全国大学生数学建模竞赛题葡萄酒的评价答案全解

合集下载

全国大学生数学建模竞赛 葡萄酒

全国大学生数学建模竞赛 葡萄酒

2012高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题葡萄酒的评价确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?附件1:葡萄酒品尝评分表(含4个表格)附件2:葡萄和葡萄酒的理化指标(含2个表格)附件3:葡萄和葡萄酒的芳香物质(含4个表格)葡萄酒的评价摘要葡萄酒与人类文明几乎是同步发展的,在漫长的发展史中,人们不断追求更高品质的葡萄酒,本文围绕酿酒葡萄与葡萄酒的各种指标及评分,对酿酒葡萄和葡萄酒进行评价与预测。

对于(1)问:不同的评酒师的个人感受不可能完全一样,评分的标准掌握尺度也有差异,因此难免有主观误差,为了减小误差,我们对每组评分进行加权,求其平均值最为最终得分,并计算两组评酒师给分的相对差异和每组评酒师给分的方差,从而论证了两组得分差异的显著性及可信性。

对于(2)问:葡萄酒的分级最终取决于葡萄酒的总分,因此我们建立数据分权重模型,通过合理统计数据来源、分析数据、优化数据权重的数学方法,确定各葡萄酒样品的最终得分,以此将样品分为三个等级。

对于(3)问:分析酿酒葡萄和葡萄酒理化指标之间的关系时,为了避免盲目性和增大数据处理量,我们根据化学知识,对与不可能存在关系的指标不予数据处理,同时优化数据,排除一些无效数据的干扰,然后通过EXCEL和SPSS统计软件,对酿酒葡萄及葡萄酒的理化指标的数据进行相关性分析,并将分析结果通过图表直观的表达出来,使得各项理化指标之间的关系更加简单明了。

CUMCM A题葡萄酒评价讲评

CUMCM A题葡萄酒评价讲评

问题二的建模
• 问题:根据酿酒葡萄的理化指标和葡萄酒的质 量对这些酿酒葡萄进行分级
• 评阅要点:给出根据酿酒葡萄的理化指标和葡 萄酒的质量对这些酿酒葡萄进行分级的原则 模型 算法和结果
• 确定酿酒葡萄质量好坏的主要依据是问题1中 评酒员对酒的质量的评价结果;根据这个评价 结果和酿酒葡萄的各种理化指标给出确定葡萄 质量的模型;由此给出这些酿酒葡萄的分级结 果
• 优点:既考虑了葡萄的理化指标;又考虑了葡萄酒的评 分对葡萄分级的影响; 保留了对酒的质量有较大影响的 理化指标
• 分级结果的检验:应与葡萄酒的分级结果基本一致
问题三
• 问题:分析酿酒葡萄与葡萄酒的理化指标之间 的联系
• 评阅要点: 1 给出分析酿酒葡萄与葡萄酒的成分之间关系 的原理 模型和方法;得到葡萄酒的理化指标是 否与葡萄的理化指标相关的结论;相关时给出 具体的依赖关系 2 求解时最好先对葡萄的理化指标包括芳香物 质进行分类和筛选;然后进行评价
• 根据附录三中得到葡萄的芳香类理化指标;根据其化 学性质;将其划分为酯类;芳香烃类;醛类;萜类 以各类 芳香物质的相对分子质量作为权重;进行加权平均
建模方法
• 相关性分析;典型相关性分析; • 多元回归分析;偏最小二乘回归分析; • 多因素优势的灰色关联度分析;
问题四
• 问题:分析酿酒葡萄和葡萄酒的理化指标对葡 萄酒质量的影响;并论证能否用葡萄和葡萄酒 的理化指标来评价葡萄酒的质量
CUMCM_A题:葡萄酒的评价
• 问题背景:确定葡萄酒质量时一般是通过
聘请一批有资质的评酒员进行品评 每个评酒
员在对葡萄酒进行品尝后对其分类指标打分 ;然后求和得到其总分;从而确定葡萄酒的质 量 酿酒葡萄的好坏与所酿葡萄酒的质量有 直接的关系;葡萄酒和酿酒葡萄检测的理化 指标会在一定程度上反映葡萄酒和葡萄的质 量 附件1给出了某一年份一些葡萄酒的评价 结果;附件2和附件3分别给出了该年份这些 葡萄酒的和酿酒葡萄的成分数据

数学建模 葡萄酒评价

数学建模 葡萄酒评价

A题:葡萄酒的评价摘要本文主要进行了葡萄酒感官评价的可信度比较、酿酒葡萄评价分级、酿酒葡萄与葡萄酒的理化指标之间的联系、评价结果统计分析等方面的研究。

通过方差分析、层次分析等方法建立模型,解决了葡萄酒的评价问题。

问题一:利用方差分析法对评酒员评价数据进行分析,并用Excel画出图表(见正文),直观地观察出两组评价数据范围接近,第二组评价数据波动不大,评价数据更可信。

问题二:要求根据酿酒葡萄的理化指标和葡萄酒的质量,对这些酿酒葡萄进行分级,我们认为影响酿酒葡萄品质的因素较多,酿酒葡萄各理化指标之间的关系又是极其复杂的,对其的评价是一个多指标、多属性的问题。

采用系统工程学的层次分析法(AHP)来确定影响葡萄品质的各因素的权重,应用综合评判法,对酿酒葡萄进行了评价和分级。

各等级下葡萄样品数如下表:问题三:利用逐步回归法得到酿酒葡萄与葡萄酒的理化指标之间的关系,并用神经网络进行比较验证。

问题四:通过聚类分析与神经网络相结合,分析酿酒葡萄与葡萄酒的理化指标和葡萄酒质量间的联系。

通过理化指标得到葡萄酒质量评价分数,并与第二组评酒员评价出的葡萄酒质量评价分数对比分析,可知现阶段还不能用酿酒葡萄与葡萄酒的理化指标来评价酒的质量。

本文的建模过程中,对于每个问题都充分考虑了影响因素,一定程度上体现了模型的可靠性,具有较强的适用性和普遍性。

关键词:方差分析Excel逐步回归分析Bp神经网络聚类分析MatlabDPS数据处理系统一、问题重述通过聘请一些有资质的评酒员品尝葡萄酒,根据他们反馈意见来确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

