第一章3《集合间的关系》
集合间的基本关系说课稿
1.1.2集合间的基本关系数学必修1第一章第二节第1小节《集合间的基本关系》说课稿.一、教学内容分析集合概念及其理论是近代数学的基石,集合语言是现代数学的基本语言,通过学习、使用集合语言,有利于学生简洁、准确地表达数学内容,高中课程只将集合作为一种语言来学习,学生将学会使用最基本的集合语言表示有关的数学对象,发展运用数学语言进行交流的能力.本章集合的初步知识是学生学习、掌握和使用数学语言的基础,是高中数学学习的出发点。
本小节内容是在学习了集合的概念以及集合的表示方法、元素与集合的从属关系的基础上,进一步学习集合与集合之间的关系,同时也是下一节学习集合之间的运算的基础,因此本小节起着承上启下的重要作用.本节课的教学重视过程的教学,因此我选择了启发式教学的教学方式。
通过问题情境的设置,层层深入,由具体到抽象,由特殊到一般,帮助学生的逐步提升数学思维。
二、学情分析本节课是学生进入高中学习的第3节数学课,也是学生正式学习集合语言的第3节课。
由于一切对于学生来说都是新的,所以学生的学习兴趣相对来说比较浓厚,有利于学习活动的展开。
而集合对于学生来说既熟悉又陌生,熟悉的是在初中就已经使用数轴求简单不等式(组)的解,用图示法表示四边形之间的关系,陌生的是使用集合的语言来描述集合之间的关系。
而从具体的实例中抽象出集合之间的包含关系的本质,对于学生是一个挑战。
根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标和教学重、难点如下:三、教学目标:知识与技能目标:(1)理解集合之间包含和相等的含义;(2)能识别给定集合的子集;(3)能使用Venn图表达集合之间的包含关系过程与方法目标:(1)通过复习元素与集合之间的关系,对照实数的相等与不相等的关系联系元素与集合之间的从属关系,探究集合之间的包含和相等关系;(2)初步经历使用最基本的集合语言表示有关的数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力;情感、态度、价值观目标:(1)了解集合的包含、相等关系的含义,感受集合语言在描述客观现实和数学问题中的意义;(2)探索利用直观图示(Venn图)理解抽象概念,体会数形结合的思想。
高一上册数学必修《集合的基本关系》知识点梳理
高一上必修一第一章《集合与常用逻辑用语》知识点梳理1.1.2集合的基本关系学习目标1. 理解集合之间包含与相等的含义;2. 能识别给定集合的子集;3. 能判断给定集合间的关系. 重难点 重点:理解集合间包含与相等的含义.难点:包含关系的判断与证明.(空集与任意集合的关系).学习新知1.子集一般地,如果集合的任意一个元素都是集合的元素,那么集合称为集合的子集.(1)记作(或);(2)读作“包含于”(或“包含”);(3)不是的子集,记作(或).尝试与发现尝试(1)根据子集的定义判断,如果,那么吗?根据子集的定义,;发现(1):非空集合都是它自身的子集,即成立.尝试(2):是的子集吗?根据子集的定义,是的子集.发现(2):成立尝试(3):你认为可以规定空集是任意一个集合的子集吗?为什么?因为空集不包含任何元素,不会出现“内有元素不在集合”的可能,因此,这里的也可以是空集.发现(3):空集是任意一个集合的子集.2.真子集一般地,如果集合是集合的子集,并且中至少有一个元素不属于,那么集合称为集合的真子集,(1)记作(或);(2)读作“真包含于”(或“真包含”) .尝试与发现尝试(1):分析集合,之间的关系。
发现(1):.尝试(2):是任意任意一个集合的真子集吗?发现(2):是任意任意一个非空集合的真子集 .尝试(3): 能否借助图形来形象地表示两个集合的真子集关系?,,发现(3)如果用平面上一条封闭曲线的内部来表示集合,那么我们就可以作出示意图来形象地表示集合之间的关系,这种示意图通常称为维恩图.尝试(4):对于集合,,,如果,,那么, 之间有什么关系?发现(4):对于集合,,,如果,,则.尝试(5):对于集合,,,如果,,那么, 之间有什么关系?如何用维恩图来描述它们之间的关系?发现(5):对于集合,,,如果,,则.尝试(6):对于集合,,,如果,,那么, 之间有什么关系?发现(6):对于集合,,,如果,,则.例题讲解:例1 写出集合的所有子集和真子集.分析:该集合有3个元素,可以考虑从元素个数的不同选取入手,形成不同的集合。
人教版(新教材)高中数学第一册(必修1)精品课件3:1.2 集合间的基本关系
[微体验] 1.思考辨析 (1)空集可以用表示.( ) (2)空集中只有元素0,而无其余元素.( ) 答案 (1)× (2)×
2.下列四个集合中,是空集的为( )
A.{0}
B.{x|x>8,且x<5}
C.{x∈N|x2-1=0}
D.{x|x>4}
解析 满足x>8且x<5的实数不存在,故{x|x>8,且x<5}=∅. 答案 B
答案 C B A
课堂互动探究
探究一 集合关系的判断
例 1 (1)已知集合 M={x|x2-3x+2=0},N={0,1,2},则集合 M 与 N 的关系是( )
A.M=N
ቤተ መጻሕፍቲ ባይዱ
B.N M
C.M N
D.N⊆M
解析 解方程 x2-3x+2=0 得 x=2 或 x=1,则 M={1,2},
因为 1∈M 且 1∈N,2∈M 且 2∈N,所以 M⊆N.
探究二 子集、真子集问题
例 2 已知集合 A={x|x2-3x+2=0},B={x|0<x<6,x∈N},写出满足 A⊆C⊆B 的集合 C 的所有可能情况.
解 由 A={x|x2-3x+2=0}={1,2},B={x|0<x<6,x∈N}={1,2,3,4,5}, 又因为 A⊆C⊆B,即{1,2}⊆C⊆{1,2,3,4,5}, 所以 C 中至少含有元素 1,2,故 C 的所有可能情况是: {1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5}, {1,2,3,4,5},共 8 个.
