(完整)中南大学2013年高等代数

合集下载

高等代数多项式 一元多项式 整除的概念

高等代数多项式 一元多项式 整除的概念

又 f ( x), g( x) 均为实系数多项式 , 从而必有 g( x) h( x) 0. f ( x) g( x) h( x) 0. (2) 在 C上不成立.如取 f ( x) 0, g( x) ix, h( x) x
二、多项式环
定义 所有数域 P中的一元多项式的全体称为数域
使得 f1 x q1 x g x r1 x
其中 r1 x < g( x) 或者 r1( x) 0. 于是
f x b1axnm q1 x g x r1 x.
即有 q( x) b1axnm q1 x , r x r1 x 使
f ( x) q( x)g( x) r( x),
成立. 由归纳法原理,对 f ( x), g( x) 0, q( x),r( x)
的存在性得证.
再证唯一性.
若同时有 f x q x g x r x,
其中 r x g x或r x=0.
③ 若 a0 a1 an 0 ,即 f ( x) 0,则称之 为零多项式.零多项式不定义次数.
区别:
零多项式 f ( x) 0 零次多项式 f ( x) a, a 0 , ( f ( x))=0.
2.多项式的相等
若多项式 f ( x) 与 g( x) 的同次项系数全相等,则 称 f ( x)与 g( x)相等,记作 f ( x) g( x).
n
f ( x) an xn an1xn1 L a1x a0 ai x i ,
i0 m
g( x) bm xm bm1 xm1 b1x b0 bj x j ,

2013年中南大学 大学数学作业(高升专)答案

2013年中南大学 大学数学作业(高升专)答案

大学数学作业答案(高起专)第一章函数作业(练习一)参考答案一、填空题1.函数x x x f -+-=5)2ln(1)(的定义域是 。

解:对函数的第一项,要求02>-x 且0)2ln(≠-x ,即2>x 且3≠x ;对函数的第二项,要求05≥-x ,即5≤x 。

取公共部分,得函数定义域为]5,3()3,2( 。

2.函数392--=x x y 的定义域为 。

解:要使392--=x x y 有意义,必须满足092≥-x 且03>-x ,即⎩⎨⎧>≥33x x 成立,解不等式方程组,得出⎩⎨⎧>-≤≥333x x x 或,故得出函数的定义域为),3(]3,(+∞⋃--∞。

3.已知1)1(2+=-x e f x,则)(x f 的定义域为解. 令u e x=-1, 则()u x +=1ln , (),11ln )(2++=∴u u f 即(),11ln )(2++=∴x x f .故)(x f 的定义域为()+∞-,1 4.函数1142-+-=x x y 的定义域是 . 解. ),2[]2,(∞+--∞ 。

5.若函数52)1(2-+=+x x x f ,则=)(x f .解. 62-x二、单项选择题1. 若函数)(x f y =的定义域是[0,1],则)(ln x f 的定义域是( ) .A . ),0(∞+B . ),1[∞+C . ]e ,1[D . ]1,0[ 解: C2. 函数x y πsin ln =的值域是)(.A . ]1,1[-B . ]1,0[C . )0,(-∞D . ]0,(-∞ 解: D3.设函数f x ()的定义域是全体实数,则函数)()(x f x f -⋅是( ). A.单调减函数; B.有界函数;C.偶函数;D.周期函数 解:A, B, D 三个选项都不一定满足。

设)()()(x f x f x F -⋅=,则对任意x 有)()()()()())(()()(x F x f x f x f x f x f x f x F =-⋅=⋅-=--⋅-=-即)(x F 是偶函数,故选项C 正确。

