高分子材料助剂—抗氧剂

合集下载

塑料助剂:抗氧化剂

塑料助剂:抗氧化剂

⑴ 外观变化
如表面变暗,变色,变黏,变形,出现裂纹,脆化,发霉等。
⑵ 物理及化学性能的变化
如溶解热,熔融指数,玻璃化温度,流变性,耐热性,耐寒性,折射率,相对密度,羟基含 量的变化。
⑶ 机械性能的变化
如拉伸强度,伸长率,冲击强度,疲劳强度,硬度等大大下降。
⑷ 电性能的变化
如绝缘电阻,介电常数,击穿电压也发生不利的变化。
二、抗氧剂分类及其反应机理
一、高分子材料的老化及影响因素
支化度是指聚合物分子链上分支的程度。
支化度越大,链结构的薄弱环节就越多,越容易降解。
1-含支链型聚乙烯;
2-线型聚乙烯;
图2、含支链型聚乙烯和线型聚乙烯随时间的吸氧量
含支链的聚乙烯比结晶的聚乙烯更易降解。
一、高分子材料的老化及影响因素
LDPE: HDPE: LLDPE: 1000个碳原子上约有8~40个长的支链 低密度聚乙烯主链每
一、高分子材料的老化及影响因素
4、水和潮湿的影响
水渗入聚合物中使其中某些水溶性物质、增塑剂和含水基团的 物质被溶解、抽提或吸收,从而逐步改变了聚合物材料的组成和比例, 加速了老化。
酰胺基团、酯基、缩醛基等在水的作用下,会发生水解反应。
水的渗入有时是可逆的。例如,尼龙吸水后拉伸强度下降,延 伸率提高。但将其烘干排出水后,拉伸强度又可以恢复。
二、聚合物降解的影响因素 (一)内因 1、聚合物的组成及其链结构
聚合物的组成不同,化学键的强度不同。结合能低 的键容易在外因作用下断裂。
H C H H C H H C H H C H H C H F C F F C F F C F F C F F C F
聚乙烯
聚四氟乙烯

C-F键的键能为5.0×102kJ/mol;C-H键的键能为4.1×102kJ/mol。

抗氧剂

抗氧剂

酚[注]
OH
多酚
大类
小类
CH3 CH3 S
代表性品种
(CH3)3C OH C(CH3)3 HO (CH3)3C S C(CH3)3 OH C(CH3)3

硫代双 酚
HO (CH3)3C
(300)
(2246-S)
N
CHCH2CHCH2 OH
N
CH
CHCHCH3 OH
醛胺
(防老剂AP) (防老剂AH)
表观现象: (1) 外观变化:主要表现为褪色、泛黄、失重、透明性 下降、表面开裂、粉化等; (2) 性能变化:主要表现为拉伸强度、伸长率、冲击强 度等机械性能下降。
(3)内在变化:包括高分子链断裂、交联、化学结构变化
以及侧链变化等。
不同的聚合物热氧降解时发生的内在变化不同。例如,
聚丙烯和天然橡胶主要发生主链断裂,丁苯橡胶和丁腈橡
CH2CH2COOC18H37 (DSTDP)
NH C C NH
O CH N NH C 2
பைடு நூலகம்螯合剂
O O
(DABH)
(Eastman Inhibitor OABH)
四、抗氧剂的选用原则
• (1) 变色及污染
• (2)挥发性 • (3)溶解性 • (4)稳定性 • (5)抗氧剂的协同与对抗
三类抗氧剂的主要功能为: 链终止型抗氧剂——捕获或清楚聚合物自动氧化产生的自由基; 氢过氧化物分解剂型抗氧剂——促使聚合物中的氢过氧化物发生非自由 基型分解; 金属离子钝化剂型抗氧剂——与有害金属离子形成稳定螯合物,从而钝 化其对聚合物自动氧化过程的催化作用的抗氧剂。
(二)、按化学结构分类
1、受阻酚类抗氧剂
胶主要发生交联,而聚醋酸乙烯酯则发生侧链断裂。

高分子材料常用抗氧剂

高分子材料常用抗氧剂

抗氧剂1010化学名称:四[β-(3,5-二叔丁基4-羟基苯基)丙酸]季戊四醇酯英文名称:Pentaerythritol-tetra-[β-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate]分子量:1178质量标准:性能:本品为白色粉末,无嗅无味。

熔点110℃—125℃,性质稳定,易溶于苯,丙酮和酯等溶剂,不溶于水,微溶于乙醇。

本品无污染,耐热和耐水抽出性能好。

与抗氧剂ETHAPHOS368等并用能发挥协同效应,提高抗氧化效果。

用途:本品是一种多元受阻酚抗氧剂,与大多数聚合物相溶性好,是PP树脂优良的抗氧剂,也可用于PE,PS,ABS树脂,聚氨酯,PBT树脂,PVC,聚酯,聚甲醛,聚酰胺以及各种合成橡胶等高分子材料中,也用来防止油脂和涂料的热氧老化。