A.M⊆P
B.P⊆M
C.M=P
D.M,P互不包含
解析 由于集合M为数集,集合P为点集,因此M与P互不包含. 答案 D
集合间的基本关系教案
集合间的基本关系教案篇一:集合间的基本关系示范教案1.1.2 集合间的基本关系整体设计教学分析课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方法,如类比等.值得注意的问题:在集合间的关系教学中,建议重视使用Venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如∈与�恋那�别.三维目标1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力.2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.重点难点教学重点:理解集合间包含与相等的含义.教学难点:理解空集的含义.课时安排1课时教学过程导入新课思路1.实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?(让学生自由发言,教师不要急于作出判断,而是继续引导学生)欲知谁正确,让我们一起来观察、研探.思路2.复习元素与集合的关系——属于与不属于的关系,填空:(1)0N;(2)2Q;(3)-1.5R. 类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(答案:(1)∈;(2)��;(3)∈)推进新课新知探究提出问题(1)观察下面几个例子:①A={1,2,3},B={1,2,3,4,5};②设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;③设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};④E={2,4,6},F={6,4,2}.你能发现两个集合间有什么关系吗?(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同样是子集,有什么区别?(3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论?(4)按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?(5)试用Venn图表示例子①中集合A和集合B.(6)已知A�罛,试用Venn图表示集合A和B的关系.(7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?(8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?(9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论?活动:教师从以下方面引导学生:(1)观察两个集合间元素的特点.(2)从它们含有的元素间的关系来考虑.规定:如果A?B,但存在x∈B,且x?A,我们称集合A是集合B的真子集,记作AB(或BA).(3)实数中的“≤”类比集合中的?.(4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图.(5)封闭曲线可以是矩形也可以是椭圆等等,没有限制.(6)分类讨论:当A?B时,AB或A=B.(7)方程x2+1=0没有实数解.(8)空集记为?,并规定:空集是任何集合的子集,即??A;空集是任何非空集合的真子集,即A(A≠?).(9)类比子集.讨论结果:(1)①集合A中的元素都在集合B中;②集合A中的元素都在集合B中;③集合C中的元素都在集合D中;④集合E中的元素都在集合F中.可以发现:对于任意两个集合A,B有下列关系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.(2)例子①中A?B,但有一个元素4∈B,且4?A;而例子②中集合E和集合F中的元素完全相同.(3)若A?B,且B?A,则A=B.(4)可以把集合中元素写在一个封闭曲线的内部来表示集合.(5)如图1121所示表示集合A,如图1122所示表示集合B. ?图1-1-2-1(6)如图1-1-2-3和图1-1-2-4所示. 图1-1-2-2图1-1-2-3(7)不能.因为方程x2+1=0没有实数解.(8)空集. 图1-1-2-4(9)若A?B,B?C,则A?C;若A应用示例 B,BC,则AC.思路11.某工厂生产的产品在重量和长度上都合格时,该产品才合格.若用A表示合格产品的集合,B表示重量合格的产品的集合,C表示长度合格的产品的集合.已知集合A、B、C均不是空集.(1)则下列包含关系哪些成立?A?B,B?A,A?C,C?A.(2)试用Venn图表示集合A、B、C间的关系.活动:学生思考集合间的关系以及Venn图的表示形式.当集合A中的元素都属于集合B时,则A?B成立,否则A?B不成立.用相同的方法判断其他包含关系是否成立.教师提示学生以下两点:(1)重量合格的产品不一定是合格产品,但合格的产品一定重量合格;长度合格的产品不一定是合格产品,但合格的产品一定长度合格.(2)根据集合A、B、C间的关系来画出Venn图.解:(1)包含关系成立的有:B?A,C?A.(2)集合A、B、C间的关系用Venn图表示,如图1-1-2-5所示.图1-1-2-5变式训练课本P7练习3.点评:本题主要考查集合间的包含关系.其关键是首先明确两集合中的元素具体是什么. 判断两个集合A、B之间是否有包含关系的步骤是:先明确集合A、B中的元素,再分析集合A、B中的元素之间的关系,得:当集合A中的元素都属于集合B时,有A?B;当集合A中的元素都属于集合B,当集合B中至少有一个元素不属于集合A时,有AB;当集合A中的元素都属于集合B,并且集合B中的元素也都属于集合A时,有A=B;当集合A中至少有一个元素不属于集合B,并且集合B中至少有一个元素也不属于集合A时,有AB,且BA,即集合A、B互不包含.2.写出集合{a,b}的所有子集,并指出哪些是它的真子集.活动:学生思考子集和真子集的定义,教师提示学生空集是任何集合的子集,一个集合不是其本身的真子集.按集合{a,b}的子集所含元素的个数分类讨论.解:集合{a,b}的所有子集为?,{a},{b},{a,b}.真子集为?,{a},{b}.变式训练2007山东济宁一模,1已知集合P={1,2},那么满足Q?P的集合Q的个数是( )A.4B.3C.2D.1分析:集合P={1,2}含有2个元素,其子集有22=4个,又集合Q?P,所以集合Q有4个.答案:A点评:本题主要考查子集和真子集的概念,以及分类讨论的思想.通常按子集中所含元素的个数来写出一个集合的所有子集,这样可以避免重复和遗漏.思考:集合A中含有n个元素,那么集合A有多少个子集?多少个真子集?解:当n=0时,即空集的子集为?,即子集的个数是1=20;当n=1时,即含有一个元素的集合如{a}的子集为?,{a},即子集的个数是2=21;当n=2时,即含有一个元素的集合如{a,b}的子集为?,{a},{b},{a,b},即子集的个数是4=22. ……集合A中含有n个元素,那么集合A有2n个子集,由于一个集合不是其本身的真子集,所以集合A有(2n-1)个真子集.