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-S 四边形PA 'B 'Q 最小,即S △PCQ 最小,而S △PCQ 12=PQ ×BC 3=,利用几何法即可得到S △PCQ 的最小值=3,即可得到结论. 【详解】(1)由旋转可得:AC =A 'C =2. ∵∠ACB =90°,AB 7=AC =2,∴BC 3=∵∠ACB =90°,m ∥AC ,∴∠A 'BC =90°,∴cos ∠A 'CB 3'2BC A C ==,∴∠A 'CB =30°,∴∠ACA '=60°;(2)∵M 为A 'B '的中点,∴∠A 'CM =∠MA 'C ,由旋转可得:∠MA 'C =∠A ,∴∠A =∠A 'CM ,∴tan ∠PCB =tan ∠A 32=,∴PB 32=BC 32=. ∵∠BQC =∠BCP =∠A ,∴tan ∠BQC =tan ∠A 3=∴BQ =BC 3=2,∴PQ =PB +BQ 72=; (3)∵S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3∴S 四边形PA 'B 'Q 最小,即S △PCQ 最小,∴S △PCQ 12=PQ ×BC 32=PQ , 取PQ 的中点G .∵∠PCQ =90°,∴CG 12=PQ ,即PQ =2CG ,当CG 最小时,PQ 最小,∴CG ⊥PQ ,即CG 与CB 重合时,CG 最小,∴CG min 3=,PQ min =23,∴S △PCQ 的最小值=3,S 四边形PA 'B 'Q =33-;【点睛】本题属于几何变换综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8.如图①,在菱形ABCD 中,60B ︒∠= ,4AB =.点P 从点A 出发以每秒2个单位的速度沿边AD 向终点D 运动,过点P 作PQ AC ⊥交边AB 于点Q ,过点P 向上作//PN AC ,且3PN PQ =,以PN 、PQ 为边作矩形PQMN .设点P 的运动时间为t (秒),矩形PQMN 与菱形ABCD 重叠部分图形的面积为S . (1)用含t 的代数式表示线段PQ 的长. (2)当点M 落在边BC 上时,求t 的值. (3)当0t 1<<时,求S 与t 之间的函数关系式,(4)如图②,若点O 是AC 的中点,作直线OM .当直线OM 将矩形PQMN 分成两部分图形的面积比为12:时,直接写出t 的值【答案】(1)23PQ t =;(2)45;(3)2193403163t t -+-;(4) 23t = 或87t = .【解析】【分析】(1)由菱形性质得∠D=∠B=60°,AD=AB=CD=4,△ACD是等边三角形,证出△APQ是等腰三角形,得出PF=QF,PF=PA•sin60°=3t,即可得出结果;(2)当点M落在边BC上时,由题意得:△PDN是等边三角形,得出PD=PN,由已知得PN=3PQ=3t,得出PD=3t,由题意得出方程,解方程即可;(3)当0<t≤45时,PQ=23t,PN=32PQ=3t,S=矩形PQMN的面积=PQ×PN,即可得出结果;当45<t<1时,△PDN是等边三角形,得出PE=PD=AD-PA=4-2t,∠FEN=∠PED=60°,得出NE=PN-PE=5t-4,FN=3NE=3(5t-4),S=矩形PQMN的面积-2△EFN的面积,即可得出结果;(4)分两种情况:当0<t≤45时,△ACD是等边三角形,AC=AD=4,得出OA=2,OG是△MNH的中位线,得出OG=4t-2,NH=2OG=8t-4,由面积关系得出方程,解方程即可;当45<t≤2时,由平行线得出△OEF∽△MEQ,得出EF OFEQ MQ=,即233ttEF t-=+,解得EF=243232t tt--,得出EQ=2332234t ttt--+,由三角形面积关系得出方程,解方程即可.【详解】(1)∵在菱形ABCD中,∠B=60°,∴∠D=∠B=60°,AD=AB=CD=4,△ACD是等边三角形,∴∠CAD=60°,∵PQ⊥AC,∴△APQ是等腰三角形,∴PF=QF,PF=PA•sin60°=2t×3=3t,∴PQ=23t;(2)当点M落在边BC上时,如图2所示:由题意得:△PDN是等边三角形,∴PD=PN,∵PN=32PQ=32×23t=3t,∴PD=3t,∵PA+PD=AD,即2t+3t=4,解得:t=45.(3)当0<t≤45时,如图1所示:PQ=23t,PN=32PQ=32×23t=3t,S=矩形PQMN的面积=PQ×PN=23t×3t=63t2;当45<t<1时,如图3所示:∵△PDN是等边三角形,∴PE=PD=AD-PA=4-2t,∠FEN=∠PED=60°,∴NE=PN-PE=3t-(4-2t)=5t-4,∴335t-4),∴S=矩形PQMN的面积-2△EFN的面积32-2×1235t-4)2=-19t233,即S=-19t233(4)分两种情况:当0<t≤45时,如图4所示:∵△ACD 是等边三角形, ∴AC=AD=4, ∵O 是AC 的中点,∴OA=2,OG 是△MNH 的中位线, ∴OG=3t-(2-t )=4t-2,NH=2OG=8t-4, ∴△MNH 的面积=12MN×NH=12×23t×(8t-4)=13×63t 2, 解得:t=23; 当45<t≤2时,如图5所示:∵AC ∥QM , ∴△OEF ∽△MEQ ,∴EF OF EQ MQ =233tt EF t -=+, 解得:2332t t -,∴23323t t t -∴△MEQ 的面积=12×3t×23323t t t -+=1332,解得:t=87; 综上所述,当直线OM 将矩形PQMN 分成两部分图形的面积比为1:2时,t 的值为23或87.【点睛】本题是四边形综合题目,考查了菱形的性质、矩形的性质、等边三角形的判定与性质、勾股定理、相似三角形的判定与性质、三角形中位线定理等知识;本题综合性强,难度较大,熟练掌握菱形和矩形的性质,综合运用知识,进行分类讨论是解题的关键.9.如图,在ABC △中,10AC BC ==,3cos5C =,点P 是BC 边上一动点(不与点,A C 重合),以PA 长为半径的P 与边AB 的另一个交点为D ,过点D 作DE CB ⊥于点E .()1当P 与边BC 相切时,求P 的半径;()2联结BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,并直接写出x 的取值范围;()3在()2的条件下,当以PE 长为直径的Q 与P 相交于AC 边上的点G 时,求相交所得的公共弦的长.【答案】(1)409;(2))25880010x x x y x -+=<<;(3)105-【解析】 【分析】(1)设⊙P 与边BC 相切的切点为H ,圆的半径为R ,连接HP ,则HP ⊥BC ,cosC=35,则sinC=45,sinC=HP CP =R 10R -=45,即可求解; (2)PD ∥BE ,则EB PD =BFPF,即:2248805x x x y x--+-=,即可求解;(3)证明四边形PDBE 为平行四边形,则AG=GP=BD ,即:5求解. 【详解】(1)设⊙P 与边BC 相切的切点为H ,圆的半径为R ,连接HP ,则HP ⊥BC ,cosC=35,则sinC=35, sinC=HP CP =R 10R -=45,解得:R=409; (2)在△ABC 中,AC=BC=10,cosC=35, 设AP=PD=x ,∠A=∠ABC=β,过点B 作BH ⊥AC ,则BH=ACsinC=8, 同理可得:CH=6,HA=4,AB=45,则:tan ∠CAB=2BP=()2284x +-=2880x x -+, DA=25x ,则BD=45-25x ,如下图所示,PA=PD ,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则cosβ=5,sinβ=5,EB=BDcosβ=(45-25x)×5=4-25x,∴PD∥BE,∴EBPD=BFPF,即:2248805x x x yx y--+-=,整理得:y=()25x x8x800x10-+<<;(3)以EP为直径作圆Q如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q时弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴5设圆的半径为r,在△ADG中,55AG=2r,5551+,则:55相交所得的公共弦的长为5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.10.如图所示,一堤坝的坡角62ABC ∠=︒,坡面长度25AB =米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角50ADB ∠=︒,则此时应将坝底向外拓宽多少米?(结果保留到0.01 米)(参考数据:sin620.88︒≈,cos620.47︒≈,tan50 1.20︒≈)【答案】6.58米 【解析】试题分析:过A 点作AE ⊥CD 于E .在Rt △ABE 中,根据三角函数可得AE ,BE ,在Rt △ADE 中,根据三角函数可得DE ,再根据DB=DE ﹣BE 即可求解. 试题解析:过A 点作AE ⊥CD 于E . 在Rt △ABE 中,∠ABE=62°. ∴AE=AB•sin62°=25×0.88=22米,BE=AB•cos62°=25×0.47=11.75米, 在Rt △ADE 中,∠ADB=50°, ∴DE==18米,∴DB=DE ﹣BE≈6.58米. 故此时应将坝底向外拓宽大约6.58米.考点:解直角三角形的应用-坡度坡角问题.。