已知某一年份一些葡萄酒的评价结果,及该年份这些葡萄酒的和酿酒葡萄的成分数据。

根据上述条件建立数学模型解决以下问题:1.分析两组评酒员的评价结果有无显着性差异,哪一组结果更可信。

2.根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

2012年大学生数学建模竞赛A题(优秀论文A题葡萄酒)

2012年大学生数学建模竞赛A题(优秀论文A题葡萄酒)

葡萄酒质量的评价摘要葡萄酒质量的好坏主要依赖于评酒员的感观评价,由于人为主观因素的影响,对于酒质量的评价总会存在随机差异,为此找到一种简单有效的客观方法来评酒,就显得尤为重要了。

本文通过研究酿酒葡萄的好坏与所酿葡萄酒的质量的关系,以及葡萄酒和酿酒葡萄检测的理化指标的关系,以及葡萄酒理化指标与葡萄酒质量的关系,旨在通过客观数据建立数学模型,用客观有效的方法来评价葡萄酒质量。

首先,采用双因子可重复方差分析方法,对红、白葡萄酒评分结果分别进行检验,利用Matlab软件得到样品酒各个分析结果,结合01-数据分析,发现对于红葡酒有70.3%的评价结果存在显著性差异,对于白葡萄酒只有53%的评价结果存在显著性差异。

通过比较可知,两组评酒员对红葡萄酒的评分结果更具有显著性差异,而对于白葡萄酒的评分,评价差异性较为不明显。

为了评价两组结果的可信度,借助Alpha模型用克伦巴赫α系数衡量,并结合F检验,得出红葡萄酒第一组评酒员的评价结果可信度更高,而对白葡萄酒的品尝评分,第二组评酒员的评价结果可信度更高。

综合来看,主观因素对葡萄酒质量的评价具有不确定性。

结合已分析出的两组品酒师可靠性结果,对葡萄酒的理化指标进行加权平均,最终得出十位品酒师对样品酒的综合评价得分。

将每一样品酒的综合得分与其所对应酿酒葡萄的理化指标(一级指标)共同构成一个数据矩阵,采用聚类分析法,利用SPSS软件对葡萄酒样进行分类,根据分类的结果以及各葡萄样品酒综合得分最终将酿酒葡萄分为A(优质)、B(良好)、C(中等)、D(差)四个等级,客观地反映了酿酒葡萄的理化指标与葡萄酒质量之间的联系。

为了分析酿酒葡萄与葡萄酒理化指标之间的联系,采用相关分析法,能有效地反映出两者间的联系,取与葡萄各成分相关性显著的葡萄酒理化指标,与葡萄成分做多元线性回归得出葡萄酒理化指标与酿酒葡萄的拟合方程,从而反映酿酒葡萄与葡萄酒理化指标之间的联系。

由于已经通过回归分析建立了酿酒葡萄和葡萄酒理化指标之间的关系,因此从酿酒葡萄成分对葡萄酒的理化指标的影响,再研究出葡萄酒理化指标与葡萄酒质量的联系,便可作为一个桥梁,反映出葡萄与葡萄酒理化指标对葡萄酒的质量的作用。

数学建模-葡萄酒评价

数学建模-葡萄酒评价
1)分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可 信?
2)根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。
3)分析酿酒葡萄与葡萄酒的理化指标之间的联系。
4)分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡 萄和葡萄酒的理化指标来评价葡萄酒的质量?
2问题的分析
日期: 年 月

赛区评阅编号(由赛区组委会评阅前进行编号):
2012高教社杯全国大学生数学建模竞赛
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
赛区评阅记录(可供赛区评阅时便用):
评阅人
评分
n
n
n
n
n
n
n
n
n
n
备注
o
o
o
o
全国统一编号(由赛区组委会送交全国前编号):
全国评阅编号(由全国组委会评阅前进行编号):
红葡萄酒的评价结果有显著性差异。
同理,正秩与负秩均值分别为11.06与16.13,大致相当。因此,Wilcoxon符号平均秩检验是可行的。由于P = .0018 <0.05 (a =0.05),拒绝原假设与日口 无显著差异,即两组评酒员的对白葡萄酒的评价结果有显著性差异。
由于两组品酒员对红葡萄酒与白葡萄酒的品尝评分均存在显著差异,因此, 可认为两组评酒员的评价结果由显著差异。
2.2问题二
将酿酒葡萄理化指标进行单因子方差分析,选取出在聚类分析中发挥明显作 用的m个指标。根据酿酒葡萄的好坏与所酿葡萄酒的质量关系有直接关系,把 对葡萄酒质量的评分当做特殊的第m+1个指标。由于各指标的对酿酒葡萄分级 所发挥作用的效果不同,而传统聚类分析把各指标放在了等同的地位。基于这点, 本文提出了考虑权重的聚类分析方法。通过网络査阅资料,对各指标在分级中所 起的重要性进行评分。最后对赋权的指标进行聚类分析,对所分类样品数据加权求平均分来分级。

2012数学建模A题---葡萄酒评价---国家奖

2012数学建模A题---葡萄酒评价---国家奖

葡萄酒的评价摘要本文主要运用统计分析方法,解决与所酿葡萄酒有关的问题。

对于问题一,,分别对白酒和红酒的两组数据进行差异性检验。

构建一个能反应葡萄酒本身质量的量,对两组数据分别进行相关性分析,得到第二组评酒员的结果更可信。

对于问题二,先做聚类分析,再做线性回归分析,得到白、红葡萄分为4级和3级。

对于问题三,利用问题二中聚类得到的7个主成分,把每种葡萄酒的理化指标与酿酒葡萄之间的7个主成分进行相关性分析,得到7个回归方程,即为酿酒葡萄与葡萄酒的理化指标之间的联系。

