一元一次不等式组(公开课教案)
《一元一次不等式组》教案
11.6一元一次不等式组1
课型
新授课
班级
案序
一、教学目标
1、经历通过具体问题抽象出不等式组的过程
2.理解一元一次不等式组及其解的意义,初步感知利用一元一次不等式解集的数轴表示法求不等式组的解和解集的方法。
二、教学目标确定的依据
1.教材分析
不等式这一章的教学,是初中代数一个相对独立的内容。学生对这一章的出现感觉突然,教学时间较短。教师要想尽办法给学生打下有关不等式知识的烙印,因为它在今后的内容中有着广泛的应用。例如,初二代数一元二次方程根的判别式、函数自变量的取值范围等。
核心过
程推进
例2.解不等式组
解:解不等式 ,得:
解不等式 ,得:
在同一条数轴上表示不等式 的解集,如下图
所以,原不等式组的解集是
例2注意两点:一是关注学生解不等式的水平,二是运用数轴确定不等式组解集的过程要尽可能让学生自己做
通过“取暖用煤”的情景再一次让学生感受到不等式组必须同时满足两个或多个不等式的要求,
开放式
延伸
2.三个数3,1-a,1-2a在数轴上从左到右依次排列,你能确定a的取值范围吗?
3.函数y=x-3a与-x+a-1的图像交于第二象限内一点,试确定a的取值范围
学生自己解不等式组,然后和
同桌交流解法,找出异同,拓展思维
板书
设计
反思与
重建
作业批改记录
2.学生分析
由于学生在只是零星的接触过不等关系,第一次系统的接触一元一次不等式,因此要注意基础知识必须要打牢,要在理解基础上解决问题。
教学过程设计
教学
环节
教师活动
学生活动
设计意图
常规
积累
人教版初中数学一元一次不等式教案范文优秀7篇
人教版初中数学一元一次不等式教案范文优秀7篇一元一次不等式教案篇一一、教学目标:(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法。
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:1.掌握一元一次不等式的`解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。
在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。
在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教具:计算机辅助教学。
五、教学流程:(一)、复习:教学环节教师活动学生活动设计意图一元一次不等式教案篇二师:下面我们先看一下购物金额对选择哪家超市有何影响?请同学们根据老师给出的学习目标和问题,自学课文一三1页至一三2页例1上边的内容,要求独立或者小组合作,完成书上的问题(1)、(2),时间是10分钟。
北师大版八年级数学下册《一元一次不等式组(第1课时)》精品教案
问题.
不等式;
(2)如果还要求购买甲、乙两种原料的费用不超过 72 元,
那么你能写出 x(kg)应满足的另一个不等式吗?
甲种原料
乙种原料
维生素 C(/ 单位/kg) 600
100
原料价格/(元/kg) 8
4
想一想:(1)如果要配制的饮料同时满足两个小题的条
件,那么你能列出一个不等式组吗?
600x 100(10 x) 4200
《一元一次不等式组》精品教案
课题 2.6 一元一次不等式组(1) 单元 第二章
学科
数学 年级 八年级
学习 目标
知识与技能:.理解一元一次不等式组的概念,初步掌握解一元一次不等式组方法,并利用 数轴表示一元一次不等式组的解集; 过程与方法:通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解 出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集及解不等 式组的步骤; 情感态度与价值观:结合 “数形结合”的思想,锻炼学生数形结合的能力,提高学习兴趣, 树立学好数学的信心.
重点 掌握一元一次不等式组的解法及解集的表示方法.
难点 一元一次不等式组的解集的求法
教学环节 新知导入
新知讲解
教学过程
教师活动
学生活动 设计意图
同学们,我们上节课学习了不等式,请同学们回答下面的 学生根据老 通过回顾
问题:
师的提问回 不等式的
问题 1、什么是一元一次不等式?
答问题.
概念及解
答案:不等式的左右两边都是整式,只含有一个未知数,
答案:一元一次不等式组中各个不等式的解集的公共部
分,叫做这个一元一次不等式组的解集.
问题 3、说一说解一元一次不等式组的步骤?
