(完整word版)高中数学解题的21个典型方法与技巧
数学21种解题方法与技巧全汇总太实用
![数学21种解题方法与技巧全汇总太实用](https://img.taocdn.com/s3/m/816743c04793daef5ef7ba0d4a7302768f996f51.png)
数学21种解题方法与技巧全汇总太实用解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:解一些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组化简二次根式基本思路是:把√m化成完全平方式。
即:代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论恒相等成立的有用条件(1)a某+b=0对于任意某都成立关于某的方程a某+b=0有无数个解a=0且b=0。
高考数学21种方法汇总
![高考数学21种方法汇总](https://img.taocdn.com/s3/m/9f7dbac151e79b8968022666.png)
高考数学21种解题方法与技巧全汇总主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:换元法:解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元待定系数法:待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组基本思路是:把√m化成完全平方式。
即:观察法:代数式求值:方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
(2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。
关于高考数学答题技巧和方法一览.doc
![关于高考数学答题技巧和方法一览.doc](https://img.taocdn.com/s3/m/a7e87e041fb91a37f111f18583d049649a660e43.png)
关于高考数学答题技巧和方法一览高中数学的答题方法1、因式分解根据项数选择方法和按照一般步骤,是高中数学顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式-选择用公式-十字相乘法-分组分解法-拆项添项法。
2、换元法高中数学解某些复杂的特型方程要用到“换元法”,换元法解方程的一般步骤是:设元-换元-解元-还元。
3、待定系数法高中数学待定系数法是在已知对象形式的条件下求对象的一种方法,适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写。
4、一元二次方程根的讨论高中数学一元二次方程根的符号问题或m型问题,可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。
“图像法”解决一元二次方程根的问题的一般思路是:题意-二次函数图像-不等式组(包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号)。
5、最值型应用题的解法应用题中,涉及“一个变量取什么值时另一个变量取得最大值或最小值”的问题,是最值型应用题。
解决最值型应用题的基本思路是函数思想法,其解题步骤是:设变量-列函数-求最值-写结论。
6、函数奇偶性高中数学对于属于R上的奇函数有f(0)=0;对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项;奇偶性作用不大,一般用于选择填空。
7、两直线垂直或平行解题方法已知直线L1:a1x+b1y+c1=0,直线L2:a2x+b2y+c2=0,若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了防止两直线重合),这两个公式避免了斜率是否存在的麻烦。
8、椭圆中焦点三角形面积公式S=b?tan(A/2)在双曲线中:S=b?/tan(A/2),说明:适用于焦点在x轴,且标准的圆锥曲线。
A为两焦半径夹角。
高考数学解题技巧1.妙用数学思想高考数学客观题有60分,它的特点是只要答案,不要过程,有人戏称为不讲理的题,正因为不要写出道理,就要讲究解题策略,而不必每题都当解答题去解。
高中数学21个解题方法和100个高频考点整理
![高中数学21个解题方法和100个高频考点整理](https://img.taocdn.com/s3/m/b0459ea9cc17552706220863.png)
1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。
具体转化方法有:@分类讨论法:根据绝对值符号中的数或表达式的正、零、负分清况去掉绝对值。
@零点分段讨论法:适用于含一个字母的多个绝对值的清况。
@两边平方法:适用于两边非负的方程或不等式。
@几何意义法:适用于有明显几何意义的情况。
2、根据项数选择方法和按照—般步骤是顺利进行因式分解的重要技巧。
因式分解的—般步骤是:提取公因式一选择用公式一十字相乘法一分组分解法一拆项添项法。
3、利用完全平方式把—个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:O a 2士2a b +甘=(a 士b )2(l)a 2 +b 2 +c 2 +2a b +2bc +2c a = (a +b +c `2 ®a 1 +b 1 +c 2 +ab +b c +c a =½[ (a +b )2 +(b +c )2 +(c +a )2]@a x 2+b x +C = a (X 产)+C =a (x 2+2 x 卢+卢)+C -三(三尸勹a 4a c4、解某些复杂的特型方程要用到换元法。
换元法解题的—般步骤是:设元一换元一解元一还元。
5、待定系数法是在已知对象形式的条件下求对象的—种方法。
适用千求解点的坐标、函数解析式、曲线方程等重要问题的解决。
其步骤是:©设@列@解@写6、复杂代数等式条件的使用技巧:右边化为零,左边变形。
高中数学解题的21个典型方法与技巧20、最值型应用题的解法:解决最值型应用题的基本思路是函数方程法,其解题步骤是:设变量一列函数一求最值一写结论21、穿线法是解高次不等式和分式不等式的最好方法。
其一般思路是:首项系数化为正一求根标根一右上起穿一奇穿偶回。
注意:@高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零"的形式。
@分式不等式—般不能用两边都乘以公分母的方法来解,要通过移项、同分合并、因式分解的方法化为“商零式',用穿线法解。
高中数学21种解题方法与技巧全汇总.doc
![高中数学21种解题方法与技巧全汇总.doc](https://img.taocdn.com/s3/m/09cf0851f12d2af90242e694.png)
高中数学21种解题方法与技巧全汇总解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组化简二次根式基本思路是:把√m化成完全平方式。
即:观察法代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x 的方程ax+b=0有无数个解a=0且b=0。
高中数学21种解题方法与技巧全汇总【精】.pdf
![高中数学21种解题方法与技巧全汇总【精】.pdf](https://img.taocdn.com/s3/m/40180a314a7302768f99392e.png)
主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。
待定系数法
待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其 解题步骤是:
①设 ②列 ③解 ④写源自复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:
(-----)(----)=0
两种情况为或型
②配成平方型: (----)2+(----)2=0
因式分解
根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:
提取公因式 选择用公式 十字相乘法 分组分解法 拆项添项法
配方法
利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:
换元法
解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是: 设元→换元→解元→还元
平移规律 图像的平移规律是研究复杂函数的重要方法。平移规律是: 图像法 讨论函数性质的重要方法是图像法——看图像、得性质。 定义域 图像在 X 轴上对应的部分 值 域 图像在 Y 轴上对应的部分 单调性
从左向右看,连续上升的一段在 X 轴上对应的区间是增区间;从左向右看,连续下降的一段在 X 轴上对应的区间是减区间。 最 值 图像最高点处有最大值,图像最低点处有最小值 奇偶性 关于 Y 轴对称是偶函数,关于原点对称是奇函数
高考数学.docx常用解题技巧大全!高中生必看!
![高考数学.docx常用解题技巧大全!高中生必看!](https://img.taocdn.com/s3/m/ec69595da417866fb84a8e69.png)
高考数学:常用解题技巧大全!高中生必看!今天为大家整理了一份高中数学老师都推荐的数学解题方法,这里面的21种方法涵盖了高中数学的方方面面,可以说是高中数学解题方法大综合,各位同学一定要记得收藏哦!1解决绝对值主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:4换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元5待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写6复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型7数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8化简二次根式基本思路是:把√m化成完全平方式。
即:9观察法10代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
11解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
高中数学怎么学掌握这21种解题方法,稳稳130+
![高中数学怎么学掌握这21种解题方法,稳稳130+](https://img.taocdn.com/s3/m/307c50c60722192e4436f648.png)
干货高中数学怎么学掌握这21种解题方法,稳稳130+!有同学留言说知识点分享了很多,但是不会解题步骤。
眼看着知道是哪个知识点就是不知道怎么写。
今天特地为大家整理了一份数学解题方法,这里面的21种方法涵盖了高中数学的大部分题型,可以说是高中数学解题方法大综合,各位同学一定要记得收藏哦!1.解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2.因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3.配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:4.换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元5.待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写6.复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型7.数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8.化简二次根式基本思路是:把√m化成完全平方式。
即:9.观察法10.代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
21种数学解题方法与技巧全汇总
![21种数学解题方法与技巧全汇总](https://img.taocdn.com/s3/m/ad64156a10661ed9ad51f3a2.png)
高考很多同学总是特别头疼数学成绩,要知道数学题只要掌握了方法,就能够迅速提升。
距离高考还有99天,小编特地为大家整理了一份高中数学老师都推荐的数学解题方法,这里面的21种方法涵盖了高中数学的方方面面,可以说是高中数学解题方法大综合,各位同学一定要记得收藏哦!解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组化简二次根式基本思路是:把√m化成完全平方式。
即:观察法代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
高中数学21种解题方法与技巧全汇总0
![高中数学21种解题方法与技巧全汇总0](https://img.taocdn.com/s3/m/d14dd8d5fab069dc50220157.png)
高中数学21种解题方法与技巧全汇总解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:??????????????①设②列③解④写复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:?? ? ? ? ? ? ? ? ??(-----)(----)=0 ? ??两种情况为或型②配成平方型:?(----)2+(----)2=0 ? ? 两种情况为且型数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组化简二次根式基本思路是:把√m化成完全平方式。
即:观察法代数式求值方法有:(1)直接代入法???????(2)化简代入法???????(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论? ?(3)分类写出结论恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
高中数学21种解题方法
![高中数学21种解题方法](https://img.taocdn.com/s3/m/c2b1d353524de518974b7d19.png)
高中数学21种解题方法1.解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2.因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3.配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:4.换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元5.待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是: ①设②列③解 ④写6.复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型: (-----)(----)=0 两种情况为或型②配成平方型: (----)2+(----)2=0 两种情况为且型7.数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组 (2)求取值范围的思路列欲求范围字母的不等式或不等式组8.化简二次根式基本思路是:把√m化成完全平方式。
即:9.观察法10.代数式求值方法有:(1)直接代入法 (2)化简代入法 (3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
11.解含参方程方程中除过未知数以外,含有的其他字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论 (3)分类写出结论12.恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
高中数学21种解题方法与技巧全汇总,太实用!