对于问题四,首先建立模型:12W=a *Y +b *Y 。

其中a,b 分别为酿酒葡萄和葡萄酒对葡萄酒质量的贡献率,1Y ,2Y 分别为两种因素的贡献值。

然后,通过确定芳香物质是否对葡萄酒的评分有影响来论证能否用葡萄和葡萄酒的理化指标评价葡萄酒的质量。

问题一中,本文运用excel 做两组数据的显著性差异检验,得到两组评酒员在评论白酒和红酒都存在显著性差异,且通过了F 检验。

接着本文通过确定各指标的权重,构建一个能反应各葡萄酒实际平分的量,把两组数据与之做相关性分析,发现第二组与之相关性更大,故第二组评酒员的结果更可信。

问题二中,本文通过SPSS 做理化指标的聚类分析,得到7个主成分;再做指标与评分的线性回归分析,得到白葡萄的分级结果为4级:一级:白酿酒葡萄14,22;二级:白酿酒葡萄4,5,9,19,23,25,26,28;三级:白酿酒葡萄24,27;四级:白酿酒葡萄1,2,3,6,7,8,10,11,12,13,15,16,17,18,20。

红葡萄酒为3级:一级:红酿酒葡萄2,9;二级:红酿酒葡萄3,4,10,22,24;三级:红酿酒葡萄1,5,6,7,8,11,12,13,14,15,16,17,18,19,20,21,23,25,26,27。

问题三中,本文运用excel 将葡萄酒的一级指标分别与7个主成分进行相关性分析然后对每种主要成分利用SPSS 进行线性回归分析得到以下7个回归方程:()()()()()r1134r21367r3137r4136r6137r71Y =-39.542+1.727+21.850+3.9463Y =4.044+0.026-0.156-0.005-0.1954Y =2.807+0.021-0.030-0.1895Y =2.700+0.024-0.169-0.0056Y =0.069+0.001-0.006-0.0077Y =70.028-0.188+x x x x x x x x x x x x x x x x x ()()2347r8123560.841+0.280-0.187+1.7048Y =58.545-0.021-1.028+1.666+27.045-0.0049x x x x x x x x x 即为每种酿酒葡萄与葡萄酒理化指标之间的联系。

2012年全国数学建模大赛 A题葡萄酒的评价

2012年全国数学建模大赛 A题葡萄酒的评价

葡萄酒的评价摘要本文就影响葡萄酒的质量的因素进行了探究。

在问题一中,评酒员间存在评价尺度、评价位置以及评价方向等方面的差异,导致不同评酒员对同一酒样的评价差异很大,于是我们需要探讨两组评酒员的可信度。

对此,我们建立了单元素方差模型对其进行了显著性差异的判断,最后我们得出结论:两组评酒员的评价结果有显著性差异,并且第二组评酒员评价的结果更加可信。

在问题二中,我们首先将大量的数据进行了样本住分析塞选,大大减少了计算量,就红、白葡萄酒前17组样本葡萄酒的分数进行训练,由后十组的理性指标进行检验,也可检验俩个的准确性。

最后我们认为可以给酿酒葡萄分为一、二、三、四四个等级。

在问题三中,因为要讨论酿酒葡萄与葡萄酒的理化指标之间的联系,我们就其两者的重要理化指标进行了探讨,应用了回归模型将其各项重要指标进行了多元拟合处理,最后得出了葡萄酒和酿酒葡萄中的重要指标的等式关系。

在问题四中,我们首先利用了回归原理求得葡萄酒质量与葡萄酒和酿酒葡萄的理化指标之间的等式关系,由等式和图像细致的分析了葡萄酒和酿酒葡萄理化指标对葡萄酒质量的影响。

在一定范围内,理化指标的与葡萄酒的质量呈正相关,达到一定的量后呈现负相关趋势。

关键词:显著性差异判别主成分分析 BP神经网络回归模型1.问题的重述现今社会,随着人们生活水平的提高,人们对葡萄酒的质量要求也越来越高。

在确定葡萄酒质量的时候,一般聘请一批资深的评酒员进行评比,根据不同的指标所得的分数从而求得总分,以此确定葡萄酒的质量。

其中酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

本题给出了3份材料,材料1是某一年份一些葡萄酒的评价结果,材料2和材料3分别给出了该年份这些葡萄酒和酿酒葡萄的成分数据。

我们必须解决以下问题:问题一:分析材料1中两组评酒员的评价结果是否有明显的差异,并且求出哪组评酒员的评价结果更可信。

问题二:根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄的品质进行分级。

2012全国大学生数学建模竞赛A题(葡萄酒评价)

2012全国大学生数学建模竞赛A题(葡萄酒评价)

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆交通大学参赛队员(打印并签名) :1. 孟壮2. 瞿琦3. 朱超指导教师或指导教师组负责人(打印并签名):谭远顺10 日期: 2012 年 9 月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒的评价摘要本文主要用数学建模的方法解决关于葡萄酒评价的一些问题。

结合题目所给信息以及查阅大量资料,对题目所提问题做了相应解答,并验证了相关模型建立及求解的合理性。

针对问题一:首先,我们运用E xcel数据分析和SP SS软件数据分析工具,分别建立了配对样本T检验模型和单因素方差分析模型,分析了两组评酒员的评价结果是否具有显著性差异。

两种方法得出的结果一致:两组评酒员的评价结果有显著性差异。

然后,通过建立权重模型,分别对评酒员与评酒员群体评价之间的“分值偏差”和“排序偏差”两方面考察,得出第二组结果可信。

2012高教社杯全国大学生数学建模竞赛A题葡萄酒的评价

2012高教社杯全国大学生数学建模竞赛A题葡萄酒的评价

2012高教社杯全国大学生数学建模竞赛葡萄酒的评价摘要本文以概率论与数理统计的相关知识为理论基础,综合运用正态分布和分级的原理,利用统计分析数据,研究了葡萄酒的评价指标体系,针对 葡萄酒的质量评价问题,建立合理的数学模型用以评价。