思路21.2006上海高考,理1已知集合A={-1,3,2m-1},集合B={3,m2}.若B?A,则实数m=_______. 活动:先让学生思考B?A的含义,根据B?A,知集合B中的元素都属于集合A,集合元素的互异性,列出方程求实数m的值.因为B?A,所以3∈A,m2∈A.对m2的值分类讨论. 解:∵B?A,∴3∈A,m2∈A.∴m2=-1(舍去)或m2=2m-1.解得m=1.∴m=1.答案:1点评:本题主要考查集合和子集的概念,以及集合元素的互异性.本题容易出现m2=3,其原因是忽视了集合元素的互异性.避免此类错误的方法是解得m的值后,再代入验证.讨论两集合之间关系时,通常依据相关的定义,观察这两个集合元素的关系,转化为解方程或解不等式.变式训练已知集合M={x|2-x<0},集合N={x|ax=1},若NM,求实数a的取值范围.分析:集合N是关于x的方程ax=1的解集,集合M={x|x>2}≠?,由于NM,则N=?或N≠?,要对集合N是否为空集分类讨论.解:由题意得M={x|x>2}≠?,则N=?或N≠?.当N=?时,关于x的方程ax=1中无解,则有a=0;111,又∵NM,∴∈M.∴>2. aaa111∴0<a<.综上所得,实数a的取值范围是a=0或0<a<,即实数a的取值范围是{a|0≤a<} 2222.(1)分别写出下列集合的子集及其个数:?,{a},{a,b},{a,b,c}. 当N≠?时,关于x的方程ax=1中有解,则a≠0,此时x=(2)由(1)你发现集合M中含有n个元素,则集合M有多少个子集?活动:学生思考子集的含义,并试着写出子集.(1)按子集中所含元素的个数分类写出子集;(2)由(1)总结当n=0,n=1,n=2,n=3时子集的个数规律,归纳猜想出结论.答案:(1)?的子集有:?,即�劣�1个子集;{a}的子集有:?、{a},即{a}有2个子集;{a,b}的子集有:?、{a}、{b}、{a,b},即{a,b}有4个子集;{a,b,c}的子集有:?、{a}、{b}、{c}、{a,b}、{a,c}、{b,c}、{a,b,c},即{a,b,c}有8个子集.(2)由(1)可得:当n=0时,有1=20个子集;当n=1时,集合M有2=21个子集;当n=2时,集合M有4=22个子集;当n=3时,集合M有8=23个子集;因此含有n个元素的集合M有2n个子集.变式训练已知集合A{2,3,7},且A中至多有一个奇数,则这样的集合A 有……( )A.3个B.4个C.5个D.6个分析:对集合A所含元素的个数分类讨论.A=?或{2}或{3}或{7}或{2,3}或{2,7}共有6个.答案:D点评:本题主要考查子集的概念以及分类讨论和归纳推理的能力.集合M中含有n个元素,则集合M有2n个子集,有2n-1个真子集,记住这个结论,可以提高解题速度.写一个集合的子集时,按子集中元素的个数来写不易发生重复和遗漏现象.知能训练课本P7练习1、2.【补充练习】1.判断正误:(1)空集没有子集.( )(2)空集是任何一个集合的真子集. ( )(3)任一集合必有两个或两个以上子集.( )(4)若B?A,那么凡不属于集合A的元素,则必不属于B.( ) 分析:关于判断题应确实把握好概念的实质.解:该题的5个命题,只有(4)是正确的,其余全错.对于(1)、(2)来讲,由规定:空集是任何一个集合的子集,且是任一非空集合的真子集. 对于(3)来讲,可举反例,空集这一个集合就只有自身一个子集.对于(4)来讲,当x∈B时必有x∈A,则x?A时也必有x?B.2.集合A={x|-1<x<3,x∈Z},写出A的真子集.分析:区分子集与真子集的概念,空集是任一非空集合的真子集,一个含有n个元素的子集有2n个,真子集有2n-1个,则该题先找该集合元素,后找真子集.解:因-1<x<3,x∈Z,故x=0,1,2,即a={x|-1<x<3,x∈Z}={0,1,2}.真子集:?、{1}、{2}、{0}、{0,1}、{0,2}、{1,2},共7个.3.(1)下列命题正确的是 ( )A.无限集的真子集是有限集B.任何一个集合必定有两个子集C.自然数集是整数集的真子集D.{1}是质数集的真子集(2)以下五个式子中,错误的个数为( ) ①{1}∈{0,1,2} ②{1,-3}={-3,1} ③{0,1,2}?{1,0,2}④?∈{0,1,2} ⑤?∈{0}A.5B.2C.3D.4(3)M={x|3<x<4},a=π,则下列关系正确的是 ( ) A.aMB.a?MC.{a}∈MD.{a}M分析:(1)该题要在四个选择肢中找到符合条件的选择肢,必须对概念把握准确,无限集的真子集有可能是无限集,如N是R的真子集,排除A;由于?只有一个子集,即它本身,排除B;由于1不是质数,排除D.(2)该题涉及到的是元素与集合,集合与集合的关系.①应是{1}?{0,1,2},④应是??{0,1,2},⑤应是??{0}.故错误的有①④⑤.(3)M={x|3<x<4},a=π.因3<a<4,故a是M的一个元素.{a}是{x|3<x<4}的子集,那么{a}答案:(1)C (2)C (3)D M.篇二:2014高中学科教学设计-集合间的基本关系我的教学设计模板篇三:《集合间的基本关系》教学设计1.1.2集合间的基本关系一、设计理念新课标指出:学生的数学学习活动不应只是接受、记忆、模仿、练习,教师应引导学生自主探究、合作学习、动手操作、阅读自学,应注重提升学生的数学思维能力,注重发展学生的数学应用意识。
高中必修一数学第一章集合间的基本关系ppt课件-人教版
[导入新知] 子集的概念
任意一个
包含
A⊆B B⊇A
高中数学
⊆ ⊆
高中数学
[化解疑难] 对子集概念的理解
(1)集合 A 是集合 B 的子集的含义是:集合 A 中的 个元素都是集合 B 中的元素,即由 x∈A 能推出 x∈B.例 ⊆{-1,0,1},则 0∈{0,1},0∈{-1,0,1}.
(2)若两集合相等,则两集合所含元素完全相同,与 列顺序无关.
高中数学
真子集 [提出问题] 给出下列集合: A={a,b,c},B={a,b,c,d,e}. 问题1:集合A与集合B有什么关系? 提示:A⊆B. 问题2:集合B中的元素与集合A有什么关系? 提示:集合B中的元素a,b,c都在A中,但元素d,e不
高中数学
[导入新知] 集合相等的概念
如果集合 A 是集合 B 的 子集 (A⊆B),且集合 B A 的 子集 (B⊆A),此时,集合 A 与集合 B 中的元素 的,因此,集合 A 与集合 B 相等,记作 A=B .
高中数学
[化解疑难] 对两集合相等的认识
(1)若 A⊆B,又 B⊆A,则 A=B;反之,如果 A= ⊆B,且 B⊆A.这就给出了证明两个集合相等的方法,即 =B,只需证 A⊆B 与 B⊆A 同时成立即可.
(2)若 A 不是 B 的子集,则 A 一定不是 B 的真子集
高中数学
空集 [提出问题] 一个月有32天的月份组成集合T. 问题1:含有32天的月份存在吗? 提示:不存在. 问题2:集合T存在吗?是什么集合? 提示:存在,是空集.