![高中数学21种解题方法与技巧全汇总,太实用!](https://img.taocdn.com/s3/m/d05b0f42814d2b160b4e767f5acfa1c7aa0082c0.png)
高中数学21种解题方法与技巧全汇总,太实用!今天,李元昊老师为大家整理了一份高中数学老师都推荐的数学解题方法,这里面的21种方法涵盖了高中数学的方方面面,可以说是高中数学解题方法大综合,各位同学一定要记得收藏哦!解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组化简二次根式基本思路是:把√m化成完全平方式。
即:观察法代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
高中数学21种解题方法及例题
![高中数学21种解题方法及例题](https://img.taocdn.com/s3/m/bacf3c2ccd7931b765ce0508763231126edb77a2.png)
高中数学21种解题方法及例题在高中数学学习中,解题方法的灵活运用是学生们提高解题能力的关键。
掌握不同的解题思路和方法,能够使学生更加深入地理解数学知识,提高问题解决的效率。
本文将介绍21种高中数学解题方法,并通过例题进行详细说明,以帮助学生更好地应用这些方法。
【一、代数运算类解题方法】1. 一元一次方程求解法例题:已知方程2x + 3 = 7,求解x的值。
2. 一次函数的图像法例题:给定函数y = 3x + 2,绘制出其图像,并解析求解函数的相关特征。
3. 因式分解法例题:将方程x² - 4x + 4 = 0进行因式分解,并求解方程。
【二、几何推理类解题方法】4. 同位角性质运用法例题:已知两条平行线被一条截线所交,求解各个角的度数。
5. 对称性运用法例题:已知某几何图形具有对称性,利用对称性进行证明或求解问题。
6. 三角函数运用法例题:利用正弦定理求解三角形的未知边长或角度。
【三、数列与数数法】7. 等差数列求和法例题:已知等差数列的首项为2,公差为3,求解前10项的和。
8. 递推数列求通项法例题:已知数列的前两项为1和2,公差为3,求解数列的通项公式。
9. 迭代运算法例题:已知数列递推式为an+1 = 2an - 1, a1 = 1,求解前10项的数值。
【四、概率统计类解题方法】10. 样本空间与事件法例题:已知一枚骰子,求解投掷两次,求得的点数和为9的概率。
11. 求解总数法例题:已知有5个红球和3个蓝球,从中随机抽取2个球,求解两球不同色的概率。
12. 排列组合法例题:有8个人参加篮球比赛,其中3人为前锋,4人为后卫,求解一种排列和组合的方式。
【五、解析几何类解题方法】13. 直线与圆的位置关系法例题:已知直线方程为y = 2x + 1,圆的标准方程为(x-2)² + (y-3)² = 4,求解两者的位置关系。
14. 曲线与切线法例题:已知曲线方程为y = x²,求曲线上某一点的切线斜率。
高考数学21种解题方法与技巧汇总
![高考数学21种解题方法与技巧汇总](https://img.taocdn.com/s3/m/2bcc0f0f783e0912a3162a55.png)
高考数学21种解题方法与技巧汇总今天,特地为大家整理了一份高中数学老师都推荐的数学解题方法,这里面的21种方法涵盖了高中数学的方方面面,可以说是高中数学解题方法大综合,各位同学一定要记得收藏哦!解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组化简二次根式基本思路是:把√m化成完全平方式。
即:观察法代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学解题的21个典型方法与技巧
1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。
具体转化方法有:
①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。
①零点分段讨论法:适用于含一个字母的多个绝对值的情况。
①两边平方法:适用于两边非负的方程或不等式。
①几何意义法:适用于有明显几何意义的情况。
2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。
3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:
①()2
222a ab b a b ±+=± ①()2
222222a b c ab bc ca a b c +++++=++ ①()()()22222212