9下第16讲锐角三角函数培优

锐角三角函数重难点1、锐角三角的定义:在直角三角形中,斜边的对边A A ∠=sin ,斜边的邻边A A ∠=cos ,的邻边的对边A A A ∠∠=tan 。
2、特殊角(30°,45°,60°)的三角形函数值需牢记。
熟练掌握特殊三角形三边之比,有利于特殊角的三角函数值的记忆。
3、在0°到90°之间,角的正弦值、正切值都随着角度的增大而增大,余弦值随着角度的增大而减小。
4、①0<sinA <1,0<cosA <1;②若∠A+∠B=90°,则sinA=cosB ;cosA=sinB ;tanA ·tanB=1;③sin 2A+cos 2A=1例题分析例1、如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),点B 是y 轴右侧⊙A 优弧上一点,则cos ∠OBC 的值为___________举一反三:1.1、如图,在等边三角形ABC 中,D 是BC 边上的一点,延长AD 至E ,使AE=AC ,∠BAE 的平分线交△ABC 的高BF 于点O ,则tan ∠AEO=_____________1.2、如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的点F 处.若AB=4,BC=5,则tan ∠AFE 的值为_____________1.3、如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=15,AB的垂直平分线ED交BC的延长线于点D,垂足为点E,则sin∠CAD=___________1.4、如图,OA=4,线段OA的中点为B,点P在以O为圆心,OB为半径的圆上运动,PA的中点为Q.当点Q也落在⊙O上时,cos∠OQB的值等于____________1.5、如图,已知△ABC,AB=AC=1,∠A=36°,∠ABC的平分线BD交AC于点D,则AD的长是________,cosA的值是________.(结果保留根号)例2、若a、b、c是△ABC的三边,a+c=2b,且方程a(1-x2)+2bx+c(1+x2)=0有两个相等的实数根,sinA+sinB+sinC的值举一反三:2、△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,已知关于x 的方程x 2-(c+4)x+4c+8=0.(1)若a ,b 是方程的两根,求证△ABC 为直角三角形;(2)若在(1)的条件下,且25asinA=9c ,求此直角三角形三边的长.例3、在直角梯形ABCD 中,AB ∥CD ,∠ABC=90°,AB=2BC=2CD ,对角线AC 与BD 相交于点O ,线段OA ,OB 的中点分别为E ,F .(1)求证:△FOE ≌△DOC ;(2)求sin ∠OEF 的值;(3)若直线EF 与线段AD ,BC 分别相交于点G ,H ,求GH CDAB 的值举一反三:3、如图,射线PG 平分∠EPF ,O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与∠EPF 的两边相交于A 、B 和C 、D ,连接OA ,此时有OA ∥PE .(1)求证:AP=AO ;(2)若tan ∠OPB=21,求弦AB 的长;(3)若以图中已标明的点(即P 、A 、B 、C 、D 、O )构造四边形,则能构成菱形的四个点为_______,能构成等腰梯形的四个点为_______或_______或_______.例4、(1)如图,锐角的正弦和余弦都随着锐角的确定而确定,也随着其变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值的变化规律;(2)根据你探索到的规律,试比较18°,34°,52°,65°,88°,这些角的正弦值的大小和余弦值的大小;(3)比较大小:(在空格处填写“<”或“>”或“=”)若∠α=45°,则sin α__________cos α;若∠α<45°,则sin α__________cos α;若∠α>45°,则sin α__________cos α;(4)利用互余的两个角的正弦和余弦的关系,比较下列正弦值和余弦值的大小:sin10°,cos30°,sin50°,cos70°.举一反三:4.1、如图,定义:在直角三角形ABC 中,锐角α的邻边与对边的比叫做角α的余切,记作ctan α,即:的对边的邻边ααα∠∠=tan c ,根据上述角的余切定义,解下列问题:(1)cot30°=___________;(2)如图,已知tan α=43,其中∠α为锐角,试求ctan α的值.4.2、锐角三角函数定量地描述了在直角三角形中边角的联系,在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。
人教数学 锐角三角函数的专项 培优练习题含详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)【答案】(1)证明见解析;(2);(3).【解析】试题分析:(1)应用圆周角定理证明∠APD=∠FPC,得到∠APC=∠FPD,又由∠PAC=∠PDC,即可证明结论.(2)由AC=2BC,设,应用勾股定理即可求得BC,AC的长,则由AC=2BC得,由△ACE∽△ABC可求得AE,CE的长,由可知△APB是等腰直角三角形,从而可求得PA的长,由△AEF是等腰直角三角形求得EF=AE=4,从而求得DF的长,由(1)△PAC∽△PDF得,即可求得PD的长.(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.又∵∠PAC=∠PDC,∴△PAC∽△PDF.(2)连接BP,设,∵∠ACB=90°,AB=5,∴.∴.∵△ACE∽△ABC,∴,即. ∴.∵AB⊥CD,∴.如图,连接BP,∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.由(1)△PAC∽△PDF得,即.∴PD的长为.(3)如图,连接BP,BD,AD,∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.∵,∴.∵△AGP∽△DGB,∴.∵△AGD∽△PGB,∴.∴,即.∵,∴.∴与之间的函数关系式为.考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.2.如图,已知正方形在直角坐标系中,点分别在轴、轴的正半轴上,点在坐标原点.等腰直角三角板的直角顶点在原点,分别在上,且将三角板绕点逆时针旋转至的位置,连结(1)求证:(2)若三角板绕点逆时针旋转一周,是否存在某一位置,使得若存在,请求出此时点的坐标;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,或【解析】(1)证明:∵四边形为正方形,∴∵三角板是等腰直角三角形,∴又三角板绕点逆时针旋转至的位置时,∴···························· 3分(2)存在.································· 4分∵∴过点与平行的直线有且只有一条,并与垂直,又当三角板绕点逆时针旋转一周时,则点在以为圆心,以为半径的圆上,························ 5分∴过点与垂直的直线必是圆的切线,又点是圆外一点,过点与圆相切的直线有且只有2条,不妨设为和此时,点分别在点和点,满足·························· 7分当切点在第二象限时,点在第一象限,在直角三角形中,∴∴∴点的横坐标为:点的纵坐标为:∴点的坐标为··························· 9分当切点在第一象限时,点在第四象限,同理可求:点的坐标为综上所述,三角板绕点逆时针旋转一周,存在两个位置,使得此时点的坐标为或································ 11分(1)根据旋转的性质找到相等的线段,根据SAS定理证明;(2)由于△OEF是等腰Rt△,若OE∥CF,那么CF必与OF垂直;在旋转过程中,E、F的轨迹是以O为圆心,OE(或OF)长为半径的圆,若CF⊥OF,那么CF必为⊙O的切线,且切点为F;可过C作⊙O的切线,那么这两个切点都符合F点的要求,因此对应的E点也有两个;在Rt△OFC中,OF=2,OC=OA=4,可证得∠FCO=30°,即∠EOC=30°,已知了OE 的长,通过解直角三角形,不难得到E点的坐标,由此得解.3.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.【答案】(1)见解析;(2)∠FCN =45°,理由见解析;(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =43.理由见解析. 【解析】 【分析】(1)根据三角形判定方法进行证明即可.(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论. 