2019-2020年高中数学 第二章 平面向量 第五节 平面向量应用举例(第二课时)示范教案 新人教A版必修4

合集下载

2019_2020学年高中数学第二章平面向量2.1.1向量的概念学案新人教B版必修4

2019_2020学年高中数学第二章平面向量2.1.1向量的概念学案新人教B版必修4

2.1.1 向量的概念1.了解平面向量的实际背景.2.理解平面向量的概念,两个向量相等的含义. 3.掌握向量的几何表示.1.向量的定义及表示方法 (1)向量:具有大小和方向的量. (2)向量的表示方法2.与向量有关的概念(1)零向量:长度等于零的向量,记作0. (2)向量共线或平行基线:通过有向线段AB →的直线,叫做向量AB →的基线.如果向量的基线互相平行或重合,则称这些向量共线或平行.共线向量的方向相同或相反.向量a 平行于b ,记作a ∥b .(3)相等向量:两个向量a 和b 同向且等长,即a 和b 相等,记作a =b . (4)向量的长度(模)如果AB →=a ,那么AB →的长度表示向量a 的大小,也叫做a 的长(或模),记作|a |. 3.用向量表示点的位置任给一定点O 和向量a (如图),过点O 作有向线段OA →=a ,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量OA →常叫做点A 相对于点O 的位置向量.1.判断(正确的打“√”,错误的打“×”) (1)向量的模是一个正实数.( ) (2)向量就是有向线段.( ) (3)向量AB →与向量BA →是相等向量.( )(4)两个向量平行时,表示向量的有向线段所在的直线一定平行.( ) (5)零向量是最小的向量.( )答案:(1)× (2)× (3)× (4)× (5)× 2.已知向量a 如图所示,下列说法不正确的是( )A .也可以用MN →表示 B .方向是由M 指向N C .起点是M D .终点是M 答案:D3.如图,在⊙O 中,向量OB →、OC →、AO →是( )A .有相同起点的向量B .共线向量C .模相等的向量D .相等的向量 答案:C4.若A 地位于B 地正西方向5 km 处,C 地位于A 地正北方向5 km 处,则C 地相对于B 地的位移是________.解析:如图所示C 地相对于B 地的位移是西北方向5 2 km.答案:西北方向5 2 km向量的概念[学生用书P34]下列关于向量的说法正确的个数是( )①起点相同,方向相同的两个非零向量的终点相同;②起点相同,长度相等的两个非零向量的终点相同;③两个平行的非零向量的方向相同;④两个共线的非零向量的起点与终点一定共线.A .3B .2C .1D .0【解析】 起点相同,方向相同的两个非零向量若长度不相等,则终点不相同,故①不正确;起点相同,长度相等的两个非零向量的终点不一定相同,其终点在一个圆上,故②不正确;两个平行的非零向量的方向相同或相反,故③不正确;两个共线的非零向量的起点与终点不一定共线,所对应的直线可能平行,故④不正确.【答案】 D对于概念性题目,关键把握好概念的内涵与外延,正确理解向量共线、向量相等的概念,清楚它们的区别与联系.给出下列几种说法:①若非零向量a 与b 共线,则a =b ; ②若向量a 与b 同向,且|a |>|b |,则a >b ; ③若两向量有相同的基线,则两向量相等. 其中错误说法的序号是______.解析:①错误.共线向量是指向量的基线互相平行或重合,其方向相同或相反,所以共线向量未必相等.②错误.向量是既有大小,又有方向的量,不能比较大小.③错误.两向量有相同的基线表示两向量共线(或平行),但两向量的大小和方向都不一定相同.答案:①②③向量的表示[学生用书P34]一辆汽车从A 点出发向西行驶了100千米到达B 点,然后又改变方向向北偏西40°走了200千米到达C 点,最后又改变方向,向东行驶了100千米到达D 点.(1)作出向量AB →,BC →,CD →; (2)求|AD →|.【解】 (1)如图所示.(2)由题意,易知AB →与CD →方向相反, 故AB →与CD →共线, 即AB ∥CD . 又|AB →|=|CD →|,所以四边形ABCD 为平行四边形. 所以|AD →|=|BC →|=200(千米).用有向线段表示向量的步骤在如图所示的坐标纸中,每个小正方形的边长为1,画出下列向量.(1)|OA →|=3,点A 在点O 正西方向;(2)|OB →|=32,点B 在点O 北偏西45°方向; (3)|BC →|=6,点C 在点B 正东方向. 解:(1)(2)(3)如图:相等向量与共线向量[学生用书P35]如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,OC →=c .(1)与a 的长度相等,方向相反的向量有哪些? (2)与a 共线的向量有哪些?(3)请一一列出与a ,b ,c 相等的向量.【解】 (1)与a 的长度相等且方向相反的向量有OD →,BC →,AO →,FE →. (2)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.(3)与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,FA →;与c 相等的向量有FO →,ED →,AB →.相等向量与共线向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .[注意] 对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.如图所示的▱ABCD ,OA →=a ,OB →=b .(1)与OA →的模相等的向量有多少个? (2)与OA →的模相等且方向相反的向量有哪些? (3)写出分别与OA →、AB →共线的向量.解:(1)与OA →的模相等的向量有OC →,AO →,CO →三个向量. (2)与OA →的模相等且方向相反的向量为OC →,AO →.(3)与OA →共线的向量有AO →,AC →,OC →,CO →,CA →;与AB →共线的向量有DC →,CD →,BA →.1.向量既有大小又有方向,但不能比较大小,向量的模是数量,可以比较大小.对于一个向量,只要不改变它的大小和方向,是可以任意平行移动的.2.平行(共线)概念不是平面几何中平行线概念的简单移植,这里的平行是指方向相同或相反的一对向量,它与长度无关,与是否在一条直线上无关.向量平行与直线平行的区别1.直线的平行具有传递性,即a ∥b ,b ∥c ⇒a ∥c .2.向量的平行不具有传递性,即若a ∥b ,b ∥c ,则未必有a ∥c ,因为若b =0,它与任意向量共线,故a ,c 两向量不一定共线.1.下列物理量:①速度;②位移;③力;④加速度;⑤路程;⑥密度.其中不是向量的有( )A .1个B .2个C .3个D .4个解析:选B.由于速度、位移、力、加速度都是由大小和方向确定,具备了向量的两个要素,所以是向量;而路程、密度只有大小没有方向,所以不是向量.故选B.2.下列关于零向量的说法不正确的是( ) A .零向量是没有方向的向量 B .零向量的方向是任意的 C .零向量与任一向量平行 D .零向量只能与零向量相等解析:选A.零向量的方向是任意的,是有方向的.3.如图,小正方形的边长为1,则|AB →|=________;|CD →|=________;|EF →|=________.解析:根据勾股定理可得|AB →|=32,|CD →|=26, |EF →|=2 2. 答案:3 226 2 24.在四边形ABCD 中,若AB →∥CD →,且|AB →|≠|CD →|,四边形ABCD 为________. 解析:由题意可知,对边AB 与CD 平行且不相等,故四边形ABCD 为梯形.答案:梯形, [学生用书P103(单独成册)])[A 基础达标]1.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等; ④与非零向量a 共线的单位向量是a |a|. A .3 B .2 C .1D .0解析:选D.根据单位向量的定义,可知①②③明显是错误的,对于④,与非零向量a 共线的单位向量是a |a|或-a|a|,故④也是错误的. 2.若a 为任一非零向量,b 的模为1,给出下列各式: ①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1. 其中正确的是( ) A .①④ B .③ C .①②③D .②③解析:选B.①中,|a |的大小不能确定,故①错误;②中,两个非零向量的方向不确定,故②错误;④中,向量的模是一个非负实数,故④错误;③正确.选B.3.下列说法正确的是( )A .若a 与b 平行,b 与c 平行,则a 与c 一定平行B .终点相同的两个向量不共线C .若|a|>|b|,则a>bD .单位向量的长度为1解析:选D.A 中,因为零向量与任意向量平行,若b =0,则a 与c 不一定平行.B 中,两向量终点相同,若夹角是0°或180°,则两向量共线.C 中,向量是既有大小,又有方向的量,不可以比较大小.4.若|AB →|=|AD →|且BA →=CD →,则四边形ABCD 的形状为( ) A .正方形B .矩形C .菱形D .等腰梯形解析:选C.由BA →=CD →,知AB =CD 且AB ∥CD , 即四边形ABCD 为平行四边形. 又因为|AB →|=|AD →|, 所以四边形ABCD 为菱形.5.如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A .AB →=OC → B .AB →∥DE → C .|AD →|=|BE →|D .AD →=FC →解析:选D.由题图可知,|AD →|=|FC →|,但AD →、FC →不共线,故AD →≠FC →,故选D. 6.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.解析:因为正方形的对角线长为22, 所以|OA →|= 2. 答案: 27.给出下列三个条件:①|a |=|b |;②a 与b 方向相反;③|a |=0或|b |=0,其中能使a ∥b 成立的条件是________.解析:由于|a |=|b |并没有确定a 与b 的方向, 即①不能够使a ∥b 成立; 因为a 与b 方向相反时,a ∥b , 即②能够使a ∥b 成立; 因为零向量与任意向量共线, 所以|a |=0或|b |=0时,a ∥b 能够成立.故使a ∥b 成立的条件是②③. 答案:②③8.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC →是共线向量,则m =________.解析:因为A ,B ,C 不共线, 所以AB →与BC →不共线. 又m 与AB →,BC →都共线, 所以m =0. 答案:09.在如图的方格纸(每个小方格的边长为1)上,已知向量a .(1)试以B 为起点画一个向量b ,使b =a ;(2)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么. 解:(1)根据相等向量的定义,所作向量b 应与a 同向,且长度相等,如图所示.(2)由平面几何知识可作满足条件的向量c ,所有这样的向量c 的终点的轨迹是以点C 为圆心,2为半径的圆,如图所示.10.如图所示,在四边形ABCD 中,AB →=DC →,N 、M 分别是AD 、BC 上的点,且CN →=MA →.求证:DN →=MB →.证明:因为AB →=DC →, 所以|AB →|=|DC →|且AB ∥CD , 所以四边形ABCD 是平行四边形, 所以|DA →|=|CB →|且DA ∥CB .同理可得,四边形CNAM 是平行四边形, 所以CM →=NA →. 所以|CM →|=|NA →|, 所以|MB →|=|DN →|, 又DN →与MB →的方向相同, 所以DN →=MB →.[B 能力提升]11.在菱形ABCD 中,∠DAB =120°,则以下说法错误的是( ) A .与AB →相等的向量只有一个(不含AB →) B .与AB →的模相等的向量有9个(不含AB →) C .BD →的模恰为DA →模的3倍 D .CB →与DA →不共线解析:选D.两向量相等要求长度(模)相等,方向相同.两向量共线只要求方向相同或相反.D 中CB →,DA →所在直线平行,向量方向相同,故共线.12.如图所示,已知四边形ABCD 是矩形,O 为对角线AC 与BD 的交点,设点集M ={O ,A ,B ,C ,D },向量的集合T ={PQ →|P ,Q ∈M ,且P ,Q 不重合},则集合T 有________个元素.解析:以矩形ABCD 的四个顶点及它的对角线交点O 五点中的任一点为起点,其余四点中的一个点为终点的向量共有20个.但这20个向量中有8对向量是相等的,其余12个向量各不相等,即为AO →(OC →)、OA →(CO →),DO →(OB →),BO →(OD →),AD →(BC →),DA →(CB →),AB →(DC →),BA →(CD →),AC →,CA →,BD →,DB →,由元素的互异性知T 中有12个元素.答案:1213.某人从A 点出发向东走了5米到达B 点,然后改变方向沿东北方向走了102米到达C 点,到达C 点后又改变方向向西走了10米到达D 点.(1)作出向量AB →,BC →,CD →; (2)求向量AD →的模.解:(1)作出向量AB →,BC →,CD →,如图所示:(2)由题意得,△BCD 是直角三角形,其中∠BDC =90°,BC =102米,CD =10米,所以BD =10米.△ABD 是直角三角形,其中∠ABD =90°,AB =5米,BD =10米,所以AD =52+102=55(米).所以|AD →|=55米.14.(选做题)如图所示方格纸由若干个边长为1的小正方形并在一起组成,方格纸中有两个定点A ,B ,点C 为小正方形的顶点,且|AC →|= 5.(1)画出所有的向量AC →;(2)求|BC →|的最大值与最小值.解:(1)画出所有的向量AC →,如图所示.(2)由第一问所画的图知,①当点C 位于点C 1和C 2时,|BC →|取得最小值12+22=5;②当点C 位于点C 5和C 6时,|BC →|取得最大值42+52=41.所以|BC →|的最大值为41,最小值为 5.。

2019-2020学年高中数学第二章平面向量2.2.1向量加法运算及其几何意义

2019-2020学年高中数学第二章平面向量2.2.1向量加法运算及其几何意义

③当两个非零向量a与b反向且|a|<|b|时(如图2),则a+b与b方向相同 (与a方向相反),且|a+b|=||a|-|b||. ④当两个向量a与b中至少有一个为0时,则必有|a+b|=|a|+|b|=||a||b||. 综上可知任意两个向量a,b恒有||a|-|b||≤|a+b|≤|a|+|b|.
uuur uuur 则飞机飞行的路程指的是| AB |+| BC |;
uuur uuur uuur 两次飞行的位移的和指的是 AB + BC = AC .
uuur uuur 依题意,有| AB |+| BC |=800+800=1 600(km), 又α=35°,β=55°,∠ABC=35°+55°=90°,
新知导学 课堂探究
新知导学·素养养成
1.向量加法的定义 定义:求两个向量 和 的运算,叫做向量的加法. 对于零向量与任一向量a,规定0+a=a+ 0 = a .
2.向量求和的法则
三角形 法则
法则
前提 作法
结论
已知非零向量a,b,在平面内任取一点A
uuur uuur
uuur
作 AB =a, BC =b,再作向量 AC
uuur uuur uuur uuur uuur uuur uuur uuur (1)解析:a=( AB + CD )+( BC + DA )= AB + BC + CD + DA =0, 所以 0∥b,①正确;0+b=b,③正确;|0+b|=|0|+|b|,⑤正确.故选 C.
uuur uuur uuur (2)化简:① AB + CD + BC ;