985院校数学系2019年考研数学分析高等代数试题及部分解答

985院校数学系2019年考研数学分析高等代数试题及部分解答
B 7 ! AB BA
, 2. 定义 Mn.C / 上的变
(1)求变换 T 的特征值. (2)若 A 可对角化,证明 T 也可对角化.
四.(20 分) A 为 n 阶实对称矩阵,令
S D fX jX T AX D 0, X 2 Rng
(1)求 S 为 Rn 中的一个子空间的充要条件并证明. (2)若 S 为 Rn 中的一个子空间,求 di mS .
C pn n
二.(15 分) 设 f .x/ 2 C Œa, b,f .a/ D f .b/,证明 9xn, yn 2 Œa, b, s.t . lim .xn yn/ D n!1 0,且 f .xn/ D f .yn/.
三.(15 分) 证明
Xn .
kD0
1/k
Cnk
k
C
1 m
C
1
D
X m .
kD0
1/k
Cmk
k
C
1 n
C
1
其中m, n是正整数
Y 1
X 1
四.(15 分) 无穷乘积 .1 C an/ 收敛,是否无穷级数 an 收敛?若是,证明这个
nD1
nD1
结论;若不是,请给出反例.
X 1
ż1
五.(15 分) 设 f .x/ D xn ln x,计算 f .x/dx.
0
nD1
六.(15 分) 设定义 .0, C1/ 上的函数 f .x/ 二阶可导,且 lim f .x/ 存在,f 00.x/ 有 x!C1 界,证明 lim f 0.x/ D 0. x!C1
(1)证明存在正交矩阵 P 使得
0
P T AP
D
BB@
a 0
0
1

(11)--12-13学年高等代数(I)试卷及参考答案

(11)--12-13学年高等代数(I)试卷及参考答案
AB = |B||DA − AC|.
AC BD
(2) eØb AŒ_, þ¡ ª´Ä¤á? `²nd.
( 7 • 1 5•)
© Ê!(15©) A´••r n Ý , y²: (1) •3••r n Ý B¦ ABA = A; (2) ÷vþã^‡ B´•˜ …= AŒ_.
( 7 • 1 6•)
© 8!(10©) •þ|α1, α2, . . . , αm, β1, β2, . . . , βm ••m, …α1, α2, . . . , αm‚5 Ã'. y²•3áõ‡êc¦ cα1 + β1, cα2 + β2, . . . , cαm + βm‚5Ã'.
(g, g′) = x2 + 3x +1 ( 附 辗 转 相 除 法 过 程 ). 从 而 有 f (x) = (x −1)(x2 + 3x +1)2 . 由
x2 + 3x +1 在有理数域上的不可约性知上式即为 f (x) 在有理数域上的标准分解.
2. 解答:
由| A |= 1,| B |= −1可知
⎛ 1 −2 1 a ⎞ ⎛ 1 −2 1 a ⎞ ⎛ 1 −2 1 a ⎞
⎜ ⎜
2
−1
−1
3
⎟ ⎟