毒性:本品毒性甚微,白鼠半致死量LD50≥mg(雄性小白鼠口服)贮存: 本品化学性状稳定,无特殊贮存要求,应防潮,隔热.包装:纸板箱内衬塑料袋,每箱净重25 KG.抗氧剂168化学名称:三(2,4-二叔丁基苯基)亚磷酸酯英文名称:Tris-(2,4-di-tert-butyl-pheny)-phosphite分子量:646 分子式:C42H43O3P质量标准:性能:外观为白色结晶粉末,熔点182℃-186.5℃,闪点257℃,易溶于甲苯,二氯甲烷等有机溶剂,微溶于酯类,不溶于水。

用途:本品是一种高性能固体有机亚磷酸酯抗氧剂,对聚合物的色泽有良好的保护作用,优于其它亚磷酸酯,一般不单独使用,经常与抗氧剂BTHANOX310等酚类主抗氧剂复合使用,能提高聚合物加工过程的热稳定性,本品与酚类抗氧剂复配后广泛用于PE,PP ,PS,聚酰胺,聚碳酸酯,ABS等高分子材料。

贮存:本品耐水解较差,应注意防潮,防热。

包装:纸板桶(箱)内衬塑料袋,每桶(箱)净重25KG。

最佳添加量:一般用量为0.1%-0.3%保质期:24个月。

助剂化学及工艺学-3.抗氧剂

助剂化学及工艺学-3.抗氧剂
如:
→聚丙烯比聚乙烯容易氧化,而含有不饱和键的高分子材料, 如天然橡胶就更容易氧化。
2020/3/1
12
助剂化学及工艺学
3.2 高分子材料的氧化降解与抗氧剂的作用机理
2.抗氧剂的作用机理
根据聚合物的氧化降解机理,要想提高抗氧化能力. 聚合物抗氧剂的作用原理.
防止游离基(自由基)的产生. 阻止游离基(自由基)链的传递与增长
对苯二胺类抗氧剂可分为二烷基对苯二胺、二芳基对苯二胺、 芳基烷基对苯二胺三种类型。
2020/3/1
23
助剂化学及工艺学
3.3 各种抗氧剂及发展动态
防老剂H(N-N’-二苯基对苯二胺),一种防护天然及合成橡胶制 品、乳胶制品热氧老化的防老剂,对臭氧及铜、锰等有害金属的老 化亦有防护作用,但喷霜性强,所以在使用时用量要加以限制。防 老剂H是由对苯二酚与苯胺在磷酸三乙酯的催化作用下缩合而成的。
2020/3/1
8
助剂化学及工艺学
3.2 高分子材料的氧化降解与抗氧剂的作用机理
链增长
在引发阶段所生成的高分子烷基自由基(R·)能迅速与空气中 的氧结合,产生高分子过氧自由基(R-O-O·),该过氧自由基能 夺取聚合物高分子中的氢而产生新的高分子烷基自由基(R’·) 和氢过氧化物。氢过氧化物又进一步产生新的自由基,该新自 由基又进一步与聚合物反应而造成了链的增长。
防老剂RD为2,2,4-三甲基-1,2-二氢化喹啉的低分子量的树脂状 产品; 防老剂AW为6-乙氧基-2,2,4-三甲基-1,2-二氢化喹啉; 防老剂124是丙酮与苯胺的高分子量缩合物; 防老剂BLE是丙酮与二苯胺的高温缩合物,其合成方法如下:
3.3 各种抗氧剂及发展动态
胺类抗氧剂发展动态 有关胺类防老剂的研究主要是针对其合成工艺的改进或开发 新的合成工艺。其中要以加氢还原烃化法在技术上最为先进 合理。