一元一次不等式组教案
一元一次不等式组教案【篇一:《一元一次不等式组》教学设计】一元一次不等式组一、课表解读在初中数学课程标准,第三学段数与代数对一元一次不等式组部分是这样描述的:1.充分感受生活中存在着大量的不等式关系,了解不等式组的意义;2.会解简单的一元一次不等式组,并会用数轴确定解集。
二、教材分析1、教材的地位和作用《一元一次不等式组》的主要内容是一元一次不等式组的解法及其简单应用。
是在学习了有理数的大小比较、等式及其性质、一元一次方程的基础上,开始学习简单的数量之间的不等关系,进一步探究现实世界数量关系的重要内容,是继一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后继学习一元二次方程、函数及进一步学习不等式的重要基础,具有承前启后的重要作用。
《一元一次不等式组》是本章的最后一节,是一元一次不等式知识的综合运用和拓展延伸,是进一步刻画现实世界数量关系的数学模型,是下一节利用一元一次不等式组解决实际问题的关键。
2、教学目标设计依据《课程标准》对7—9年级《不等式》学段的目标要求和本班学生实际情况,特确定如下目标:1.通过实例体会一元一次不等式组是研究量与量之间关系的重要模型之一。
2.了解一元一次不等式组及解集的概念。
3.会利用数轴解较简单的一元一次不等式组。
4.培养学生分析、解决实际问题的能力。
5.通过实际问题的解决,体会数学知识在生活中的应用,激发学生的学习兴趣。
培养学生认真倾听,大胆回答,勤于思考、善于反思的良好学习习惯。
3、教学重点、难点:重点:理解一元一次不等式组的有关概念,会解简单的一元一次不等式组;难点:正确理解一元一次不等式组的解集。
三、学情分析1、学生特点从学生学习的心理基础和认知特点来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化能力。
但学生将两个一元一次不等式的解集在同一数轴上表示会产生一定的困惑。
这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,我对本节课的设计是通过两个学生所熟悉的问题情境,让学生独立思考,合作交流,从而引导其自主学习。
一元一次不等式组课件(公开课)
图像法是一种直观的解一元一次不等式组的方法。首先,根据不等式的性质绘制出每个不等式的图像。然后,观 察这些图像的交集,即为原不等式组的解集。需要注意的是,图像法适用于某些特定情况,如不等式的系数较小 或图像较为简单时。
03
CATALOGUE
一元一次不等式组的实际应用
生活中的一元一次不等式组问题
THANKS
感谢观看
含参数的一元一次不等式组
不等式中含有参数,需要根据参数的不同取值进行分类讨论。
一元一次不等式组的扩展形式
二元一次不等式组
包含两个未知数的一元一次不等式,需要考虑两 个未知数之间的关系和不等式的解法。
一元高次不等式组
不等式中含有未知数的高次幂,需要利用高次方 程的解法进行求解。
分式不等式组
包含分式函数的一元一次不等式,需要考虑分式 的性质和不等式的解法。
表示形式
用数轴上的区间表示,或 用文字描述。
解集的求法
分别求出每个不等式的解 集,再取它们的交集。
一元一次不等式组的分类
严格不等式组
每个不等式都有实数解,即解集 非空。
矛盾不等式组
至少有一个不等式的解集为空集。
退化不等式组
所有不等式都变为等式,即无解。
02
CATALOGUE
解一元一次不等式组的方法
练习3
解不等式组$begin{cases}2x - 7(x - 2) geq 4 frac{x - 1}{2} > x + 1 end{cases}$
答案解析
解析1
首先解第一个不等式$5x - 1 > 3(x + 1)$,得到$x > 2$。再解第二个不等式$frac{x 1}{2} > 1$,得到$x > 3$。取两个不等式的交集,得到不等式组的解集为$x > 3$。
一元一次不等式组教案(公开课教案)
§9.3 一元一次不等式组肖慧教学目标知识与技能:1、了解一元一次不等式组及其解集的概念。
2、会利用数轴求不等式组的解集。
过程与方法:1、培养学生分析实际问题,抽象出数学关系的能力。
2、培养学生初步数学建模的能力。
情感态度价值观:加深学生对数形结合的作用的理解,让学生体会数学解题的直观性和简洁性的数学美。
感受探索的乐趣和成功的体验,使学生养成独立思考的好习惯。
教学重难点重点:不等式组的解法及其步骤。
难点:确定两个不等式解集的公共部分。
教法与学法分析教法:启发式、讨论式和讲练结合的教学方法。
学法:实践、比较、探究的学习方式。
教学课型新授课教学用具多媒体课件教学过程一、复习引入一元一次不等式的解法我们已经全部讲完,现在复习一下前面的内容。
1、不等式的三个基本性质是什么?2、一元一次不等式的解法是怎样的?3、情境引入:这个星期的星期天是我母亲的生日,肖老师想买一束康乃馨送给妈妈.要求:这束花不低于20 元,又少于40元如果你是花店售货员,你会拿什么价格的康乃馨给我选择呢?二、讲授新知探究新知:题中一共有两种数量关系,讲解时应注意引导学生自主探究发现。
题中的x应同时满足两个不等式,从而引出一元一次不等式组的概念:把两个一元一次不等式合在一起,就得到一个一元一次不等式组。
同时满足两个不等式的未知数,既是两个不等式解集的公共部分,要找出公共部分,就要利用数轴,在此要引导学生重视数轴的作用,并指导学生在数轴如何观察数轴上对应解集的范围。
记着20≤X<40(引导发现,此就是不等式组的解集。
)不等式解集的概念:不等式组中的几个不等式解集的公共部分。
由此,教师可以引导学生自己总结出解一元一次不等式组的一般步骤。
学生回答后教师总结步骤:分别求出每个不等式的解集;找出它们的公共部分。
三、例题讲解教师提出问题,有了上面的铺垫,我们来完整的解一元一次不等式组。
例1 解不等式组(1)3121 28x xx->+⎧⎨>⎩(2)2311 25123x xxx +≥+⎧⎪+⎨-<-⎪⎩以上两个例题第一个有解,第二个无解,第一个例题教师可以让学生先解完再给出解题过程,本例是按规范格式完整地解答了一个一元一次不等式组,要求学生做作业时按此格式书写。
一元一次不等式公开课教案
课题:一元一次不等式(第1课时)
教学任务分析
教学目标
1.知识目标:了解一元一次不等式的概念,掌握一元一次不等式的解法,并能在数轴上表示出不等式的解集.
2.过程与方法:学生能通过类比解一元一次不等式的过程,获得解一元一次不等式的思路,即依据不等式的性质,将一元一次不等式逐步化简为x>a或x<a的形式.学生能借助具体例子,将化归思想具体化,获得解一元一次不等式的步骤.