⎜ ⎜
0
3
−3
3

2a
⎟ ⎟

⎜ ⎜
0
3
−3
3

2a
⎟ ⎟
⎜⎝ 1 1 −2 2a ⎟⎠ ⎜⎝ 0 3 −3 a ⎟⎠ ⎜⎝ 0 0 0 3a − 3⎟⎠
⎛1

⎜ ⎜
0
−2 1

中南大学高等工程数学试卷超全整理

中南大学高等工程数学试卷超全整理

中南大学工程硕士“高等工程数学”考试试卷(开卷)1考试日期:2010年 4 月 日 时间110分钟注:解答全部写在答题纸上一、填空题(本题24分,每小题3分)1. 若函数1()[,]x C a b ϕ∈,且[,]x a b ∀∈有()[,]x a b ϕ∈和1)('<≤L x ϕ, 则方程()x x ϕ=在[,]a b 上的解存在唯一,对 任意[]b a x ,0∈为初值由迭代公式)(1n n x x ϕ=+产生的序列{}n x 一定收敛于方程()x x ϕ=在[,]a b 上的解*x ,且有误差估计式*x x k-≤L-1ε;2. 建立最优化问题数学模型的三要素是: 确定决策变量 、 建立适当的约束条件 、 建立目标函数 ;3.求解无约束非线性最优化问题的最速下降法会产生“锯齿现象”,其原因是: 最速下降法前后两个搜索方向总是垂直的 ;4.已知函数)(x f y =过点(,),0,1,2,,i i x y i n =L ,[,]i x a b ∈,设函数)(x S 是()f x 的三次样条插值函数,则)(x S 满足的三个条件(1)在每个子区间[]i i x x ,1-(i=1,2,…,n )上是不高于三次的多项式;(2)S (x ),S ’(x ),S ’’(x )在[]b a ,上连续;(3)满足插值条件S (x i )=y i (i=1,2,…,n );5.随机变量1210~(3,4),(,,,)X N X X X L 为样本,X 是样本均值,则~X N (3,0.4);6.正交表()p q N L n m ⨯中各字母代表的含义为 L 表示正交表,N 表示试验次数,n 、m 表示因子水平数,p 、q 表示试验至多可以安排因素的个数 ;7.线性方程组Ax b =其系数矩阵满足 A=LU ,且分解唯一 时,可对A 进行LU 解,选主元素的Gauss 消元法是为了避免 采用绝对值很小的主元素 导致误差传播大,按列选取主元素时第k 步消元的主元a kk 为)1,2,......,1(1-=⎪⎪⎭⎫ ⎝⎛-=∑+=n i a y a b y iin i j i ij i i 8.取步长0.01h =,用Euler法解'3,[0,1](0)1y x yx y ⎧=-∈⎨=⎩的公式为 。

全国名校高等代数考研真题汇编(含部分答案)

全国名校高等代数考研真题汇编(含部分答案)

考生注意: 1.本 试 卷 满 分 为 150 分,共计10道题,每题满分15 分,考试时间总计180 分钟;
2.答案必须写在答题纸上,写在试题纸上或草稿纸 上均无效。
一、设 是 阶单位矩阵, ,证明 的行列式等于 .
,矩阵 满足
二、设 是 阶幕零矩阵满足

.证明所有的 都相似于一个对角矩阵,
的特征值之和等于矩阵 的秩.
3.南开大学高等代数考研真题 2012年南开大学804高等代数考研真题 2011年南开大学802高等代数考研真题
4.厦 门 大 学 825高等代数考研真题 2014年厦门大学825高等代数考研真题 2013年厦门大学825高等代数考研真题 2012年厦门大学825高等代数考研真题 2011年厦门大学825高等代数考研真题

证明:
(1)
.
(2) 是 的不变子空间,则 也是的 不变子空间.
10.四川大学高等代数考研真题及 详解
2013年四川大学931高等代数考研真 题及详解
2011年四川大学高等代数考研真题
11.浙江大学高等代数考研真题
2012年浙江大学601高等代数考研真题
浙江大学2012年攻读硕士学位研究生入学试题 考试科目:高等代数(601)
5.中 山 大 学 877高等代数考研真题
2015年中山大学877高等代数考研真题 2014年中山大学874高等代数考研真题 2013年中山大学869高等代数考研真题 2012年中山大学869高等代数考研真题 2011年中山大学875高等代数考研真题 6.中南大学高等代数考研真题 2011年中南大学883高等代数考研真题 7.湖南大学高等代数考研真题 2013年湖南大学813高等代数考研真题 8.华 东 师 范 大 学 817高等代数考研真题 2013年华东师范大学817高等代数考研真题 2012年华东师范大学817高等代数考研真题 2011年华东师范大学817高等代数考研真题 9.华中科技大学高等代数考研真题及详解 2013年华中科技大学高等代数考研真题 2012年华中科技大学高等代数考研真题及详解 2011年华中科技大学高等代数考研真题 10.四川大学高等代数考研真题及详解 2013年四川大学931高等代数考研真题及详解 2011年四川大学高等代数考研真题 11.浙江大学高等代数考研真题 2012年浙江大学601高等代数考研真题