问题一:(1) 本问题的葡萄酒质量评价指标(即外观分析中的澄清度、色调,香气分析中的纯正度、浓度、质量,口感分析中的纯正度、浓度、持久度,平衡/整体分析),先对指标归类按顺序,统计并整理出相关的数据,再利用正态分布的思想,假设并验证质量评价指标为正态分布并进行差异性分析,对比找出附件1中两组评酒员的显著差异为:两组评酒员对红葡萄酒的评价结果有显著性差异的是外观分析中的色调、香气分析中的浓度,其他的无显著性差异;两组评酒员对白葡萄酒的评价结果有显著性差异的是口感分析中的纯正度、浓度,持久性、质量和平衡/整体评价,其他的无显著性差异。

(2)本问题要求分析附件1中哪组指标更可信,这就要在问题(1)基础上分析两组指标的可信性,建立可信性分析模型,利用matlab 软件编程计算得(程序见附件4): 1var =0.0735 ,2var =0.0398。

可见21var var ,因此第二组可信性高。

问题二:此问题我们的总体思路是这样的:先根据样品葡萄酒的得分高低对葡萄酒进行分级,并且假设葡萄酒得分越高,那么酿酒葡萄就越好,等级就越高,于是我们利用一些分类模型就可以得到相应酿酒葡萄的级别差。

根据这条思路,我们建立如下一些模型来讨论(见表6、7、8)。

为了充分利用文中的数据,我们把第一组第二组葡萄酒品尝得分合并,这样就得到了一个更大的样本,对结论会更有说服力。

为了能比较客观的对葡萄酒分划分合理的等级,我们需要一种能从总体上正确的反应葡萄酒的评分,这里我们利用已经单位化的综合了所有指标的葡萄酒品尝评分的所得分评价,它们的得分范围理论上包含在[0,1]区间上,实际计算红葡萄的单位化归一化后的评分。

全国大学生数学建模竞赛题葡萄酒的评价答案全解

全国大学生数学建模竞赛题葡萄酒的评价答案全解

数学实验计算机科学与技术成员:xxx学号:xxxxxxxxxx葡萄酒的评价摘要本文主要研究的是如何对葡萄酒进行评价的问题。

通过对评酒员的评分与酿酒葡萄的理化指标和葡萄酒的理化指标等原始数据进行统计、分析和处理,我们得出了一个较为合理地评价葡萄酒质量优劣的模型。

在问题一中,我们采用T检验法,首先进行正态分布拟合检验,判断出它们服从正态分布。

之后,我们通过T检验法判断出了两组评酒员的评价结果具有显著性差异。

而对于如何判断哪一组评酒员的评价结果更可信,由于评酒员评分的客观性,我们通过计算评酒员评分均值的置信区间,利用置信区间的长短来判断评分的可信程度。

置信区间越窄,说明其越可信。

利用Matlab软件求出了第二组评酒员的评分均值的置信区间更窄,所以第二组评酒员的评价结果更可信。

在问题二中,我们采用主成分分析法,把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量再按照方差依次递减的顺序排列。

在数学变换中保持变量的总方差不变,使第一变量具有最大的方差。

第二变量的方差次大,并且和第一变量不相关。

由于变量较多,虽然每个变量都提供了一定的信息,但其重要性有所不同。

依次类推,最后我们将酿酒葡萄分为了四个等级:优质、次优、中等、下等。

在问题三中,我们通过多项式曲线拟合的方法,构造一个以葡萄酒的理化指标为自变量,酿酒葡萄的理化指标为因变量的函数,并利用Matlab软件进行曲线拟合,最后得出酿酒葡萄与葡萄酒的理化指标之间的关系为呈线性正相关。

在问题四中,我们用无交互作用的双因素试验的方差分析方法,通过对观测、比较、分析实验数据的结果,鉴别出了两个因素在水平发生变化时对实验结果产生显著性影响的大小程度。

最后,我们认为能用酿酒葡萄和葡萄酒的理化指标来评价葡萄酒的质量,且酿酒葡萄的理化指标对葡萄酒质量影响相对葡萄酒的理化指标更显著。

关键词:T检验法,Matlab,正态分布,主成分分析法,多项式曲线拟合,方差分析一.问题的重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

2012年数学建模c题

2012年数学建模c题

2012年数学建模c题
2012年数学建模C题:葡萄酒的评价
葡萄酒评价是一个主观评价问题,需要评价者根据葡萄酒的外观、香气、口感等方面进行综合评价。

本题将通过数学建模的方法,对葡萄酒进行评价,并给出相应的建议。

题目要求:
1. 根据所给数据,对葡萄酒进行评价,并给出相应的建议;
2. 根据评价结果,分析影响葡萄酒品质的主要因素;
3. 根据分析结果,给出提高葡萄酒品质的建议。

数据:
1. 120款葡萄酒的评价数据,包括外观、香气、口感、回味等方面的评分;
2. 各个葡萄酒的产地、grape variety、price等方面的信息。

评价方法:
1. 对评价数据进行标准化处理,消除不同指标之间的量纲影响;
2. 利用主成分分析法对标准化后的数据进行降维处理,提取主要特征;
3. 根据主成分得分进行聚类分析,将葡萄酒分为若干个类别;
4. 对每个类别中的葡萄酒进行统计分析和可视化展示,找出不同类别葡萄酒的特点和优劣。

建议:
1. 对于不同类别的葡萄酒,根据其特点制定相应的营销策略;
2. 对于品质较差的葡萄酒,从生产工艺、原料选择等方面进行改进;
3. 对于品质较好的葡萄酒,进一步挖掘其品质潜力,提高产品附加值。