二、平面的法向量及其应用+课件-高二上学期数学北师大版(2019)选择性必修第一册

二、平面的法向量及其应用+课件-高二上学期数学北师大版(2019)选择性必修第一册

5
8
是平面 α 内的三点,设平面 α 的法向量 =
2: 3: −4
x, y, z ,则 x: y: z = ___________.
>
m
<
[解析] 因为 AB = 1, −3, −
>
m
<
所以
x − 3y
>
m
<
7
− z=
4
7
7
4
0,
−2x − y − z = 0,
4
2
3
>
/m
<
4
3
>
/m
<
>
/m
<
m
<
>
/m
<
是 AB , BA , A1 B1 , DC , C1 D1 等.每一个表面的法向量也有多个,例如平面 ABB1 A1 的法
>
m
<
>
/m
<
>
m
<
>
/m
<
>
m
<
>
/m
<
>
m
<
>
/m
<
>
m
<
>
/m
<
>
m
<
向量可以是 AD , CB , D1 A1 , B1 C1 等.
>
m
<
>
/m
<
>
m
<
>

高中数学第二章平面向量向量应用举例例题与探究(含解析)

高中数学第二章平面向量向量应用举例例题与探究(含解析)

2.7 向量应用举例典题精讲例1用向量法证明平行四边形两对角线的平方和等于四条边的平方和。

思路分析:把平行四边形的边和对角线的长看成向量的长度,转化为证明向量长度之间的关系.基向量法和坐标法均可解决.答案:已知:四边形ABCD是平行四边形,求证:|AC|2+|BD|2=2|AB|2+2|AD|2。

证法一:如图2—7—1所示,设AB=a, AD=b,∴AC=AB+AD=a+b,BD=AD-AB=b-a。

图2-7—1∴|AC|2=(a+b)2=a2+2a·b+b2,|BD|2=(b—a)2=a2-2a·b+b2。

∴|AC|2+|BD|2=2a2+2b2.又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和.证法二:如图2—7-2所示,以A为原点,以AB所在直线为x轴,建立直角坐标系.设A(0,0)、D(a,b)、B(c,0),∴AC=AB+AD图2—7-2=OB+OD=(c,0)+(a,b)=(a+c,b),BD=AD—AB=OD—OB=(a,b)-(c,0)=(a-c,b)。

∴|AC|2=(c+a)2+b2,|BD|2=(a-c)2+b2.∴|AC|2+|BD|2=2a2+2c2+2b2。

又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2c2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和。

绿色通道:1。

向量法解决几何问题的步骤:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算(有基向量法和坐标法两种),研究几何元素之间的关系;③把运算结果“翻译”成几何关系。

这是用向量法解决平面几何问题的“三步曲”.又简称为:一建二算三译;也可说成为:捡便宜(建算译)。

高一数学必修4课件:2-5平面向量应用举例

高一数学必修4课件:2-5平面向量应用举例

第二章
2.5
成才之路 ·数学 ·人教A版 · 必修4
[证明] c.
→ → → 如图所示,设CB=a,CA=b,AB=c,则a=b+
∴a2=(b+c)· a=a· b+a· ① c 又a与b的夹角为∠C,a与c的夹角大小等于∠B的大小, 故①式可化为:|a|2=|a||b|cosC+|a||c|cosB, 即|a|=|b|cosC+|c|cosB, 也即a=b cosC+c cosB.
第二章
2.5
成才之路 ·数学 ·人教A版 · 必修4
命题方向
向量在物理中的应用
用向量法研究物理问题 (1)求力向量,速度向量常用的方法一:一般是向量几 何化,借助于向量求和的平行四边形法则求解. (2)用向量方法解决物理问题的步骤: ①把物理问题中的相关量用向量表示; ②转化为向量问题的模型,通过向量运算使问题解决; ③结果还原为物理问题.
1 1 [答案] 10 -2
第二章
2.5
成才之路 ·数学 ·人教A版 · 必修4
新课引入 任何一种工具的发明,都是为了方便解决问题.蒸汽机 的发明推动了工业革命,极大地解放了生产力,促进了社会 经济的发展,而网络的发明与发展则促进了全球化的发展和 地球村的形成.
第二章
2.5
成才之路 ·数学 ·人教A版 · 必修4
2.5
成才之路 ·数学 ·人教A版 · 必修4
→ → 1.若向量 OF1 =(1,1), OF2 =(-3,-2)分别表示两个力 → → → → F1 ,F2 ,则|F1 +F2 |为( A.(5,0) C. 5 )
识讨论力及角的关系.
第二章
2.5
成才之路 ·数学 ·人教A版 · 必修4
[解析]

第二章 平面向量应用举例

第二章 平面向量应用举例

思路分析:由题目可获取以下主要信息: ①△ABC 的三个顶点坐标已知; ②D、E、F 分别为三边的中点. 解答本题可利用向量共线及垂直关系进行处理.
人教A版必修四· 新课标· 数学
版块导航
解:(1)由已知得点 D(-1,1),E(-3,-1),F(2,-2), 设 M(x,y)是直线 DE 上任意一点, → → → → 则DM∥DE.DM=(x+1,y-1),DE=(-2,-2). ∴(-2)×(x+1)-(-2)(y-1)=0, 即 x-y+2=0 为直线 DE 的方程. 同理可求,直线 EF,FD 的方程分别为 x+5y+8=0,x+y=0.
人教A版必修四· 新课标· 数学
版块导航
人教A版必修四· 新课标· 数学
版块导航
平面向量在平面几何中的应用 【例 1】 已知 Rt△ABC,∠C=90° ,设 AC=m,BC =n, 1 (1)若 D 为斜边 AB 的中点,求证:CD= AB; 2 (2)若 E 为 CD 的中点,连接 AE 并延长交 BC 于 F,求 AF 的长度(用 m,n 表示).
答案:B
人教A版必修四· 新课标· 数学
版块导航
4. 一艘船从 A 点出发以 2 3 km/h 的速度向垂直于对岸 的方向行驶,而船实际行驶速度的大小为 4 km/h,则河水的 2 km/h 流速大小为________.
解析:
由图可知 v 水=2 km/h.
人教A版必修四· 新课标· 数学
版块导航
答案:B
Байду номын сангаас
人教A版必修四· 新课标· 数学
版块导航
3.用力 F 推动一物体 G,使其沿水平方向运动 s,F 与 垂直方向的夹角为 θ,则 F 对物体 G 所做的功为( ) A.F· cosθ s· B.|F|· sinθ |s|· C.|F|· cosθ s· D.|F|· sinθ s·

平面几何中的向量方法课件-2022-2023学年高一下学期数学人教A版(2019)必修第二册

平面几何中的向量方法课件-2022-2023学年高一下学期数学人教A版(2019)必修第二册

3
+
2
4
2.已知A,B,C,D四点的坐标分别是(1,0),(4,3),(2,4),(0,2),则
此四边形为( A )
A.梯形
B.菱形
C.矩形
D.正方形
由题意得 =(3,3), =(2,2),
∴ ∥,||≠||.
3.平面上有三个点A(-2,y),B

0,
2
,C(x,y)(x≠0),若
____________________________________________________________.
(2)证明线段垂直问题,如证明四边形是矩形、正方形,判断两直线(或
线段)是否垂直等,常用向量垂直的条件:
a⊥b⇔a·
b=0⇔x1x2+y1y2=0(a=(x1,y1),b=(x2,y2))
1
2
CD=DA= AB,求证:AC⊥BC.
证法二
如图,建立直角坐标系,
设CD=1,则A(0,0),B(2,0),C(1,1),D(0,1).
∴ =(-1,1), =(1,1).
∴ · =(-1,1)·(1,1)=-1+1=0.
∴AC⊥BC.
方法总结
用向量证明平面几何问题的两种基本思路
___________________________________________________.
(3)求角问题,利用公式:cos〈a,b〉=

1 2 +1 2


_____________________
12 +12 22 +22
(a=(x1,y1),b=(x2,y2)).
(1)向量的线性运算法的四个步骤

【高中数学】平面向量的应用 典型例题课件 高一下学期数学人教A版(2019)必修第二册

【高中数学】平面向量的应用 典型例题课件 高一下学期数学人教A版(2019)必修第二册

+
.



×




+ ×


=
题型8 三角形的面积公式
.
典例8、[分析计算能力]在△ 中, = ∘ , = ,其面积为 ,则
++
等于(
+ +
A.
思路

B.

)

C.

D.


根据三角形面积公式分析计算,再利用正弦定理和余弦定理解三角形进行
由余弦定理得
即 =
=

+


− = + − × = ,
++
,由于
+ +
=


=



=

.

的值;

(2)若 = , =
思路

,求△

的面积.
本题通过直观图形,利用正、余弦定理进行分析计算.(1)在△ 和△ 中,利用
正弦定理表示出和,从而运算求解比值.(2)直接利用正弦定理解三角形.
题型6 正、余弦定理在几何中的运用
.
典例6、[分析计算能力、观察记忆能力]如图,在△ 中,平分∠,且

− ,从而得

出角的值;(2)先利用余弦定理找出, 的关系,再利用基本不等式放缩,求出 +
的取值范围.
题型4 平面向量基本定理的应用
典例4、[分析计算能力]在△ 中,角, , 的对边分别为, , ,且 +
( + ) − = .