高中数学
[导入新知]
空集的概念
定义 我们把 不含任何元素 的集合,叫做空
1 理解教 材新知
1.1.2
高中数学《集合间的基本关系》--教学设计
1.2 集合间的基本关系教材分析:本节内容来自人教版高中数学必修一第一章第一节集合第二课时的内容。
集合论是现代数学的一个重要基础,是一个具有独特地位的数学分支。
高中数学课程是将集合作为一种语言来学习,在这里它是作为刻画函数概念的基础知识和必备工具。
本小节内容是在学习了集合的含义、集合的表示方法以及元素与集合的属于关系的基础上,进一步学习集合与集合之间的关系,同时也是下一节学习集合间的基本运算的基础,因此本小节起着承上启下的关键作用.通过本节内容的学习,可以进一步帮助学生利用集合语言进行交流的能力,帮助学生养成自主学习、合作交流、归纳总结的学习习惯,培养学生从具体到抽象、从一般到特殊的数学思维能力,通过Venn图理解抽象概念,培养学生数形结合思想。
教学目标:A.了解集合之间包含与相等的含义,能识别给定集合的子集;B.理解子集、真子集的概念;C.能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用,体会数形结合的思想。
核心素养:1.数学抽象:集合间的关系的含义;2.逻辑推理:由集合的元素的关系推导集合之间的关系;3.数学运算:由集合与集合之间的关系求值;4.直观想象:体会直观图示对理解抽象概念的作用,体会数形结合的思想。
教学重难点:1.教学重点:集合间的包含与相等关系,子集与其子集的概念;2.教学难点:属于关系与包含关系的区别.教学过程:牛刀小试1:下图中,集合A 是否为集合B 的子集?牛刀小试2判断集合A 是否为集合B 的子集,若是则在( )打√,若不是则在( )打×:①A={1,3,5}, B={1,2,3,4,5,6} ( √ ) ②A={1,3,5}, B={1,3,6,9} ( × ) ③A={0}, B={x | x 2+2=0} ( × ) ④A={a,b,c,d}, B={d,b,c,a} ( √ )思考2:与实数中的结论 “若a ≥b,且b ≥a,则a=b ”。
高一数学第一章第三节
课题名称数学备课日期2014年9月19 科目数学第一章(3)上课班级1401 1402教学时间一个课时授课教师徐一一、教材内容分析第一章集合第三节:集合之间的关系二、教学目标1.知识目标1)正确理解子集、真子集等概念2)掌握集合与集合之间的关系2.能力目标能够准确的判断集合之间的关系3.情感目标在教学中多与学生互动,培养学生的思维能力,并以此调节自己的教学方式。
三、学习者特征分析学生对于集合之间的关系理解较为困难抽象,所以采用直接板书教学,多举学生感兴趣的例子,多与学生的互动。
四、教学重难点重点集合与集合之间的关系判断难点集合与集合之间关系的判断五、教学资源实验(演示)教具黑板六、教学过程一、引入课题:同学们上节课我们学习了集合的表示法,下面我们来回忆下,这节课我们将学习集合之间的关系,请大家花3min来预习下这节的内容。
二、具体讲解1、集合与集合的关系:子集:设A,B是两个集合,如果A中的每个元素都在B中,则称A是B 的子集。
用 “”表示,读作“包含于”。
任何一个集合都是其本身的子集。
对于任意三个集合A,B,C,如果如果集合A中的每一个元素都是集合B中的元素,而集合B中的每一个元素都是集合A中的元素,那么集合A和集合B相等,记作:A=B。
任何一个集合都等于它本身。
对于任意三个集合A,B,C,如果A=B,B=C,那么A=C。
如果集合A的每一个元素都是集合B中的元素,而集合B中至少有一个元素是集合A中的元素,那么集合A是集合B的真子集,记作:A B。
读作“A真包含于B”或“B真包含A”。
对于任意三个集合A,B,C,如果空集是任何集合的子集,空集是任何非空集合的真子集。
2、例题:3)、如果有三个集合A,B,C,A是B的子集,B是C子集,A与C有怎样的关系?学生模仿练习:请学生在黑板上写下答案,引导全班学生统一订正,老师点拨、解答学生疑难。
三、小结为了方便理解可以用数轴、文氏图解题,也可与不等式、方程、几何结合来做题。
集合间的基本关系【新教材】人教A版高中数学必修第一册课件PPT3
集合与常用逻辑用语
1.2 集合间的基本关系
• 【素养目标】 • 1.理解集合之间包含和相等的含义,并会用符号和Venn图表示.(直观想
象) • 2.会识别给定集合的真子集,会判断给定集合间的关系,并会用符号
和Venn图表示.(直观想象) • 3.在具体情境中理解空集的含义.(数学抽象)
• 【学法解读】
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
•知识点4 Venn图 • 在 Ve数nn学图中,,这经种常表用示平集面合上的_方__法__叫_封_做_闭_图_曲_示_线的法内.部代表集合,这种图称为 • 注意:1.用Venn图可以直观、形象地表示出集合之间的关系.
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
• [归纳提升] 判断集合间关系的常用方法 • (1)列举观察法 • 当集合中元素较少时,可列出集合中的全部元素,通过定义得出集合之
间的关系. • (2)集合元素特征法 • 首先确定集合的代表元素是什么,弄清集合元素的特征,再利用集合元
合 A 与集合 B 相等,记作 A=B.
符号语言
A⊆B 且 B⊆A⇔A=B
图形语言
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
1.2集合间的基本关系-【新教材】人 教A版( 2019) 高中数 学必修 第一册 课件( 共48张P PT)
第一章 1.2.3 集合之间的关系(2)
{0} ⊂ ,1} {0,
, ∅⊂{0,1} ≠
{1} ⊂{0,1} , {0,1} ⊆ {0,1 } , ,Байду номын сангаас
≠ ≠
例1
写出集合A={1,2,3}的所有子集. , , 的所有子集 的所有子集. 写出集合 的所有子集是: 解:集合A的所有子集是:
真子集: 真子集:
真子集 是:
∅
,
{1},{2},{3}, { { {1,2},{1,3},{2,3}, 2 { }{ 3 {1,2,3}. 23
(5) ∅⊆{ x | x ≤ 10}×
(6)
{ (3) {2} ⊂ x | x ≤ 10} √
≠
√ ∅⊂{ x | x ≤ 10} ≠
集合与元素的关系 集合与元素的关系 集合与集合的关系 集合与集合的关系
从属关系 包含关系
∈
∉
通过这堂课的学习, 通过这堂课的学习, 你有什么收获? 你有什么收获?