师生共同归纳得出:
1在解方程中易犯的错误,在解不等式时也要注意。
如:去分母时,不能漏乘不含分母的项,分子是多项式的去完分母后要记得加括号
去括号时,利用乘法分配律去乘括号里的每一项,不能漏乘,注意符号
移项时,移项记得要变号
合并同类项时,系数相加减,字母和字母的指数不变
系数化为1时,不要颠倒分子分母的位置。
2移项,合并,谁先谁后,要根据具体题目来定,当两边项数较多时应先合并再移项较好。
3在利用不等式的性质3时,不等号的方向一定要改变(强调要检查)。
步骤 :画数轴,定界点,选方向
教师出示幻灯片,指导学生在数轴上画出不等式解集的方法和注意事项。强调一般情况下,求出不等式的解集和利用数轴表示出不等式的解集二者缺一不可!做到数形结合!
3.情感目标:通过一元一次不等式的学习,培养学生认真、坚持等良好的学习习惯.
教学重点
1.一元一次不等式的概念.
【公开课教案】一元一次不等式组的解法
2.6一元一次不等式组第1课时一元一次不等式组的解法1.理解一元一次不等式组及其解集的概念;2.掌握一元一次不等式组的解法;(重点)3.会利用数轴表示不等式组的解集.(难点)一、情境导入如图,小红现有两根小木棒,长度分别为20cm和40cm,她想再找一根木棒来拼接成一个三角形,那么她所寻找的第三根木棒的长度应符合什么条件呢?二、合作探究探究点一:一元一次不等式组及一元一次不等式组的解集的相关概念下列不等式组:①⎩⎪⎨⎪⎧x>-2,x<3,②⎩⎪⎨⎪⎧x>0,x+2>4,③⎩⎪⎨⎪⎧x2+1<x,x2+2>4,④⎩⎪⎨⎪⎧x+3>0,x<-7,⑤⎩⎪⎨⎪⎧x+1>0,y-1<0.其中一元一次不等式组的个数是()A.2个B.3个C.4个D.5个解析:根据一元一次不等式组的定义,①②④都只含有一个未知数,并且未知数的最高次数是1,所以都是一元一次不等式组;③含有一个未知数,但未知数的最高次数是2,⑤含有两个未知数,所以②⑤都不是一元一次不等式组.故有①②④三个一元一次不等式组.故选B.方法总结:一元一次不等式组的定义,含有两个或两个以上的不等式,不等式中的未知数相同,并且未知数的最高次数是一次.熟练掌握定义并灵活运用是解题的关键.探究点二:一元一次不等式组的解法(一)【类型一】一元一次不等式组的解集在数轴上的表示不等式组⎩⎪⎨⎪⎧x<3,x≥1的解集在数轴上表示为()解析:把不等式组中每个不等式的解集在数轴上表示出来,它们的公共部分是1≤x<3,故选C.方法总结:利用数轴确定不等式组的解集,如果不等式组由两个不等式组成,其公共部分在数轴上方应当有两根横线穿过.【类型二】解简单一元一次不等式组解不等式组:⎩⎪⎨⎪⎧x+23<1,2(1-x)≤5.把解集在数轴上表示出来,并将解集中的整数解写出来.解析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,再找出解集范围内的整数即可.解:⎩⎪⎨⎪⎧x +23<1 ①,2(1-x )≤5 ②,由①得x <1,由②得x ≥-32,∴不等式组的解集为-32≤x <1.则不等式组的整数解为-1,0. 方法总结:此题主要考查了一元一次不等式组的解法,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.三、板书设计一元一次不等式组⎩⎪⎨⎪⎧概念解法不等式组的解集⎩⎪⎨⎪⎧利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的基础之上.解不等式组时,先解每一个不等式,再确定各个不等式组的解集的公共部分.第2课时 三角形三边的垂直平分线及作图1.理解并掌握三角形三边的垂直平分线的性质,能够运用其解决实际问题;(重点)2.能够利用尺规作出三角形的垂直平分线.一、情境导入现在有A 、B 、C 三个新建的小区,开发商为了方便业主需求,打算在如图所示的区域内建造一座购物中心,要求购物中心到三个小区的距离相等,你能帮购物中心选址吗?二、合作探究探究点一:三角形三边的垂直平分线【类型一】 运用三角形三边的垂直平分线的性质求角度如图,在△ABC 中,∠BAC =110°,点E 、G 分别是AB 、AC 的中点,DE ⊥AB 交BC 于D ,FG ⊥AC 交BC 于F ,连接AD 、AF .求∠DAF 的度数.解析:根据三角形内角和定理求出∠B +∠C ,根据线段垂直平分线得出AD =BD ,AF =CF ,推出∠BAD =∠B ,∠CAF =∠C ,即可求出答案.解:在△ABC 中,∵∠BAC =110°,∴∠B +∠C =180°-110°=70°.∵E 、G 分别是AB 、AC 的中点,DE ⊥AB ,FG ⊥AC ,∴AD =BD ,AF =CF ,∴∠BAD =∠B ,∠CAF =∠C ,∴∠DAF =∠BAC -(∠BAD +∠CAF )=∠BAC -(∠B +∠C )=110°-70°=40°.方法总结:本题考查了等腰三角形的性质,线段垂直平分线的性质,三角形内角和定理的应用.注意:线段垂直平分线上的点到线段两个端点的距离相等.【类型二】 运用三角形三边的垂直平分线的性质求线段如图,在△ABC 中,AB =AC ,∠A =120°,BC =8cm ,AB 的垂直平分线交BC 于点M ,交AB 于点D ,AC 的垂直平分线交BC 于点N ,交AC 于点E ,求MN 的长.解析:首先连接AM ,AN ,在△ABC 中,AB =AC ,∠A =120°,可求得∠B =∠C =30°.又由AB 的垂直平分线交BC 于点M ,交AB 于点D ,AC 的垂直平分线交BC 于点N ,交AC 于点E ,易得△AMN 是等边三角形,继而求得答案.