数学建模22年c题

数学建模22年c题

数学建模22年c题
2022年全国大学生数学建模竞赛C题:
题目:葡萄酒的评分
问题:
1. 建立一个葡萄酒评分、成分与口感之间的数学模型,并分析其相关性。

2. 根据所建立的模型,预测一款新的葡萄酒的口感,并给出相应的评分。

3. 探讨如何通过调整葡萄酒的成分来优化其口感。

要求:
1. 解决方案需要包含模型的详细步骤和推理,以及使用的主要数学方法。

2. 需要提供数据来源和处理的详细说明。

3. 需要使用适当的软件进行数据分析和模型验证。

4. 解决方案应包括图表和可视化结果,以支持模型的解释和分析。

5. 解决方案应适当引用参考文献。

2012年数学建模A题葡萄酒评价

2012年数学建模A题葡萄酒评价

摘要对于问题一,我们首先对数据进行预处理,分别求出了第一、二组的评酒员对红白葡萄酒品尝评分的平均值,然后把问题转换成两独立样本的参数检验问题。

考虑到两个独立样本分布形态不确定,我们采用非参数检验中的Wilcoxon秩和检验判断样本是否有显著性差异,结果显示两组双侧渐近显著值分别为0.044,0.022,均小于0.05,即两组评酒员的评价结果有显著性差异。

对于可信度,我们是通过标准差来评判,标准差能反映一个数据集的离散程度。

计算得到的标准差值如表5.1.2.3所示,第一组的标准差值均大于第二组,所以可信度比第一组要高。

对于问题二,我们通过spss软件运用聚类分析,将酿酒葡萄大致分为了四类,结果以表5.2.7,表5.2.8显示。

除此之外,我们根据主成分分析法,得到酿酒葡萄的主成分和权重,再计算出综合主成分值,进而对样品进行等级分类。

相比较而言,主成分分析法的等级分类更精确。

对于问题三,酿酒葡萄包含多个理化指标,我们首先根据问题二中主成分分析的成分矩阵表,对其简化得到了相关的主要指标。

然后对酿酒葡萄的理化指标和葡萄酒的理化指标进行双变量相关性分析,得出二者的相关性关系如表5.3.1,表5.3.2所示。

对于问题四,我们将附件一中的平均评分高低视为葡萄酒质量好坏,直接将酿酒葡萄和葡萄酒的理化指标的数据导入spss中,分别进行双变量分析,得出了理化指标与葡萄酒评分的相关性联系,如附录3 所示。

结果发现,在影响白葡萄酒的质量上,白葡萄与白葡萄酒的理化指标皆对其影响不大,没有一个相关系数超过了0.5。

红葡萄酒的影响情况与白葡萄酒一样,但是红葡萄的PH值、果酸、褐变度与多酚化氧活力,这些指标对红葡萄的评分的影响较高,相关系数皆高于了0.5.所以,相对于酿酒葡萄而言,红葡萄的理化指标影响比白葡萄要大,因而不能用葡萄和葡萄酒的理化指标来评价葡萄酒的质量。

关键词:非参数检验聚类分析主成分分析双变量相关性分析 SPSS1问题重述葡萄酒的生产有着非常久远的历史,可上溯至几千年前,它是一种世界通畅性酒种,有着广泛交流的基础,现已发展成最主要的酒种之一。

2012年全国大学生数学建模竞赛A题葡萄酒评价分析

2012年全国大学生数学建模竞赛A题葡萄酒评价分析

对葡萄酒的评价分析摘要本文主要应用数理统计中的t检验法,回归分析法等方法对葡萄酒的评价的相关问题进行了分析,建立相应的模型。

针对问题一,首先,对样本进行K-S检验得出数据取自的总体服从正态分布,进而运用成对数据t检验法进行检验,得出两组评酒员对每种葡萄酒的总评分有显著差异;在此基础上,采用两种方法分别判断哪组评酒员的可信度更高。

方法一是计算出每组评酒员对每种葡萄酒的总评分的置信区间,评分处于置信区间内的人次百分比较高的一组可信度较高;方法二是比较两组评酒员对每种葡萄酒的总评分的方差的大小,总体方差分布较小的一组,可信度较高。

两种方法均得出了同一结论,即第二组评酒员的结果更可信。

针对问题二,基于问题一得到的结论,建立了酿酒葡萄品质的综合评价模型。

首先,对数据指标进行归一化处理,并计算出酿酒葡萄与各指标因素间的相关系数。

然后,分别用层次分析法和因子分析法确定了各指标因素的权重。

最后,利用确定的权重,建立了酿酒葡萄品质的综合评价模型,对葡萄进行分级。

如,优质的红葡萄样品是8、23、3、1。

针对问题三,从两个层次建立相关性系数模型。

首先,运用Excel软件分析葡萄酒各理化指标与酿酒葡萄成分的相关性;然后,进一步分析酿酒葡萄的综合评价指标与葡萄酒的理化指标之间的联系。

得出结论:酿酒葡萄的花色苷成分与葡萄酒的花色苷呈显著正相关。

针对问题四,分别建立回归分析模型和综合评价模型,其中综合评价模型建立方法同问题二,回归分析模型则先将葡萄和葡萄酒的各理化指标进行因子分析法降维后得数量较少的因子变量,对简化后的新指标进行回归分析,此处尝试用SPSS软件的回归分析中5种回归拟合方法,继而选取拟合度最佳的模型,得回归系数,建立多元线性回归方程分析各理化指标对葡萄酒质量的影响;将新指标得分带入方程,可求得线性拟合后的葡萄酒质量评分。

进一步引入芳香物质作为评判指标,同样建立线性回归模型求得葡萄酒质量评分,将有无引入芳香物质作为指标的质量评价结果分别与可信度较高的评酒员对葡萄酒的评价结果进行回归模型检验比较和差值平方和比较,得到结论用葡萄和葡萄酒的理化指标来评价葡萄酒的质量是完全可行的,但加入芳香物质作为评价指标更能准确合理地评价葡萄酒的质量。