第3章.抗氧剂

第3章.抗氧剂
36
③电子给予体 ➢ 这种情况较少。最常见的是叔胺抗氧剂。作为主抗氧剂,
(1)反应型抗氧剂
(2)高分子量化 持久性、高效性是衡量稳定剂综合性能的两个方面,分 子量的提高有助于降低其在制品中的挥发、抽出和迁移 损失,同时减少制品起雾、发汗等现象。但并非分子量 越大越好,因氧化主要发生在制品表面,当表面抗氧剂 消耗殆尽后,制品内部的抗氧剂能否及时迁移到表面成 为其发挥效能的关键,所以抗氧剂的相对分子质量通常 在1500以下。在提高稳定剂分子量的同时,还应提高有 效官能团的含量,即高分子量。
➢ 主要用来防止热老化的,叫做热稳定剂; ➢ 主要用来防止光老化的叫做光稳定剂。
8
3.1.2 抗氧剂的含义及性能要求
(1)抗氧剂的含义 许多聚合物在隔绝氧的情况下,即使加热到较高温度,
也是比较稳定的。但在大气中,由于氧的存在,即使 在较低的温度下也会发生降解。 ➢ 聚合物受到空气中氧气的作用而产生的氧化反应称为 氧化。 ➢ 凡能抑制或减缓聚合物氧化的措施称为抗氧化。 ➢ 为完成抗氧化加入的物质称抗氧剂。
32
➢ 此种类型的抗氧剂分子中必须具有活泼的氢原子,这是因 为它们必须与聚合物分子 RH 竞争,在争夺与自由基如 ROO• 的反应中占优势,如下所示: ROO•+RH(聚合物) → ROOH 十R• ROO•+AH(抗氧剂) → ROOH + A•(稳定自由基)
➢ 只有 AH 中的 H 比 RH 中的 H 活泼,才能使上述第一个 反应不进行而阻止氧化降解的自由基链的增长,达到抗热 氧老化的目的。
12
➢ 我国抗氧剂的生产始于1952 年,首先是防老剂甲(N-苯 基-1-萘胺)和 防老剂丁 ( N-苯基-2-萘胺)投入工业生产。改革开放以来, 我国抗氧剂行业格局发生了巨大变化,无论是品种、能力 还是产品质量均有了较大的进步,生产技术趋于成熟,生 产装备亦成规模和系列。

高分子材料助剂

高分子材料助剂

7类交联体系
硫磺/硫化促进剂体系 有机过氧化物 空气(氧) 含官能团的有机化合物 有机金属盐与有机金属化合物 金属氧化物 硅烷化合物
Ⅰ、硫磺/硫化促进剂体系
▪ 硫磺是橡胶硫化(交联)最主要的交联剂。 ▪ 在橡胶硫化时,可以加快硫化速度、缩短硫化时间、降低
硫化温度、减少硫化剂用量以及改善硫化胶的物理机械性 能的助剂称为硫化促进剂,简称硫化剂。早期使用的硫化 促进剂为无机化合物(如氧化锌、氧化镁等),但因其效能 较低,已改为活性剂使用。目前使用的硫化促进剂基本上 采用有机化合物。 ▪ 硫化促进剂种类:1)二硫代氨基甲酸盐
2)耐久性
包括耐热着色性、耐热老化性、耐光、耐寒、耐酸、耐碱、耐洗涤性耐迁移 性、耐抽出性。
3)加工性
包括加工操作性、干燥性、润滑性、交联性、塑性流动性、长期反复操作性.
4)安全性
包括卫生性、无臭性、无味性、不燃性、再生利用性、降解性。
5)经济性等
塑化效率的定义
▪ 可以使高分子材料达到某一柔软程度时需要添加 的增塑剂的量来衡量,所需增塑剂的量越少,其 增塑效率越高。
➢加工用助剂 加工助剂是指材料在加工过程中所加的添加剂。
(3)按作用功能分类
二.助剂的选择中应注意的问题
1.助剂与制品的配伍性 固体助剂的析出俗称为“喷霜”,液体助剂的析出则称作 “渗出”或“出汗”。
2.助剂的耐久性 聚合物材料在使用条件下,仍可保持原来性能的能力叫耐久 性。保持耐久性就是防止助剂的损失。助剂的损失主要通过 三条途径:挥发、抽出和迁移。
▪ 常用的偶联剂:硅烷偶联剂和钛酸酯偶联剂。
▪ 硅烷偶联剂是由美国联合碳化物公司开发的,主要用于玻 璃纤维增强塑料。硅烷偶联剂9分子结构式一般为:Y— R—Si(OR)3,(式中Y一有机官能基.SiOR一硅烷氧基)。 硅烷氧基对无机物具有反应性,有机官能基对有机物具有 反应性或相容性。因此,当硅烷偶联剂介于无机和有机界 面之间,可形成有机基体—硅烷偶联剂—无机基体的结合 层。典型的硅烷偶联剂有WD—20(或A151)(乙烯基三乙 基硅烷)、A17l(乙烯基三甲氧基硅烷)、A172(乙烯基三 (β—甲氧乙氧基)硅烷”等。