包含于B 读作: 包含于 A⊆ B 读作 A包含于 ⊆ 读作: 包含 包含A B ⊇ A 读作 B包含
符号开口朝向大的集合 符号开口朝向大的集合 开口朝向
规定:任何一个集合A都是它本身的子集, 都是它本身 规定:任何一个集合 都是它本身的子集,即A ⊆A . 集是任何集合的子集,即 ∅ ⊆ A 集是任何集合的子集, 任何集合的子集
真子集的概念
空集是任何非空集合的真子集。 空集是任何非空集合的真子集。 非空集合的真子集 如果A是 的子集 的子集, 如果 是B的子集, 子集 并且B中至少有一个元素不属于 ,那么A叫做 叫做B的真子集. 并且 中至少有一个元素不属于A,那么 叫做 的真子集 中至少有一个元素不属于 记作: 记作 读作: A ⊂B 读作 ≠ A真包含于 真包含于B 真包含于
《集合间的基本关系》课件与导学案
1.求集合子集、真子集个数的3个步骤
2.与子集、真子集个数有关的4个结论
假设集合A中含有n个元素,则有
(1)A的子集的个数有2n个.
(2)A的非空子集的个数有2n-1个.
(3)A的真子集的个数有2n-1个.
(4)A的非空真子集的个数有2n-2个.
(2)A={x|x是平行四边形},B={x|x是菱形},C={x|x是四边形},D
={x|x是正方形};
(3)A={x|-1<x<4},B={x|x<5}.
[解]
(1)因为若x是12的约数,则必定是36的约数,反之不成立,所
以A B.
(2)由图形的特点可画出Venn图如图所示,从而D B A C.
的关系.
1.能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0}
关系的Venn图是(
)
B [解x2-x=0得x=1或x=0,故N={ 0,1} ,易得N M,其对应的
Venn图如选项B所示.]
子集、真子集的个数问题
【例2】
的可能情况.
已知集合M满足:{1,2} M⊆{1,2,3,4,5},写出集合M所有
【分析】可把子集分为三类:
①不含元素的:∅
②含有一个元素的
③含有两个元素的
④含有三个元素的
【解】子集有∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}
其中真子集有∅,{1},{2},{3},{1,2},{1,3},{2,3}
【注意】书写子集的时候千万不要漏掉空集∅
2.判断下列各组集合A是否是集合B的子集,说明理由。
高中数学高一上册第一章-1.1.2集合之间的关系课件
读作 “集合A 等于B 集合” 显然 若 A B 且 B A,则 A B
想一想用图示法怎么表示A=B?
三、真子集
对于两个集合 A 和 B , 如果 A B ,且 B 中至少有一个元素不属于 A
那么集合 A 叫做集合B 的真子集.
记作
A B ( B A )
读作 “ A 真包含于B ” (“B 真包含A ”)
70,1 0,1
例3.求出所有符合条件的集合C (1) C{1,2,3}
(2) C {a , b}
(3) {1,2,3} C{1,2,3,4,5} 解: (1) C 可以是以下集合: , { 1 } , { 2 } , { 3 } , { 1 , 2 } , { 1 , 3 } , { 2 , 3 } , { 1 , 2 , 3 } (2) C 可以是以下集合: ,{a},{b} (3) C 可以是以下集合: { 1 ,2 ,3 ,4 } ,{ 1 ,2 ,3 ,5 } ,{ 1 ,2 ,3 ,4 ,5 }解毕
当B=时, a = 0
当B={-2}时,a = 1
当B={3}时,a
=
2
1
3
解毕
有勇气承担命运这才是英雄好汉。——黑塞 说话不要有攻击性,不要有杀伤力,不夸已能,不扬人恶,自然能化敌为友。 树立必信的信念,不要轻易说“我不行”。志在成功,你才能成功。 不会生气的人是愚者,不生气的人乃真正的智者。 友谊要像爱情一样才温暖人心,爱情要像友谊一样才牢不可破。 每天都将自己最好的一面展示给别人。——杨丽娜 我们最值得自豪的不在于从不跌倒,而在于每次跌倒之后都爬起来。 我们不能选择命运,但是我们能改变命运。
答:x2,y5.
例 5 : 已 知 集 合 A = { x | x 2 x 6 0 } 与 集 合 B = {x |a x 1 0 }
中职数学集合之间的关系子集与真子集PPT课件
问题3 设集合A =Z,集合B =N.
集合A与集合B之间存在什么关系呢?
集合B的元素(我班的男学生)、(2,3,0)、(自然数)肯定 是集合A的元素(我班的学生)、(−1,2,4,1,0,3)、(整数).
动 脑 思 考 探 索 新 知
如果集合B的元素都是集合A的元素,那么称集合A 包含集合B,并把集合B叫做集合A的子集.
A
B
集合之间的包含关系
即空集是任何集合的子集
巩 固 知 识 典 型 例 题
运 用 知 识 强 化 练 习
练习
真子集: 如果 ,且B中至少有一个元素不属于A,那么A叫集合B的真子集,记作 A B
第一章 集 合
1.3 集合之间的关系 子集与真子集
复 习 知 识 揭 示 课 题
元素a是集合A的元素, a∈A,属于
Ï
元素a不是集合A的元素, a A,不属于
创 设 情 景 兴 趣 导 入
问题1 设A表示我班全体同学的集合,B表示我班全体男同 学的集合;
二真子集ห้องสมุดไป่ตู้概念
用Venn图表示两个集合间的包含关系
B
A
读作:A真包含于B,或B真包含A
巩 固 知 识 典 型 例 题
分析:集合中有3个元素,可以分别列出子集: . 含1个元素的集合: . 含2个元素的集合: . 含3个元素的集合: .
其中的子集和真子集分别有多少个?
子集和真子集两个概念有什么区别和联系?
运 用 知 识 强 化 练 习
《集合的基本关系》集合与常用逻辑用语PPT
课堂篇
探究学习
探究一
探究二
探究三
探究四
思维辨析
当堂检测
解:(1)由A={x|x2-3x-10≤0},得A={x|-2≤x≤5}.
∵B⊆A,∴①若B=⌀,
则m+1>2m-1,即m<2,此时满足B⊆A.