2019-2020学年高中数学人教B版必修4教学案:第二章 2.2 向量的分解与向量的坐标运算 Word版含答案

2019-2020学年高中数学人教B版必修4教学案:第二章 2.2 向量的分解与向量的坐标运算 Word版含答案

2.2.1 平面向量基本定理预习课本P96~98,思考并完成以下问题 (1)平面向量基本定理的内容是什么?(2)如何定义平面向量基底?(3)直线的向量参数方程式是什么?[新知初探]1.平面向量基本定理 (1)定理如果e 1和e 2是一平面内的两个不平行的向量,那么该平面内的任一向量a ,存在唯一的一对实数a 1,a 2,使a =a 1e 1+a 2e 2.(2)基底把不共线向量e 1,e 2叫做表示这一平面内所有向量的一组基底,记为{e 1,e 2}.a 1e 1+a 2e 2叫做向量a 关于基底{e 1,e 2}的分解式.[点睛] 对平面向量基本定理的理解应注意以下三点:①e 1,e 2是同一平面内的两个不共线向量;②该平面内任意向量a 都可以用e 1,e 2线性表示,且这种表示是唯一的;③基底不唯一,只要是同一平面内的两个不共线向量都可作为基底.2.直线的向量参数方程式已知A ,B 是直线l 上的任意两点,O 是l 外一点(如图所示),则对于直线l 上任意一点P ,存在唯一实数t (1-t );反之,对每一个实数t ,在直线l 上都有唯一的一个点P 与之对应.向量等(1-t )叫做直线l 的向量参数方程式,其中实数t 叫做参变数,简称参数.当t =12时,=12,此时P 点为线段AB 的中点,这是线段AB 中点的向量表达式.[点睛] 1.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)任意两个向量都可以作为基底.( )(2)一个平面内有无数对不共线的向量都可作为表示该平面内所有向量的基底.( ) (3)零向量不可以作为基底中的向量.( ) 答案:(1)× (2)√ (3)√2.如图,向量e 1,e 2,a 的起点与终点均在正方形网格的格点上,则向量a 用基底e 1,e 2表示为( )A .e 1+e 2B .-2e 1+e 2C .2e 1-e 2D .2e 1+e 2答案:B3.设e 1,e 2是同一平面内两个不共线的向量,以下各组向量中不能作为基底的是( ) A .e 1,e 2 B .e 1+e 2,3e 1+3e 2 C .e 1,5e 2 D .e 1,e 1+e 2 答案:B4.设e 1,e 2为两个不共线的向量,若点O 是▱ABCD 4e 16e 2,则3e 2-2e 1=________.解析:3e 2-2e 1=12(6e 2-4e 1)=12(=12((答案不唯一)用基底表示向量[典例] 如图,在平行四边形ABCD 中,a b ,试用基底a ,b 表示AB ,BC .[解] 法一:由题意知,AO =OC =12AC =12a ,BO =OD =12BD =12b .所以AB =AO +OB =AO -BO =12a -12b ,BC =BO +OC =12a +12b ,法二:设AB =x ,BC =y ,则AD =BC =y ,又⎩⎪⎨⎪⎧AB +BC =AC , AD -AB =BD ,则⎩⎪⎨⎪⎧x +y =a ,y -x =b ,所以x =12a -12b ,y =12a +12b ,即AB =12a -12b ,BC =12a +12b .用基底表示向量的方法将两个不共线的向量作为基底表示其他向量,基本方法有两种:一种是运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止;另一种是通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解.[活学活用]如图,已知梯形ABCD 中,AD ∥BC ,E ,F 分别是AD ,BC 边上的中点,且BC =3AD ,BA =a ,BC =b .试以a ,b 为基底表示EF ,DF ,CD .解:∵AD ∥BC ,且AD =13BC ,∴AD =13BC =13b .∵E 为AD 的中点, ∴AE =ED =12AD =16b .∵BF =12BC ,∴BF =12b ,∴EF =BA +AB +BF =-16b -a +12b =13b -a ,DF =DE +EF =-16b +13b -a =16b -a ,CD =CF +FD =-(DF +FC )=-(DF +BF )=-⎝⎛⎭⎫16b -a +12b =a -23b .直线的向量参数方程式的应用[典例] 已知平面内两定点A ,B ,对该平面内任一动点C ,总有OC =3λOA +(1-3λ)OB (λ∈R ,点O 为直线AB 外的一点),则点C 的轨迹是什么图形?简单说明理由.[解] 法一:3λ+(1-3λ)=1且λ∈R ,结合直线的向量参数方程式可知点C 的轨迹是直线AB .法二:将已知向量等式两边同时减去OA ,得OC -OA =(3λ-1) OA +(1-3λ) OB=(1-3λ)( OB -OA ) =(1-3λ) AB ,即AC =(1-3λ) AB ,λ∈R ,∴A ,B ,C 三点共线,即点C 的轨迹是直线AB .直线的向量参数方程式的两方面应用(1)若A ,B ,C 三点共线,则有OC =x OA +y OB ,且x +y =1;(2)若OC =x OA +y OB ,且x +y =1,则有A ,B ,C 三点共线. [活学活用]在△ABC 中,D 为AB 上一点,若AD =2DB ,CD =13CA +λCB ,则λ=________.解析:法一:∵AD =2DB , ∴AD =23AB =23(CB -CA ).∵在△ACD 中,CD =CA +AD =CA +23(CB -CA )=13CA +23CB ,∴λ=23.法二:A ,B ,D 三点共线, 又∵C 在直线AB 外,则13+λ=1,∴λ=23.答案:23[典例] NC ,AM 与BN 相交于点P ,求AP ∶PM 与BP ∶PN .[解] e 1e 2,3e 2-e 1,BN =BC +CN 2e 1+e 2. ∵A ,P ,M 和B ,P ,N 分别共线,∴存在实数λ,μ=-λe 1-3λe 2,2μe 1+μe 2.(λ+2μ)e 1+(3λ+μ)e 2.2e 1+3e 2,由平面向量基本定理,得⎩⎪⎨⎪⎧λ+2μ=2,3λ+μ=3, 解得⎩⎨⎧λ=45,μ=35.∴AP ∶PM =4∶1,BP ∶PN =3∶2.[一题多变]1.[变设问]a b ,试用a ,b解:由本例解析知BP ∶PN =3∶2CP =CN +NP =CN +25NB =b +25(―CB -CN )=b +45a -25b =35b +45a .2.[变条件]若本例中的点N 为AC 的中点,其它条件不变,求AP ∶PM 与BP ∶PN . 解:如图,设BM =e 1,CN =e 2,则AM =AC +CM =-2e 2-e 1,BN =BC +CN =2e 1+e 2. ∵A ,P ,M 和B ,P ,N 分别共线, ∴存在实数λ,μ使得AP =λAM =-λe 1-2λe 2,BP =μBN =2μe 1+μe 2.故BA =BP +PA =BP -AP =(λ+2μ)e 1+(2λ+μ)e 2. 而BA =BC +CA =2e 1+2e 2,由平面向量基本定理,得⎩⎪⎨⎪⎧λ+2μ=2,2λ+μ=2, 解得⎩⎨⎧λ=23,μ=23.∴AP =23AM ,BP =23BN ,∴AP ∶PM =2,BP ∶PN =2.若直接利用基底表示向量比较困难,可设出目标向量并建立其与基底之间满足的二元关系式,然后利用已知条件及相关结论,从不同方向和角度表示出目标向量( 一般需建立两个不同的向量表达式),再根据待定系数法确定系数,建立方程或方程组,解方程或方程组即得.1.已知平行四边形ABCD 中,P 是对角线AC (t -t =( )A .0B .1C .-1D .任意实数解析:选B P ,A ,C 三点共线,所以t +t -1=1,故t =1,故选B.2.设点O 是▱ABCD 两对角线的交点,下列的向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是( )A .①②B .①③C .①④D .③④解析:选B 寻找不共线的向量组即可,在▱ABCD3.若AD 是△ABC 的中线,a b ,则以a ,b ( )A.12(a -b ) B.12(a +b ) C.12(b -a ) D.12b +a解析:选B 如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从=12(=12(a +b ).4.在矩形ABCD 中,O e 1e 2( ) A.12(e 1+e 2) B.12(e 1-e 2) C.12(2e 2-e 1) D.12(e 2-e 1)解析:选A 因为O 是矩形ABCD e 1e 2,=12=12(e 1+e 2),故选A.5.(全国Ⅰ卷)设D 为△ABC ( )ABCD解析:选A=-136.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y的值为______.解析:∵a ,b 是一组基底,∴a 与b 不共线, ∵(3x -4y )a +(2x -3y )b =6a +3b ,∴⎩⎪⎨⎪⎧ 3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,∴x -y =3. 答案:37.已知e 1,e 2是两个不共线向量,a =k 2e 1+⎝⎛⎭⎫1-5k2e 2与b =2e 1+3e 2共线,则实数k =______.解析:由题设,知k22=1-5k23,∴3k 2+5k -2=0,解得k =-2或13.答案:-2或138.如下图,在正方形ABCD a b c ,则在以a ,b 为基底______,在以a ,c ______.解析:以a ,c B 与A 重合,再由三角形法则或平行四边形法则即得.答案:a +b 2a +c9.如图所示,设M ,N ,P 是△ABCa b ,试用a ,b=13a -23b ,=-13b -23(a -b )=-23a +13b ,=13(a +b ).10.证明:三角形的三条中线共点.证明:如图所示,设AD ,BE ,CF 分别为△ABCa b .b -a .设G 在AD 上,且AG AD =23a +12(b -a )=12(a +b ).=12b -a .=13(a +b )-a =13b -23a=23⎝⎛⎭⎫12b -a∴G 在BE即G 在CF 上.故AD ,BE ,CF 三线交于同一点.层级二 应试能力达标1.在△ABC 中,点D 在BC a b 用基底a ,b 表示为( )A.12(a +b ) B.23a +13b C.13a +23b D.13(a +b )解析:选C+23(=13a +23b .2.在△ABC 中,M 为边BC 上任意一点,N 为AMλ+μ的值为( )A.12B.13C.14D .1解析:选A ∵M 为边BC 上任意一点,x +y =1) ∵N 为AM 的中点,=12x +12y ∴λ+μ=12(x +y )=12.3.如果e 1,e 2是平面α内所有向量的一组基底,那么,下列命题中正确的是( ) A .若存在实数λ1,λ2,使得λ1e 1+λ2e 1=0,则λ1=λ2=0B .平面α内任一向量a 都可以表示为a =λ1e 1+λ2e 2,其中λ1,λ2∈RC .λ1e 1+λ2e 2不一定在平面α内,λ1,λ2∈RD .对于平面α内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对解析:选B A 中,(λ1+λ2)e 1=0,∴λ1+λ2=0,即λ1=-λ2;B 符合平面向量基本定理;C 中,λ1e 1+λ2e 2一定在平面α内;D 中,λ1,λ2有且只有一对.4(λ∈R),则x ,y 满足的关系是( )A .x +y -2=0B .2x +y -1=0C .x +2y -2=0D .2x +y -2=0解析:选A λ,(1+λ)又∴⎩⎪⎨⎪⎧x =2+2λ,y =-2λ,消去λ得x +y =2. 5.设e 1,e 2是平面内的一组基底,且a =e 1+2e 2,b =-e 1+e 2,则e 1+e 2=________a +________b .解析:由⎩⎪⎨⎪⎧a =e 1+2e 2,b =-e 1+e 2,解得⎩⎨⎧e 1=13a -23b ,e 2=13a +13b .故e 1+e 2=⎝⎛⎭⎫13a -23b +⎝⎛⎭⎫13a +13b =23a +⎝⎛⎭⎫-13b .答案:23 -136.如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO(λ,μ∈R),则λ+μ=________.解析:EBλ=12,μ=14,λ+μ=34.答案:347.设e 1,e 2是不共线的非零向量,且a =e 1-2e 2,b =e 1+3e 2. (1)证明:a ,b 可以作为一组基底;(2)以a ,b 为基底,求向量c =3e 1-e 2的分解式; (3)若 4e 1-3e 2=λa +μb ,求λ,μ的值.解:(1)证明:若a ,b 共线,则存在λ∈R ,使a =λb , 则e 1-2e 2=λ(e 1+3e 2).由e 1,e 2不共线,得⎩⎪⎨⎪⎧λ=1,3λ=-2⇒⎩⎪⎨⎪⎧λ=1,λ=-23.∴λ不存在,故a 与b 不共线,可以作为一组基底. (2)设c =ma +nb (m ,n ∈R),则 3e 1-e 2=m (e 1-2e 2)+n (e 1+3e 2) =(m +n )e 1+(-2m +3n )e 2.∴⎩⎪⎨⎪⎧ m +n =3,-2m +3n =-1⇒⎩⎪⎨⎪⎧m =2,n =1.∴c =2a +b . (3)由4e 1-3e 2=λa +μb ,得 4e 1-3e 2=λ(e 1-2e 2)+μ(e 1+3e 2) =(λ+μ)e 1+(-2λ+3μ)e 2.∴⎩⎪⎨⎪⎧ λ+μ=4,-2λ+3μ=-3⇒⎩⎪⎨⎪⎧λ=3,μ=1.故所求λ,μ的值分别为3和1.8.若点M 是△ABC (1)求△ABM 与△ABC 的面积之比.(2)若N 为AB 中点,AM 与CN 交于点O x ,y 的值. 解:(1)可知M ,B ,C 三点共线,BM =AB +λλ=(1-λ)λ=14,所以S △ABM S△ABC =14,即面积之比为1∶4.(2)O ,M ,A 三点共线及O ,N ,C 三点共线⇒⎩⎨⎧x +y2=1,x4+y =1⇒⎩⎨⎧x =47,y =67.2.2.2 向量的正交分解与向量的直角坐标运算预习课本P99~102,思考并完成以下问题 (1)两个向量垂直如何定义?(2)一个向量如何正交分解?(3)向量的直角坐标定义是什么?(4)如何由a ,b 的坐标求a +b ,a -b ,λa 的坐标?[新知初探]1.