抗氧剂

抗氧剂

抗氧剂在聚合物生命周期的每个阶段,即其生产、贮存、加工、使用过程中,都会因自身或外界因素而发生氧化作用,导致聚合物及其制品性能的下降或损失。

这也被称为高分子材料的老化。

添加抗氧剂是延缓材料老化的一种有效手段。

抗氧剂是一种能抑制和延缓聚合物材料氧化和降解的化学助剂。

其作用机理较复杂,主要作用为:(1)阻断降解链反应的进行,(2)分解氢过氧化物。

按此机理可分为链终止剂、过氧化物分解剂、金属钝化剂。

其中,链终止剂习惯上又被称为主抗氧剂,过氧化物分解剂被称为辅助抗氧剂。

按结构又可分为受阻酚类、胺类、亚磷酸酯类、硫酯类和其他类。

理想的抗氧剂应符合以下要求:(1)抗氧化降解效能高。

(2)与基础材料的相容性好。

(3)对制品的基本物理-机械性能无不良影响。

(4)热稳定性高,耐热性好。

(5)挥发性小,扩散迁移适度,耐溶剂抽提性好。

(6)不与其他助剂发生不良反应。

(7)无毒,对人体无刺激,无异味。

污染性小。

(8)价廉易得。

目前,新结构的受阻酚类抗氧剂的开发应用速度比较缓慢。

随着塑料加工条件越来越高,较高相对分子质量的抗氧剂逐渐受到重视,这样可尽量减少挥发物的数量。

抗氧效能高的非污染胺类化合物或受阻胺光稳定剂(HALS)也将随着其价格的下降,有可能成为经济有效的品种。

一.受阻酚类1化学名 2,6-二叔丁基对甲酚(抗氧剂264)英文名 2,6-di-tert-butyl-4-methylphenol化学文摘 CAS No.128-37-0结构式性质白色或淡黄色结晶粉末,遇光颜色变黄,并逐渐加深。

相对分子质量220.36。

挥发性较大。

相对密度1.048。

熔点68~70℃,沸点257~265℃。

闪点126.7℃。

蒸汽压0.27kPa(100℃)、4.0kPa(160℃)。

溶于芳烃、甲醇、乙醇、丙酮、四氯化碳、乙酸乙酯、汽油等,不溶于水或稀碱液。

无污染性。

用途本品是传统受阻酚类抗氧剂的一个重要品种。

因其生产简便,价格低廉,不污染制品,而应用广泛。

第三章 抗氧剂

第三章 抗氧剂

②羟胺缩合物
代表品种是丁醇羧醛-α-萘胺,主要用 于橡胶抗氧剂,其抗热抗氧性能良好, 喷霜现象较小,主要用于橡胶工业。但 其缺点是具有一定的毒性、污染性、变 色性以及自身易于被氧化。
三、含磷抗氧剂
塑料用含磷抗氧剂主要是亚磷酸酯类, 其作为氢过氧化物分解剂和自由基捕捉 剂在塑料中发挥抗氧作用。具有低毒、 不污染、挥发性低等优点,是主要的辅 助抗氧剂
合成反应式:
OH
OH
+ 2 CH2
CH3 苯酚铝 (CH3)3C C
C(CH3)3
CH3
(CH3)3C
OH C(CH3)3
+ CH2
CHC
O
(CH3)3C
碱性氧化剂
O CH3
OH C(CH3)3
CH2 CH2
O C O CH3
(CH3)3C
OH C(CH3)3 O
(CH3)3C
+ 甲醇钠
C H3(C H2)17OH
众所周知,高压聚乙烯在空气中即 使在室温下也有相当严重的老化。 但如果使之隔绝空气,要一直升温 到2900C以上才会出现分解。这一事 实说明聚合物的热老化实质上是一 种在能量作用下的热氧老化。
高分子化合物的氧化有三种形式
分子型氧化 链式氧化 聚合物热分解产物氧化
2.抗氧剂的基本作用原理
+ 2 H Cl
3 多酚类
主要有烷撑多酚及其衍生物和三嗪阻 碍酚类
①烷撑多酚及其衍生物的代表品种有 抗氧剂1010、抗氧剂CA等
抗氧剂1010为高分子量酚类抗氧剂, 具有优良的耐热氧化性能,挥发性小、无 污染、无毒。用作非污染性高温抗氧剂, 用于橡胶,塑料及合成纤维工业
合成反应式:

高分子助剂 第三章 稳定剂(抗氧剂)2

高分子助剂 第三章 稳定剂(抗氧剂)2

抗氧剂的近况与发展趋势 酚类抗氧剂
提高其抗氧效率 降低其毒性
含磷化合物
改善耐水性 提高耐热性
本节主要内容
• 抗氧剂的概念及其作用机理 • 主抗氧剂和辅抗氧剂的区别及主抗氧剂的 基本条件 • 胺类抗氧剂和酚类抗氧剂各有何优缺点 • 两种主抗氧剂和两种辅抗氧剂的搭配使用
作业
• 胺类抗氧剂和酚类抗氧剂各有何优缺点? 其代表分别是什么?请写出其结构式 • 主抗氧剂的三个基本条件 • 什么是抗氧剂1010?
抗氧剂各论
酚类抗氧剂
X
X
1.烷基单酚 烷基单酚
分子量较小; 分子量较小;
OH
(H 3C)3C
OH
CH 3
HO
R 挥发和抽出损失都比较大; 挥发和抽出损失都比较大;
X
(H 3C) 3C
抗老化能力弱。 抗老化能力弱。
2,6-二丁基四甲酚(BHT) 二丁基四甲酚( 二丁基四甲酚 )
烷基多酚
分子量增加, 分子量增加,挥发性降低 阻碍酚在整个分子中所占的比例, 阻碍酚在整个分子中所占的比例,提高了其抗氧效率
26二丁基四甲酚bhtohoh分子量增加挥发性降低阻碍酚在整个分子中所占的比例提高了其抗氧效率抗氧剂2246是典型的品种即22亚甲基双4甲基6丁基苯酚熔点很高在130以上挥发性大大降低用于合成或天然橡胶的制品能防护热氧化且能钝化变价金属离子
高分子助剂 第三章 稳定化助剂
第一节 抗氧剂
1、抗氧剂概述 、
H
R1 N H
N R2
硫代酯与亚磷酸酯
R O R O
硫代酯多可与酚类抗氧剂 并用,产生协同效应。 并用,产生协同效应。且 毒性小,气味小, 毒性小,气味小,可用于 包装薄膜。 包装薄膜。但由于分子量 3 较小,因而挥发性较大。 较小,因而挥发性较大。

抗氧剂1076 的合成工艺优化

抗氧剂1076 的合成工艺优化

摘要:为探究抗氧剂1076的最佳合成工艺,在有机金属催化剂催化条件下,采用3-(3,5-二叔丁基-4-羟基苯基)丙酸甲酯(简称3,5-甲酯)与十八碳醇进行酯交换反应,制备3-(3,5-二叔丁基-4-羟基苯基)丙酸十八碳醇酯(抗氧剂1076),分析溶剂和催化剂种类、反应时间、物料配比、反应温度等因素对反应收率的影响;采用高效液相色谱仪、傅里叶变换红外光谱仪、核磁共振仪等设备对产品结构进行表征,并使用热失重法测试其热稳定性,采用差式扫描量热法测试其氧化安定性。

结果表明:产品收率随着反应温度的提高和反应时间的延长先增大后减小,随着物料摩尔比的增加而增大;最佳工艺条件为采用甲基环乙烷作为溶剂,异辛酸锌作为催化剂,3,5-甲酯与十八碳醇的摩尔比为1.03颐1,反应时间为3.5h ,反应温度为130益,催化剂质量分数为反应物的2.5%时,产品收率提高到97%;合成产品分子结构与理论分子结构一致,且产品纯度较高(97.75%),有很高的热稳定性和抗氧化活性,热分解温度达317益,起始氧化温度达361.4益。

关键词:抗氧剂1076;有机金属催化剂;十八碳醇;酯交换;氧化安定性;工艺优化中图分类号:TQ314.249文献标志码:A文章编号:员远苑员原园圆源载(圆园19)园2原园园50原07天津工业大学学报允韵哉砸晕粤蕴韵云栽陨粤晕允陨晕孕韵蕴再栽耘悦匀晕陨悦哉晕陨灾耘砸杂陨栽再第38卷第2期圆园19年4月Vol.38No.2April 2019DOI :10.3969/j.issn.1671-024x.2019.02.009抗氧剂1076的合成工艺优化徐进云1,2,王迪迪1,2,杨俊玲1(1.天津工业大学化学与化工学院,天津300387;2.天津市纺织纤维界面处理技术工程中心,天津300270)Synthesis process optimization of antioxidant 1076XU Jin-yun 1,2,WANG Di-di 1,2,YANG Jun-ling 1(1.School of Environmental and Chemical Engineering ,Tianjin Polytechnic University ,Tianjin 300387,China ;2.Tianjin Textile Fiber Interface Technology Engineering Center ,Tianjin 300270,China )Abstract :In order to explore the best synthetic process of antioxidant 1076袁3-渊3袁5-ditert butyl-4-hydroxyphenyl冤oc鄄tadecanol propionate 渊antioxidant 1076冤is prepared through transesterification reaction of渊3袁5-ditert butyl-4-hydroxyphenyl冤methyl propionate 渊abbreviated as 3袁5-methyl ester冤with octadecanol catalyzed by organome-tallic catalyst.The effects of solvents and catalysts袁reaction time袁material ratio and reaction temperature on the reaction yield are analyzed.The product is characterized by Fourier transform infrared spectrometer袁NMR and HPLC袁and its thermal stability is tested by the thermogravimetry differential袁and the oxidation stability is mea鄄sured by the differential scanning calorimetry.The results show that the product yield first increases and then decreases with the increase of reaction temperature and reaction time袁and increases with the increase of materi鄄al molar ratio曰the optimum technological conditions is using methyl cyclohexane as solvent and zinc isooc鄄tanoate as catalyst袁the mole ratio of 3袁5-methyl ester to octadecanol is 1.03颐1袁the reaction time is 3.5h袁thereaction temperature is 130益袁the mass fraction of catalyst is 2.5%of the reactants袁and the yield is increased to 97%.The molecular structure of synthetic product is consistent with the theoretical molecular structure.Theproduct has high purity渊97.75%冤袁high thermal stability and oxidation stability袁the decomposition temperatureis 317益and the initial oxidation temperature is 361.4益.Key words :antioxidants 1076;organometallic catalyst ;octadecanol ;transesterification ;oxidation stability ;process op原timization收稿日期:2018-10-10基金项目:中石化资助项目(217010-3)通信作者:徐进云(1973—),男,博士,副研究员,主要研究方向为表面活性剂的合成及性能研究。