【详解】(1)证明:∵四边形ABCD 和四边形AEFG 是正方形, ∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°, ∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE , ∴∠BAE =∠DAG , 在△ADG 和△ABE 中,ADG ABE DAG BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADG ≌△ABE (AAS ). (2)解:∠FCN =45°,理由如下: 作FH ⊥MN 于H ,如图1所示:则∠EHF =90°=∠ABE , ∵∠AEF =∠ABE =90°,∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°, ∴∠FEH =∠BAE ,在△EFH 和△ABE 中,EHF ABE FEH BAE AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EFH ≌△ABE (AAS ), ∴FH =BE ,EH =AB =BC , ∴CH =BE =FH , ∵∠FHC =90°, ∴∠FCN =45°.(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下: 作FH ⊥MN 于H ,如图2所示:由已知可得∠EAG =∠BAD =∠AEF =90°,结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE , ∴EH =AD =BC =8, ∴CH =BE , ∴EH FH FHAB BE CH==; 在Rt △FEH 中,tan ∠FCN =8463FH EH CH AB ===, ∴当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =43. 【点睛】本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.4.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到万丰路(直线AO )的距离为120米的点P 处.这时,一辆小轿车由西向东匀速行驶,测得此车从A 处行驶到B 处所用的时间为5秒且∠APO =60°,∠BPO =45°.(1)求A 、B 之间的路程;(2)请判断此车是否超过了万丰路每小时65千米的限制速度?请说明理由.(参考数23 1.73≈≈).【答案】【小题1】73.2【小题2】超过限制速度.【解析】AB=-73.2 (米).…6分解:(1)100(31)(2) 此车制速度v==18.3米/秒5.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A,B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长:_________________;(2)当t =__________时,点Q与点C重合时;(3)当线段PQ的垂直平分线经过△ABC一边中点时,求出t的值.【答案】(1);(2)1;(3)t的值为或或.【解析】【分析】(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AQ=AC,即可得出结论;(3)分三种情况,利用锐角三角函数,即可得出结论.【详解】(1)∵AP= , AB=4,∠A=30°∴AC= , AD=∴CD=;(2)AQ=2AD=当AQ=AC时,Q与C重合即=∴t=1;(3)①如图,当PQ的垂直平分线过AB的中点F时,∴∠PGF=90°,PG=PQ=AP=t,AF=AB=2.∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t,∴AP+PF=2t+2t=2,∴t=②如图,当PQ的垂直平分线过AC的中点N时,∴∠QMN=90°,AN=AC=,QM=PQ=AP=t.在Rt△NMQ中,∵AN+NQ=AQ,∴③如图,当PQ的垂直平分线过BC的中点F时,∴BF=BC=1,PE=PQ=t,∠H=30°.∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1.在Rt△PEH中,PH=2PE=2t.∵AH=AP+PH=AB+BH,∴2t+2t=5,∴t=.即当线段PQ的垂直平分线经过△ABC一边中点时,t的值为或或.【点睛】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.6.小明坐于堤边垂钓,如图①,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离(如图②).【答案】1.5米.【解析】试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出在Rt△ACD中,米,CD=2AD=3米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.试题解析:延长OA交BC于点D.∵AO的倾斜角是,∴∵在Rt△ACD中, (米),∴CD=2AD=3米,又∴△BOD是等边三角形,∴(米),∴BC=BD−CD=4.5−3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.7.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P 作PF∥BC,交对角线BD于点F.(1)如图1,将△PDF 沿对角线BD 翻折得到△QDF ,QF 交AD 于点E .求证:△DEF 是等腰三角形;(2)如图2,将△PDF 绕点D 逆时针方向旋转得到△P'DF',连接P'C ,F'B .设旋转角为α(0°<α<180°).①若0°<α<∠BDC ,即DF'在∠BDC 的内部时,求证:△DP'C ∽△DF'B . ②如图3,若点P 是CD 的中点,△DF'B 能否为直角三角形?如果能,试求出此时tan ∠DBF'的值,如果不能,请说明理由.【答案】(1)证明见解析;(2)①证明见解析;②12或33. 【解析】【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF ,所以△DEF 是等腰三角形;(2)①由于PF ∥BC ,所以△DPF ∽△DCB ,从而易证△DP′F′∽△DCB ;②由于△DF'B 是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.【详解】(1)由翻折可知:∠DFP=∠DFQ , ∵PF ∥BC , ∴∠DFP=∠ADF , ∴∠DFQ=∠ADF , ∴△DEF 是等腰三角形;(2)①若0°<α<∠BDC ,即DF'在∠BDC 的内部时, ∵∠P′DF′=∠PDF ,∴∠P′DF′﹣∠F′DC=∠PDF ﹣∠F′DC , ∴∠P′DC=∠F′DB ,由旋转的性质可知:△DP′F′≌△DPF , ∵PF ∥BC , ∴△DPF ∽△DCB , ∴△DP′F′∽△DCB ∴''DC DP DB DF , ∴△DP'C ∽△DF'B ;②当∠F′DB=90°时,如图所示,∵DF′=DF=12BD , ∴'12DF BD =, ∴tan ∠DBF′='12DF BD =;当∠DBF′=90°,此时DF′是斜边,即DF′>DB ,不符合题意;当∠DF′B=90°时,如图所示,∵DF′=DF=12BD , ∴∠DBF′=30°, ∴tan ∠DBF′=3.【点睛】本题考查了相似三角形的综合问题,涉及旋转的性质,锐角三角函数的定义,相似三角形的性质以及判定等知识,综合性较强,有一定的难度,熟练掌握相关的性质与定理、运用分类思想进行讨论是解题的关键.8.在等腰△ABC 中,∠B=90°,AM 是△ABC 的角平分线,过点M 作MN ⊥AC 于点N ,∠EMF=135°.将∠EMF 绕点M 旋转,使∠EMF 的两边交直线AB 于点E ,交直线AC 于点F ,请解答下列问题:(1)当∠EMF 绕点M 旋转到如图①的位置时,求证:BE+CF=BM ;(2)当∠EMF 绕点M 旋转到如图②,图③的位置时,请分别写出线段BE ,CF ,BM 之间的数量关系,不需要证明;(3)在(1)和(2)的条件下,tan ∠BEM=,AN=+1,则BM= ,CF= .【答案】(1)证明见解析(2)见解析(3)1,1+或1﹣【解析】【分析】(1)由等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,可得BM=MN,∠BMN=135°,又∠EMF=135°,可证明的△BME≌△NMF,可得BE=NF,NC=NM=BM进而得出结论;(2)①如图②时,同(1)可证△BME≌△NMF,可得BE﹣CF=BM,②如图③时,同(1)可证△BME≌△NMF,可得CF﹣BE=BM;(3) 在Rt△ABM和Rt△ANM中,,可得Rt△ABM≌Rt△ANM,后分别求出AB、 AC、 CN 、BM、 BE的长,结合(1)(2)的结论对图①②③进行讨论可得CF的长.