②若B≠⌀,
+ 1 ≤ 2-1,
下列写法哪些是正确的?
①0={0};②{0}⊆{0};③0∈{0};④0⫋{0}.
提示:只有②③写法是正确的,一般地,元素与集合之间是属于关
系,而反映两个集合间的关系一般用子集、真子集或相等.
课前篇
自主预习
一
二
2.填写下表:
三
四
课前篇
自主预习
一
二
三
四
3.做一做
用适当的符号填空(⫋,=,⊈).
(1){0,1}
对于本题而言易漏掉当a=0时的情况,要清楚当a=0时,ax+1=0是
无解的,即此时Q为空集.
课堂篇
探究学习
探究一
探究二
探究三
探究四
思维辨析
当堂检测
延伸探究已知集合A={x|x2-5x+6=0},B={x|(m-1)x-1=0},且B⊆A,
则以实数m为元素的集合M为
.
解析:A={x|x2-5x+6=0}={2,3}.
值.
分析:先明确集合P,再结合Q⫋P对Q中的a分两种情况讨论.
解:P={x|x2+x-6=0}={2,-3}.
当a=0时,Q={x|ax+1=0}=⌀,Q⫋P成立.
1
,
1
或- =-3,
第二节 集合间的基本关系(必修1第一章)
第二节集合间的基本关系知识清单1.集合间的基本关系图2.空集(1)一般地,我们把不含任何元素的集合叫做空集,记为:∅.(2)规定:空集是任何集合的子集(空集是任何非空集合的真子集).3.子集个数问题若集合A 中含有n 个元素,则集合A 的子集个数为:n 2;真子集个数为:12-n ;非空真子集个数为:22-n .题型训练题型一集合间的关系判断1.已知集合}01{2=-=x x A ,下列式子表示不正确的是()A .A∈1B .A∈-}1{C .A⊆∅D .A⊆-}11{,2.若集合}1{>=x x A ,则满足A B ⊆的集合B 可以是()A .}32{,B .}2{≤x x C .}210{,,D .}1{≥x x 3.若集合}{}{22x y y Q x y x P ====,,则P 与Q 的关系为()A .Q P ⊆B .PQ ⊆C .QP =D .以上都不对4.若集合}214|{}412|{Z k k x x N Z k k x x M ∈+==∈+==,,则()A .NM =B .NM ⊆C .MN ⊆D .以上都不对5.若集合}14{}12{Z n n x x B Z n n x x A ∈±==∈+==,,,,则()A .B A ∈B .BA ≠⊂C .BA =D .AB ≠⊂6.下列六个关系式:①}{}{a b b a ,,=;②}{}{a b b a ,,⊆;③}{∅=∅;④∅=}0{;⑤}{∅⊆∅;⑥}0{0⊆.其中正确的有题型二集合的子集、真子集个数7.已知集合}321{,,=A ,则集合A 的真子集个数为()A .5个B .6个C .7个D .8个8.已知集合}6543{,,,⊆A ,且A 中至少含有一个奇数,则这样的集合A 有()A .10个B .12个C .13个D .14个9.若}54321{}21{,,,,,⊆⊆A ,则满足条件的集合A 有()A .5个B .6个C .7个D .8个10.集合}{c b a ,,的子集的个数为,真子集的个数为,非空真子集的个数为11.已知集合}012{2=++=x ax x A 有且仅有两个子集,则=a 12.已知A 为非空集合,且}54321{,,,,⊆A ,则满足条件“若A a ∈,则A a ∈-6”的集合A 的个数为题型三由集合间的关系求参数(不等式含参)13.已知集合}21{≤≤=x x A ,}{a x x B ≥=,若B A ⊆,则a 的取值范围是()A .1≤a B .1<a C .2≤a D .2<a 14.已知集合}52{≤≤-=x x M ,}126{-≤≤-=m x m x N ,若N M ⊆,则m 的取值范围是()A .43<<m B .43≤≤m C .32<<m D .32≤≤m 15.集合}42{≤≤=x x A ,}4{a x a x B <<=,若B A ⊆,则a 的取值范围是16.已知非空集合}5312{-≤≤+=a x a x A ,}223{≤≤=x x B },若B A ⊆,则实数a 的取值范围是17.已知集合}121{}52{-≤≤+=≤≤-=m x m x B x x A ,,若A B ⊆,求m 的取值范围.18.已知集合}22{}91{2a x a x B x x A +<<-=<<=,,若A B ≠⊂,求a 的取值范围.题型四由集合间的关系求参数(方程含参)19.已知集合}06{2=-+=x x x A ,}01{=+=mx x B ,且A B ⊆,则=m 20.已知集合}43{,-=A ,}02{2=+-=q px x x B 且∅≠B ,若A B ⊆,求q p ,的值综合训练1.满足条件}654321{}321{,,,,,,,≠⊂≠⊂M 的集合M 的个数是()A .8B .7C .6D .52.集合}4590{Z k k x x M ∈︒±⋅︒==,,}9045{Z k k x x N ∈︒±︒⋅==,,则()A .NM =B .NM ≠⊂C .MN ≠⊂D .以上都不对3.已知}0158{2=+-=x x x A ,}01{=-=ax x B ,若A B ⊆,则=a ()A .31B .51C .31或51D .31或51或04.已知集合}1{}21{2a a B a A -==,,,,,若A B ⊆,则=a 5.已知}10{-=,,a A ,}11{,,ba b c B ++=,且B A =,则=a ,=b 6.已知}51{≥-≤=x x x A 或,}4{+≤≤=m x m x B ,若A B ⊆,则m 的取值范围是7.已知集合}1{}2111{2c c B b b A ,,,,,=++=,若B A =,则=c 8.设集合}321{n S n ,,,,⋅⋅⋅=,若X 是n S 的子集,我们把X 中所有元素的和称为X 的容量(规定空集的容量为0),若X 的容量为奇(偶)数,则称X 为n S 的奇(偶)子集,则4S 的奇子集有个9.集合}022{2=+-=x ax x A ,集合}023{2=+-=y y y B ,如果B A ⊆,求实数a 的取值集合.10.已知}1{}032{2a x x B x x x A <-=<--=,.(1)若B A ⊆,求实数a 的取值范围;(2)若A B ⊆,求实数a 的取值范围.第二节集合间的基本关系参考答案题型一集合间的关系判断1-5B ,A ,B ,B ,C6.①②⑤题型二集合的子集、真子集个数7-9C ,B ,D10.8、7、611.0或112.7题型三由集合间的关系求参数13-14A ,B15.21<<a 16.96≤≤a 17.3≤m 18.1≤a 题型四由集合间的关系求参数19.31210或或-=m 20.93=-=q p ,或164==q p ,或1221-==q p 综合训练1-3C ,B ,D4.0或15.21-==b a ,6.55≥-≤m m 或7.21-8.89.210≥=a a 或10.(1)2≥a (2)2≤a。