a b c ab bc ca a b b c c a ⎡⎤+++++=+++++⎣⎦ ①2
22222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ⎛⎫-⎛⎫⎛⎫++=++=+⋅⋅++-=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
4、解某些复杂的特型方程要用到换元法。
换元法解题的一般步骤是:设元→换元→解元→还元。
5、待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。
其步骤是:①设①列①解①写
6、复杂代数等式条件的使用技巧:右边化为零,左边变形。
①因式分解型:()()0---⋅---=,两种情况为或型。
①配成平方型:()()22
0---+---=,两种情况为且型。
7、数学中两个最伟大的解题思路:
①求值的思路−−−−−→方程思想与方法列欲求值字母的方程或方程组
①求取值范围的思路
−−−−−−→不等式思想与方法欲求范围字母的不等式或不等式组
8的基本思路:把m 化成完全平方式。
即
2
m a a
a
=
−−−=−−−−−−→
按的情况分类讨论结果
9
()2
a x y
±=±
其中220
xy x y a x y
=+=>>
且。
10、代数式求值的方法有:①直接代入法①化简代入法①适当变形法(和积代入法)。
注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用和积代入法求值。
11、方程中除未知数以外,含有的其他字母叫做参数,这种方程叫做含参方程。
解含参方程一般要用“分类讨论法”,其原则是:①按照类型求解①根据需要讨论①分类写出结论。
12、恒等成立的条件:
①0
ax b
+=对于任意x都成立⇔关于x的方程0
ax b
+=有无数个解⇔00
a b
==
且。
①20
ax bx c
++=对于任意x都成立⇔关于x的方程20
ax bx c
++=有无数个解⇔000
a b c
===
、、。
13、由一元二次不等式解集为R,得到下列恒不等成立条件:
①()
200
ax bx c a
++>≠对一切x恒成立⇔
a>
⎧
⎨
∆<
⎩
;
①()
200
ax bx c a
++<≠对一切x恒成立⇔
a<
⎧
⎨
∆<
⎩
;
①()
200
ax bx c a
++≥≠对一切x恒成立⇔
a>
⎧
⎨
∆≤
⎩
;
①()
200
ax bx c a
++≤≠对一切x恒成立⇔
a<
⎧
⎨
∆≤
⎩。
14、图像平移规律是研究复杂函数的重要方法。
平移规律是:
()()
00
00
h h h h
k k
y f x y f x h k
><
><
=−−−−−−−−−−→=++
左移个单位;右移个单位
上移k个单位;k下移个单位
15、图像法是讨论函数性质的重要方法---看图像、得性质。
x
y
x
x
y
⎧
⎪
⎪
⎪⎧
⎪⎨
⎨⎩
⎪
⎪
⎪
⎪
⎩
①定义域图像在轴上对应的部分
②值域图像在轴上对应的部分
从左向右看,连续上升的一段在轴上对应的区间是增区间
③单调性
从左向右看,连续下降的一段在轴上对应的区间是减区间
④最值图像最高点处有最大值,图像最低点处有最小值
⑤奇偶性图像关于轴对称是偶函数;图像关于原点对称是奇函数
⑥周期性图像每隔定长重复出现是周期函数
16、函数、方程、不等式间的重要关系:
方程的根⇔函数图像于x轴交点横坐标⇔不等式解集端点
17、一元二次不等式的解法:一元二次不等式可以用因式分解法求解。
简便的实用解法是根据“三个二次”间的关系,利用二次函数图像去解。
具体步骤如下:
二次系数化为正→判别且求根→画出示意图→解集横轴中
18、一元二次方程根的讨论:一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数图像去解。
一般思路:题意→二次函数图像→不等式组(a的符号、①的情况、对称轴的位置、区间端点函数值的符号)。
19、基本函数在区间上的值域:①定义域没有特别限制时---记忆法或结论法;①定义域有特别限制时---图像截断法,即画出图像→截出一段→得出结论
20、最值型应用题的解法:解决最值型应用题的基本思路是函数方程法,其解题步骤是:设变量→列函数→求最值→写结论
21、穿线法是解高次不等式和分式不等式的最好方法。
其一般思路是:首项系数化为正→求根标根→右上起穿→奇穿偶回。
注意:①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。
①分式不等式一般不能用两边都乘以公分母的方法来解,要通过移项、同分合并、因式分解的方法化为“商零式”,用穿线法解。