两个向量的垂直与正交分解如果两个向量的基线互相垂直,则称这两个向量互相垂直.如果基底的两个基向量e 1,e 2互相垂直,则称这个基底为正交基底.在正交基底下分解向量,叫做正交分解.2.向量的平面直角坐标的定义(1)基底:在直角坐标系xOy 内,分别取与x 轴和y 轴方向相同的两个单位向量e 1,e 2.这时,我们就在坐标平面内建立了一个正交基底{e 1,e 2}.这个基底也叫做直角坐标系xOy 的基底.(2)坐标分量:在坐标平面xOy 内,任作一向量a (用有向线段),由平面向量基本定理可知,存在唯一的有序实数对(a 1,a 2),使得a =a 1e 1+a 2e 2,(a 1,a 2)就是向量a 在基底{e 1,e 2}下的坐标,即a=(a 1,a 2),其中a 1叫做向量a 在 x 轴上的坐标分量,a 2叫做a 在 y 轴上的坐标分量. 3.向量的坐标表示xe 1+ye 2=(x ,y )(x ,y )⇔点A 的坐标(x ,y ). 4.向量的直角坐标运算(1)若a =(a 1,a 2),b =(b 1,b 2),则a +b =(a 1+b 1,a 2+b 2),a -b =(a 1-b 1,a 2-b 2),λa =(_λa 1,λa 2).(2)若A (x 1,y 1),B (x 2,y 2),=(x 2-x 1,y 2-y 1);线段AB 中点公式⎩⎨⎧x =x 1+x 22,y =y 1+y22.[点睛] (1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关. (2)当向量确定以后,向量的坐标就是唯一确定的,因此向量在平移前后,其坐标不变.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)相等向量的坐标相同与向量的起点、终点无关.( )(2)当向量的始点在坐标原点时,向量的坐标就是向量终点的坐标.( ) (3)两向量差的坐标与两向量的顺序无关.( ) (4)点的坐标与向量的坐标相同.( ) 答案:(1)√ (2)√ (3)× (4)×2.若a =(2,1),b =(1,0),则3a +2b 的坐标是( ) A .(5,3) B .(4,3) C .(8,3) D .(0,-1) 答案:C3(1,2)(3,4)( ) A .(4,6) B .(-4,-6) C .(-2,-2) D .(2,2)答案:A4.若点M (3,5),点N (2,1)______.答案:(-1,-4)平面向量的坐标表示[典例] 如图,在边长为1的正方形ABCD 中,AB 与x 轴正半轴成30°角.求点B 和点D 的坐标和AB 与AD 的坐标.[解] 由题知B ,D 分别是30°,120°角的终边与单位圆的交点. 设B (x 1,y 1),D (x 2,y 2). 由三角函数的定义,得 x 1=cos 30°=32,y 1=sin 30°=12,∴B ⎝⎛⎭⎫32,12.x 2=cos 120°=-12,y 2=sin 120°=32,∴D ⎝⎛⎭⎫-12,32.∴AB =⎝⎛⎭⎫32,12,AD =⎝⎛⎭⎫-12,32.求点和向量坐标的常用方法(1)求一个点的坐标,可以转化为求该点相对于坐标原点的位置向量的坐标.(2)在求一个向量时,可以首先求出这个向量的起点坐标和终点坐标,再运用终点坐标减去起点坐标得到该向量的坐标.[活学活用]已知O 是坐标原点,点A |OA |43,∠xOA =60°, (1)求向量OA 的坐标;(2)若B (3,-1),求BA 的坐标.解:(1)设点A (x ,y ),则x =43cos 60°=23, y =43sin 60°=6,即A (23,6),OA =(23,6). (2) BA =(23,6)-(3,-1)=(3,7).平面向量的坐标运算[典例] (1)已知三点A (2,-1),B (3,4),C (-2,0),则向量3AB +2CA =________,BC-2AB=________.(2)已知向量a,b的坐标分别是(-1,2),(3,-5),求a+b,a-b,3a,2a+3b的坐标.[解析](1)∵A(2,-1),B(3,4),C(-2,0),∴AB=(1,5),CA=(4,-1),BC=(-5,-4).∴3AB+2CA=3(1,5)+2(4,-1)=(3+8,15-2)=(11,13).BC-2AB=(-5,-4)-2(1,5)=(-5-2,-4-10)=(-7,-14).[答案](11,13)(-7,-14)(2)解:a+b=(-1,2)+(3,-5)=(2,-3),a-b=(-1,2)-(3,-5)=(-4,7),3a=3(-1,2)=(-3,6),2a+3b=2(-1,2)+3(3,-5)=(-2,4)+(9,-15)=(7,-11).平面向量坐标运算的技巧(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行.(2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算.(3)向量的线性坐标运算可完全类比数的运算进行.[活学活用]1.设平面向量a=(3,5),b=(-2,1),则a-2b=()A.(7,3)B.(7,7)C.(1,7) D.(1,3)解析:选A∵2b=2(-2,1)=(-4,2),∴a-2b=(3,5)-(-4,2)=(7,3).2.已知M(3,-2),N(-5,-1),MP=12MN,则P点坐标为______.解析:法一:设P(x,y),MP=(x-3,y+2),MN=(-8,1),=12(-8,1)=⎝⎛⎭⎫-4,12,∴⎩⎪⎨⎪⎧ x -3=-4,y +2=12.∴⎩⎪⎨⎪⎧x =-1,y =-32.法二:P 为MN 的中点,由中点坐标公式得 P 点坐标为⎝⎛⎭⎫-1,-32. 答案:⎝⎛⎭⎫-1,-32t AB ,t 为何值时,点P 在y 轴上?点P 在第二象限?[解] (1,2)+t (3,3)=(1+3t,2+3t ), 若点P 在x 轴上,则2+3t =0,所以t =-23.若点P 在y 轴上,则1+3t =0, 所以t =-13.若点P 在第二象限,则⎩⎪⎨⎪⎧1+3t <0,2+3t >0,所以-23<t <-13.[一题多变]1.[变条件]本例中条件“点P 在x 轴上,点P 在y 轴上,点P 在第二象限”若换为“B 为线段AP 的中点”试求t 的值.解:由典例知P (1+3t,2+3t ), 则⎩⎨⎧1+1+3t2=4,2+2+3t2=5,解得t =2.2.[变设问]本例条件不变,试问四边形OABP 能为平行四边形吗?若能,求出t 值;若不能,说明理由.解:OA =(1,2),PB =(3-3t,3-3t ).若四边形OABP 为平行四边形,则OA =PB ,所以⎩⎪⎨⎪⎧3-3t =1,3-3t =2,该方程组无解.故四边形OABP 不能成为平行四边形.向量中含参数问题的求解(1)向量的坐标含有两个量:横坐标和纵坐标,如果横或纵坐标是一个变量,则表示向量的点的坐标的位置会随之改变.(2)解答这类由参数决定点的位置的题目,关键是列出满足条件的含参数的方程(组),解这个方程(组),就能达到解题的目的.1.如果用i ,j 分别表示x 轴和y 轴方向上的单位向量,且A (2,3),B (4,2),则AB 可以表示为( )A .2i +3jB .4i +2jC .2i -jD .-2i +j解析:选C 记O 为坐标原点,则OA =2i +3j ,OB =4i +2j ,所以AB =OB -OA =2i -j .2.已知AB =a ,且A ⎝⎛⎭⎫12,4,B ⎝⎛⎭⎫14,2,又λ=12,则λa 等于( ) A.⎝⎛⎭⎫-18,-1 B.⎝⎛⎭⎫14,3 C.⎝⎛⎭⎫18,1D.⎝⎛⎭⎫-14,-3 解析:选A ∵a =AB =⎝⎛⎭⎫14,2-⎝⎛⎭⎫12,4=⎝⎛⎭⎫-14,-2, ∴λa =12a =⎝⎛⎭⎫-18,-1. 3.已知向量a =(1,2),2a +b =(3,2),则b =( ) A .(1,-2) B .(1,2) C .(5,6)D .(2,0)解析:选A b =(3,2)-2a =(3,2)-(2,4)=(1,-2).4.在平行四边形ABCD 中,AC 为一条对角线,AB =(2,4),AC =(1,3),则DA =( )A .(2,4)B .(3,5)C .(1,1)D .(-1,-1)解析:选C =(1,1).5.已知M (-2,7),N (10,-2),点P 是线段MN P 点的坐标为( )A .(-14,16)B .(22,-11)C .(6,1)D .(2,4)解析:选D 设P (x ,y )(10-x ,-2-y )(-2-x,7-y ),⎩⎪⎨⎪⎧ 10-x =4+2x ,-2-y =-14+2y ,所以⎩⎪⎨⎪⎧x =2,y =4.6.(江苏高考)已知向量a =(2,1),b =(1,-2),若ma +nb =(9,-8)(m ,n ∈R),则m-n 的值为________.解析:∵ma +nb =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧ 2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =2-5=-3. 答案:-37.若A (2,-1),B (4,2),C (1,5)________. 解析:∵A (2,-1),B (4,2),C (1,5),(2,3)(-3,3).(2,3)+2(-3,3)=(2,3)+(-6,6)=(-4,9). 答案:(-4,9)8.已知O 是坐标原点,点A =6,∠xOA =150°________.解析:设点A (x ,y ),则x =6cos 150°=-33,y =6sin 150°=3,即A (-33,3)(-33,3).答案:(-33,3)9.已知a B 点坐标为(1,0),b =(-3,4),c =(-1,1),且a =3b -2c ,求点A 的坐标.解:∵b =(-3,4),c =(-1,1),∴3b -2c =3(-3,4)-2(-1,1)=(-9,12)-(-2,2)=(-7,10),即a =(-7,10)又B (1,0),设A 点坐标为(x ,y ),(1-x,0-y )=(-7,10),∴⎩⎪⎨⎪⎧ 1-x =-7,0-y =10⇒⎩⎪⎨⎪⎧x =8,y =-10, 即A 点坐标为(8,-10).10(4,3)(-3,-1),点A (-1,-2). (1)求线段BD 的中点M 的坐标.(2)若点P (2,y )(λ∈R),求λ与y 的值. 解:(1)设B (x 1,y 1),(4,3),A (-1,-2), 所以(x 1+1,y 1+2)=(4,3),所以⎩⎪⎨⎪⎧x 1+1=4,y 1+2=3,所以⎩⎪⎨⎪⎧x 1=3,y 1=1,所以B (3,1).同理可得D (-4,-3), 设BD 的中点M (x 2,y 2), 则x 2=3-42=-12,y 2=1-32=-1, 所以M ⎝⎛⎭⎫-12,-1.(2)(3,1)-(2,y )=(1,1-y ),(-4,-3)-(3,1)=(-7,-4),(λ∈R),所以(1,1-y )=λ(-7,-4)=(-7λ,-4λ),所以⎩⎪⎨⎪⎧1=-7λ,1-y =-4λ,所以⎩⎨⎧λ=-17,y =37.层级二 应试能力达标1(2,4)(0,2)( )A .(-2,-2)B .(2,2)C .(1,1)D .(-1,-1)解析:选D=12=12(-2,-2)=(-1,-1),故选D. 2.已知向量a =(1,2),b =(2,3),c =(3,4),且c =λ1a +λ2b ,则λ1,λ2的值分别为( )A .-2,1B .1,-2C .2,-1D .-1,2解析:选D ∵c =λ1a +λ2b ,∴(3,4)=λ1(1,2)+λ2(2,3)=(λ1+2λ2,2λ1+3λ2),∴⎩⎪⎨⎪⎧λ1+2λ2=3,2λ1+3λ2=4,解得λ1=-1,λ2=2.3.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1)点D 的坐标为( )A.⎝⎛⎭⎫2,72B.⎝⎛⎭⎫2,-12 C .(3,2)D .(1,3)解析:选A 设点D (m ,n ),则由题意得(4,3)=2(m ,n -2)=(2m,2n -4),故⎩⎪⎨⎪⎧2m =4,2n -4=3,解得⎩⎪⎨⎪⎧m =2,n =72,即点D ⎝⎛⎭⎫2,72,故选A. 4.对于任意的两个向量m =(a ,b ),n =(c ,d ),规定运算“”为m n =(ac -bd ,bc +ad ),运算“”为m n =(a +c ,b +d ).设f =(p ,q ),若f =(5,0),则f 等于( )A .(4,0)B .(2,0)C .(0,2)D .(0,-4)解析:选B 由(1,2)⊗f =(5,0),得⎩⎪⎨⎪⎧ p -2q =5,2p +q =0,解得⎩⎪⎨⎪⎧p =1,q =-2,所以f =(1,-2),所以f =,-2)=(2,0).5.已知向量i =(1,0),j =(0,1),对坐标平面内的任一向量a ,给出下列四个结论: ①存在唯一的一对实数x ,y ,使得a =(x ,y );②若x 1,x 2,y 1,y 2∈R ,a =(x 1,y 1)≠(x 2,y 2),则x 1≠x 2,且y 1≠y 2;③若x ,y ∈R ,a =(x ,y ),且a ≠0,则a 的起点是原点O ; ④若x ,y ∈R ,a ≠0,且a 的终点坐标是(x ,y ),则a =(x ,y ). 其中,正确结论有________个.解析:由平面向量基本定理,可知①正确;例如,a =(1,0)≠(1,3),但1=1,故②错误;因为向量可以平移,所以a =(x ,y )与a 的起点是不是原点无关,故③错误;当a 的终点坐标是(x ,y )时,a =(x ,y )是以a 的起点是原点为前提的,故④错误.答案:16.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,|OC |=22,且∠AOC =π4.(λ∈R),则λ= ________.解析:过C 作CE ⊥x 轴于点E ,由∠AOC =π4知,|OE |=|CE |=2,所(-2,0)=λ(-3,0),故λ=23.答案:237.在△ABC 中,已知A (7,8),B (3,5),C (4,3),M ,N ,D 分别是AB ,AC ,BC 的中点,且MN 与AD 交于点F解:∵A (7,8),B (3,5),C (4,3),(3-7,5-8)=(-4,-3),(4-7,3-8)=(-3,-5).∵D 是BC 的中点,=12(=12(-4-3,-3-5)=12(-7,-8)=⎝⎛⎭⎫-72,-4.∵M ,N 分别为AB ,AC 的中点,∴F 为AD 的中点.=-12⎝⎛⎭⎫-72,-4=⎝⎛⎭⎫74,2.8.