解:连接AM ,AN ,∵在△ABC 中,AB =AC ,∠A =120°,∴∠C =∠B =30°.∵AB 的垂直平分线交BC 于点M ,交AB 于点D ,AC 的垂直平分线交BC 于点N ,交AC 于点E ,∴AN =CN ,AM =BM ,∴∠CAN =∠C =30°,∠BAM =∠B =30°,∴∠ANM =∠AMN =60°,∴△AMN 是等边三角形,∴AM =AN =MN ,∴BM =MN =CN .∵BC =8cm ,∴MN =83cm.方法总结:此题考查了线段垂直平分线的性质以及等边三角形的判定与性质.此题难度适中,注意掌握辅助线的作法.【类型三】 三角形三边的垂直平分线的性质的应用某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使得三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置.解析:由三个娱乐项目所处位置到售票中心的距离相等,可得售票中心是海盗船、摩天轮、碰碰车三个娱乐场组成三角形的三边的垂直平分线的交点.解:如图,①连接AB ,AC ,②分别作线段AB ,AC 的垂直平分线,两垂直平分线相交于点P ,则P 即为售票中心.方法总结:此题考查了线段垂直平分线的性质.此题难度不大,注意掌握线段垂直平分线的作法.探究点二:作图已知线段c ,求作△ABC ,使AC =BC ,AB =c ,AB 边上的高CD =12c.解析:由题意知,△ABC 是等腰三角形,高把底边垂直平分,且高等于底边长的一半.解:作法:1.作线段AB =c ; 2.作线段AB 的垂直平分线EF ,交AB 于D ;3.在射线DF 上截取DC =12c ,连接AC ,BC ,则△ABC 即为所求作的三角形,如图所示.方法总结:已知底边长作等腰三角形时,一般可先作底边的垂直平分线,再结合等腰三角形底边上的高确定另一个顶点的位置.三、板书设计1.三角形三边的垂直平分线三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.2.作图有关条件结合基本作图作出其余的图形.。
一元一次不等式组教学设计
一元一次不等式组教学设计一元一次不等式组教学设计(通用10篇)教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
下面是店铺收集整理的一元一次不等式组教学设计,希望大家喜欢。
一元一次不等式组教学设计篇1一、学习目标:1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;2、经历知识的拓展过程,感受学习一元一次不等式组的必要性;3、逐步熟悉数形结合的思想方法,感受类比与化归的思想。
二、学习难点:1、重点:一元一次不等式组的解集和解法。
2、难点:一元一次不等式组解集的理解。
三、学习过程:问题情境:现有两根木条a和b,a长10 cm,b长3 cm。
如果再找一根木条。
,用这三根木条钉成一个三角形木框,那么对木条的长度有什么要求?如果设木条长x cm,那么x仅有小于两边之和还不够,仅有大于两边之差也不行,必须同时满足x10+3和x10—3。
类似于方程组引出一元一次不等式组的概念和记法。
探究新知:解下列不等式组解:解不等式(1),得x1,解不等式(2),得x—4。
在同一条数轴上表示不等式(1)、(2)的解集如图:所以,原不等式组的解是x1巩固新知:P140,1,P141,1归纳总结:不等式解集取值法则同大取大,同小取小,大小取中,矛盾无解。
若ab:①当时,•则不等式的公共解集为;②当时,不等式的公共解集为;③当时,不等式的公共解集为;④当时,不等式组。
作业:1、P141,22、解不等式组:(1);(2)(3);(4)3、若不等式组无解,求m的取值范围。
4、解不等式组,并将解集在数轴上表示出来。
5、解不等式组:(1);(2)6、解不等式:(1);(2)7、若关于x的不等式组的解集是,则下列结论正确的是()A、B、C、D、8、若方程组的解是负数,则的取值范围是()A、B、C、D、无解9、若,则x为()A、B、C、或 D、10、已知方程组的解为负数,求m的取值范围。
一元一次不等式(一)教案
一元一次不等式(一)教案教学目标:1. 理解一元一次不等式的概念和性质。
2. 学会解一元一次不等式。
3. 能够应用一元一次不等式解决实际问题。
教学重点:1. 一元一次不等式的概念和性质。
2. 解一元一次不等式的方法。
教学难点:1. 一元一次不等式的概念和性质的理解。
2. 解一元一次不等式的方法的掌握。
教学准备:1. 教师准备PPT或者黑板,用于展示一元一次不等式的例子和解法。
2. 教师准备一些练习题,用于巩固学生的学习。
教学过程:一、导入(5分钟)1. 引入一元一次不等式的概念,通过比较大小的方式让学生理解不等式的含义。
2. 给出一些实际问题,让学生尝试用不等式来表示问题。
二、讲解一元一次不等式的概念和性质(15分钟)1. 讲解一元一次不等式的定义,让学生明白一元一次不等式的组成和特点。
2. 讲解一元一次不等式的性质,让学生理解不等式的大小关系和运算规则。
三、解一元一次不等式的方法(15分钟)1. 讲解解一元一次不等式的方法,让学生明白解不等式的步骤和规则。
2. 通过示例演示解一元一次不等式的过程,让学生跟随步骤进行解题。
四、练习解一元一次不等式(10分钟)1. 让学生独立解一些简单的一元一次不等式,教师进行指导和纠正。