【详解】(1)证明:∵△ABC是等腰直角三角形,∴∠BAC=∠C=45°,∵AM是∠BAC的平分线,MN⊥AC,∴BM=MN,在四边形ABMN中,∠,BMN=360°﹣90°﹣90°﹣45°=135°,∵∠ENF=135°,,∴∠BME=∠NMF,∴△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵CN=CF+NF,∴BE+CF=BM;(2)针对图2,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=NF﹣CF,∴BE﹣CF=BM;针对图3,同(1)的方法得,△BME≌△NMF,∴BE=NF,∵MN⊥AC,∠C=45°,∴∠CMN=∠C=45°,∴NC=NM=BM,∵NC=CF﹣NF,∴CF﹣BE=BM;(3)在Rt△ABM和Rt△ANM中,,∴Rt△ABM≌Rt△ANM(HL),∴AB=AN=+1,在Rt△ABC中,AC=AB=+1,∴AC=AB=2+,∴CN=AC﹣AN=2+﹣(+1)=1,在Rt△CMN中,CM=CN=,∴BM=BC﹣CM=+1﹣=1,在Rt△BME中,tan∠BEM===,∴BE=,∴①由(1)知,如图1,BE+CF=BM,∴CF=BM﹣BE=1﹣②由(2)知,如图2,由tan∠BEM=,∴此种情况不成立;③由(2)知,如图3,CF﹣BE=BM,∴CF=BM+BE=1+,故答案为1,1+或1﹣.【点睛】本题考查三角函数与旋转与三角形全等的综合,难度较大,需综合运用所学知识求解.9.如图,AB为O的直径,C、D为O上异于A、B的两点,连接CD,过点C作 ,交CD的延长线于点E,垂足为点E,直径AB与CE的延长线相交于点F. CE DB(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒.(2)若2ABD BDC ∠=∠.①求证:CF 是O 的切线.②当6BD =,3tan 4F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =. 【解析】【分析】(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=OC CF =34,即可求出CF . 【详解】解:(1)AB 是O 的直径,且D 为O 上一点,90ADB ∴∠=︒,CE DB ⊥,90DEC ∴∠=︒,//CF AD ∴,180DAC ACF ∴∠+∠=︒.(2)①如图,连接OC .OA OC =,12∴∠=∠.312∠=∠+∠,321∴∠=∠.42BDC ∠=∠,1BDC ∠=∠,421∴∠=∠,43∴∠=∠,//OC DB ∴.CE DB ⊥,OC CF ∴⊥.又OC 为O 的半径,CF ∴为O 的切线.②由(1)知//CF AD ,BAD F ∴∠=∠,3tan tan 4BAD F ∴∠==, 34BD AD ∴=. 6BD =483AD BD ∴==, 226810AB ∴=+=,5OB OC ==.OC CF ⊥,90OCF ∴∠=︒,3tan 4OC F CF ∴==, 解得203CF =. 【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.10.已知:如图,在Rt △ABO 中,∠B =90°,∠OAB =30°,OA =3.以点O 为原点,斜边OA 所在直线为x 轴,建立平面直角坐标系,以点P (4,0)为圆心,PA 长为半径画圆,⊙P 与x 轴的另一交点为N ,点M 在⊙P 上,且满足∠MPN =60°.⊙P 以每秒1个单位长度的速度沿x 轴向左运动,设运动时间为ts ,解答下列问题:(发现)(1)MN 的长度为多少;(2)当t =2s 时,求扇形MPN (阴影部分)与Rt △ABO 重叠部分的面积.(探究)当⊙P 和△ABO 的边所在的直线相切时,求点P 的坐标.(拓展)当MN 与Rt △ABO 的边有两个交点时,请你直接写出t 的取值范围.【答案】【发现】(1)MN 的长度为π3;(2)重叠部分的面积为38;【探究】:点P 的坐标为10(,);或23 0)或23 0();【拓展】t 的取值范围是23t ≤<或45t ≤<,理由见解析.【解析】【分析】发现:(1)先确定出扇形半径,进而用弧长公式即可得出结论;(2)先求出PA =1,进而求出PQ ,即可用面积公式得出结论;探究:分圆和直线AB 和直线OB 相切,利用三角函数即可得出结论;拓展:先找出MN 和直角三角形的两边有两个交点时的分界点,即可得出结论.【详解】[发现](1)∵P (4,0),∴OP =4.∵OA =3,∴AP =1,∴MN 的长度为6011803ππ⨯=. 故答案为3π; (2)设⊙P 半径为r ,则有r =4﹣3=1,当t =2时,如图1,点N 与点A 重合,∴PA =r =1,设MP 与AB 相交于点Q .在Rt △ABO 中,∵∠OAB =30°,∠MPN =60°.∵∠PQA =90°,∴PQ 12=PA 12=,∴AQ =AP ×cos30°32=,∴S 重叠部分=S △APQ 12=PQ ×AQ 3= 3 [探究]①如图2,当⊙P 与直线AB 相切于点C 时,连接PC ,则有PC ⊥AB ,PC =r =1. ∵∠OAB =30°,∴AP =2,∴OP =OA ﹣AP =3﹣2=1;∴点P 的坐标为(1,0);②如图3,当⊙P 与直线OB 相切于点D 时,连接PD ,则有PD ⊥OB ,PD =r =1,∴PD ∥AB ,∴∠OPD =∠OAB =30°,∴cos ∠OPD PD OP =,∴OP 123303cos ==︒,∴点P 的坐标为(233,0); ③如图4,当⊙P 与直线OB 相切于点E 时,连接PE ,则有PE ⊥OB ,同②可得:OP 233=; ∴点P 的坐标为(233-,0);[拓展]t 的取值范围是2<t ≤3,4≤t <5,理由:如图5,当点N 运动到与点A 重合时,MN 与Rt △ABO 的边有一个公共点,此时t =2; 当t >2,直到⊙P 运动到与AB 相切时,由探究①得:OP =1,∴t 411-==3,MN 与Rt △ABO 的边有两个公共点,∴2<t ≤3.如图6,当⊙P 运动到PM 与OB 重合时,MN 与Rt △ABO 的边有两个公共点,此时t =4; 直到⊙P 运动到点N 与点O 重合时,MN 与Rt △ABO 的边有一个公共点,此时t =5; ∴4≤t <5,即:t 的取值范围是2<t ≤3,4≤t <5.【点睛】本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.。
锐角三角函数综合性试卷(培优)

锐角三角函数综合性试卷(培优)1.绵山是中国清明节(寒食节)的发源地,相传春秋时期晋国介子推携母隐居被焚在山上.绵山入口处有一座雄伟高大的介子推铜像,当地某校的综合与实践小组的同学们想要测出这座铜像有多高.他们先制订了测量方案,随后又进行了实地测量.如图,铜像MN建在坡比为1:2.4的楼梯BM顶端,同学们在A处测得铜像顶点N的仰角为30°,然后沿着AC方向走了12m到达B处,此时在B处测得铜像顶点N的仰角为63.4°,其中点A,B,C,D,M,N均在同一平面内.请根据以上数据求出铜像MN的高度.(结果精确到0.1m,参考数据√3≈1.73,sin 63.4°≈0.89,cos63.4°≈0.45,tan 63.4°≈2.00)2.如图是人民英雄纪念碑,它位于北京天安门广场中心,是为了纪念在人民解放战争和人民革命中牺牲的人民英雄,碑体正面是毛泽东亲笔题词“人民英雄永垂不朽”八个鎏金大字.右图是纪念碑的示意图,小丽在A处测得碑顶D的仰角为30°,沿纪念碑方向前进37.1m后,在B处测得碑顶D的仰角为53°(点A,B,D,E,F在同一平面内,且点A,B,E,F在同一水平线上)求纪念碑的高度.(结果精确到0.1m.参考数据:√3≈1.73,sin53°≈45;cos53°≈35,tan53°≈43)3.2022年6月28日,美国“本福德”号导弹驱逐舰穿航台湾海峡并公开炒作,为了维护国家安全和祖国统一,我中国人民解放军东部战区组织海空兵力对美舰进行全程跟监警戒,一架飞机沿水平直线飞行,在点C处测得正前方水平地面上某建筑物AB的顶端A 的俯角为30°,飞机面向AB方向继续飞行5米至点D处,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求飞机飞行的高度.(结果精确到1米,参考数据:√2≈1.414,√3≈1.732)4.通过学习《解直角三角形》这一章,王凯同学勤学好问,在课外学习活动中,探究发现,三角形的面积、边、角之间存在一定的数量关系,下面是他的学习笔记.请仔细阅读下列材料并完成相应的任务.在△ABC(图1)中,∠A,∠B,∠C的对边分别为a、b、c,△ABC的面积为S△ABC,过点A作AD⊥BC,垂足为D,则在Rt△ABD中,∵sin B=AD AB,∴AD=AB•sin B.∴S△ABC=12BC⋅AD=12BC⋅AB⋅sinB=12ac sin B.同理可得,S △ABC =12bc sin A ,S ABC =12ba sin C .即S △ABC =12bcsinA =12acsinB =12ba sin C ……………①由以上推理得结论:三角形的面积等于两边及其夹角正弦积的一半. 又∵abc ≠0, ∴将等式12bcsinA =12acsinB =12ba sin C 两边同除以12abc ,得,sinA a=sinB b=sinC c.∴asinA=b sinB=c sinC⋯⋯⋯⋯⋯⋯⋯②由以上推理得结论:在一个三角形中,各边和它所对角的正弦的比值相等.