在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),(1)0(2)(m ,n ∈R),且点P 在函数y =x +1的图象上,求m -n .解:(1)设点P 的坐标为(x ,y ),0,(1-x,1-y )+(2-x,3-y )+(3-x,2-y )=(6-3x,6-3y ).所以⎩⎪⎨⎪⎧ 6-3x =0,6-3y =0,解得⎩⎪⎨⎪⎧x =2,y =2.所以点P 的坐标为(2,2),(2,2).(2)设点P 的坐标为(x 0,y 0), 因为A (1,1),B (2,3),C (3,2),(2,3)-(1,1)=(1,2),(3,2)-(1,1)=(2,1),所以(x 0,y 0)=m (1,2)+n (2,1)=(m +2n,2m +n ),所以⎩⎪⎨⎪⎧x 0=m +2n ,y 0=2m +n ,两式相减得m -n =y 0-x 0,又因为点P 在函数y =x +1的图象上, 所以y 0-x 0=1, 所以m -n =1.2.2.3 用平面向量坐标表示向量共线条件预习课本P103~104,思考并完成以下问题如何利用向量的坐标运算表示两个向量共线?[新知初探]两向量平行的条件[点睛] 两向量的对应坐标成比例.这种形式较易记忆向量共线的坐标表示,而且不易出现搭配错误.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)已知a =(a 1,a 2),b =(b 1,b 2),若a ∥b ,则必有a 1b 2=a 2b 1.( ) (2)向量(2,3)与向量(-4,-6)反向.( ) 答案:(1)√ (2)√2.若向量a =(1,2),b =(2,3),则与a +b 共线的向量可以是( ) A .(2,1) B .(-1,2) C .(6,10) D .(-6,10) 答案:C3.已知a =(1,2),b =(x,4),若a ∥b ,则x 等于( ) A .-12 B.12 C .-2D .2答案:D4.已知向量a =(-2,3),b ∥a ,向量b 的起点为A (1,2),终点B 在x 轴上,则点B 的坐标为________.答案:⎝⎛⎭⎫73,0向量共线的判定[典例] (1)已知向量a =(1,2),b =(λ,1),若(a +2b )∥(2a -2b ),则λ的值等于( ) A.12B.13C .1D .2(2)已知A (2,1),B (0,4),C (1,3),D (5,-3)的方向相同还是相反?[解析] (1)法一:a +2b =(1,2)+2(λ,1)=(1+2λ,4),2a -2b =2(1,2)-2(λ,1)=(2-2λ,2),由(a +2b )∥(2a -2b )可得2(1+2λ)-4(2-2λ)=0,解得λ=12.法二:假设a ,b 不共线,则由(a +2b )∥(2a -2b )可得a +2b =μ(2a -2b ),从而⎩⎪⎨⎪⎧1=2μ,2=-2μ,方程组显然无解,即a +2b 与2a -2b 不共线,这与(a +2b )∥(2a -2b )矛盾,从而假设不成立,故应有a ,b 共线,所以1λ=21,即λ=12.[答案] A(2)(0,4)-(2,1)=(-2,3)(5,-3)-(1,3)=(4,-6),∵(-2)×(-6)-3×4=0,∴AB ,CD 共线. 又CD =-2AB ,∴AB ,CD 方向相反. 综上,AB 与CD 共线且方向相反.向量共线的判定方法(1)利用向量共线定理,由a =λb (b ≠0)推出a ∥b .(2)利用向量共线的坐标表达式a 1b 2-a 2b 1=0直接求解. [活学活用]已知a =(1,2),b =(-3,2),当k 为何值时,ka +b 与a -3b 平行,平行时它们的方向相同还是相反?解:ka +b =k (1,2)+(-3,2)=(k -3,2k +2), a -3b =(1,2)-3(-3,2)=(10,-4),若ka +b 与a -3b 平行,则-4(k -3)-10(2k +2)=0,解得k =-13,此时ka +b =-13a +b =-13(a -3b ),故ka +b 与a -3b 反向.∴k =-13时,ka +b 与a -3b 平行且方向相反.三点共线问题[典例] (1)已知OA =(3,4),OB =(7,12),OC =(9,16),求证:A ,B ,C 三点共线; (2)设向量OA =(k,12),OB =(4,5),OC =(10,k ),当k 为何值时,A ,B ,C 三点共线?[解] (1)证明:∵AB =OB -OA =(4,8),AC =OC -OA =(6,12),∴AC =32AB ,即AB 与AC 共线.又∵AB 与AC 有公共点A ,∴A ,B ,C 三点共线. (2)若A ,B ,C 三点共线,则AB ,AC 共线, ∵AB =OB -OA =(4-k ,-7),AC =OC -OA =(10-k ,k -12),∴(4-k )(k -12)+7(10-k )=0.解得k=-2或k=11.有关三点共线问题的解题策略(1)要判断A,B,C三点是否共线,一般是看AB与BC,或AB与AC,或AC与BC 是否共线,若共线,则A,B,C三点共线;(2)使用A,B,C三点共线这一条件建立方程求参数时,利用AC=λBC,或AB=λBC,或AB=λAC都是可以的,但原则上要少用含未知数的表达式.[活学活用]设点A(x,1),B(2x,2),C(1,2x),D(5,3x),当x为何值时,AB与CD共线且方向相同,此时,A,B,C,D能否在同一条直线上?解:AB=(2x,2)-(x,1)=(x,1),BC=(1,2x)-(2x,2)=(1-2x,2x-2),CD=(5,3x)-(1,2x)=(4,x).由AB与CD共线,所以x2=1×4,所以x=±2.又AB与CD方向相同,所以x=2.此时,AB=(2,1),BC=(-3,2),而2×2≠-3×1,所以AB与BC不共线,所以A,B,C三点不在同一条直线上.所以A,B,C,D不在同一条直线上.向量共线在几何中的应用题点一:两直线平行判断1.如图所示,已知直角梯形ABCD,AD⊥AB,AB=2AD=2CD,过点C作CE⊥AB于E,用向量的方法证明:DE∥BC;证明:如图,以E为原点,AB所在直线为x轴,EC所在直线为y轴建立直角坐标系,设|AD|1|DC|=1|AB| 2.∵CE ⊥AB ,而AD =DC , ∴四边形AECD 为正方形,∴可求得各点坐标分别为E (0,0),B (1,0),C (0,1),D (-1,1).(-1,1)-(0,0)=(-1,1),(0,1)-(1,0)=(-1,1),DE ∥BC . 题点二:几何形状的判断2.已知直角坐标平面上四点A (1,0),B (4,3),C (2,4),D (0,2),求证:四边形ABCD 是等腰梯形.证明:(4,3)-(1,0)=(3,3),(0,2)-(2,4)=(-2,-2).∵3×(-2)-3×(-2)=0(-1,2)(2,4)-(4,3)=(-2,1),∵(-1)×1-2×(-2)≠0 ∴四边形ABCD 是梯形.(-2,1)(-1,2),∴=5BC =AD . 故四边形ABCD 是等腰梯形.题点三:求交点坐标3.如图所示,已知点A (4,0),B (4,4),C (2,6),求AC 和OB 交点P 的坐标.解:法一:t (4,4) =(4t,4t ),(4t,4t )-(4,0)=(4t -4,4t ),(2,6)-(4,0)=(-2,6).(4t -4)×6-4t ×(-2)=0,解得t =34.(3,3).∴P 点坐标为(3,3). 法二:设P (x ,y ),(x ,y )(4,4).∴4x -4y =0.①(x -2,y -6)(2,-6),∴-6(x -2)+2(6-y )=0.②解①②组成的方程组,得x =3,y =3, ∴点P 的坐标为(3,3).应用向量共线的坐标表示求解几何问题的步骤层级一 学业水平达标1.下列向量组中,能作为表示它们所在平面内所有向量的基底的是( ) A .e 1=(0,0),e 2=(1,-2) B .e 1=(-1,2),e 2=(5,7) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=⎝⎛⎭⎫12,-34 解析:选B A 中向量e 1为零向量,∴e 1∥e 2;C 中e 1=12e 2,∴e 1∥e 2;D 中e 1=4e 2,∴e 1∥e 2,故选B.2.已知点A (1,1),B (4,2)和向量a =(2,λ),若a λ的值为( ) A .-23B.32C.23D .-32解析:选C 根据A ,B (3,1),∵a 2×1-3λ=0,解得λ=23,故选C.3.已知A (2,-1),B (3,1)a 是( )A .(2,1)B .(-6,-3)C .(-1,2)D .(-4,-8)解析:选D (1,2),向量(2,1)、(-6,-3)、(-1,2)与(1,2)不平行;(-4,-8)与(1,2)平行且方向相反.4.已知向量a =(x,2),b =(3,-1),若(a +b )∥(a -2b ),则实数x 的值为( ) A .-3 B .2 C .4D .-6解析:选D 因为(a +b )∥(a -2b ),a +b =(x +3,1),a -2b =(x -6,4),所以4(x +3)-(x -6)=0,解得x =-6.5.设a =⎝⎛⎭⎫32,tan α,b =⎝⎛⎭⎫cos α,13,且a ∥b ,则锐角α为( ) A .30° B .60° C .45°D .75°解析:选A ∵a ∥b , ∴32×13-tan α cos α=0, 即sin α=12,α=30°.6.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________. 解析:∵向量a =(3x -1,4)与b =(1,2)共线, ∴2(3x -1)-4×1=0,解得x =1. 答案:17.已知A (-1,4),B (x ,-2),若C (3,3)在直线AB 上,则x =________.(x +1,-6)(4,-1),(x +1)+24=0,∴x =23. 答案:238.已知向量a =(1,2),b =(-2,3),若λa +μb 与a +b 共线,则λ与μ的关系是________. 解析:∵a =(1,2),b =(-2,3), ∴a +b =(1,2)+(-2,3)=(-1,5),λa +μb =λ(1,2)+μ(-2,3)=(λ-2μ,2λ+3μ), 又∵(λa +μb )∥(a +b ), ∴-1×(2λ+3μ)-5(λ-2μ)=0, ∴λ=μ. 答案:λ=μ9.已知A ,B ,C 三点的坐标为(-1,0),(3,-1),(1,2),证明:设E ,F 的坐标分别为(x 1,y 1), (x 2,y 2),(2,2)(-2,3)(4,-1).(x 1+1,y 1)=13(2,2).∴点E 的坐标为⎝⎛⎭⎫-13,23.同理点F 的坐标为⎝⎛⎭⎫73,0⎝⎛⎭⎫83,-23.又83×(-1)-4×⎝⎛⎭⎫-23=010.已知向量a =(2,1),b =(1,1),c =(5,2),m =λb +c (λ为常数).(1)求a +b ;(2)若a 与m 平行,求实数λ的值. 解:(1)因为a =(2,1),b =(1,1), 所以a +b =(2,1)+(1,1)=(3,2). (2)因为b =(1,1),c =(5,2),所以m =λb +c =λ(1,1)+(5,2)=(λ+5,λ+2). 又因为a =(2,1), 且a 与m 平行, 所以2(λ+2)=λ+5, 解得λ=1.层级二 应试能力达标1.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b ( ) A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线解析:选C 因为a +b =(0,1+x 2),所以a +b 平行于y 轴. 2.若A (3,-6),B (-5,2),C (6,y )三点共线,则y =( ) A .13 B .-13 C .9D .-9解析:选D A ,B ,C 三点共线,(-8,8)(3,y+6),∴-8(y+6)-8×3=0,即y=-9.3.已知向量a=(1,0),b=(0,1),c=ka+b(k∈R),d=a-b,如果c∥d,那么() A.k=1且c与d同向B.k=1且c与d反向C.k=-1且c与d同向D.k=-1且c与d反向解析:选D∵a=(1,0),b=(0,1),若k=1,则c=a+b=(1,1),d=a-b=(1,-1),显然,c与d不平行,排除A、B.若k=-1,则c=-a+b=(-1,1),d=a-b=-(-1,1),即c ∥d且c与d反向.4.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个顶点的坐标是()A.(1,5)或(5,5)B.(1,5)或(-3,-5)C.(5,-5)或(-3,-5)D.(1,5)或(5,-5)或(-3,-5)解析:选D设A(-1,0),B(3,0),C(1,-5),第四个顶点为D,①若这个平行四边形为▱ABCD,D(-3,-5);②若这个平行四边形为▱ACDB,D(5,-5);③若这个平行四边形为▱ACBD,D(1,5).综上所述,D点坐标为(1,5)或(5,-5)或(-3,-5).5(6,1)(x,y)(-2,-3)x+2y的值为________.解析:(6,1)+(x,y)+(-2,-3)=(x+4,y-2),(x+4,y-2)=(-x-4,-y+2).∴x(-y+2)-(-x-4)y=0,即x+2y=0.答案:06(3,-4)(6,-3)(5-m ,-3-m ).若点A ,B ,C 能构成三角形,则实数m 应满足的条件为________.解析:若点A ,B ,C(3,1),(2-m,1-m ),∴3(1-m )≠2-m ,即m ≠12.答案:m ≠127.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a 与b 之间的数量关系;(2)C 的坐标.解:(1)若A ,B ,C(3,-1)-(1,1)=(2,-2)(a -1,b -1),∴2(b -1)-(-2)(a -1)=0,∴a +b =2.(2)(a -1,b -1)=(4,-4),∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,∴⎩⎪⎨⎪⎧ a =5,b =-3,∴点C 的坐标为(5,-3).8.如图所示,在四边形ABCD 中,已知A (2,6),B (6,4),C (5,0),D (1,0),求直线AC 与BD 交点P 的坐标.解:设P (x ,y )(x -1,y ),(5,4)(-3,6)(4,0).由B ,P ,D (5λ,4λ).(5λ-4,4λ),(5λ-4)×6+12λ=0.解得λ=47,⎝⎛⎭⎫207,167,27 7,16 7.∴P的坐标为⎝⎛⎭⎫。