中南大学线性代数ppt课件

中南大学线性代数ppt课件

2 5 1 9
0 2 6 2 12 0 0 1 1 3
1 2 0 2
0 0
1 4
4 6
1
0
0 2
0 0
3 4
2
6
0 0 1 1 3 0 0 1 1 3
1 0 0 3 2
0
1
0
2
3
0 0 1 1 3
3 2 X 2 3.
1 3
若要求YA
C
,则可对矩阵
A
C
1
E(i(k))
k

i

1
1
以 Em (i(k)) 左乘矩阵 A,
a11
a12
Em
(
i(
k
))
A
kai1
kai 2
am1 am2
a1n
kain

i

amn
相当于以数k 乘 A的第 i 行 (ri k);
类似地,以 En(i(k)) 右乘 矩阵 A,其结果 相当于以数 k 乘 A 的第 i 列 (ci k).
例3 已知 n 阶方阵 A 0 0 1
1,
0 0 0
1
n
求 A 中所有元素的代数余子式之和 Aij . i, j1
解: A 2 0,
A 可逆. 且 A* A A1.
2 0
2 1
2 1
2 1
1 0
0 1
0 0
0 0
A E 0 0 1 1 0 0 1 0
0 0 0 1 0 0 0 1
aj2
a jn

i

ai1
ai 2
ain

中南大学数学院高等代数行列式word课件

中南大学数学院高等代数行列式word课件

第二章 行列式Determinants§1 引言 §5 行列式的计算§2 排列 §6 行列式按行(列)展开 §3 n 级行列式 §7 Cramer 法则§4 n 级行列式的性质 §8 Laplace 定理行列式乘法法则§2.1 引言1. 用消元法解二元线性方程组)2()1(.,22221211212111⎩⎨⎧=+=+b x a x a b x a x a ,:)1(221222*********a b x a a x a a a =+⨯(),:2122222121211212a b x a a x a a a =+⨯,得两式相减消去2x;212221*********b a a b x a a a a -=-)(,得类似地,消去1x,211211*********a b b a x a a a a -=-)(时,当021122211≠-a a a a 原方程有唯一解,211222112122211a a a a b a a b x --= ,211222*********a a a a b a a b x --= 由方程组的四个系数确定 若记d a a a a a a a a ==-2221121121122211,1222121212221d a b a b b a a b ==-, 2221111211211d b a b a a b b a ==-, 则当0≠d 时该方程组的解为d d x d d x 2211,==2.在三元一次线性方程组求解时有类似结果方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111b x a x a x a b x a x a x a b x a x a x a 当0333231232221131211≠=a a a a a a a a a d 时,有唯一解 d d x d d x d d x 332211,,===其中3332323222131211a a d a a d a a d d =, 3333123221131112a b a a b a a b a d =, 3233122221112113b a a b a a b a a d =。

考研数学-中山大学2013年高等代数考研试题回忆版

考研数学-中山大学2013年高等代数考研试题回忆版

2013年中山大学高等代数考研真题1、设E 为数域,,E F ⊂且E 作为F 上的线性空间,维数为.m 设V 为E 上的n 维线性空间.证明:V 作为F 上的线性空间维数为.mn2、设f 是F 上线性空间)(F M n 到F 的线性映射,,)(n I f =且对任意的矩阵)(,F M B A n ∈有).()(BA f AB f =证明:0tr f =(注:tr 为迹函数). 3、设),(,F M B A n ∈,)(n A rank <且,21k B B B A =其中.,,2,1,2k i B B i i ==证明:)).(()(A rank n k A I rank -≤-4、设.n m F A ⨯∈若对任意n 维向量,n F b ∈线性方程组b AX =有解.证明:.)(m A rank =5、设23)1()(,)(x x g x x f -==.(1)求)(),(x v x u 使);x g x v x f x u x g x f ()()()())(),((+=(2)设.1)(,2)(21=+=x r x x r 求一多项式)(x h 使下列同余方程式成立:)).()(m od ()()),()(m od ()(21x g x r x h x f x r x h ≡≡6、设σ是F 上线性空间V 上的线性变换.W 是σ的不变子空间.m λλ,,1是σ的两两不同的特征根,m αα,,1 分别是属于m λλ,, 1的根向量.若,1W m ∈++=ααα 证明.,,1,m i W i =∈α7、设复矩阵.1011020011112320⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=A 求A 的Jordan 标准型和最小多项式.8、设W 为下列实线性方程组的解空间.分别求W 与⊥W (W 的正交补)的一个标准正交基:.0,023214321=-+=+-+x x x x x x x。