2. 让学生解一些复杂的一元一次不等式,教师进行讲解和分析。
五、总结和巩固(5分钟)1. 对本节课的内容进行总结,让学生回顾和巩固所学的知识。
2. 给出一些巩固练习题,让学生进行练习和复习。
教学反思:通过本节课的教学,学生应该能够理解一元一次不等式的概念和性质,学会解一元一次不等式,并能够应用一元一次不等式解决实际问题。
教师在教学过程中要注意引导学生理解和掌握一元一次不等式的概念和性质,通过示例和练习让学生熟练掌握解一元一次不等式的方法。
教师还要关注学生的学习情况,及时进行指导和纠正,确保学生能够顺利掌握一元一次不等式的解法。
六、应用一元一次不等式解决实际问题(10分钟)1. 通过一些实际问题,让学生用一元一次不等式来表示问题。
《一元一次不等式组》教案
《一元一次不等式组》教案(1)教学目标1、经历实际问题中的数量关系的分析、抽象、建立不等式组模型的过程。
2、知道一元一次不等式组及其解集的意义,会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。
3、通过用不等式组解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用.并以此激发学生学习数学的信心和兴趣.教学重点:一元一次不等式组及其解集的意义教学难点:用数轴确定解集教学方法:讨论探索法.教学过程一、创设问题情境,引入新课某种杜鹃花适宜生长在平均气温为17~20℃的山区,已知这一地区海拔每升高100m,气温下降℃,现测出山脚下的气温是23℃。
估计适宜种植这种杜鹃花的山坡的高度。
二、探索活动1、由几个含有的组成的不等式组叫做一元一次不等式组。
答:同一个未知数、一次不等式。
2、不等式组中所有不等式的解集的,叫做这个不等式组的解集。
答:公共部分。
3、求不等式组的的过程,叫做解不等式组。
答:解集4、一元一次不等式组的两个步骤:(1)求出这个不等式组中各个;(2)利用求出这些不等式的解集的公共部分,即求出这个不等式组的。
答:不等式的解集;数轴;解集。
⎪⎩⎪⎨⎧<--+-≥-②① 1213124326x x x x 三、分组讨论如何求一元一次不等式组的解集呢?(1)不等式组⎩⎨⎧-≥>12x x 的解集是 。
(2)不等式组⎩⎨⎧-<-<12x x 的解集是 。
(3)不等式组⎩⎨⎧><14x x 的解集是 。
(4)不等式组⎩⎨⎧-<>45x x 的解集是 。
答:(1);(2)2x <-;(3)1x 4;(4)无解你能得到什么结论?四、例题教学例1、解不等式组21131x x +<-⎧⎨-≥⎩例2、 解不等式组:,并把它的解集在数轴上表示出来。
例3、解不等式:531x 23≤-<。
思路点拨:(1)本题实质是一个不等式组⎪⎪⎩⎪⎪⎨⎧≤->-②① 5312 3312x x然后解不等式①②,再求出解集的公共部分即原不等式组的解。
9.3一元一次不等式组⑴(公开课教案)
初中数学教案授课者:李华授课班级:七年级7班授课时间:5.8 授课地点:实验中学一元一次不等式组的解, 活动2:下列各式中,哪些是一元一次不等式组?22238,(2)-57 1.x x x x +>+<-⎧⎨⎩583,(4)92.x y +>⎧⎨>-⎩83,(5)3 2.x x >-⎧⎨>⎩13,(6)842,7 1.x x x +>⎧⎪-<≥⎨⎪+⎩221,(1)2 3.x x x +-<-≥⎧⎨⎩√×√××3235,(3)1-7.x x<+>⎧⎪⎨⎪⎩×观察与思考2.动手操作求下列不等式组的解集:3. 总结求公共部分的规律活动3:四、例题讲解教师提出问题,学生独立思考后分组探索,教师深入小组参与活动,观察指导学生,并倾听学生的讨论。
分为四组,分别让学生合作探究,总结出相关规律。
此次活动中关注:(1)学生的参与意识;(2)能否利用数轴找出不等式的解集;(3)能否抓住解不等式的规律:同大取大,同小取小;大小小大中间找,大大小小找不到在学生亲自动手实践的基础上,老师再次总结出规律。
先自主探究解题步骤,后具体解题,可以居高临下地看待一元一次不等式组的解法,并且达到进一步熟悉解题步骤,熟练地利用数轴正确地查找公共部分。
培养学生们的总结概括能力和语言表达能力.培养了学生参与意识和合作交流的意识培养同学们概括.总结能力和参与意识,进一步巩固了所学知识,激发学生的学习兴趣及时巩固练习,加深对知识的理解与记忆. ⎩⎨⎧>>73)1(x x 1(2)4x x >-⎧⎨>⎩3(3)7x x <⎧⎨<⎩1(4)4x x <-⎧⎨<⎩3(5)7x x >⎧⎨<⎩1(6)4x x >-⎧⎨<⎩3(7)7x x <⎧⎨>⎩1(8)4x x <-⎧⎨>⎩练习五、课堂小结这节课你学到了什么?1、概念2、一元一次不等式组的解法六、作业及课后巩固:1、必做题:课本第147页习题9.3第2题的(1)-(4) 2、选做题:解不等式3≤2x-1≤5,你觉得该怎样思考这个问题,你有解决的办法吗?对于例题,解不等式并非新内容.注重解题步骤的归纳教师板演例题,书写完整的解题步骤,强调格式。
一元一次不等式组(公开课教案)
一、学习目标:1.经历通过具体问题抽象出不等式组的过程,理解一元一次不等式组、一元一次不等式组的解集、解不等式组等概念。
2.会用数轴确定由两个一元一次不等式组成的不等式组的解集,进一步巩固数形结合思想。
3.会解由两个一元一次不等式组成的不等式组。
二、学习重难点:学习重点:理解不等式组解集的意义,会解一元一次不等式组。
学习难点:借助数形结合的方法找出不等式组的解集。