数学人教B必修1第一章121 集合之间的关系
1、2、1 集合之间的关系1。
子集一般地,如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A⊆B或B⊇A、读作“A包含于B",或“B包含A".理解子集的定义要注意以下七点:(1)“A是B的子集”的含义:集合A中的任意一个元素都是集合B中的元素,即由任意x∈A,能推出x∈B、例如:{1,2,3}⊆N,N⊆R,{x|x为山东人}⊆{x|x为中国人}等.(2)当集合A中存在着不是集合B的元素,我们就说A不是B的子集,记作“A B”(或B A),读作“A不包含于B”(或“B不包含A”)。
例如:A={1,2,3}不是B={2,3,4,5,6}的子集,因为集合A中的元素1不是集合B中的元素。
(3)任意一个集合是它本身的子集.因为对于任意一个集合A,它的任意一个元素都属于集合A本身,记作A⊆A、例如:{1,5}⊆{1,5}等。
(4)空集是任意一个集合的子集,即对于任意一个集合A,都有∅⊆A、(5)在子集的定义中,不能理解为子集A是B中的“部分元素"所组成的集合.因为若A =∅,则A中不含任何元素;若A=B,则A中含有B中的所有元素。
但在这两种情况下集合A都是集合B的子集.(6)包含关系具有传递性:对于集合A,B,C,若A⊆B,B⊆C,则A⊆C、(7)写集合的所有子集时,注意按一定顺序写出,避免遗漏和重复.【例1】已知集合M={0,1},集合N={0,2,1-m},若M⊆N,则实数m=__________、解析:∵M⊆N,M={0,1},∴1∈N、∴1-m=1,即m=0、答案:0点技巧有限集合子集的确定技巧(1)确定所求的集合;(2)合理分类,按照子集所含元素的个数依次写出;(3)注意两个特殊的集合,即空集和集合自身,看它们是否能取到。
2。
真子集如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B 的真子集,记作A B或B A,读作“A真包含于B”,或“B真包含A”.例如:{1}{1,2,3}.关于真子集注意以下四点:(1)空集是任何非空集合的真子集。
《集合间的基本关系》学案
《集合间的关系》同步学案一、课前预习新知(一)预习目标:初步理解集合之间的包含与相等关系,能识别给定集合的子集.(二)预习内容:阅读教材填空:(1)一般的,对于两个集合A 、B,如果集合A中的每一个元素都是集合B中的元素那么集合A叫做集合B的,记作或.当集合A不包含于集合B时,记作A B,用Venn图表示两个集合间的“包含”关系.A (2)集合与集合之间的“相等”关系, 若,则B (3)真子集的概念:.(4)任何一集合都是它自身的.(5)空集的概念:.记作空集是任何集合的,是任何非空集合的.二、课内探究新知(一)学习目标1.运用类比的方法,对照实数的相等与不等的关系,探究集合之间的包含与相等关系2.能识别给定集合的子集.3.能利用Venn图表达集合间的关系;探索Venn图对理解抽象概念的作用.(二)学习过程1.核对预习学案中的答案2.完成下列问题用适当的符号填空:(1)a {a,b,c} (2)0 {x︱x2=0}(3)φ{x∈R︱x2+1=0}, (4){0,1} N(5){0} {x︱x2=x} (6){2,1} {x︱x2-3x+2=0}(7)已知集合A={x︱2x-3< 3x},B={x︱x ≥2},则有:-4 B -3 A {2} B B A(8)已知集合A={ x︱x2-1=0},则有:1 A,{-1} A ,¢ A ,{-1,1} A(9){x︱x是菱形} {x︱x 是平行四边形} ;{x︱x是等腰三角形} {x︱x是等边三角形}思考:包含关系{a}⊆A与属于关系a A∈有什么区别?试结合实例作出解释.3.例题例1.观察实例,写出下列集合间的关系.(1)A={1,3},B={1,3,5,7}(2)A={高一全体女生},B={高一全体学生}(3)A={x︱x是矩形},B={x︱x是平行四边形}(4)A=N,B=Q(5)A={x︱x>3},B={x︱x>5},C={x︱x>7}(6)A={x︱(x+2)(x+1)=0},B={-1,-2}变式训练1.判断:集合 A 是否为集合 B 的子集,若是则在()打√,若不是则在()打×.(1){}A=1,35,,{}B=1,2,3,4,5,6;( )(2){}A=1,2,3,{}B=1,3,6,9;( )(3){}A=0, {}2B=x x +2=0}; ( ) (4){}A=a,b,c,d , {}B=d,b,c,a . ( )例2. 写出集合{a ,b }的所有子集,并指出哪些是它的真子集?变式训练2. 写出集合{a ,b ,c }的所有子集,并指出哪些是它的真子集?例3. 已知集合A={x ︱x > b }, B={x ︱x > 3},若B A ⊇,,则求实数b 的范围 ?变式训练3.已知集合A={x ︱2-x<0}, B={x ︱ax =1},若A B ⊆,,则求实数a 的范围 ?(三)当堂检测1.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 2. 写出满足{3,4} P ⊆{0,1,2,3,4}的所有集合P .3.已知集合A={-1,21x -,3},B={3, 2x }若B A ⊇,则求实数x .三、课后练习巩固新知1.集合A={x|0≤x<3且x∈Z}的真子集的个数是()A.5 B.6 C.7 D.82.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A<B C.B⊆A D.A⊆B3.下列说法:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若ØA,则A≠Ø.其中正确的有()A.0个B.1个C.2个D.3个4.已知集合A={-1,3,2m-1},集合B={3,m2},若B⊆A,则实数m =________.5.设集合A={x,y},B={0,x2},若A=B,求实数x,y.6.若集合M={x|x2+x-6=0},N={x|(x-2)(x-a)=0},且N⊆M,求实数a的值.【答案】1.C 2.C 3.B 4.15.【解析】从集合相等的概念入手,寻找元素的关系,必须注意集合中元素的互异性.因为A=B,则x=0或y=0.(1)当x=0时,x2=0,则B={0,0},不满足集合中元素的互异性,故舍去.(2)当y=0时,x=x2,解得x=0或x=1.由(1)知x=0应舍去.综上知:x=1,y=0.6.【解析】由x2+x-6=0,得x=2或x=-3.因此,M={2,-3}.若a=2,则N={2},此时N M;若a=-3,则N={2,-3},此时N=M;若a≠2且a≠-3,则N={2,a},此时N不是M的子集,故所求实数a的值为2或-3.。