2013年考研数一真题答案解析

2013年考研数一真题答案解析

一、选择题(1) D解用洛必达法则 1 l—x arctanx 1 + x 2 1 + x 2—11X l im· =l im =l i m =—hm =c #-O ,x 丑X, 一-ok x k -lx-0 k x k -l (1 +X z) k x 勺x k -11因此k -1 =Z, 一-c ,即k=3,c -一故应选D.k3CZ) A解F:=zx-ys i n(xy)+L F:=-xs i n(xy)+z, F:=y曲面x 2+c os(xy) + y z十X =0在点(0'1,—1)处的切平面的法向晕n={l ,-1,1},切平面方程为:1• (x—0)—(y—1) + 1• (z + 1)= 0, 即x—y +z --Z故应选A.(3)C解观察到S(x)是f(x)的正弦函数,对J进行奇延拓,其周期为z 故S(x)f(x). 9 1 1 s (-—) =S(--—s -=- 1 144) (4)1(了)=勹一故应选C(4)D解由格林公式得I ,-f (y +f )山+(Zx -�) d y =』(1—x 2-f )心d y'其中D 1:x z+y z冬1,D 2:x 2+y 2�z,D3:f +y 2冬1,yD 口x z+��l.z显然在几内有y y l-x 2 -—>O , 在队外有l -x 2-—<O ,z z又如图有D1C D4 ,D4 C D z 由重积分性质知I1>I1,I4>Iz.y 又D4=几+D4\D 5,几=D5+D3\D 5,在D3\D 5上l -x 2--<0,在D4\D5上z1 2 y-x -—z>O ,2013年(数一)真题答案解析故J4=II (1-x 2—f)dxd y + II (1—X 2 --f )dxd y D5D八D s>13=』(1y —x 2勹)dxdy + I I (1—.亢2飞)dxdy. 故应选D.D5D叭D5(5) B解由千A B =C,那么对矩阵A,C按列分块,有,、`丿,,“` , . . . , 2”, ,1”, ( _ --n nn 12…nb b b ��…�22212…”b b b11112…n b b b) "" , . . . ,2", 1 "( Y1 =b 11a1 +b心+…+b.1a.,即{了:,�b ,,a +b 心+…+b .,a.,r. =b1na1 +b z.az +…+ b n.an. 这说明矩阵C的列向最组r 口rz '…,r. 可由矩阵A的列向量组a1,a2, …, a. 线性表出.又矩阵B可逆,从而A=CB飞那么矩阵A的列向量组也可由矩阵C的列向械组线性表出.由向量组等价的定义可知,应选B .(6) B解记A�[�:�'考察矩阵A的特征值为2,b ,O的条件.首先,显然1At �:,因L是A的特征值.其次,矩阵A的迹t r (A )=2 t -b, 因此如果2是矩阵A的特征值,则b就是矩阵A的另一个特征值于是“充要条件”为2是A的特征值.由lzE—A l=—a 2-b—a =—4a 2 =O 气=O .—l -al因此充要条件为a =O,b为任意实数,故应选B.(7) A解将随机变量义和x3化成标准正态后再比较其大小.P 1 =P {—2�X1�2} =<P (2) -中(—2)'—2X z2Pz=P {-2�X三2}=P {—《—《—}气(1)-<P (-1)'22 2 p3 =P {-2�X3�2} -2—5 x3—5 2-5 =P {3� —3� 2 } =iP (-1)—叶习=<P行)-<P(l )'由右图正态分布曲线下的面积所代表的概率可知P1 > Pz > p 3.故应选A .x7l 3(8)C解当X-t(n)时,X 2-FO,n),又Y-FO,n),故Y与xz同分布.当C > 0时,由t 分布的对称性有P{Y>c 2}=P{X 2>c 2}==P{ X >c}=P{X>cUX<—c}=2P{X>c}=2a.故应选C.二、填空题(9)1解把X =O 代入方程有八0)=1. 方程y -X = e xO -y )两端同时对x 求导有f'(工)-1 = e [l -f(x )] [1-f (x ) -x f'(x ) J . 把X =O 代入上式得厂(0)=2 -f(O) =l.又limf 釭)-]-=f '(O)=l,x-oX1三卢—1]飞巴!(-;;}—l气尸�1nOO)C 1e 立+c z 产-xe红解由常系数非齐次线性微分方程解的性质可得Y 1 -Y 3 = e3x,Y 2 -Y 3 = ex是相应二阶齐次线性微分方程的两个特解.故相应二阶齐次线性微分方程的通解为Y O = C I e 3·x + C 2 e .所以所求非齐次方程的通解可表示为y = C1e x + C 2芒—X e2x•(11)心解•• dxdy· —= cost , -= t c ost ,dt dt. dy tcost•• -= =t,dxcost 叶店)d 2y d dy dt -=--(—)=—一=-1 c!x2 dx cl x clxcostc!t心1从而dx 2,-f =亢=迈.cos—4(12)lnZ解厂l n x2dx = _ l n x += +厂dx =O+l n x1+==O —l n _l =ln 2 1O+x)l+x 1 2 l+x 1 1O+x)x(13) -1解题设条件"a ;;+A ;; = 0 "即A T =—A*'于是A =—[Al'可见A只可能是0或—1.又r(A)= r (A T ) = r (-A *) = r (A 天),则rCA)只可能为3或0.而A为非零矩阵,因此r (A)不能为o ,从而r(A) = 3 , A [ #-0 , [ A [ = -1.或,用特例法.取一个行列式为—1的正交矩阵满足A T=-A勹故应填-1.104)1——e解由于X�E(l),a>O,则由指数分布的分布函数有P{Y冬a+IY>a}=P{Y>a,Y,s;:;a+l } =P{a<Y,s;:;a+l}P {Y >a}1—P{Y冬a}1-e 一(a +])—0-e -")e -a —e -a -1 1 = = =l —e -1 = 1—— l —(1—e -a )-a e e 三、解答题05)解由条件显然有J(l )=O, J'(x)=由分部积分法及换元积分法有『八x)d x =2f J(x)d 左。