三、教学过程设计:第六节一元一次不等式组(一)导学案(教师)【学习过程】模块一复习巩固解不等式,并将解集在数轴上表示出来:2x-9<7x+11模块二预习反馈举例:经调查,我校学生均有一定的零花钱,八年级(1)班林燕敏同学如果每周比计划多花4元钱,那么一月(按4周算)总量将超过40元,若她计划每周花x元,则x满足怎样的关系式?为响应学校节俭号召,如果她每周比计划少花4元钱,那么一月(按4周算)总量不足20元。
则x又应满足怎样的关系式?这时,你能求出它的值吗?你是如何解决这个问题的?(1、两问中的x的意义一样吗?由此得不等式组;2、公共部分——回顾、对比二元一次方程组的说法;3、每步的根据;4、数形结合)归纳小结:1.关于的几个一元一次不等式合在一起,就组成了一元一次不等式组。
(两个?三个?多个怎样?有几个就应有几条线经过的部分)2.一元一次不等式组里的各个不等式的解集的,叫做这个一元一次不等式组的解集。
求不等式组解集的过程,叫做。
实践练习,小结提升:1.不等式的解集,在数轴上表示正确的是()A B C D2.解不等式组,并把解集表示在数轴上。
(可先让学生分析解法:怎么做?为什么这么做?)总结:你能总结出解一元一次不等式组的步骤吗?(紧扣解不等式组及不等式组的解集的定义展开(1)先分别求出不等式组中的每一个不等式的解集;(2)在数轴上把它们的解集表示出来;(3)找出解集的公共部分,即不等式组的解集。
练习:1、解下列不等式组:()⎩⎨⎧<->03121x x ()⎩⎨⎧<+->-813122x x课堂检测:A 组: (1)B 组: (2)211,31;x x +<-⎧⎨-≥⎩第六节 一元一次不等式组(一)导学案(学生)【学习目标】1.理解一元一次不等式组、一元一次不等式组的解集、解不等式组等概念。
【核心素养目标】数学人教版七年级下册9.3 一元一次不等式组 教案含反思(表格式).doc
9.3一元一次不等式组二、探究新知二、探究新知知识点一:一元一次不等式组的概念及解集问题:用每分钟可抽30 t水的抽水机来抽污水管道里积存的污水,估计积存的污水超过1 200 t而不足1 500 t,那么将污水抽完所用时间的范围是什么?师生活动:学生独立思考,教师引导学生分析解题思路.设用x min 将污水抽完.根据已知条件,我们知道x满足:30x>120 ① 和30x<1500 ①这两个不等式同时成立.为此,我们用大括号把上述两个不等式联立起来,得教师总结:像这样的组合叫做一元一次不等式组.总结一元一次不等式组的概念例如:x同时满足不等式30x>1200和30x<1500,类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组,记作一元一次不等式组的特征① 含同一个未知数,且未知数的次数为1;① 包含2个或2个以上的一元一次不等式;① 左边用一个大括号括起来.追问:怎样确定上面的不等式组中x的取值范围?师生活动:学生独立思考,教师引导学生类比方程组的求解方法,感悟不等式组的求解.设计意图:锻炼学生的抽象能力,渗透模型思想;通过问题引导,培养自主学习习惯,提高学习信心;锻炼运算能力.设计意图:梳理一元一次不等式组的特征,便于学生理解.设计意图:通过回顾一元一次方程组的求解方法,引导学生思考一元一次不提问:一元一次方程组是如何求解的? 预设:求出方程组的公共解. 教师叙述: 类比方程组的求解,不等式组中的各不等式解集的公共部分,就是不等式组中 x 可以取值的范围. 例如 ,由不等式①,解得 x >40;由不等式②, 解得 x <50.我们在同一数轴上把 x >40 与 x <50 表示出来,如图所示,容易发现它们的公共部分是40<x <50. 不等式组的解集 一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集. 解不等式组就是求它的解集. 做一做: 求下列不等式组的解集:你能发现什么规律? 师生活动:学生独立思考作图求解,选四名学生板书作图,教师根据板书引导学生总结规律.板书设计: 等式的解法——重点在于求公共部分;培养学生的类比推理能力,发展应用意识.设计意图:通过运用数轴理解一元一次不等式组的公共解,感受“形”在解题上的直观和便捷;进一步渗透数形结合思想.设计意图:通过练习,让学生自主探索一元一次不等式组集的求解规律,发展学生的自主学习能力;培养作图能力,锻炼一元一次不等式组的解法,提高解题技巧.2⎧⎪⎪⎨⎪⎪⎩8 .->+,> x x x ①②归纳总结例1 解不等式组:师生活动:学生独立思考完成计算,学一名学生板书,教师巡视.解:解不等式①,得x ≤3.解不等式②,得x <-3. 把不等式①②的解集在数轴上表示出来,如图.由图可知,不等式①②的解集的公共部分就是 x <-3,所以这个不等式组的解集是 x <-3.知识点二:一元一次不等式组的应用问题:x 取哪些整数值时,不等式 5x + 2>3(x - 1) 与 - 1≤7 - 都成立?师生活动:学生独立思考,师生共同分析解题思路——求出这两个不等式组成的不等式组的解集,解集中的整数就是 x 可取的整数值,学生独立完成计算.例2 用若干辆载重量为 8 t 的汽车运一批货物,若每辆汽车只装 4 t ,则剩下 20 t 货物;若每辆汽车装满 8 t ,则最后一辆汽车不满也不空. 请你算一算:有多少辆汽车运这批货物?师生活动:学生独立思考并计算,选一名学生板书,教师巡视;学生完成后教师讲解,总结解题方法.设计意图:通过例题培养作图能力,巩固一元一次不等式组的解法,规范解题步骤,提高解题技巧.设计意图:锻炼学生的实践能力和应用意识,发展运算能力.