数学建模论文葡萄酒的评价

数学建模论文葡萄酒的评价

数学建模论文---葡萄酒的评价承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):4198所属学校(请填写完整的全名):广东医学院(东莞校区)参赛队员(打印并签名) :1. 黄洁2. 顾家荣3. 陈婉君指导教师或指导教师组负责人(打印并签名):唐国平日期:2013年9月 9日编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒质量的评价模型摘要本文主要讨论了关于葡萄酒与葡萄之间关系的研究,主要分析了附件1中两组评酒员的评价结果有无显著性差异,并判断哪一组结果更可信;还根据酿酒葡萄的理化指标和葡萄酒的质量把这些酿酒葡萄分为3个等级;分析了酿酒葡萄与葡萄酒的理化指标之间的联系和酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证用葡萄和葡萄酒的理化指标来评价葡萄酒的质量。

通过这些分析有益于对葡萄酒行业的发展有一定的贡献。

对于问题一,用10个品酒员对每种酒样品的总评分的来代表这种酒样品的质量,建立单因子数学模型,分别对两个水平进方差分析,由U检验,取置信区间为95%,最终得出两组品酒员对红葡萄酒的评分有显著性差异,对白葡萄酒的评分没有显著性差异。

2012年全国大学生数学建模竞赛A题(葡萄酒理化指标与质量的评鉴分析,获全国二等奖)

2012年全国大学生数学建模竞赛A题(葡萄酒理化指标与质量的评鉴分析,获全国二等奖)

葡萄酒理化指标与质量的评鉴分析摘要用好的葡萄也许酿不出好酒,但没人能用劣质葡萄酿出好酒。

巧妇难为无米之炊,再优秀的酿酒师,如果没有优质的葡萄,也很难酿出好酒。

不同葡萄品种酿制出的葡萄酒是不同的,但是,除了品种间的差异,葡萄自身的质量是酿制高品质葡萄酒的关键。

本文通过建立meansK-聚类模型、典型相关分析等模型,逐步探求用葡萄和葡萄酒的理化指标来评鉴葡萄酒质量的方法。

问题一要求我们分析附件1中两组评酒员的评价结果是否存在显著性差异,为此我们依据小概率原理建立模型Ⅰ-显著性检验模型。

首先我们利用F检验求解两组评酒员之间是否存在显著性差异,再利用配对t检验对检验样本做再次检验,以提高研究效率,确保评价结果的准确性。

利用Excel软件处理数据后,进行t、F的联合检验,当联合检验均被接受,得到两组评酒员的评价结果有显著性差异的结论。

同时通过对两组品酒员对55种葡萄酒样品评分的稳定性、统一性分析,确定第二组品酒员的评价结果更可信。

针对问题二本文根据附件2提供的数据,利用模糊数学原理[3],建立模型ⅢK-聚类模型,对酿酒葡萄进行分类,再以葡萄酒品尝评分作为质量评价依据,means对酿酒葡萄进行分级。

首先,考虑到酿酒葡萄的理化指标过多,不便分类,我们利用多元统计分析原理对红、白酿酒葡萄进行主成分分析,得出红、白酿酒葡萄分别有8个和11个主成分,从而大大减少了分类指标。

再利用meansK-算法求出最佳聚类数k,建立meansK-聚类模型对各种葡萄样品在各个主成分上的得分进行聚类,将红、白葡萄样品分别划分为3类和4类。

最后,根据每个类别中葡萄样品对应的葡萄酒的品尝评分,对各类酿酒葡萄进行分级。

针对问题三建立模型Ⅳ-典型相关分析模型,定量分析酿酒葡萄与葡萄酒的理化指标之间的联系。

我们首先选取酿酒葡萄与葡萄酒皆含有的花色苷、单宁等成分作为理化指标,然后构建典型相关分析模型,研究酿酒葡萄与葡萄酒两组样品的理化指标之间的相关性。

2012A数学建模——葡萄酒的评价

2012A数学建模——葡萄酒的评价
2
2
三、模型的建立与验证
对红葡萄酒有显著影响的葡萄指标示意表
酒指标 花色苷 单宁 总酚 酒总黄酮 白藜芦醇 DPPH半抑制体 积 花色苷 花色苷 花色苷 花色苷 葡萄总黄酮 苹果酸 DPPH自由基 DPPH自由基 DPPH自由基 相关显著指标 褐变度 总酚 总酚 总酚 DPPH自由基 单宁 单宁 单宁 总酚 葡萄总黄酮 葡萄总黄酮 葡萄总黄酮 果皮质量 单宁 黄酮醇 果梗比
三、模型的建立与验证
问题四 (1)模型建立:由理化指标评价葡萄酒质量——逐步多元回归模型 红葡萄酒和葡萄的理化指标对红葡萄酒质量影响的回归方程为:
y 0.03341x1 0.06279x2 0.01282x3 0.09751x4 0.88596
白葡萄酒和葡萄的理化指标对白葡萄酒质量影响的回归方程为:
汇报提纲
一、问题重述 1、问题背景
确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品 评。每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求 和得到其总分,从而确定葡萄酒的质量。酿酒葡萄的好坏与所酿葡 萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在 一定程度上反映葡萄酒和葡萄的质量。
28
1.040086
1.01961
0.019687
全国大学生数学建模大赛
-0.00726
0.019272 -0.00647 -0.0042 0.016057
1.01134
0.994353 1.038779 0.970834 1.006113
0.99236
1.01967 1.0121 1.02841 0.97964
0.018767
-0.02546 0.025683 -0.05931 0.026312