2019-2020学年高中数学 第2章 平面向量 3 3.2 平面向量基本定理学案 北师大版必修4

2019-2020学年高中数学 第2章 平面向量 3 3.2 平面向量基本定理学案 北师大版必修4

3.2 平面向量基本定理平面向量基本定理如果e 1,e 2(如图①所示)是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,存在唯一一对实数λ1,λ2,使a =λ1e 1+λ2e 2(如图②所示),其中不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底.思考:若存在λ1,λ2∈R ,μ1,μ2∈R ,且a =λ1e 1+λ2e 2,a =μ1e 1+μ2e 2,那么λ1,μ1,λ2,μ2有何关系?[提示] 由已知得λ1e 1+λ2e 2=μ1e 1+μ2e 2,即(λ1-μ1)e 1=(μ2-λ2)e 2. ∵e 1与e 2不共线,∴λ1-μ1=0,μ2-λ2=0, ∴λ1=μ1,λ2=μ2.1.设e 1,e 2是同一平面内两个不共线的向量,以下各组向量中不能作为基底的是( ) A .e 1,e 2 B .e 1+e 2,3e 1+3e 2 C .e 1,5e 2 D .e 1,e 1+e 2[答案] B2.设O 为平行四边形ABCD 的对称中心,AB →=4e 1,BC→=6e 2,则2e 1-3e 2等于( ) A.OA → B.OB → C.OC →D.OD →B [如图,OB →=12DB →=12(AB →-BC →)=2e 1-3e 2.]3.已知向量a 与b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y =________.3 [由原式可得⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.]4.已知向量a 与b 不共线,且AB →=a +4b ,BC →=-a +9b ,CD →=3a -b ,则共线的三点为________.A ,B ,D [BD →=BC →+CD →=-a +9b +3a -b =2a +8b ,因为AB →=a +4b ,所以AB →=12BD →,所以A ,B ,D 三点共线.]【例1】 设 ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →,其中可作为这个平行四边形所在平面的一组基底的是( ) A .①② B .①③ C .①④D .③④B [①AD →与AB →不共线;②DA →=-BC →,则DA →与BC →共线;③CA →与DC →不共线;④OD →=-OB →,则OD →与OB →共线.由平面向量基底的概念知,只有不共线的两个向量才能构成一组基底,故①③满足题意.]考查两个向量是否能构成基底,主要看两向量是否非零且不共线.此外,一个平面的基底一旦确定,那么平面上任意一个向量都可以由这个基底唯一线性表示出来.1.设e 1,e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b .23 -13[由题意,设e 1+e 2=m a +n b .因为a =e 1+2e 2,b =-e 1+e 2,所以e 1+e 2=m (e 1+2e 2)+n (-e 1+e 2)=(m -n )e 1+(2m +n )e 2.由平面向量基本定理,得⎩⎪⎨⎪⎧m -n =1,2m +n =1,所以⎩⎪⎨⎪⎧m =23,n =-13.]【例2】 设M 、N 、P 是△ABC 三边上的点,它们使BM =13BC ,CN =13CA ,AP →=13AB →,若AB →=a ,AC →=b ,试用a ,b 将MN →、NP →、PM →表示出来.[解] 如图,MN →=CN →-CM →=-13AC →-23CB →=-13AC →-23(AB →-AC →)=13AC →-23AB →=13b -23a . 同理可得NP →=13a -23b .PM →=-MP →=-(MN →+NP →)=13a +13b .平面内任何一个向量都可以用两个基底进行表示,转化时一定要看清转化的目标,要充分利用向量加法、减法的三角形法则和平行四边形法则,同时结合实数与向量积的定义,牢记转化方向,把未知向量逐步往基底方向进行组合或分解.2.如图所示,梯形ABCD 中,AB ∥CD ,且AB =2CD ,M ,N 分别是DC 和AB 的中点,若AB →=a ,AD →=b ,试用a ,b 表示DC →,BC →,MN →.[解] 如图所示,连接CN ,则四边形ANCD 是平行四边形.则DC →=AN →=12AB →=12a ;BC →=NC →-NB →=AD →-12AB →=b -12a ;MN →=CN →-CM →=-AD →-12CD →=-AD →-12⎝ ⎛⎭⎪⎫-12AB →=14a -b .[探究问题1.如果e 1,e 2是两个不共线的非零向量,则与e 1,e 2在同一平面内的任一向量a ,能否用e 1,e 2表示?依据是什么?[提示] 能.依据是平面向量基本定理.2.如果e 1,e 2是共线向量,那么向量a 能否用e 1,e 2表示?为什么?[提示] 不一定.当a 与e 1,e 2中的一个非零向量共线时可以表示,否则不能表示. 3.基底给定时,向量分解形式唯一吗? [提示] 向量分解形式唯一.【例3】 如图,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 与BP ∶PN .[思路探究] 以BM →与CN →为基底利用平面向量基本定理求解,解题时注意条件A 、P 、M 和B 、P 、N 分别共线的应用.[解] 设BM →=e 1,CN →=e 2,则AM →=AC →+CM →=-3e 2-e 1,BN →=BC →+CN →=2e 1+e 2. ∵A ,P ,M 和B ,P ,N 分别共线,∴存在实数λ,μ使得AP →=λAM →=-λe 1-3λe 2, BP →=μBN →=2μe 1+μe 2.故BA →=BP →+PA →=BP →-AP →=(λ+2μ)e 1+(3λ+μ)e 2. 而BA →=BC →+CA →=2e 1+3e 2,由平面向量基本定理,得⎩⎪⎨⎪⎧λ+2μ=2,3λ+μ=3,解得⎩⎪⎨⎪⎧λ=45,μ=35.∴AP →=45AM →,BP →=35BN →,∴AP ∶PM =4∶1,BP ∶PN =3∶2.1.(变设问)在本例条件下,若CM →=a ,CN →=b ,试用a ,b 表示CP →. [解] 由本例解析知BP ∶PN =3∶2, 则NP →=25NB →,CP →=CN →+NP →=CN →+25NB →=b +25(CB →-CN →)=b +45a -25b =35b +45a .2.(变条件)若本例中的点N 为AC 的中点,其它条件不变,求AP ∶PM 与BP ∶PN . [解] 如图,设BM →=e 1,CN →=e 2,则AM →=AC →+CM →=-2e 2-e 1,BN →=BC →+CN →=2e 1+e 2, ∵A ,P ,M 和B ,P ,N 分别共线,∴存在实数λ,μ使得AP →=λAM →=-λe 1-2λe 2, BP →=μBN →=2μe 1+μe 2.故BA →=BP →+PA →=BP →-AP →=(λ+2μ)e 1+(2λ+μ)e 2. 而BA →=BC →+CA →=2e 1+2e 2,由平面向量基本定理,得⎩⎪⎨⎪⎧λ+2μ=2,2λ+μ=2,解得⎩⎪⎨⎪⎧λ=23,μ=23.∴AP →=23AM →,BP →=23BN →,∴AP ∶PM =2,BP ∶PN =2.用向量解决平面几何问题的一般步骤 (1)选取不共线的两个平面向量作为基底.(2)将相关的向量用基底向量表示,将几何问题转化为向量问题. (3)利用向量知识进行向量运算,得出向量问题的解. (4)再将向量问题的解转化为平面几何问题的解.1.对基底的理解 (1)基底的特征基底具备两个主要特征:①一组基底是两个不共线向量;②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内表示所有向量的一组基底的条件.(2)零向量与任意向量共线,故基底中的向量不是零向量. 2.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的一组基底,将问题中涉及的向量向基底化归,使问题得以解决.1.判断(正确的打“√”,错误的打“×”)(1)任意两个向量都可以作为基底.( ) (2)平面向量的基底不是唯一的.( ) (3)零向量不可作为基底中的向量.( ) [答案] (1)× (2)√ (3)√ 2.下列关于基底的说法正确的是( )①平面内不共线的任意两个向量都可作为一组基底; ②基底中的向量可以是零向量;③平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的. A .① B .② C .①③D .②③C [零向量与任意向量共线,故零向量不能作为基底中的向量,故②错,①③正确.] 3.已知向量e 1,e 2不共线,实数x ,y 满足(2x -3y )e 1+(3x -4y )e 2=6e 1+3e 2,则x =________,y =________.-15 -12 [∵向量e 1,e 2不共线,∴⎩⎪⎨⎪⎧2x -3y =6,3x -4y =3,解得⎩⎪⎨⎪⎧x =-15,y =-12.]4.如图所示,平行四边形ABCD 中,点M 在AB 的延长线上,且BM =12AB ,点N 在BC 上,且BN =13BC .求证:M ,N ,D 三点共线.[证明] 设AB →=e 1,AD →=e 2,则BC →=AD →=e 2. ∵BN →=13e 2,BM →=12AB →=12e 1.∴MN →=BN →-BM →=13e 2-12e 1.又∵MD →=AD →-AM →=e 2-32e 1=3⎝ ⎛⎭⎪⎫13e 2-12e 1=3MN →.∴向量MN →与MD →共线,又M 是公共点,故M ,N ,D 三点共线.。

高中数学第二章平面向量平面向量应用举例学习过程新人教A版必修

高中数学第二章平面向量平面向量应用举例学习过程新人教A版必修

平面向量应用举例学习过程知识点一:平面几何中的向量方法用向量方法解决几何问题的“三步曲” (1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何关系。

知识点二:向量在物理中的应用注意两方面:(1)体会如何把物理问题转化成数学问题,即如何将物理量间的关系抽象成数学模型(2)如何利用数学模型的解来解释相应的物理现象。

学习结论(1)向量在解决某些几何问题时具有优越性。

(2)明确用向量方法解决几何问题的“三步曲”。

典型例题例 1. 如图,在直三棱柱111ABC A B C -中,底面是等腰直角三角形,∠ACB=90°,侧棱AA1=2,D 、E 分别是CC1与A1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G . (Ⅰ)求A1B 与平面ABD 所成角的余弦值(Ⅱ)求点A1到平面AED 的距离.[思路分析] 本题中的三条棱1,,C C CA CB 两两垂直,故可以此建立空间直角坐标系.将线面所成角转化为线线所成角,从而运用向量的数量积可得所求;对于(Ⅱ)中的点面距离,首先应该考察过这点垂直于面的直线.在上述想法不可行的情况下再考虑体积法等其它方法.解析:(Ⅰ)点E 在平面A BD 上的射影是△ABD 的重心G ,所以,1A BG ∠就是直线A1B 与平面ABD 所成的角.因为1,,C C CA CB 两两垂直,所以,如图建立空间直角坐标系,若设CA=2a ,则有:()2,0,0A a ,()0,2,0B a ,()12,0,2A a ,()0,0,1D ,(),,1E a a ,221,,333a a G ⎛⎫ ⎪⎝⎭. 所以2(,,),(0,2,1)333a a GE DB a ==-uu u r uu u r ,.因为GE DB ⊥,所以,0GE DB ⋅=uu u r uu u r ,所以,222033a -=,所以,1a =.所以 241(,,)333BG =-uu u r ,, 又1(2,2,2)BA =-uuu r ,所以,根据数量积的定义可知: 117cos 3BA BG EBG BA BG ⋅∠==uuu r uu u r uuu r uu u r .所以,A1B 与平面ABD 所成的角的余弦值为73.(Ⅱ)由(Ⅰ)可知110DE =uuu r (,,),1(2,2,2)BA =-uuu r ,(2,2,0)AB =-u u u r ,所以, 10,0DE AB DE A B ⋅=⋅=uu u r uu u r uu u r uuu r ,所以,1DE AB DE BA ⊥⊥且.所以,11DE A ABB ⊥面.又DE ADE ⊂面,所以,11ADE A ABB ⊥面面. 过点1A 作1A K AE ⊥于K ,则1A K 就是点A1到平面AED 的距离.在等腰1EA A △中,1132BA EA EA ===,12AA =,所以,1AA 边上的高h =()2312-=, 所以,11263AA h A K AE ==.所以,点A1到平面AED 的距离为26.例2.在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南)102arccos (=θθ方向300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动. 台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h 的速度不断增大. 问几小时后该城市开始受到台风的侵袭?[思路分析] 速度(既有大小,又有方向)、距离都可以用向量很好的表达, 图2-7-6所以,本题可以看作是一道向量的应用问题.下面,我们尝试用向量的观 点来解答本题.解析: 以O 为原点,分别以东、北方向为x 轴正半轴方向、y 轴正 半轴方向如图建立直角坐标系,则当前台风中心的位置向量 (300cos 300sin())(302,2102)OP θθ=--=-u u u r (),;台风中心的速度向量为 (20cos(18045),20sin(18045))(102,102)v =︒-︒︒-︒=-r .设t 小时时台风中心的位置为'P ,且该城市开始受到台风侵袭.若以()r t 表示t 小时时台风侵袭区域的半径,则()6010r t t =+(单位为km ). 城市受台风侵袭等价于OP 'uuu r ≤()r t . 而(302102,2102102)OP OP PP OP tv t t ''=+=+=-u u u r u u u r u u u r u u u r r , 令OP 'uuu r ≤()r t ()()2230210221021026010t t t -+-++, 解之得:1224t ≤≤.所以,12小时后城市O 开始受台风侵袭.。

高中数学2.5平面向量应用举例(教、学案)

高中数学2.5平面向量应用举例(教、学案)

2. 5平面向量应用举例一、教材分析向量概念有明确的物理背景和几何背景,物理背景是力、速度、加速度等,几何背景是有向线段,可以说向量概念是从物理背景、几何背景中抽象而来的,正因为如此,运用向量可以解决一些物理和几何问题,例如利用向量计算力沿某方向所做的功,利用向量解决平面内两条直线平行、垂直位置关系的判定等问题。

二、教学目标1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐 标法,可以用向量知识研究物理中的相关问题的“四环节” 和生活中的实际问题2.通过本节的学习,让学生体验向量在解决几何和物理问题中的工具作用,增强学生的 积极主动的探究意识,培养创新精神。

三、教学重点难点重点:理解并能灵活运用向量加减法与向量数量积的法则解决几何和物理问题. 难点:选择适当的方法,将几何问题或者物理问题转化为向量问题加以解决. 四、学情分析在平面几何中,平行四边形是学生熟悉的重要的几何图形,而在物理中,受力分析则是其中最基本的基础知识,那么在本节的学习中,借助这些对于学生来说,非常熟悉的内容来讲解向量在几何与物理问题中的应用。

五、教学方法1.例题教学,要让学生体会思路的形成过程,体会数学思想方法的应用。

2.学案导学:见后面的学案3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备1.学生的学习准备:预习本节课本上的基本内容,初步理解向量在平面几何和物理中的 应用2.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。

七、课时安排:1课时 八、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

(二)情景导入、展示目标教师首先提问:(1)若O 为ABC ∆重心,则OA +OB +OC =0(2)水渠横断面是四边形ABCD ,DC =12AB ,且|AD |=|BC |,则这个四边形为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系?(3) 两个人提一个旅行包,夹角越大越费力.为什么?教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来。