设计意图:考查学生对抽象能力,会运用一元一次不等式组解决简单的实际问题,感受数学与现实世界的紧密联系.2⎧⎪⎪⎨⎪⎪⎩8 .->+,> x x x ①②131722x x --≤131722x x --≤三、当堂练习总结列一元一次不等式组解实际问题的一般步骤:三、当堂练习1. 选择下列不等式组的正确解集:2. 解不等式组:3. x取哪些整数值时,不等式2 -x ≥0 与都成立?设计意图:考查对简单一元一次不等式组的解法的掌握.设计意图:考查学生能否利用数轴表示一元一次不等式组的解集,从而解一元一次不等式组.设计意图:考查解复杂一元一次不等式组的能力.板书设计9.3 一元一次不等式组① 含同一个未知数,且未知数的次数为1;① 包含2 个或2 个以上的一元一次不等式;① 左边用一个大括号括起来.1211233x x---<2⎧⎪⎪⎨⎪⎪⎩8.->+,>x xx①②教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.。
一元一次不等式教案(9篇)
一元一次不等式教案(9篇)我为你精心整理了9篇《一元一次不等式教案》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在搜索到更多与《一元一次不等式教案》相关的范文。
篇1:一元一次不等式教案实际问题与一元一次不等式教案教学目标1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
教学难点弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。
知识重点寻找实际问题中的不等关系,建立数学模型。
教学过程(师生活动)设计理念提出问题某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?(多媒体展示商场购物情景)通过买电脑这个学生非常熟悉的生活实例,引起学生浓厚的学习兴趣,感受到数学来源于生活,生活中更需要数学。
探究新知1、分组活动.先独立思考,理解题意.再组内交流,发表自己的观点.最后小组汇报,派代表论述理由.2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案:(1)什么情况下,到甲商场购买更优惠?(2)什么情况下,到乙商场购买更优惠?(3)什么情况下,两个商场收费相同?3、我们先来考虑方案:设购买x台电脑,如果到甲商场购买更优惠.问题1:如何列不等式?问题2:如何解这个不等式?在学生充分讨论的基础上,教师归纳并板书如下:解:设购买x 台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x去括号,得去括号,得:6000+4500x-45004<4800x移项且合并,得:-300x<1500不等式两边同除以-300,得:x<5答:购买5台以上电脑时,甲商场更优惠.4、让学生自己完成方案(2)与方案(3),并汇报完成情况.教师最后作适当点评.鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模。
一元一次不等式组(公开课课件)
形式
一元一次不等式组通常表 示为“{①,②,③...}”, 其中①,②,③...是一元 一次不等式。
特点
一元一次不等式组中至少 包含两个不等式,且每个 不等式只含有一个未知数 。
一元一次不等式组的解集
定义
满足一元一次不等式组中 所有不等式的未知数的取 值范围称为该不等式组的 解集。
性质
解集具有封闭性,即满足 所有不等式的解都在解集 中。
求法
通过解每个不等式,找出 满足所有不等式的解,再 确定解集。
一元一次不等式组的分类
分类标准
简单型
根据一元一次不等式组中不等式的个数和 形式,可以将一元一次不等式组分为简单 型、线性型、多项式型等。
由两个一元一次不等式组成的不等式组, 如“{2x > 3, x < 5}”。
线性型
多项式型
由两个或多个线性一元一次不等式组成的 不等式组,如“{3x + 2 > 0, 4x - 1 < 5}” 。
VS
解集关系
一元一次不等式组的解集与相应的一元一 次方程组的解集存在一定的包含关系,可 以根据方程组的解来推断不等式组的解。
一元一次不等式组在实际问题中的应用
资源分配问题
例如,在有限资源下如何分配任 务以达到最优效果。
最优化问题
例如,在一定条件下如何选择方案 以达到最优目标。
经济问题
例如,在预算限制下如何选择商品 或服务以实现最大效益。
生产问题
总结词
企业生产过程中的资源配置问题
详细描述
生产问题涉及到企业生产过程中的资源配置,如原材料、设备和人力资源的分配。一元 一次不等式组可以用来解决生产中的成本和效率问题,例如优化生产流程以降低成本和
一元一次不等式组教案6篇
一元一次不等式组教案6篇(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元一次不等式组教案6篇通过教案的内容是可以看出教师的教学能力的,教案是教师与学生和家长进行有效的沟通和交流,共同关注学生的学习进展,本店铺今天就为您带来了一元一次不等式组教案6篇,相信一定会对你有所帮助。
9.3.1一元一次不等式组(教案)
1.理论介绍:首先,我们要了解一元一次不等式组的基本概念。一元一次不等式组是由几个含有同一个未知数的一元一次不等式组合而成的。它在解决实际问题中起着重要作用,帮助我们确定未知数的取值范围。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过解一元一次不等式组来确定某个学生在数学和英语两门课程中的最低及格分数要求。