中南大学2002-2009研究生入学考试试题高等代数

中南大学2002-2009研究生入学考试试题高等代数

中南大学2002-2009研究生入学考试试题高等代数中南大学2002年研究生入学考试试题考试科目:高等代数注:以下2R 表示n 维实列向量空间,n n R ?表示n 阶实矩阵的全体,T A 表示矩阵A 的转置,()Tr A 表示矩阵A 的迹。

一、(20分)设0x 是n 维欧氏空间V 中非零向量,,0k R k ∈≠,定义变换00(,),Tx x k x x x x V=+∈1.验证T 是线性变换;2.设0x 在V 的标准正交基12,,,n e e e 下的坐标为()12,,,n ξξξ ,求在该基下的矩阵;3.证明T 为对称变换,即(,)(,)Tx y x Ty =,,x y V ?∈; 4.证明:T 为正交变换的充要条件是22k x =-。

二、(16分)设n n A R ?∈,记(){:,}.n nC A B AB BA B R==∈1.证明:()C A 是n n R ?的子空间; 2.当A I =时,求()C A ;3.当100002000A n ?? ? ?= ? ???时,求()C A 的维数和一组基。

三、(16分)设12(,,,)T n b b b b = 为n 维非零列向量,求矩阵0H b A b=?的特征值和特征向量,其中H b 表示列向量b 的共轭转置。