高中数学 必修4 第2章 平面向量应用举例

高中数学 必修4 第2章 平面向量应用举例

第二章 平面向量2.5 平面向量应用举例2.5.1 平面几何中的向量方法 2.5.2 向量在物理中的应用举例一、向量在平面几何中的应用 1.利用向量研究平面几何问题的思想向量集数与形于一身,既有代数的抽象性又有几何的直观性,因此,用向量解决平面几何问题,就是将几何的证明问题转化为__________的运算问题,将“证”转化为“算”,思路清晰,便于操作. 2.向量在平面几何中常见的应用已知1122(,),(,)x y x y ==a b .(1)证明线段平行、点共线问题及相似问题,常用向量共线的条件:λ⇔=⇔∥a b a b __________0(0)=≠b .(2)证明线段垂直问题,如证明四边形是正方形、矩形,判断两直线(或线段)是否垂直等,常用向量垂直的条件:0⊥⇔⋅=⇔a b a b __________0=(其中,a b 为非零向量).(3)求夹角问题,若向量a 与b 的夹角为θ,利用夹角公式:cos θ=__________=__________(其中,a b 为非零向量).(4)求线段的长度或说明线段相等,可以用向量的模:||=a __________,或||||AB AB ==__________(其中,A B 两点的坐标分别为3344(,),(,)x y x y .(5)对于有些平面几何问题,如载体是长方形、正方形、直角三角形等,常用向量的坐标法,建立平面直角坐标系,把向量用坐标表示出来,通过代数运算解决综合问题.3.利用向量解决平面几何问题的步骤(1)建立平面几何与向量之间的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题; (2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何关系.这其实也是用向量法解决其他问题的思路,即从条件出发,选取基底,把条件翻译成向量关系式(用基底表示其他向量),然后通过一系列的向量运算,得到新的向量关系式,则这个新的向量关系式的几何解释就是问题的结论.二、向量在物理中的应用向量是在物理的背景下建立起来的,物理中的一些量,如位移、力、速度(加速度)、功等都与向量有着密切的联系,因此可以利用向量来解决物理中的问题.具体操作时,要注意将物理问题转化为向量关系式,通过向量的运算来解决,最后用来解释物理现象.1.向量与力向量是既有__________又有__________的量,它们可以有共同的作用点,也可以没有共同的作用点,但是力的三要素是大小、方向和作用点,所以用向量知识解决力的问题,通常要把向量__________到同一作用点上. 2.向量与速度、加速度及位移速度、加速度与位移的合成与分解,实质上就是向量的加减法运算.解决速度、加速度和位移等问题时,常用的知识主要是向量的__________、__________以及__________运算,有时也借助于坐标运算来处理. 3.向量与功、动量力做的功是力在物体前进方向上的分力与物体位移的乘积,实质是力和位移两个向量的__________,W =||||cos (θθ⋅=⋅⋅F s F s 为F 和s 的夹角).动量m v 实际上是__________向量.参考答案: 一、1.向量2.(1)1221x y x y -(2)1212x x y y +(3)||||⋅a ba b 121212122222x x y y x y x y ++⋅+(4)1122x y + 22223434()()x x y y -+-二、1.大小 方向 平移 2.加法 减法 数乘 3.数量积 数乘重点 平面几何中的垂直、长度以及夹角问题. 难点 利用向量方法解决其他实际问题.易错向量应用中对向量关系式表达的向量之间的相互关系判断错误.1.平面几何中的垂直问题对于线段垂直问题,可以联想到两个向量垂直的条件(向量的数量积为0),而对于这一条件的应用,可以考虑向量关系式的形式,也可以考虑坐标的形式.【例1】如图,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE .【答案】证明详见解析.如题图,建立平面直角坐标系,设正方形的边长为2, 则A (0,0),D (0,2),E (1,0),F (2,1), 所以(2,1),(1,2)AF DE ==-.因为(2,1)(1,2)220AF DE ⋅=⋅-=-=, 所以AF DE ⊥,即AF ⊥DE .【提示】用向量法解决平面几何问题,一般来说有两个方向:(1)几何法:选取适当的基底(尽量用已知模或夹角的向量作为基底),将题中涉及的向量用基底表示,利用向量的运算法则、运算律或性质计算;(2)坐标法:建立平面直角坐标系,实现向量的坐标化,将几何问题中的长度、垂直、平行等问题转化为代数运算. 一般地,存在坐标系或易建坐标系的题目适合用坐标法. 2.平面几何中的长度问题平面几何中求线段的长度问题,在向量中就是求向量的模的问题,可适当构造向量,利用向量知识求解. 【例2】如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD =2,则对角线AC 的长为 .6【解析】设,AD AB ==a b ,则,BD AC =-=+a b a b . ∴22||||||2||14252BD =-=-⋅++-⋅=-⋅a b a a b b a b a b ∴2||524BD =-⋅=a b ,∴21⋅=a b .∴22||||||2||526AC =+=+⋅++⋅a b a a b b a b ,即6AC =【提示】用向量法求平面几何中的长度问题,即向量长度的求解,一是利用图形特点选择基底,向向量的数量积转化,利用公式22||=a a 求解;二是建立平面直角坐标系,确定相应向量的坐标,代入公式求解,即若(,)x y =a ,则22||x y +a3.平面几何中的夹角问题【例3】等腰直角三角形中两直角边上的中线所成的钝角的余弦值为A .45-B .35-C .45D .35【答案】A【解析】如图,分别以等腰直角三角形的两直角边所在的直线为x 轴、y 轴建立平面直角坐标系,设(2,0),(0,2)A a B a ,则(,0),(0,)F a E a ,∴(2,),(,2)AE a a BF a a =-=-.设向量,AE BF 的夹角为θ, 则22(2,)(,2)44cos 55||||55AE BF a a a a a a AE BF a aθ⋅-⋅--====-⋅⋅.【名师点睛】根据已知建立平面直角坐标系,将等腰直角三角形的两直角边所在直线作为x 轴和y 轴,分别设出三角形顶点和两直角边中点的坐标,再代入坐标求解两中线所对应的向量的数量积和模,进而求得夹角的余弦值. 4.平面向量在物理中的应用【例4】一质点受到平面上的三个力F 1、F 2、F 3(单位:牛顿)的作用而处于平衡状态.已知F 1、F 2成60°角,且F 1、F 2的大小分别为2和4,则F 3的大小为________. 【答案】7【解析】由题意知F 3=−(F 1+F 2),∴|F 3|=|F 1+F 2|, ∴|F 3|2=|F 1|2+|F 2|2+2|F 1||F 2|cos60°=28, ∴|F 3|=27【名师点睛】用向量法解决物理问题的步骤如下: (1)抽象出物理问题中的向量,转化为数学问题; (2)建立以向量为主体的数学模型;(3)利用向量的线性运算或数量积运算,求解数学模型; (4)用数学模型中的数据解释或分析物理问题. 5.利用向量解决其他问题【例5】已知直线Ax +By +C =0(其中A 2+B 2=C 2,C ≠0)与圆x 2+y 2=6交于不同的两点M 、N ,O 是坐标原点,则OM MN ⋅=________.【答案】10-【解析】取MN 的中点P ,则12MP MN =,MN OP ⊥.又22||1OP A B=+,||6OM = ∴2()2||OM MN OP PM MN PM MN PM ⋅=+⋅=⋅=-,而222||=||||5PM OM OP -=, ∴2510OM MN ⋅=-⨯=-.【名师点睛】向量在解决其他问题时的“两个”作用:(1)载体作用:向量在其他问题中出现时,多用于“包装”,解决此类问题的关键是利用向量的意义、运算脱去“向量外衣”,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a ·b =0(a ,b 为非零向量),a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较优越的方法. 6.对向量关系式表达的向量之间的相互关系判断错误 【例6】在四边形ABCD 中,(1,1)AB DC ==,3||||||BA BC BDBA BC BD +=,则四边形ABCD 的面积是 . 【误区警示】对常见的向量表示形式要熟记于心,如:(1)重心.若点G 是ABC △的重心,则GA GB GC ++=0或1()3PG PA PB PC ++= (其中P 为平面内任意一点).反之,若GA GB GC ++=0,则点G 是ABC △的重心.(2)垂心.若H 是ABC △的垂心,则HA HB HB HC HC HA ⋅=⋅=⋅.反之,若HA HB HB HC ⋅=⋅ HC HA =⋅,则点H 是ABC △的垂心.(3)内心.若点I 是ABC △的内心,则有||||||BC IA CA IB AB IC ⋅+⋅+⋅=0.反之,若||||BC IA CA ⋅+⋅ ||IB AB IC +⋅=0,则点I 是ABC △的内心.(4)外心.若点O 是ABC △的外心,则()()()0OA OB BA OB OC CB OC OA AC +⋅=+⋅=+⋅=或||||||OA OB OC ==.反之,若||||||OA OB OC ==,则点O 是ABC △的外心.【基础训练】1.如图,在圆C 中,弦AB 的长为4,则AB AC ⋅=A .8B .–8 .4D .–42.已知力F 的大小|F |=10,在F 的作用下产生的位移S 的大小|S |=14,F 与S 的夹角为60°,则F 做的功为A .7B .10C .14D .703.在平面直角坐标中,O 为坐标原点,设向量OA =a ,OB =b ,其中a =(3,1),b =(1,3),若OC =λa +μb ,且0≤λ≤μ≤1,C 点所有可能的位置区域用阴影表示正确的是A .B .C .D .4.已知正方形ABCD 的边长为1,设AB =a ,BC =b ,AC =c ,则|-+a b c |等于A .0B .2C .2D .22【能力提升】5.如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记I 1=OA •OB ,I 2=OB •OC ,I 3=OC •OD ,则 A .I 1<I 2<I 3 B .I 1<I 3<I 2 C .I 3<I 1<I 2D .I 2<I 1<I 3 6.已知点G 是△ABC 的重心,AG AB AC λμ=+(λ,μ∈R ),若∠A =120°,2AB AC ⋅=-,则AG 的最小值是A .33 B .22 C .23D .347.一个重20 N 的物体从倾斜角为30°,长为1 m 的光滑斜面顶端下滑到底端,则重力做的功是__________. 8.一汽车向北行驶3 km ,然后向北偏东60°方向行驶3 km ,求汽车的位移.【真题演练】9.(新课标Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA •(PB +PC )的最小值是A .–2B .–32C .–43D .–110.(浙江)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记I 1=OA •OB ,I 2=OB •OC ,I 3=OC •OD ,则 A .I 1<I 2<I 3 B .I 1<I 3<I 2 C .I 3<I 1<I 2D .I 2<I 1<I 311.(天津)已知△ABC 是边长为1的等边三角形,点D 、E 分别是边AB 、BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF •BC 的值为 A .–58B .14C .18D .11812.(北京)已知点P在圆x2+y2=1上,点A的坐标为(–2,0),O为原点,则AO•AP的最大值为__________.13.(江苏)如图,在同一个平面内,向量OA,OB,OC的模分别为1,1,2,OA与OC的夹角为α,且tanα=7,OB与OC的夹角为45°.若OC=m OA+n OB(m,n∈R),则m+n=__________.14.(天津)已知在△ABC中,∠A=60°,AB=3,AC=2.若BD=2DC,AE=λ–AC AB(λ∈R),且AD AE⋅=–4,则λ的值为__________.【参考答案】1 2 3 4 5 6 9 10 11A D A C C CBC C7.【答案】10 J8.【解析】故汽车的位移为:北偏东30°方向,大小为33km.9.【答案】B 10.【答案】C 11.【答案】C12.【答案】6【解析】设P(cosα,sinα).AO=(2,0),AP=(cosα+2,sinα).则AO•AP=2(cosα+2)≤6,当且仅当cosα=1时取等号.故答案为:6.13.【答案】3【解析】如图所示,建立直角坐标系.A(1,0).由OA与OC的夹角为α,且tanα=7.∴cosα=152,sinα=752.∴C1755⎛⎫⎪⎝⎭,.cos(α+45°)=22(cosα–sinα)=35-.sin(α+45°)=22(sinα+cosα)=45.∴B3455⎛⎫-⎪⎝⎭,.∵OC=m OA+n OB(m,n∈R),∴15=m–35n,75=0+45n,解得n=74,m=54.则m+n=3.故答案为:3.14.【答案】3 11。

1-7 平面向量的应用举例(教学课件)——高中数学湘教版(2019)必修二

1-7 平面向量的应用举例(教学课件)——高中数学湘教版(2019)必修二
(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;
(3)把运算结果“翻译”成几何关系.
4.几何法和坐标法
(1)几何法:
①选取适当的基(夹角、模易知),将题中涉及的向量用基表示;
②利用向量的运算法则、运算律或性质计算;
2
3
2
3
6
2

又O为和 的公共点,∴ 点E,O,F在同一直线上.


1
= = .