spss案例葡萄酒分析

spss案例葡萄酒分析

问题一,针对其评分结果判断两组评酒员得评价 结果有无显著性差异,并且哪一组结果更可信?
问题二,根据酿酒葡萄得理化指标与葡萄酒得质 量对这些酿酒葡萄进行分级。
附件1、两组葡萄酒品酒员得分
附件2、葡萄酒及葡萄得理化指标
二、前期处理及分析方法
这就是第一组评酒员对一种白葡萄酒每个方面打分。
得到A1、A2、A3……A10后,去掉最大值与最 小值,算剩下八个数得均值即代表第一组品酒师 对这一样本得酒得评分,同理第二组。
大家有疑问的,可以询问和交流
12
问题二,根据酿酒葡萄得理化指标与葡萄酒 得质量对这些酿酒葡萄进行分级。
分析——系统聚类
问题二结果:由图及参考第二组品酒员评分结果, 我们得出5,15,24,25,27号酒得样本葡萄为优等葡 萄,3,28为一般类型葡萄,剩下得样本葡萄有待于 提高。
spss案例葡萄酒分析
基本流程:
一、问题简介及数据 二、前期处理及分析方法 三、结果总结
一、问题简介及数据
2012高教社杯全国大学生数学建模竞赛题目 对于葡萄酒,聘请两组,共20名品酒师对28组白葡
萄酒样本进行品尝,并且对其外观、香气、口感 等方面进行评分。
并且提供了葡萄及葡萄酒得理化指标相关数据。
问题一,针对其评分结果判断两组评酒员得评价结 果有无显著性差异,并且哪一组结果更可信?
配对样本t检验 ?独立样本t检验
两组品酒师品酒存在差异
哪一组结果更可信?方差
两组28个方差比较
两组方差比较图
120
100
80
60
第一组
40
20 第二组
0
0
5
10
15
20
25Βιβλιοθήκη 30第二组比第一组更可靠
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学实验计算机科学与技术成员:xxx学号:xxxxxxxxxx葡萄酒的评价摘要本文主要研究的是如何对葡萄酒进行评价的问题。

通过对评酒员的评分与酿酒葡萄的理化指标和葡萄酒的理化指标等原始数据进行统计、分析和处理,我们得出了一个较为合理地评价葡萄酒质量优劣的模型。

在问题一中,我们采用T检验法,首先进行正态分布拟合检验,判断出它们服从正态分布。

之后,我们通过T检验法判断出了两组评酒员的评价结果具有显著性差异。

而对于如何判断哪一组评酒员的评价结果更可信,由于评酒员评分的客观性,我们通过计算评酒员评分均值的置信区间,利用置信区间的长短来判断评分的可信程度。

置信区间越窄,说明其越可信。

利用Matlab软件求出了第二组评酒员的评分均值的置信区间更窄,所以第二组评酒员的评价结果更可信。

在问题二中,我们采用主成分分析法,把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量再按照方差依次递减的顺序排列。

在数学变换中保持变量的总方差不变,使第一变量具有最大的方差。

第二变量的方差次大,并且和第一变量不相关。

由于变量较多,虽然每个变量都提供了一定的信息,但其重要性有所不同。

依次类推,最后我们将酿酒葡萄分为了四个等级:优质、次优、中等、下等。

在问题三中,我们通过多项式曲线拟合的方法,构造一个以葡萄酒的理化指标为自变量,酿酒葡萄的理化指标为因变量的函数,并利用Matlab软件进行曲线拟合,最后得出酿酒葡萄与葡萄酒的理化指标之间的关系为呈线性正相关。

在问题四中,我们用无交互作用的双因素试验的方差分析方法,通过对观测、比较、分析实验数据的结果,鉴别出了两个因素在水平发生变化时对实验结果产生显著性影响的大小程度。

最后,我们认为能用酿酒葡萄和葡萄酒的理化指标来评价葡萄酒的质量,且酿酒葡萄的理化指标对葡萄酒质量影响相对葡萄酒的理化指标更显著。

关键词:T检验法,Matlab,正态分布,主成分分析法,多项式曲线拟合,方差分析一.问题的重述确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。

每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。

酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。

附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。

请尝试建立数学模型讨论下列问题:1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。

3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。

4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量?附件1:葡萄酒品尝评分表(含4个表格)附件2:葡萄和葡萄酒的理化指标(含2个表格)附件3:葡萄和葡萄酒的芳香物质(含4个表格)二基本假设与符号说明2.1 基本假设(1)评酒员的评分是客观公正的,不受任何外界因素影响。

(2)用来检验的葡萄都是刚采摘的新鲜葡萄,葡萄酒也没有遭受任何污染。

(3)在检测酿酒葡萄和葡萄酒的理化指标的过程中,忽略由于人为操作不当带来的误差。

(4)由于不是每组数据都对葡萄酒的质量产生很大影响,所以在处理数据过程中,忽略那些影响不是很明显的理化指标。

2.2 符号说明μ第i组评酒员对各品种红葡萄酒的评分均值的期望i)2,1(=iσ第i组评酒员对各品种红葡萄酒的评分均值的方差i)2,1(2=iH问题一的假设Z第i个主成分ir第i个评酒员对第j种酒的评分ij三.问题的分析针对问题一,如何判断两组评酒员的评价结果有无显著性差异,我们采用T检验法进行判断。

但采用T检验法的前提是其必须服从正态分布,方差未知且相等。

所以我们先对那些数据进行正态分布检验,判断其是否服从正态分布。

验证服从正态分布后,我们利用T检验法判断两组评酒员评价结果的显著性差异。

对于如何判断哪一组评酒员的评价结果更可信,由于评酒员评分的客观性,我们通过计算评酒员评分均值的置信区间,利用置信区间的长短来判断评分的可信程度。

置信区间越窄,说明其越可信。

针对问题二中如何根据酿酒葡萄的理化指标和葡萄酒的质量对酿酒葡萄进行分级,我们采用主成分分析法。

因为在实际问题的研究中,往往会涉及众多有关的变量。

但是,变量太多不但会增加计算的复杂性,而且也会给合理地分析问题和解释问题带来困难。

一般说来,虽然每个变量都提供了一定的信息,但其重要性有所不同,而在很多情况下,变量间有一定的相关性,从而使得这些变量所提供的信息在一定程度上有所重叠。

因而人们希望对这些变量加以“改造”,用为数极少的互补相关的新变量来反映原变量所提供的绝大部分信息,通过对新变量的分析达到解决问题的目的。

解决这个问题的过程中,我们用Matlab软件实现主成分分析,我们对那些理化指标进行重新整理,求出各个理化指标的之间的相关系数、特征值及特征向量和贡献率等。

针对问题三中如何分析酿酒葡萄与葡萄酒的理化指标之间的联系,我们想到了用多项式曲线拟合的方法,根据两者理化指标实测样本,用统计分析的方法,找出一种适当的函数关系从而达到处理酿酒葡萄与葡萄酒之间相关关系的目的。