理解应用:如图2,甲船以30√2海里/时的速度向正北方向航行,当甲船位于A 处时,乙船位于甲船的南偏西75°方向的B 处,且乙船从B 处沿北偏东15°方向匀速直线航行,当甲船航行20分钟到达D 处时,乙船航行到甲船的南偏西60°方向的C 处,此时两船相距10√2海里.(1)求:△ADC 的面积.(2)求:乙船航行的速度(结果保留根号).5.在交城县城西北方向的卦山群峰中,位于中央的小山峰上屹立着一座白塔,它在卦山诸多名胜中最引人注目(如图1).某数学小组为测量白塔的高度,在A 处(如图2)测得塔顶C 的仰角为45°,然后沿着斜坡AB 前进13米到达B 处,在B 处测得到塔脚的距离BD =15米,已知tan ∠BAF =512,∠E =90°,求白塔的高度CD .6.延安宝塔,是革命圣地延安的标志和象征,融历史文物和革命遗址为一脉,集人文景观和自然景观为一体,某数学兴趣小组在确保无安全隐患的情况下,开展了测量延安宝塔的高度的实践活动,具体过程如下:如图,CN是坡度i=3:4的斜坡,CN的长为15米,BC=32米,MN是测角仪,长为2米,从点M测得该塔顶部A处的仰角为37°,已知MN⊥BC,AB⊥BC,求该塔AB的高度.(参考数据:sin37°≈3 4)7.图1是一盏可调节台灯,图2为其平面示意图,固定底座OA与水平面OE垂直,AB为固定支撑杆,BC为可绕着点B旋转的调节杆,灯体CD始终保持垂直BC,MN为台灯照射在桌面的区域,如图2,旋转调节杆使BC与水平面OE平行,此时△DMN是以D为顶点的等腰三角形,AB=5dm,OM=2dm,BC=6dm,tanB=43,求台灯照射桌面区域MN的长度.8.如图,梯形ABCD是某水坝的横截面示意图,其中AB=CD,坝顶BC=2m,坝高CH=5m,迎水坡AB的坡度i=1:1.(1)求坝底AD的长;(2)为了提高堤坝防洪抗洪能力,防汛指挥部决定在背水坡加固该堤坝,要求坝顶加宽0.5m,背水坡坡角改为α=30°,求加固总长5千米的堤坝共需多少土方?(参考数据:π≈3.14,√2≈1.41,√3≈1.73;结果精确到0.1m3)9.无人机是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机,在跟踪、定位、遥测、数据传输等方面发挥着重要作用,在如图所示的某次测量中,无人机从点A的正上方点C,沿正东方向以5m/s的速度飞行18s到达点D,测得A的俯角为60°,然后以同样的速度沿正东方向又飞行72s到达点E,测得点B的俯角为37°.求AB的长度(结果精确到1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√3≈1.73).10.如图1,中苏友谊纪念塔在大连市旅顺博物馆前的广场中心,是大连著名的地标建筑之一.如图2,一个人(AR)站在纪念塔前的石阶底部,测得点R关于点N的仰角α=60°.已知人高1.5m,ED=3m,BC=1.2m,BM=3m.若将塔前的楼梯看作斜坡,坡角θ的度数为33.69°(sin33.69°≈0.55,cos33.69°≈0.83,tan33.69°≈0.67,√3≈1.73).(1)求斜面AB的长度;(2)求塔高PQ(结果保留整数).11.华山是陕西著名的景点之一,西峰是华山最秀丽险峻的山峰,峰顶翠云宫前有巨石状如莲花,故又名莲花峰.游客可以从山底乘坐索道车到达西峰,小明要测量峰顶翠云宫的高度,他在索道A处测得翠云宫底部B的仰角约为30°,测得翠云宫顶部C的仰角约为37°,索道车从A处运行到B处的距离约为300米.请你利用小明测量的数据,求翠云宫BC的高度.(结果保留整数.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√3≈1.73)12.如图,光从空气斜射入水中,入射光线AB射到水池的水面B点后折射光线BD射到池底点D处,入射角∠ABM=30°,折射角∠DBN=22°;入射光线AC射到水池的水面C点后折射光线CE射到池底点E处,入射角∠ACM′=60°,折射角∠ECN′=40.5°.DE∥BC,MN、M′N′为法线.入射光线AB、AC和折射光线BD、CE及法线MN、M′N′都在同一平面内,点A到直线BC的距离为6米.(1)求BC的长;(结果保留根号)(2)如果DE=8.72米,求水池的深.(参考数据:√2取1.41,√3取1.73,sin22°取0.37,cos22°取0.93,tan22°取0.4,sin40.5°取0.65,cos40.5°取0.76,tan40.5°取0.85)13.如图,是某市在城区河道上新建成的一座大桥,学校数学兴趣小组在一次数学实践活动中对桥墩的高度进行了测量,测得斜坡BC长为50米,∠CBE=30°,在斜坡顶端C处水平地面上以3.6km/h的速度行走半分钟到达点D,在点D处测得桥墩最高点A的仰角为34°.(1)水平地面CD长为米;(2)求桥墩AB的高(结果保留1位小数).(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.68,√3≈1.73)14.小明在①号楼的C处测得建筑物AB的顶端A的仰角是35°,在地面D处测得A的仰角是55°.E为①号楼底端一点,已知CE=DE=9米,且A,B,C,D,E在同一平面上,求建筑物AB的高度.(参考数据:sin55°≈0.8,tan55°≈1.4,sin35°≈0.6,tan35°≈0.7)15.如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等.(1)求证:△ABC≌△DEF;(2)若滑梯的长度BC=10米,DE=8米,分别求出滑梯BC与EF的坡度;(3)在(2)的条件下,由于EF太陡,在保持EF长不变的情况下,现在将点E向下移动,点F随之向右移动.①若点E向下移动的距离为1米,求滑梯EF底端F向右移动的距离;②在移动的过程中,直接写出△DEF面积的最大值.。
锐角三角函数(培优)

知识要点1、锐角三角函数定义斜边的对边αα∠=sin 斜边的邻边αα∠=cos的邻边的对边ααα∠∠=tan 的对边的邻边ααα∠∠=cot 2、 特殊角的三角函数值300、450、600、的记忆规律: 3、角度变化与锐角三角函数的关系当锐角α在00∽900之间变化时,正弦(切)值随着角度的增大而增大;余弦(切)值随着角度的增大而减少。
4、同角三角函数之间有哪些关系式平方关系:sin 2A +cos 2A =1; 商数关系:sinA/cosA =tanA ; 倒数关系:tanA ·tanB =1; 5、互为余角的三角函数有哪些关系式Sin (900-A )=cosA ; cos (900-A )=sin A ; tan (900-A )=ctan A ;一、选择题1.在Rt △ABC 中,∠C =900,∠A =∠B ,则sinA 的值是( ).A .21 B .22 C .23D .12.在△ABC 中,∠A =105°,∠B =45°,tanC 的值是( ). A .21 B .33C .1D .3 3.在Rt △ABC 中,如果各边的长度都缩小至原来的51,那么锐角A 的各个三角函数值( ). A .都缩小51B .都不变C .都扩大5倍D .仅tan A 不变 4.如图,菱形ABCD 对角线AC =6,BD =8,∠ABD =α.则下列结论正确的是( ). A .sin α=54B .cos α=53 C .tan α= 34 D .tan α= 43 5.在Rt △ABC 中,斜边AB 是直角边AC 的3倍,下列式子正确的是( ). A .423sin =A B .31cos =B C .42tan =A D .2tan 4B = 6.已知ΔABC 中,∠C =90,CD 是AB 边上的高,则CD :CB 等于( ).A .sinAB .cosAC .tanAD .1tan A7.等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ).A.513B.1213 C.1013D.5128.如图,在△EFG 中,∠EFG =90°,FH ⊥EG ,下面等式中,错误..的是( ). A. sin EF G EG =B. sin EH G EF =C. sin GH G FG =D. sin FHG FG= 9.身高相同的三个小朋友甲、乙、丙风筝,他们放出的线长分别为300米、250米、200米,线与地面所成的角为30°、ACB45°、60°(风筝线是拉直的),则三人所放的风筝( ).A .甲的最高B .乙的最低C .丙的最低D .乙的最高10.如图,已知矩形ABCD 的两边AB 与BC 的比为4:5,E 是AB 上的一点,沿CE 将ΔEBC 向上翻折,若B 点恰好落在边AD 上的F 点,则tan ∠DCF 等于( ).A .43B .34 C .53 D .35第4题 第8题 第10题二、填空题11.32 可用锐角的正弦表示成__________.12.如图表示甲、乙两山坡情况,其中t a n α_____t a n β,_____坡更陡. (前一空填“>”“<”或“=”,后一空填“甲”“乙”)13.在Rt △ABC 中,若∠C =900,∠A =300,AC =3,则BC =__________. 14.在Rt △ABC 中,∠C =900,a =2, sinA =13, 则c =______. 15.如图,P 是∠α的边OA 上一点,且P 点的坐标为(3,4),则sin (900 - α)=_______.16.已知tan α·tan30°=1,且α为锐角,则α=______. 