高中数学必修一《集合间的基本关系》优秀教学设计
高中数学必修一《集合间的基本关系》优秀教学设计1.1.2 集合间的基本关系教学设计一、教学目标1.知识与技能1) 了解集合之间包含与相等的含义,能够识别给定集合的子集。
2) 理解子集和真子集的概念。
3) 能够使用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用。
2.过程与方法让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义。
3.情感、态度与价值观1) 树立数形结合的思想。
2) 体会类比对发现新结论的作用。
二、教学重点与难点重点:集合间的包含与相等关系,子集与其子集的概念。
难点:关系与包含关系的区别。
三、学法让学生通过观察、类比、思考、交流、讨论,发现集合间的基本关系。
四、教学过程一)复回顾:1.元素与集合之间的关系。
2.集合的三性:确定性、互异性、无序性。
3.集合的常用表示方法:列举法、描述法。
4.常见的数集表示。
二)创设情景,新课引入:问题1:实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?让学生自由发言,教师不要急于做出判断,而是继续引导学生;欲知谁正确,让我们一起来观察、研探。
三)师生互动,新课讲解:问题1:观察下面几个例子,你能发现两个集合间有什么关系了吗?1) A={1,2,3}。
B={1,2,3,4,5};2) 设A为我班第一组男生的全体组成的集合,B为我班班第一组的全体组成的集合;3) 设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};4) E={2,4,6},F={6,4,2}。
组织学生充分讨论、交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系:归纳:①一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为B的子集。
记作:A⊆B(或B⊇A)读作:A包含于B(或B包含A)。
②如果两个集合所含的元素完全相同,那么我们称这两个集合相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012学年高一数学必修1导学案编制人:杜林编号:03
使用时间:小组:姓名:组内评价:教师评价:
集合间的关系导学案
高2011级班第组姓名
一、教育理念:
1、教师:不再是老老实实、照本宣科地向学生灌输,而是研究学生、学法,如何把要学知识让学生主动接受。
让学生掌握集合间的关系,为后面集合运算打基础。
2、学生:不能再在课堂中观望着老师、等待着答案,而是认真用脑思维,变“要我学”为“我要学”。
让学生明白子集、真子集和能写集合的全部子集。
3、课堂:这是学生施展智慧的平台,老师发现人才的战场,是学校教育的核心场所。
二、学习目标:
1、知识与技能:理解(真)子集、相等集合含义,能分别用汉语言、代数语言和文思图表示它们间的关系。
并用它们解题。
2、过程与方法:自主学习、讨论解疑、知错更新。
学生通过元素与集合的关系来判定一个集合与另一个集合的关系。
3、情感与价值观:激情投入、高效学习,带动后进学生进入学习状态,让师生体会到课堂气氛浓,生活美好的感觉。
同时,获得知识升华的快感。
三.问题导学:
1、复习引入:(2分钟)
元素与集合间的关系是,例如:
作业点评:
自然产生了集合与集合之间的关系,下面学生自主学习。
2、取集合A={4,5,6},B={3,4,5,6},发现的元素全部在中;
集C={亚洲的国家},D={中国,日本},发现的元素全部在中;
我们称集合A包含于B中,或集B包含A;集合C与D呢?。
A与C呢?。
我们称集合A不包含于C中,或集C不包含A。
3、集合间的关系为:。
符号为。
想一想:集合间关系符号、元素与集合关系符号,两类符号有什么区别?
自己举出例子:。
定义:子集。
图
图1
图中集合C、D、E关系是。
定义:真子集。
符号:
例:①若A={x∈R|x2-3x-4=0},B={x∈Z | |x|<5},则A⊊B正确吗?
②你能举出真子集关系的集合吗?
4、相等集合:
想一想:①比较相等集合以前和现在的说法中有什么异同?
②说明怎么证明两个集合相等:
5、空集:
空集的符号:
举出你见过的空集:
例:①{既是偶数又是奇数的数}= ,②{a∈Z│3a+2=0}= ,
③{(x,y) │3x+2y=16,x>4,x∈N,y∈N}= ,
6、求集合的子集:
规律:①任何集合是它本身的子集。
②空集是任何集合的子集,也是它本身的子集,且是非空集合的真子集。
③若A⊆B,B⊆C,则A⊆C。
例:若集合A={3,-1,6},求A的子集,真子集又是什么?
四.合作、探究、展示:例
1、判断正确与错误:
(1)非空集合的子集不含空集()
(2)无限集的子集必是无限集()
(3)无限集的子集比它的真子集个数多一个()(4)无限集的子集没有有限集()
(5)空集不能用文思图表示()。
例2、若A={2,-3},B={x|x2+ x-6=0},求证:A=B
例3:已知:C={x│-2≤x<3},D={y│a≤y<b},①若C⊆ D,求a,b的值;②若C⊊D呢?
变式:若A={x|x2-3x-4=0}, B={x|x2+x-m=0},且B⊆A,求m的范围。
拓展:1、若集合A中有n个元素,则集合A的子集有多少个?真子集有多少个?1
2、已知:M={x│x=2k-1,k∈Z},N={x│x=4k±1,k∈Z},求证:M=N
3、若A={x│x=4k,k∈Z},B={x│x=4m+12n,m、n∈Z}。
求证:A=B
四、课堂练习:
1、判断正确与错误:
{a,b}={b,a}(){0}= Φ()Φ⊊{0}()2、若{x|2x-a=0} ⊊{x∈Z│-1≤x<3},求a值组成的集合
五.课后作业:
1、若{0,1}⊇{x|x2+x-m=0},求m的范围。
2、已知:C={x│a≤x<3},D={y│0≤y<b},①若C⊆ D,求a,b的值;
②若C⊊D呢?
3、已知:非空集合A满足:①A⊆{1,2,3,4},②当x∈A时,5-x∈A。
求集合A,并写出每个集合A中的元素之和。