实际的操作过程中,我们首先构造一个关于酿酒葡萄与葡萄酒的理化指标的函数,以葡萄酒的理化指标为自变量,酿酒葡萄的理化指标为因变量,利用Matlab软件进行曲线拟合,得出酿酒葡萄与葡萄酒的理化指标之间的关系。

针对问题四中如何分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,以及能否用酿酒葡萄和葡萄酒的理化指标来评价葡萄酒的质量,我们采用无交互作用的双因素试验的方差分析方法。

用方差分析,可以将影响葡萄酒的主要因素和次要因素区分开来,还可以分别算出酿酒葡萄的理化指标和葡萄酒的理化指标与葡萄酒质量之间的误差,如果误差在可接受范围之内,即说明可以用酿酒葡萄和葡萄酒的理化指标来评价葡萄酒质量。

四.模型的建立与求解4.1 问题一的模型建立与求解4.1.1 T检验法的模型建立与求解T检验是用T分布理论来推论差异发生的概率,从而比较两个均值的差异是否显著。

由于检验红葡萄酒与白葡萄酒的方法和模型一样,这里我们只给出检验红葡萄酒的模型。

1.正态分布的检验由于使用T检验法的前提是两个总体分布都服从正态分布,我们先利用Excel软件计算出:第一组评酒员对各品种红葡萄酒的评分均值为:62.7,80.3,80.4,68.6,73.3,73.2,71.5,72.3,81.5,74.2,70.1,53.9,74.6,73,58.7, 74.9,79.3,59.9,78.6,78.6,77.1,77.2,85.6,78,69.2,73.8,73第二组评酒员对各品种红葡萄酒的评分均值为:68.1,74,74.6,71.2,72.1,66.3,65.3,66,78.2,68.8,61.6,68.3,68.8,72.6,65.7,69.9,74.5,65.4,72.6,75.8,72.2,71.6,77.1,71.5,68.2,72, 71.5然后我们利用Matlab 软件里的正态分布拟合函数进行曲线拟合,得出其正态分布的拟合曲线图为图一:图一、正态分布拟合曲线图从图中我们知道其曲线近似为一条直线,因此我们认为评酒员对红葡萄酒以及白葡萄酒的评分均值都服从正态分布。

2. T 检验法模型的建立与求解设ξ,η分别为第一组、第二组评酒员对各品种红葡萄酒的评分均值,且),(~211σμξN ,),(~222σμηN ,其中222121,,,σσμμ均未知。

(1) 作出统计假设211210::μμμμ≠↔=H H 。

(2) 选取统计量)2(~11221212122221121-++-++-=--n n t n n n n S n S n T n n ηξ(3) 对于给定的显著性水平05.0=α,我们利用Matlab 软件进行计算求解。

结果如下表所示:H=0,表示接受原假设;H=1,表示接受背择假设。

由上表可知:红葡萄酒之间不存在显著性差异,白葡萄酒之间存在显著性差异。

4.1.2 可信度的判定由于样本的置信区间与其可信度是呈负相关的,即置信区间越小,其可信度越大。

我们利用Matlab 软件求解得出第一组、第二组红葡萄酒和白葡萄酒的置信区间,见下表:葡萄酒的置信区间显然第二组的置信区间长度小于第一组,所以第二组评酒员的评价结果可信度更高。

4.2 问题二的模型建立与求解主成分分析法是一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。

在数学变换中保持变量的总方差不变,使第一变量具有最大的方差,称为第一主成分,第二变量的方差次大,并且和第一变量不相关,称为第二主成分。

依次类推,I 个变量就有I 个主成分。

1.计算相关系数矩阵⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=pp p p p p r r r r r r r r r R 212222111211(1)在(1)式中,),,2,1,(p j i r ij =为原变量的i x 与j x 之间的相关系数,其计算公式为∑∑∑===----=nk nk j kj i kink j kj i kiij x x x xx x x xr 11221)()())(( (2)因为R 是实对称矩阵(即ji ij r r =),所以只需计算上三角元素或下三角元素即可。

2.计算特征值与特征向量首先解特征方程0=-R I λ,通常用雅可比法求出特征值),,2,1(p i i =λ,并使其按大小顺序排列,即021≥≥≥≥p λλλ 。

然后分别求出对应于特征值i λ的特征向量),,2,1(p i e i =。

这里要求i e =1,即112=∑=pj ij e ,其中ij e 表示向量i e 的第j 个分量。

3.计算主成分贡献率及累计贡献率贡献率:第i 个主成分方差在全部方差中所占的比重称为贡献率。

这个值越大,表明第i 个主成分综合信息的能力越强。

主成分i Z 的贡献率为),,2,1(1p i pk ki=∑=λλ (3)累积贡献率:前k 个主成分共有多大的综合能力,用这k 个主成分的方差和在全部方差中所占的比重来描述,表明取前k 个主成分基本包含了全部测量指标所具有信息的 百分率。

累计贡献率为),,2,1(11p i pk kik k=∑∑==λλ (4)一般取累计贡献率达%95~%85的特征值m λλλ,,,21 所对应的第一、第二,…,第)(p m m ≤个主成分。

4.计算主成分载荷主成分载荷是反映主成分与元变量之间的相互关联程度。

其计算公式为),,2,1,(),(p j i e x z p l ij i j i ij ===λ (5)于是Matlab 软件求解,分别得出红葡萄与白葡萄所分的主成分、特征值、贡献率以及累计贡献率,结果见下表一及表二:表一 红葡萄主成分的特征值、贡献率及累计贡献率由上表可看出,主成分1Z 所占的累计贡献率已高达93.83%(大于85%),故只需求出第一主成分1Z 即可。

相关文档
最新文档