17.在△ABC 中,∠A =21∠B =31∠C ,则∠A = ,若BC =4,则AB = .18.已知直角三角形的两直角边的比为1:7,则最小角的正弦值为__________. 三、解答题19.在Rt △ABC 中,∠C =900,AB =13,BC =5, 求A sin , A cos ,A tan . 20.计算: (1)︒⨯︒45cos 2260sin 21(2)tan 230°+cos 230°-sin 245°tan45° CBAEF Dαβ1213 34甲乙(3)0000tan 60tan 45tan 60tan 45-g +2sin 60°21.在△ABC 中,∠C =90°,sinA =32,求cosA 、tanB .22.已知α为锐角,求下列各题中α的度数: (1)tan(α+12°)=33 (2)24cos 10α-= 23.在△ABC 中,内角∠A 、∠B 满足|sinA -23|+(1-tanB)2=0,请说出△ABC 的至少三个特征.24.在△ABC 中,∠C =900,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,试证明sin 2A +cos 2A =1;并利用这个公式计算:若sinA =71,求cosA 的值(∠A 为锐角). 25. 如图,△ABC 中,已知∠ACB =90°,CD ⊥AB 于D ,AC=BD =3. (1)求cosA(2)求BC 的长及△ABC 的面积.26.在△ABC 中,∠A =1200,AB =12,AC =6.求sinB +sinC 的值.(提示:过C 点作CE ⊥BA 交BA 的延长线于E ,过点B 作BD ⊥CA 交CA 的延长线于D .)ABCED1.如图1,一架飞机在空中P 处探测到某高山山顶D 处的俯角为60°,此后飞机以300米/秒的速度沿平行于地面AB 的方向匀速飞行,飞行10秒到山顶D 的正上方C 处,(精确到千米)A 图12.如图,水坝的横断面是梯形,背水坡AB 的坡角∠BAD=ο60,坡长AB=m 320,为加强水坝强度,将坝底从A 处向后水平延伸到F 处,使新的背水坡的坡角∠F=ο45,求AF 的长度(结果精确到1米, 参考数据:414.12≈,732.13≈).3.施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB =4米,斜面距离BC =米,斜坡总长DE =85米. (1)求坡角∠D 的度数(结果精确到1°);(2)若这段斜坡用厚度为17cm 的长方体台阶来铺,需要铺几级台阶4. 在东西方向的海岸线l 上有一长为1km 的码头MN (如图),在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30°,且与A 相距40km的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东60°,且与A 相距83km 的C 处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN 靠岸请说明理由.5. 如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米. (1)求新传送带AC 的长度;(2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到米,参考数据:2≈,3≈,5≈,6≈NM 东北BCAl(2题图)17cm(第3题)A BCD参考数据 cos20°≈, sin20°≈,sin18°≈,ABE F QP第5题6.如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BF Q=60°,EF=1km.(1)判断ABAE的数量关系,并说明理由;(2)求两个岛屿A和B之间的距离(结果精确到).(参考数据:3≈,sin74°≈,cos74°≈,tan74°≈,sin76°≈,cos76°≈)7.图1为已建设封顶的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的长.8.在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.(1)试通过计算,比较风筝A与风筝B谁离地面更高(2)求风筝A与风筝B的水平距离.(精确到m;参考数据:sin45°≈,cos45°≈,tan45°=1,sin60°≈,cos60°=,tan60°≈)9.为了缓解酒泉市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°.求路况显示牌BC的高度.AB4560CE D(第19题10.如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC为______米(精确到).(参考数据:414.12≈732.13≈)11. 2009年首届中国国际航空体育节在莱芜举办,期间在市政府广场进行了热气球飞行表演.如图,有一热气球到达离地面高度为36米的A 处时,仪器显示正前方一高楼顶部B 的仰角是37°,底部C 的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米(结果精确到米)(参考数据:,75.037tan ,80.037cos ,60.037sin ≈︒≈︒≈︒73.13≈)12. 摩天轮是嘉峪关市的标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C 处测得摩天轮的最高点A 的仰角为45︒,再往摩天轮的方向前进50 m 至D 处,测得最高点A 的仰角为60︒. 求该兴趣小组测得的摩天轮的高度AB (3 1.732≈, 结果保留整数).13.小明想知道西汉胜迹中心湖中两个小亭A 、B 之间的距离,他在与小亭A 、B 位于同一水平面且东西走向的湖边小道l 上某一观测点M 处,测得亭A 在点M 的北偏东30°, 亭B 在点M 的北偏东60°,当小明由点M 沿小道l 向东走60米时,到达点N 处,此时测得亭A 恰好位于点N 的正北方向,继续向东走30米时到达点Q 处,此时亭B 恰好位于点Q 的正北方向,根据以上测量数据,请你帮助小明计算第19题图ABC D45°60° 第(12)题BAC(第11题图)湖中两个小亭A 、B 之间的距离.14. 小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)15.如图,某天然气公司的主输气管道从A 市的东偏北30°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上寻找支管道连接点N ,使到该小区铺设的管道最短,并求AN 的长.第15题图B37° 48°DCA。
天津市九年级数学下册第二十八章《锐角三角函数》经典题(培优练)

一、选择题1.若菱形的边长为2cm ,其中一内角为60°,则它的面积为( )A .232cmB .23cmC .22cmD .223cm 2.如图,在正方形方格纸中,每个小方格边长为1,A ,B ,C ,D 都在格点处,AB 与CD 相交于点O ,则sin ∠BOD 的值等于( )A .1010B .31010C .2105D .1053.如图,旗杆AB 竖立在斜坡CB 的顶端,斜坡CB 长为65米,坡度为125i =小明从与点C 相距115米的点D 处向上爬12米到达建筑物DE 的顶端点E ,在此测得放杆顶端点A 的仰角为39°,则旗杆的高度AB 约为( )米.(参考数据:sin390.63︒≈,cos390.78︒≈,tan390.81︒≈)A .12.9B .22.2C .24.9D .63.14.如图,将一副三角尺如图所示叠放在一起,则BE CE的值是( )A 3B 3C .2D 3 5.如图,O 是ABC 的外接圆,60BAC ∠=︒,若O 的半径OC 为1,则弦BC 的长为( )A .12B .32C .1D .36.已知二次函数y =ax 2+6ax +c (a <0),设抛物线与x 轴的交点为A (﹣7,0)和B ,与y 轴的交点为C ,若∠ACO =∠CBO ,则tan ∠CAB 的值为( )A .142B .22C .73D .777.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,下面四个结论:①CF=2AF ;②tan ∠CAD=22 ;③DF=DC ;④△AEF ∽△CAB ;⑤S 四边形CDEF =52S △ABF ,其中正确的结论有( )A .2个B .3个C .4个D .5个8.如图,在Rt ABC ∆中,90C ∠=︒,30BAC ∠=︒,延长CA 到点D ,使AD AB =,连接BD .根据此图形可求得tan15︒的值是( )A .23B .23C 3D .32 9.如图,为一幅重叠放置的三角板,其中∠ABC=∠EDF=90°,BC 与DF 共线,将△DEF 沿CB 方向平移,当EF 经过AC 的中点O 时,直线EF 交AB 于点G ,若BC=3,则此时OG 的长度为( )A .322B .332C .32D .33322- 10.如图,菱形ABCD 的边长为2,且∠ABC =120°,E 是BC 的中点,P 为BD 上一点,且△PCE 的周长最小,则△PCE 的周长的最小值为( )A .3+1B .7+1C .23+1D .27+1 11.