2
高中数学
必修第二册
湖南教育版
3.平面几何中的长度问题
例 3 如图所示,四边形ABCD是正方形,BE∥AC,AC=CE,EC的延长线交BA的延长线于点F.
求证:AF=AE.
证明
如图,建立平面直角坐标系,设正方形的边长为1,则A(-1,1),B(0,1).
(2)计算得出1 2 + 1 2=0,从而得到⊥ ;
(3)给出几何结论AB⊥CD.
高中数学
必修第二册
湖南教育版
跟踪训练
1-1
(1)若M为△ABC所在平面内一点,且满足(- )·(+ - 2)=0,则△ABC为( B )
A.直角三角形
B.等腰三角形
C.等边三角形
D.等腰直角三角形
证明:(方法1)∵ 在等腰直角三角形ABC中,∠ACB=90°,∴ 2|AC|= 2|BC|=|AB|.
1
2
2
3
2
3
2
3
1
3
∵=- = - ,=+ =+ =+ (- )= + ,

高中数学 平面向量应用举例

高中数学  平面向量应用举例

分割 A(0, 0), B(1, 0), 则下面说法正确的是 ( )
(A) C 可能是线段 AB 的中点
(B) D 可能是线段 AB 的中点
(C) C, D 可能同时在线段 AB 上
(D) C, D 不可能同时在线段 AB 的延长线上
分析: 点 C, D 调和分割 A, B, 则
AC = l AB,
证明: ∵∠A 是直角,
A
AB AC = 0.
BD, BC 同向,
2 BD
C
BDBC = |BD||BC | = AB .
于是 ADBC = (AB BD)BC
= ABBC BDBC
2
= ABBC AB
= AB(BC AB)
= AB AC =0. ∴AD⊥BC.
例1. 平行四边形是表示向量加法与 减法的几何模型. 如图, AC = AB AD, A
在向量中判定平行, 可用共线的条件 b=la, 可
用坐标 x1y2-x2y1=0. 判定垂直, 用向量的数量积为零. 平面几何用的几何方法, 几乎完全在图形中找关
系. 向量方法是将几何问题转化为代数问题, 用代数 计算的方法解决几何问题.
例(补充). 如图, 在直角三角形ABC中, 角A是直 角, D是BC边上一点, AB2=BD·BC. 求证: AD⊥BC.
(B) D 可能是线段 AB 的中点
(C) C, D 可能同时在线段 AB 上
(D) C, D 不可能同时在线段 AB 的延长线上
分析: 点 C, D 调和分割 A, B, 则
AC = l AB,
AD = AB,
1
l
1
=
2.
即 (c, 0)=l(1, 0), (d, 0)=(1, 0).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高中数学第二章平面向量第五节平面向量应用举例(第二课时)示范教案新人教A版必修4教学分析向量与物理学天然相联.向量概念的原型就是物理中的力、速度、位移以及几何中的有向线段等概念,向量是既有大小、又有方向的量,它与物理学中的力学、运动学等有着天然的联系,将向量这一工具应用到物理中,可以使物理题解答更简捷、更清晰.并且向量知识不仅是解决物理许多问题的有利工具,而且用数学的思想方法去审视相关物理现象,研究相关物理问题,可使我们对物理问题的认识更深刻.物理中有许多量,比如力、速度、加速度、位移等都是向量,这些物理现象都可以用向量来研究.用向量研究物理问题的相关知识.(1)力、速度、加速度、位移等既然都是向量,那么它们的合成与分解就是向量的加、减法,运动的叠加亦用到向量的合成;(2)动量是数乘向量;(3)功即是力与所产生位移的数量积.用向量知识研究物理问题的基本思路和方法.(1)通过抽象、概括,把物理现象转化为与之相关的向量问题;(2)认真分析物理现象,深刻把握物理量之间的相互关系;(3)利用向量知识解决这个向量问题,并获得这个向量的解;(4)利用这个结果,对原物理现象作出合理解释,即用向量知识圆满解决物理问题.教学中要善于引导学生通过对现实原型的观察、分析和比较,得出抽象的数学模型.例如,物理中力的合成与分解是向量的加法运算与向量分解的原型.同时,注重向量模型的运用,引导解决现实中的一些物理和几何问题.这样可以充分发挥现实原型对抽象的数学概念的支撑作用.三维目标1.通过力的合成与分解的物理模型,速度的合成与分解的物理模型,掌握利用向量方法研究物理中相关问题的步骤,明了向量在物理中应用的基本题型,进一步加深对所学向量的概念和向量运算的认识.2.通过对具体问题的探究解决,进一步培养学生的数学应用意识,提高应用数学的能力.体会数学在现实生活中的重要作用.养成善于发现生活中的数学,善于发现物理及其他科目中的数学及思考领悟各学科之间的内在联系的良好习惯.重点难点教学重点:1.运用向量的有关知识对物理中力的作用、速度的分解进行相关分析和计算.2.归纳利用向量方法解决物理问题的基本方法.教学难点:将物理中有关矢量的问题转化为数学中向量的问题.课时安排1课时教学过程导入新课思路 1.(章头图引入)章头图中,道路、路标体现了向量与位移、速度、力等物理量之间的密切联系.章引言说明了向量的研究对象及研究方法.那么向量究竟是怎样应用于物理的呢?它就像章头图中的高速公路一样,是一条解决物理问题的高速公路.在学生渴望了解的企盼中,教师展示物理模型,由此展开新课.思路 2.(问题引入)你能举出物理中的哪些向量?比如力、位移、速度、加速度等,既有大小又有方向,都是向量,学生很容易就举出来.进一步,你能举出应用向量来分析和解决物理问题的例子吗?你是怎样解决的?教师由此引导:向量是有广泛应用的数学工具,对向量在物理中的研究,有助于进一步加深对这方面问题的认识.我们可以通过对下面若干问题的研究,体会向量在物理中的重要作用.由此自然地引入新课.应用示例例1在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上做引体向上运动,两臂的夹角越小越省力.你能从数学的角度解释这种现象吗?活动:这个日常生活问题可以抽象为如图1所示的数学模型,引导学生由向量的平行四边形法则,力的平衡及解直角三角形等知识来思考探究这个数学问题.这样物理中力的现象就转化为数学中的向量问题.只要分析清楚F 、G 、θ三者之间的关系(其中F 为F 1、F 2的合力),就得到了问题的数学解释.图1在教学中要尽可能地采用多媒体,在信息技术的帮助下让学生来动态地观察|F|、|G |、θ之间在变化过程中所产生的相互影响.由学生独立完成本例后,与学生共同探究归纳出向量在物理中的应用的解题步骤,也可以由学生自己完成,还可以用信息技术来验证.用向量解决物理问题的一般步骤是:①问题的转化,即把物理问题转化为数学问题;②模型的建立,即建立以向量为主体的数学模型;③参数的获得,即求出数学模型的有关解——理论参数值;④问题的答案,即回到问题的初始状态,解释相关的物理现象.解:不妨设|F 1|=|F 2|,由向量的平行四边形法则、力的平衡以及直角三角形的知识,可以知道cos θ2=12|G||F 1|⇒|F 1|=|G |2cos θ2. 通过上面的式子,我们发现:当θ由0°到180°逐渐变大时,θ2由0°到90°逐渐变大,cos θ2的值由大逐渐变小,因此|F 1|由小逐渐变大,即F 1,F 2之间的夹角越大越费力,夹角越小越省力.点评:本例是日常生活中经常遇到的问题,学生也会有两人共提一个旅行包以及在单杠上做引体向上运动的经验.本例的关键是作出简单的受力分析图,启发学生将物理现象转化成模型,从数学角度进行解释,这就是本例活动中所完成的事情.教学中要充分利用好这个模型,为解决其他物理问题打下基础.得到模型后就可以发现,这是一个很简单的向量问题,这也是向量工具优越性的具体体现.图2,实际风速为v .端,子弹击中砂箱后,陷入箱内,使砂箱摆至某一高度h .设子弹和砂箱的质量分别为m 和M ,求子弹的速度v 的大小.图3解:设v 0为子弹和砂箱相对静止后开始一起运动的速度,由于水平方向上动量守恒,所以m |v |=(M +m )|v 0|. ①由于机械能守恒,所以12(M +m )v 20=(M +m )gh . ② 联立①②解得|v |=M +m m2gh . 又因为m 相对于M 很小,所以|v |≈M m 2gh , 即子弹的速度大小约为M m2gh . 知能训练1.一艘船以4 km/h 的速度沿着与水流方向成120°的方向航行,已知河水流速为2 km/h ,则经过3小时,该船实际航程为( )A .215 kmB .6 kmC.84 km D .8 km答案:B点评:由于学生还没有学习正弦定理和余弦定理,所以要通过作高来求.2.如图4,已知两个力的大小和方向,则合力的大小为________ N ;若在图示坐标系中,用坐标表示合力F ,则F =________.图4 答案:41 (5,4)3.一艘船以5 km/h 的速度向垂直于对岸的方向行驶,而该船实际航行的方向与水流方向成30°角,求水流速度与船的实际速度.答案:如图5所示,设OA →表示水流速度,OB →表示船垂直于对岸的速度,OC →表示船的实际速度,∠AOC =30°,|OB →|=5 km/h.图5因为OACB 为矩形,所以|OA →|=|AC →|·cot30°=|OB →|·cot30°=53≈8.66 km/h,|OC →|=|OA →|cos30°=5332=10 km/h. 答:水流速度为8.66 km/h ,船的实际速度为10 km/h.点评:转化为数学模型,画出向量图,在直角三角形中解出.课堂小结1.与学生共同归纳总结利用向量解决物理问题的步骤.①问题的转化,即把物理问题转化为数学问题;②模型的建立,即建立以向量为主体的数学模型;③参数的获得,即求出数学模型的有关解——理论参数值;④问题的答案,即回到问题的初始状态,解释相关的物理现象.2.与学生共同归纳总结向量在物理中应用的基本题型.①力、速度、加速度、位移都是向量;②力、速度、加速度、位移的合成与分解对应相应向量的加减;③)动量m v 是数乘向量,冲量Δt F 也是数乘向量;④功是力F 与位移s 的数量积,即W =F·s .作业1.课本习题2.5 A 组3、4,B 组1、2.2.归纳总结物理学中哪些地方可用向量.设计感想1.本教案设计的指导思想是:由于本节重在解决两个问题,一是如何把物理问题转化成数学问题,也就是将物理量之间的关系抽象成数学模型;二是如何用建立起来的数学模型解释和回答相关的物理现象.因此本教案设计的重点也就放在怎样让学生探究解决这两个问题上.而把这个探究的重点又放在这两个中的第一个上,也就是引导学生认真分析物理现象、准确把握物理量之间的相互关系.通过抽象、概括,把物理现象转化为与之相关的向量问题,然后利用向量知识解决这个向量问题.2.经历是最好的老师.充分让学生经历分析、探究并解决实际问题的过程,这也是学习数学,领悟思想方法的最好载体.学生这种经历的实践活动越多,解决实际问题的方法就越恰当而简捷.教科书中对本节的两个例题的处理方法,都不是先给出解法,而是先进行分析,探索出解题思路,再给出解法,就足以说明这一点.3.突出数形结合的思想.教科书例题都是先画图进行分析的,本教案的设计中也突出了这一点.让学生在活动的时候就先想到画图,并在这个活动中,体会数形结合的应用,体会数学具有广泛的应用,体会向量这个工具的优越性.备课资料一、向量与重心问题假如有两个质点M 1,M 2,它们的质量分别是m 1,m 2,由物理学知识,这两个质点的重心M 在线段M 1M 2上,并且分此线段为与质量成反比例的两部分,即M 1M MM 2=m 2m 1,或m 1M 1M →=m 2MM 2→. 现设点M 1、M 2、M ,对应的向量分别是r 1、r 2、r ,则上式可以写成m 1(r -r 1)=m 2(r 2-r ).所以r =m 1r 1+m 2r 2m 1+m 2,点M 处的质量为m 1+m 2. 现求三个质点的重心问题.三个质点M 1、M 2、M 3的质量分别是m 1、m 2、m 3,所对应的向量分别是r 1、r 2、r 3,我们可设M 1,M 2的重心在点D 处,该处对应的向量为r D =m 1r 1+m 2r 2m 1+m 2,该点的质量为m 1+m 2,然后求点D 与点M 3的重心M 所对应的向量r ,易得r =m 1r 1+m 2r 2+m 3r 3m 1+m 2+m 3. 二、备用习题1.作用于同一点的两个力F 1和F 2,|F 1|=5,|F 2|=3,夹角为60°,则F 1+F 2的大小为________.答案:72.一条渔船距对岸为4 km ,现正以2 km/h 的速度向垂直于对岸的方向划去,到达对岸时,船的实际航程为8 km ,求河水的流速.答案:解:如图7所示,设AB →表示船垂直于对岸的速度,则AB →+BC →=AC →,图7知AC →就是渔船实际航行的速度.因为航行的时间为4÷2=2(h),所以在Rt△ABC 中,|A B →|=2 km/h ,|AC →|=8÷2=4 km/h ,则|B C →|=2 3 km/h.答:河水的流速为2 3 km/h.3.在半径为15 cm 的均匀铁板上,挖出一个圆洞,已知圆洞的圆心和铁板中心相距8 cm ,圆洞的半径是5 cm ,求挖去圆洞后所剩下铁板的重心.答案:解:如图8所示,建立平面直角坐标系,两圆的圆心分别为O 1(0,0),O 2(8,0),圆O 2是挖去的圆,不妨设铁板的密度为ρ=1,则小圆的质量m 1=25π,挖去圆洞后,铁板的质量为m 2=(225-25)π=200π,设所求的重心为O 3.图8根据物理学知识,知O 3在直线O 1O 2上,即可设O 3(x 3,0),且满足O 3O 1→=λO 1O 2→,其中λ=m 1m 2=25200=18.由定比分点坐标公式知0=x 3+18×81+18,解得x 3=-1, 即O 3(-1,0)为挖去圆洞后所剩下铁板的重心.4.如图6所示,重力为G 的均匀小球放在倾角为α的斜面上,球被与斜面夹角为θ的木板挡住,球面、木板均光滑,若使球对木板的压力最小,求木板与斜面间夹角θ的大小.图6答案:解:对小球的受力分析如图6所示,重力为G ,斜面弹力为N 2(垂直于斜面向上),木板弹力N 1(垂直于木板),其中N 1与N 2的合力的大小恒为|G′|,方向向上,N 2的方向始终不变,随着木板的转动,N 1的方向始终垂直于木板,N 1的大小在变化,且满足|N 1|sin α=|G′|sin θ,又|G′|=|G |,∴|N 1|=|G |sin αsin θ.∴当sin θ取最大值1时,|N 1|min =|G |sin α,此时θ=π2.。

相关文档
最新文档