其次,在新课讲授环节,我发现学生们对一元一次不等式组的理解还存在一些困难。在讲解重点难点时,我应该更加注意用简洁明了的语言和具体的例子来阐述,让学生更容易理解。此外,我还可以尝试用图表、动画等辅助教学手段,使抽象的知识更加直观。
在实践活动环节,学生们分组讨论和实验操作的积极性很高,但我发现部分学生在讨论过程中还是过于依赖同学,缺乏独立思考。在今后的教学中,我应该鼓励学生们独立思考,培养他们解决问题的能力。
三、教学难点与重点
1.教学重点
(1)理解一元一次不等式组的定义及解的概念;
(2)掌握一元一次不等式组的解法步骤,包括同大取大、同小取小、大小小大中间找、大大小小无解了;
(3)能够将一元一次不等式组应用于解决实际问题;
(4)了解一元一次不等式组的解与方程组的解之间的关系。
举例:对于一元一次不等式组如:x>-2和x<5,学生需要理解其解集为-2<x<5。
3.重点难点解析:在讲授过程中,我会特别强调一元一次不等式组的解法和其在实际问题中的应用这两个重点。对于难点部分,如“同大取大、同小取小”的原则,我会通过具体的例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次不等式组相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过比较不等式组中的不等式来求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、学习目标:
1.经历通过具体问题抽象出不等式组的过程,理解一元一次不等式组、一元一次不等式组的解集、解不等式组等概念。
2.会用数轴确定由两个一元一次不等式组成的不等式组的解集,进一步巩固数形结合思想。
3.会解由两个一元一次不等式组成的不等式组。
二、学习重难点:
学习重点:理解不等式组解集的意义,会解一元一次不等式组。
学习难点:借助数形结合的方法找出不等式组的解集。
三、教学过程设计:
第六节一元一次不等式组(一)导学案(教师)
【学习过程】
模块一复习巩固
解不等式,并将解集在数轴上表示出来:
2x-9<7x+11
模块二预习反馈
举例:经调查,我校学生均有一定的零花钱,八年级(1)班林燕敏同学如果每周比计划多花4元钱,那么一月(按4周算)总量将超过40元,若她计划每周花x元,则x满足怎样的关系式?
为响应学校节俭号召,如果她每周比计划少花4元钱,那么一月(按4周算)总量不足20元。
则x又应满足怎样的关系式?这时,你能求出它的值吗?你是如何解决这个问题的?(1、两问中的x的意义一样吗?由此得不等式组;2、公共部分——回顾、对比二元一次方程组的说法;3、每步的根据;4、数形结合)
归纳小结:
1.关于的几个一元一次不等式合在一起,就组成了一元一次不等式组。
(两个?三个?多个怎样?有几个就应有几条线经过的部分)
2.一元一次不等式组里的各个不等式的解集的,叫做这个一元一次不等式组的解集。
求不等式组解集的过程,叫做。
实践练习,小结提升:
1.不等式的解集,在数轴上表示正确的是()
A B C D
2.解不等式组,并把解集表示在数轴上。
(可先让学生分析解法:怎么做?为什么这么做?)
总结:你能总结出解一元一次不等式组的步骤吗?(紧扣解不等式组及不等式组的解集的定义展开
(1)先分别求出不等式组中的每一个不等式的解集;
(2)在数轴上把它们的解集表示出来;
(3)找出解集的公共部分,即不等式组的解集。
练习:
1、解下列不等式组:
()⎩⎨
⎧<->0
31
21x x ()⎩⎨
⎧<+->-8
131
22x x
课堂检测:
A 组: (1)
B 组: (2)211,
31;
x x +<-⎧⎨
-≥⎩
第六节 一元一次不等式组(一)导学案(学生)
【学习目标】
1.理解一元一次不等式组、一元一次不等式组的解集、解不等式组等概念。
2.会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。
【学习方法】自主探究与小组合作交流相结合. 【学习过程】 活动一 复习巩固
解不等式,并将解集在数轴上表示出来: 2x -9<7x+11 活动二 预习反馈
举例:经调查,我校学生均有一定的零花钱,八年级(1)班林燕敏同学如果每周比计划多花4元钱,那么一月(按4周算)总量将超过40元,若她计划每周花x 元,则x 满足怎样的关系式?
为响应学校节俭号召,如果她每周比计划少花4元钱,那么一月(按4周算)总量不足20元。
则x 又应满足怎样的关系式?这时,你能求出它的值吗?你是如何解决这个问题的?
活动三 归纳小结:
1、关于 的几个一元一次不等式合在一起,就组成了一元一次不等式组。
2、一元一次不等式组里的各个不等式的解集的 ,叫做这个一元一次不等式组的解集。
求不等式组解集的过程,叫做 。
活动四 实践练习,小结提升:
1.下列不等式组中,是一元一次不等式组的是( )
A .⎩⎨⎧≥+<-062723x x
B .10,20x y +>⎧⎨-<⎩
C .⎩⎨⎧--030232 x x
D .⎪⎩⎪
⎨⎧-110
23 x
x
2、不等式⎩
⎨⎧->≤2x 3
x 的解集,在数轴上表示正确的是( )
A B C D
活动五3:解不等式组⎩
⎨⎧-<->+x x x
x 410915465,并把解集表示在数轴上。
总结:你能总结出解一元一次不等式组的步骤吗?
(1) ; (2) ;
(3) 。
活动六练习巩固,合作探究
(1)练习:
(2)、问题探讨(略):课堂检测(教师课堂出示):。