四、(14分)设,,n n n A R b x R ?∈∈,证明线性方程组TTA Ax A b=必有解。

五、(12分)设,A B 为n 阶实矩阵,证明0.A B BA ≥-六、(12分)求证:A 为幂零阵(即存在正整数m ,使得0m A =)的充要条件是:对任一自然数r ,有()0.r Tr A =七、(10分)设,A B 是n 阶实对称矩阵,0A ≠,证明:A 为正定矩阵的充要条件是,对所有正定矩阵B ,恒有()0.Tr AB > 中南大学2003年研究生入学考试试题考试科目:高等代数一、填空题:(每小题6分,共30分)1、设四阶方阵1234(,,,)A αααα=,1234(,,,)B βααα=,其中1234,,,,ααααβ为4维列向量,若||1,||2A B ==,则||()A B +=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中南大学
2013年硕士研究生入学考试试题
(883高等代数)
一、(16分)设12,,,n αααL 是n 个(2)n ≥互不相同的整数.证明: 1()()()1n f x x a x a =---L 不能表示成两个次数大于零的整系数多 项数之积.
二、(16分)计算n 阶2n ≥行列式
1221233
3122111
112210
001001011
n n n n n n n n
n
n
n
k C k C C k D C C C k C C C k ------=
L L L L L
L
L L
L L L
其中k 为正整数。

三、(14分)设12(,,,)n A a a a =L 是数域F 上的一个m n ⨯矩阵,对A 施 行若干初等行变换后得到矩阵12(,,,)n B b b b =L 。

证明: 1.向量组12,,,n a a a L 中的向量12,,,j j jk a a a L 线性无关的充要条件是 向量组12,,,n b b b L 中的向量12,,,j j jk b b b L 线性无关; 2.向量组12,,,n a a a L 中的向量1
2
,,,r
i i i i a a a a L 满足
1
2
1212(,,,)r
i i i r i r a k a k a k a k k k F =+++∈L L 的充要条件是向量组
12,,,n b b b L 中的向量1
2
,,,r
i i i i b b b b L 满足1
2
12r
i i i r i b k b k b k b =+++L 。

四、(16分)设m n ⨯矩阵A 的秩为r 。

1.证明:存在m 阶可逆矩阵P 和n 阶矩阵Q ,使得00
0r
E PAQ ⎛⎫
=
⎪⎝⎭
, 其中r E 为r 阶单位矩阵;
2.证明:存在m r ⨯矩阵B 和r n ⨯矩阵C ,使得秩B=秩C=r 且A=BC ;
3.设计一个用矩阵的初等变换求1.中P 与Q 的方法。

五、(14分)设A,B 分别为m n ⨯和n m ⨯矩阵,满足ABA=A ,b 是一个 m 维列向量。

证明:方程Ax=b 有解的充要条件是ABb=b ,且在 有解时,通解为()n x Bb E BA y =+-,其中n E 为n 阶单位矩阵,y 为任意n 维列向量。

六、(22分)设A 为n 阶实对称矩阵,B 为n 阶实对称正定矩阵。

记0B A λ-=的n 个根为12,,,n λλλL 。

证明: 1.12,,,n λλλL 都是实数;
2.存在n R 的一组基12,,,n x x x L ,使得对一切i ,j 有
i i i Ax Bx λ=及1,0,T
i
j i j
x Bx i j =⎧=⎨≠⎩

3. 0
1max max n x T i T i n x R x Ax x Bx λ≠≤≤∈=且01min min n x T i T i n x R x Ax
x Bx λ≠≤≤∈=。

七、(20分)设V 是数域F 上2阶方阵全体所构成的线性空间,
1203A ⎛⎫
= ⎪⎝⎭。

定义V 的线性变换σ如下:(),X AX XA X V σ=-∈。

1.求σ的值域与核的基与维数;
2.σ是否可对角化?若可对角化,求V 的一组基,使σ在该组基 下的矩阵为对角形。

八、(16分)设M 是n 维欧式空间V 的一个子空间,(,)⋅⋅是V 的内 积,V α∀∈
,记||αV β∀∈,存在唯一0M γ∈,
使得0min
||M
γβγβγ∈-=-。

九、(16分)设V 是实数域R 上n 阶方阵全体所构成的线性空间,f 是V 上的实值非零线性函数,满足,A B V ∀∈,f(AB)=f(BA).证明
g(A,B)=f(AB)是V上的非退化双线性函数。

相关文档
最新文档