如图,反比例函数k y x=(0)k ≠第一象限内的图象经过ABC ∆的顶点A ,C ,AB AC =,且BC y ⊥轴,点A ,C ,的横坐标分别为1,3,若120BAC ∠=︒,则k 的值为( )A .1B .2C .3D .212.如图,在△ABC 中,∠ABC =90°,D 为BC 的中点,点E 在AB 上,AD ,CE 交于点F ,AE =EF =4,FC =9,则cos ∠ACB 的值为( )A .35B .59C .512D .4513.如图,△ABC 中,∠C =90°,BC =2AC ,则cos A =( )A .12B .52C .255D .5514.在平面直角坐标系中,正方形1111D C B A 、1122D E E B 、2222A B C D 、2343D E E B 、3333A B C D …按如图所示的方式放置,其中点1B 在y 轴上,点1C 、1E 、2C 、3E 、4E 、3C …在x 轴上,已知正方形1111D C B A 的边长为1,1160B C O ∠=︒,112233B C B C B C …则正方形2019201920192019A B C D 的边长是( )A .201812⎛⎫ ⎪⎝⎭B .201912⎛⎫ ⎪⎝⎭C .201933⎛⎫ ⎪ ⎪⎝⎭D .201833⎛⎫ ⎪ ⎪⎝⎭15.如图所示,矩形ABCD 的边长AB =2,BC =23,△ADE 为正三角形.若半径为R 的圆能够覆盖五边形ABCDE (即五边形ABCDE 的每个顶点都在圆内或圆上),则R 的最小值是( )A .3B .4C .2.8D .2.5二、填空题16.某人沿坡度是1:2的斜坡走了100米,则他上升的高度是_____米.17.如图,梯形ABCD 是拦水坝的横断面图,(图中1:3i =DE与水平宽度CE 的比),60B ∠=,6AB =,4=AD ,拦水坝的横断面ABCD 的面积是________(结果保留三位有效数字,参考数据:3 1.732=,2 1.414=)18.在直角三角形ABC 中,∠ACB=90°,D 、E 是边AB 上两点,且CE 所在直线垂直平分线段AD ,CD 平分∠BCE ,BC=23,则AB=_____.19.在ABCD 中,若30B ∠=︒,BC 10cm =,6AB cm =,则ABCD 的面积是__________.20.如图,MN 是半径为1的O 的直径,点A 在O 上,30AMN ∠=︒,点B 是AN 的中点,点P 是直径MN 上一个动点,则PA PB +的最小值为______.21.已知在矩形ABCD 中,AC =12,∠ACB =15°,那么顶点D 到AC 的距离为_____. 22.如图,已知∠AOB =60°,点P 在边OA 上,OP =12,点M ,N 在边OB 上,PM =PN ,若MN =2,则OM =____.23.如图,ABCD 是一张边长为4cm 的正方形纸片,E ,F 分别为AB ,CD 的中点,沿过点D 的折痕将A 角翻折,使得点A 落在EF 上的点A′处折痕交AE 于点G ,则∠ADG=____°EG=___cm .24.如图,边长为6的正方形ABCD 绕点C 按顺时针方向旋转30后得到正方形EFCG ,EF 交AD 于点H ,则DH =____________.25.如图,某建筑物的顶部有一块标识牌CD ,小明在斜坡上B 处测得标识牌顶部C 的仰角为45︒,沿斜坡走下来在地面A 处测得标识牌底部D 的仰角为60°,已知斜坡AB 的坡角为30°,10AB AE ==米. 则标识牌CD 的高度是米__________.26.如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,∠AOB =∠B =30°,OA =2,将△AOB 绕点O 逆时针旋转90°,点B 的对应点B'的坐标是_______.三、解答题27.(1)计算:|﹣1|﹣(3﹣π)016(﹣12)-1+2cos60°; (2)解方程:2x (x ﹣1)=x ﹣1.28.如图,某乡村有一块菱形空地ABCD ,∠A =60°,AB =40米,现计划在内部修建一个四个顶点分别落在菱形四条边上的矩形鱼池EFGH ,其余部分种花草,园林公司修建鱼池,设AE 为x 米.(1)填空:ED = 米,EH = 米,(用含x 的代数式表示);(2)若矩形鱼池EFGH 的面积是32,求EF 的长度;(3)若草坪的造价为每平方米60元,鱼池造价为每平方米50元,EF 的长度为多少时,修建的鱼池和草坪的总造价最低,最低造价为多少元?29.(1)计算:(﹣2)﹣3+16﹣2sin30°+(2020﹣π)0+|3﹣4|;(2)解不等式组3(1)(5)01223x x x x ---≥⎧⎪+⎨>⎪⎩,并求出正整数解. 30.如图,在ABC ∆中,5AC =,3tan 4A =,45B ∠=︒.点P 从点A 出发,沿AB 方向以每秒4个单位长度的速度向终点B 运动(不与点A 、B 重合).过点P 作PH AB ⊥,交折线--AC B 于点H ,点Q 为线段AP 的中点,以PH 、PQ 为边作矩形PQGH .设点P 的运动时间为t (秒).(1)直接写出矩形PQGH 的边PH 的长(用含t 的代数式表示);(2)当点G 落在边AC 上时,求t 的值;(3)当矩形PQGH 与ABC ∆重叠部分图形是四边形时,设重叠部分图形的面积为S (平方单位).求S 与t 之间的函数关系式;(4)当ABC ∆的重心落在矩形PQGH 的内部时,直接写出此时t 的取值范围.。
九年级培优锐角三角函数.doc

佢®H疏模块一三角函数基础锐角三角函数的定义如图所示,在RtAABC屮,a、b、c分别为ZA、ZB、上C的对边.(1)正眩:RtMBC中,锐角A的对边与斜边的比叫做ZA的正弦,记作sinA, BP sinA = -.c(2)余弦:RtMBC屮,锐角4的邻边与斜边的比叫做ZA的余弦,记作cosA,即cosA = -.C(3)正切:RtAABC中,锐角A的对边与邻边的比叫做ZA的正切,记作tan A ,即tanA = -.b注意:①正弦、余弦、正切都是在直角三角形中给出的,要避免应用时对任意三角形随便套用定义.②sin A、cos A、urn A分别是正弦、余弦、正切的数学表达符号,是一个整体,不能理解为sin与A、cos 与A、tan与A的乘积.③在直角三角形中,正弦、余弦、正切分别是某个锐角的对边与斜边、邻边与斜边、对边与邻边的比值,当这个锐角确定后,这些比值都是固定值.二、特殊角三角函数三角函数0°30°45°60°90°sin A012返2更21cos A1週2V2212这些特殊角的三角函数值一定要牢牢记住!三、锐角三角函数的取值范围在RtAABC 中,ZC = 90° , a>0, b>0, c > 0, a <c, b <c, X sin A = —f cos A = — c c 以0 v sin A < 1, 0 v cos A < 1, tan A > 0.四、三角函数关系1.同角三角函数关系:2.互余角三角函数关系:(1)任意锐角的正弦值等于它的余角的余弦值:sin A = cos (90°-A);(2)任意锐角的余弦值等于它的余角的正弦值:cos A = sin (90°-A);(3)任意锐角的正切值等于它的余角的余切值:tan A = cot (90°-A).3.锐角三角函数值的变化规律:(1)A^ B 是锐角,若A〉B,贝0 sin A > sin B :若A<B,贝!j sin A < sin B(2)A、B 是锐角,若A>B,贝ij cos A < cos B ;若AvB,贝lj cos A > cos B(3)A、B 是锐角,若A>B,贝lj tan A > tan B :若AvB,贝>J tan A < tan Z?【例I】己知在"C中,S /B是锐角,且sinA寻论=2,遊29旳,则S A ,tan A =—,所bsin2A 4- cos2 A = 1 , tan A =sin A cos A【巩固】如图,点A 在半径为/?的0上,以A 为圆心,厂为半径作A,设0的弦PQ 与A 相切,求证PA ・04为定值.【例2 ]求 tan 1 ° • tan 2°- lan 3° ・• tan 89° 的值sincr+ coscr sin 2 a l-tan 2a +sina-cos«・ l-cos'a sin a + --------------------- :【例 3】 已知 tana = V5,求(1) --------- ,(2) (0°va<90。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A BCD αA (第7题)1l 3l 2l 4lA D EB 图C一、锐角三角函数定义:sin αα∠=的()()cos αα∠=的()() tan α=()()例1.在△ABC 中,∠C =90°,sinA =32,求cosA 、tanB .例2.△ABC 中,已知∠ACB =90°,CD ⊥AB 于D ,AC =63,BD =3. (1)求cosA (2)求BC 的长及△ABC 的面积.例3.如图,在△ABC 中,∠C =90°,∠B =30°,AD 是∠BAC 的角平分线,与BC 相交于点D ,且AB =43,求AD 的长.例4.如图1,已知AD 是等腰△ABC 底边上的高,且tan ∠B=43,AC 上有一点E ,满足AE:CE=2:3则tan ∠ADE 的值是练习.1.