第三章 抗氧剂

第三章 抗氧剂

材料添加剂化学
3.1.1 聚合物的热氧降解机理
3.1.1.2 链的传递与增长
材料添加剂化学
3.1.1 聚合物的热氧降解机理
3.1.1.3 链的终止
材料添加剂化学
3.1.2 抗氧剂的作用机理
抗氧剂的作用机理如下所示:
材料添加剂化学
3.1.2 抗氧剂的作用机理
3.1.2.1 过氧自由基作用机理 能终止氧化过程中自由基链的传递与增长的抗氧剂称为 链终止型抗氧剂。此类抗氧剂又称为主抗氧剂,以AH表示, 其发挥稳定化作用的反应如下。
材料添加剂化学
3.5.2 均协同作用
不同碱性HALS的复合效果如表:
材料添加剂化学
3.5.3 非均协同作用
3.5.3.1 抗氧剂间复合的协同作用 抗氧剂的复合效果见表:
材料添加剂化学
3.5.3 非均协同作用
3.5.3.2 光稳定剂与其他稳定剂的协同作用 光稳定剂按作用机理分为光屏蔽剂、紫外线吸收剂、猝灭 剂、自由基捕获剂。 (1)HALS与酚类抗氧剂的相互作用 (2)HALS与磷类抗氧剂的相互作用 (3)HALS与硫脂类抗氧剂的反协同作用 (4)HALS与紫外线吸收剂(UVA)的相互作用
抗氧剂作为一类重要的高分子材料助剂,应用领域广,品 种繁多,不同的材料用途各异,除了对抗氧剂的抗氧化作用的 要求外,常常还对其某些特性有不同的要求。在实际配方中, 价格可能是影响抗氧剂选用的主要因素,以下原则暂不考虑此 因素。 ① ② ③ ④ ⑤ 耐变色性 挥发性 溶解性 稳定性 抗氧剂的物理状态
材料添加剂化学
材料添加剂化学
3.2.1 胺类抗氧剂
3.2.1.2 对苯二胺类抗氧剂 防老剂H学名N, 二苯基对苯二胺 防老剂H是由对苯二酚与苯胺在磷酸三乙酯的催化作用 下缩合而成

抗氧剂

抗氧剂

抗氧剂产品简介抗氧剂可以阻止易氧化的物质发生氧化反应。

抗氧剂可以提高涂料的寿命,使涂料尽可能保持其初始的高性能。

涂料、胶黏剂、密封剂或油墨中的组分在生产、储存、运输、运用以及最终使用过程中都有可能被氧化而降解。

产品特点①应具有高的抗氧化能力:②与树脂的相容性好,不析出;③加工性能良好.在高聚物的加工温度下不挥发、不分解;④耐抽出性好,不溶于水和油中;⑤本身颜色最好为无色或浅色.以不污染制品;⑥无毒或低毒;⑦价格低廉。

产品分类1、芳香胺类抗氧剂芳香胺类抗氧剂,又称为橡胶防老剂,是生产数量最多的一类,这类抗氧剂价格低廉,抗氧效果显著,但由于使制品变色,限制了它们在浅色和白色制品方面的应用,主要用在塑料、合成纤维、乳胶、石油制品、食品、药物和化妆品中。