在7,35,90==∠=AB B中,则BC 的长为( )(A )35sin 7(B )35cos 7(C )35cos 7 (D ).35tan 72.在Rt △ABC 中,斜边AB 是直角边AC 的3倍,下列式子正确的是( ). A .423sin =A B .31cos =B C .42tan =A D .2tan B = 3.已知ΔABC 中,∠C =90,CD 是AB 边上的高,则CD :CB 等于( ).A .sinAB .cosAC .tanAD .1tan A4. Rt△ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,那么c 等于( )A.cos sin a A b B +B.sin sin a A b B + C sin sin a b A B +. D.cos sin a b A B +5. 如图,在Rt△ABC 中,∠ACB=90°,CD⊥AB,垂足为D .若AC=5,BC=2,则sin∠ACD 的值为6. 在Rt △ABC 中,∠C =90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cot A =ab.则下列关系式中不成立...的是( )(A )tan A ·cot A =1 (B )sin A =tan A ·cos A (C )cos A =cot A ·sin A (D )tan 2A +cot 2A =17.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= .8.如图,已知矩形ABCD 的两边AB 与BC 的比为4:5,E 是AB 上的一点,沿CE 将ΔEBC 向上翻折,若B 点恰好落在边AD 上的F 点,则tan ∠DCF 等于C BAEF D 第8题 CMBA 第7题D B C AC B第2题9.如图,在Rt △ABC 中,∠C =90°, AM 是BC 边上的中线,53sin =∠CAM ,则B ∠tan 的值为. 第(14)题DC AFBE GFD A10.如图,在△ABC 中,∠A =1200,AB =12,AC =6.求sinB +sinC 的值 .11.如图,直角梯形ABCD 中,AB ⊥BC ,AD ∥BC ,BC >AD ,AD =2,AB =4,点E 在AB 上,将△CBE 沿CE 翻折,使得B 点与D 点重合,则∠BCE 的正切值为 . 12. 如图,点E 是矩形ABCD 中CD 边上一点,⊿BCE 沿BE 折叠为⊿BFE,点F 落在AD 上.(1)求证:⊿ABF ∽⊿DFE ;(2)若sin∠DFE=31,求tan∠EBC 的值13.已知平行四边形ABCD 中,对角线AC 和BD 相交于点O ,AC=10, BD=8. (1)若AC ⊥BD ,试求四边形ABCD 的面积 ;(2)若AC 与BD 的夹角∠AOD=60,求四边形ABCD 的面积;(3)试讨论:若把题目中“平行四边形ABCD ”改为“四边形ABCD ”,且∠AOD=θAC=a ,BD=b ,试求四边形ABCD 的面积(用含θ,a ,b 的代数式表示).14.如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的点,AD BE =,AE 与CD 交于点F ,AG CD ⊥于点G , 求AGAF的值.二、特殊角的三角函数值300、450、600、的记忆规律: 例1.在△ABC 中,∠A =21∠B =31∠C ,则∠A = ,若BC =4,则AB = .例2.在△ABC 中,∠C 为直角, ∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知a=25,b=215,求c 、∠A 、∠B .练习:1.在△ABC 中,内角∠A 、∠B 满足|sinA -23|+(1-tanB)2=0,请说出△ABC 的至少三个特征. 2.计算(1)︒⨯︒45cos 2260sin 21 (2)tan 230°+cos 230°-sin 245°tan45° (3)0000tan 60tan 45tan 60tan 45-+2sin 60EDCB ACBA第7题D NEF M C B A aN M C D A B (第9题) DC 1B 1A BC AC D BAE FD°(4). 计算:20113015(1)()(cos68)338sin 602π---+++-.3.身高相同的三个小朋友甲、乙、丙风筝,他们放出的线长分别为300米、250米、200米,线与地面所成的角为30°、45°、60°(风筝线是拉直的),则三人所放的风筝( ).A .甲的最高B .乙的最低C .丙的最低D .乙的最高4.因为cos 30°= 3 2 ,cos 210°=﹣ 3 2 ,所以cos 210°=cos(180°+30°)=﹣cos 30°=﹣ 3 2 ,因为cos 45°=2 2 ,cos 225°=﹣ 2 2 ,所以cos 225°=cos (180°+45°)=﹣ 22,猜想:一般地,当α为锐角时,有cos (180°+α)=﹣cosα,由此可知cos 240°的值等于 .5.如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根号).6.将一副三角尺如图所示叠放在一起,若AB=14cm ,则阴影部分的面积是_________cm 2。
7.如图,将边长为33+的等边ABC ∆折叠,折痕为DE ,点B 与点F 重合,EF 和DF 分别交AC 于点M 、N ,AB DF ⊥,垂足为D ,1=AD .设DBE ∆的面积为S ,则重叠部分的面积为 .(用含S 的式子表示) 如图,矩形ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N . 则DM +CN 的值为 (用含a 的代数式表示)8. 如图,为了测量河宽AB (假设河的两岸平行),测得∠ACB =30°,∠ADB =60°,CD =60m ,则河宽AB 为 m(结果保留根号).9. 如图,在Rt △ABC 中,∠ABC=90°,∠ACB=30°,将△ABC 绕点A 按逆时针方向旋转15°后得到△AB 1C 1,B 1C 1交AC 于点D ,如果AD=22,则△ABC 的周长等于 .10.如图,在直角坐标系中,将矩形OABC 沿OB 对折,使点A 落在1A 处,已知3OA =,1AB =,则点1A 的坐标是11. 如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE=60°,BD=4,CE=43,则△ABC 的面积为A E C (F ) DB 图(1) E AGBC (F )D 图(2)图5 B AC D E 第11第8题 第9题 第10题A DE C BF 第12题12.如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,则tan EFC ∠的值为13.如图,直角梯形纸片ABCD 中,AD ∥BC ,∠A =90°,∠C =30°.折叠纸片使BC 经过点D .点C 落在点E 处,BF 是折痕,且BF = CF =8.(l )求∠BDF 的度数;(2)求AB 的长.14. 小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O 距离地面的高OO ′=2米.当吊臂顶端由A 点抬升至A ′点(吊臂长度不变)时,地面B 处的重物(大小忽略不计)被吊至B ′处,紧绷着的吊缆A ′B ′=AB .AB 垂直于地面O ′B 于点B ,A ′B ′垂直地面O ′B 于点C ,吊臂长度OA ′=OA =10米,且cosA =35,sinA ′=12.⑴求此重物在水平方向移动的距离BC ;⑵求此重物在竖直方向移动的距离B ′C .(结果保留根号)15. 某校初三课外活动小组,在测量树高的一次活动中,如图7所示,测得树底部中心A 到斜坡底C 的水平距离为8. 8m .在阳光下某一时刻测得1米的标杆影长为0.8m ,树影落在斜坡上的部分CD = 3.2m .已知斜坡CD 的坡比i =1高AB 。
1.7)三、角度变化与锐角三角函数的关系当锐角α在00∽900之间变化时,正弦(切)值随着角度的增大而 ;余弦值随着角度的增大而 。
1.若α为锐角,则0______ sin α_______ 1; 0______ cos α_______ 1. 2.若00<α<900,sin α=cos600,则tan α=_________.3.若cosA>cos600,则锐角A 的取值范围是__________.4.用不等号连结右面的式子:cos400_______cos200,sin370_______sin420.5.当锐角A>450时,sinA 的值( ) A .小于22; B .大于22; C .小于23; D .大于23 6.若∠A 是锐角,且sinA=43,则( ) A .00<∠A<300; B .300<∠A<450;C .450<∠A<600;D . 600<∠A<900 7.当∠A 为锐角,且tanA 的值大于33时, ∠A( ) A .小于300; B .大于300; C .小于600; D .大于6008.如图,在Rt △ABC 中,∠C 为直角,CD ⊥AB 于D ,已知AC=3,AB=5,则tan ∠BCD 等于如有侵权请联系告知删除,感谢你们的配合!DCAB第14题图_ A 15题i。