重要的芳香胺类抗氧剂有:二苯胺、对苯二胺和二氢喹啉等化合物及其衍生物或聚合物,可用在天然橡胶、丁苯橡胶、氯丁橡胶和异戊橡胶等制品中。

2、受阻酚类抗氧剂受阻酚类抗氧剂是一些具有空间阻碍的酚类化合物,它们的抗热氧化效果显著,不会污染制品,发展很快。

这类抗氧剂的品种很多,重要的产品有:2,6-三级丁基-4-甲基苯酚、双(3,5-三级丁基-4-羟基苯基)硫醚、四〔β-(3,5-三级丁基-4-羟基苯基)丙酸〕季戊四醇酯等。

这类抗氧剂主要用在塑料、合成纤维、乳胶、石油制品、食品、药物和化妆品中。

(右图为受阻酚类抗氧剂的结构)3、辅助抗氧剂硫代二丙酸双酯是一类辅助抗氧剂,常与受阻酚类抗氧剂并用,效果显著,如:硫代二丙酸双酯,常与受阻酚类抗氧剂并用,效果显著,主要产品有:双十二碳醇酯、双十四碳醇酯和双十八碳醇酯。

亚磷酸酯也是辅助抗氧剂,主要产品有:三辛酯、三癸酯、三(十二碳醇)酯和三(十六碳醇)酯等。

产品作用机理1、使用断链式抗氧剂的聚合物的稳定性对抗氧剂干预链反应活性种反映机理,即段链式施主机理(CB-D)和段链式受体机理(CB-A)CB-D机理的典型是过氧化只有基团与抑制剂如酚类,其次是芳香胺类之间的反应。

抗氧剂的作用机理是什么?

抗氧剂的作用机理是什么?

抗氧剂的作用机理是什么?抗氧剂,又称防老剂,是一种对高聚物受氧化并出现老化现象能起到延缓作用的化学物质。

当其在聚合物体系中仅少量存在时,就可延缓或抑制聚合物氧化过程的进行,从而阻止聚合物的老化并延长其使用寿命,因而被广泛应用于橡胶、塑料、化纤高分子材料及是有化工和食品加工中。

抗氧剂的作用机理1、自由基抑制剂自由基抑制剂又称主抗氧剂,包括胺类和酚类两大系列。

胺类抗氧化剂几乎是芳香族仲胺的衍生物,主要有二芳基仲胺、对苯二胺和酮胺、醛胺等类。

它们大多具有较好的抗氧效能,但污染性较重,主要用于橡胶工业。

酚类抗氧剂主要是受阻酚类,抗氧效能一般较胺类抗氧剂弱,但没有污染性,主要用于塑料和浅色橡胶制品。

2、氢过氧化物分解剂氢过氧化物分解剂又称辅助抗氧剂,主要是硫代二丙酸酯等硫代酯和亚磷酸酯两大类。

它们主要用于聚烯烃中,与酚类抗氧剂并用,以产生协同作用。

3、重金属离子钝化剂聚合物与重金属接触受重金属离子的催化作用会产生降解反应,如电缆料的芯线是铜,常引起铜害,因而需添加铜离子钝化剂。

酰肼类、肟类、醛胺缩合物等都是重金属离子钝化剂。

抗氧剂的常见类型抗氧剂是配合到聚合物树脂中,旨在抑制或延缓氧化降解过程的稳定化助剂。

目前常用抗氧剂如下。

1、抗氧剂1010抗氧剂1010是受阻酚类抗氧剂的重要品种,化学名称叫四[3-3’,5’-二叔丁基-4’-羟基苯基]丙酸丁季戊四醇酯,它挥发性小,与树脂相容性好,可适用于聚烯烃、ABS、聚酰胺等,它对聚丙烯等易老化树脂的稳定效果尤佳。

2、抗氧剂DLTDP抗氧剂DLTDP,化学名称叫硫代二丙酸二月桂酯,DLTDP为辅助抗氧剂,并且常和受阻酚主抗氧剂配合使用。

但它在稳定化中释放出酸性组分,与受阻胺光稳定剂并用时产生对抗效应,降低光稳定效果,但与紫外线吸收剂有协同稳定性。

3、抗氧剂DSTDP抗氧剂DSTDP,化学名称叫硫代二丙酸二硬脂醇酯,为辅助抗氧剂,较DLTDP效能高,但树脂相容性差,不宜与受阻胺光稳定剂并用。

抗氧剂之二苯胺

抗氧剂之二苯胺

抗氧剂之二苯胺摘要:高分子材料最致命的缺点就是老化性,也就是在材料的合成、加工、贮存和使用的各个阶段都可能发生变质,即材料的性能变坏。

老化的化学本质是:高分子材料都具有一定的分子结构,其中某些部位具有一些弱键,这些弱键自然就称为化学反应的突破口,而老化也就是一种化学反应,通常以弱键发生化学反应(例如氧化反应)为起点并进行一系列化学反应。

结果是高分子材料的分子结构发生改变及相对分子质量下降(即降解)或产生交联,从而材料性能变坏,以至无法使用。

而抗氧剂就是能抑制或延缓聚合物分子链断裂产生自由基的物质,是阻止高分子材料氧化老化的助剂。

二苯胺就是抗氧剂中的一种。

二苯胺结构式一基本信息:1 名称:中文别名:二苯胺英文别名:Diphenylamine,N-PhenylanilineN-Phenylbenzeneamine2 化学式:C12H11N3 相对分子质量:169.234 性状:白色至微红色结晶。

有花香气味。

见光变色。

易溶于乙醚、苯、冰乙酸和二硫化碳,1g溶于2.2ml乙醇、4.5ml丙酮,不溶于水。

能与强酸生成盐。

相对密度1.16。

熔点54~55℃。

沸点302℃。

闪点153℃。

低毒,半数致死量(大鼠,经口)3000mg/kg。

有刺激性。

5 储存:密封阴凉避光保存。

6 用途:硝酸盐、氯酸盐和其他氧化性物质的检定。

铱的催化测定。

硝酸盐的光度测定。

氧化还原指示剂。

单倍体育种培养基。

制造染料。

是硝化纤维素、炸药、火棉的稳定剂。

7 成分/组成信息:有害物成分含量 CAS No.二苯胺 122-39-48 危险性概述:健康危害:未见职业中毒的报道。

本品制造过程中可含有4-氨基联苯,应注意后者的致癌性。

燃爆危险:本品可燃,具刺激性。

9 急救措施:皮肤接触:脱去污染的衣着,用流动清水冲洗。

眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。

就医。

吸入:脱离现场至空气新鲜处。

就医。

食入:饮足量温水,催吐。

就医。

10 消防措施:危险特性:遇明火、高热可燃。

抗氧剂

抗氧剂

4.4.3 抗氧剂的选用原则
2.选择抗氧剂的考虑因素 除了抗氧剂本身的性质外,还要考虑外界环境的影 响因素。 首先,高聚物的结构决定了它对大气中氧的敏感性。 分子量分布广和带支链结构的聚合物易被氧化。 其次,温度升高会导致氧化加速,如重载汽车轮胎 在运行中温度高、疲劳应力引起机械破坏(裂纹)而加 快了老化。 此外,臭氧尽管浓度低,单影响较大,能攻击高聚 物的双键,生成稳定的过氧化物,使材料性能降低,需 要抗臭氧剂或进行表面物理防护处理。
(1)链终止型抗氧剂
1)自由基捕获体 自由基捕获体能与自由基反应,当与R•反应而终止动 力学链。 这些自由基捕获体要么是使之不再进行引发反应的物 质,如炭黑、醌、某些多核芳烃和一些稳定的自由基等 要么或是由于它的加入而使自动氧化反应稳定化的物 质,如一些稳定的自由基。 某些分类化合物作抗氧剂时能产生ArO•自由基,具 有捕获RO2•等自由基的作用。
4.4.1 概述
2.抗氧剂的分类和基本性能要求 抗氧剂应用广、品种多,对合成材料来说: 按功能不同可以分为链终止型抗氧剂和预防型抗氧 剂两类, 按分子量差别分为低分子量和高分子量抗氧剂两类, 按化学结构分为胺类、酚类、含硫、含磷化合物、 有机金属盐类等, 按用途分为塑料、橡胶、石油、食品抗氧剂等。
4.4.6 抗氧剂生产工艺实例
2.连续法生产工艺流程 拜耳连续化工艺特点是工艺简便、收率高、质量好并 减少了三废。
4.4 抗氧剂
4.4.1 概述 4.4.2 氧化和抗氧的基本原理 4.4.3 抗氧剂的选用原则 4.4.4 各类抗氧剂简介 4.4.5 抗氧剂的发展动向 4.4.6 抗氧剂生产工艺实例
4.4 抗氧剂 抗氧剂:是一类化学物质,在塑料中添加少 量抗氧剂,就能抑制或延缓聚合物在正常或 较高温度下的氧化。

4.4抗氧剂

4.4抗氧剂

• 最普遍的制备方法是还原烃化法
NH
+
NH
O H3C CH3
H2/cat/150 ℃/6MPa
NH CH3 CH3
• (2)连续发生产工艺流程 • 拜耳公司连续化生产防老剂4010NA的工艺 流程特点是工艺简便、收率高、质量好, 并减少了三废数量。其生产工艺流程见图 4-6
• 酮铬催化剂,对氨基二苯胺、丙酮按比例在配 制槽中配制以后,被高压泵连续压往反应器1、 2、3。三个反应器温度控制在200℃左右,压 力为15.2-20.3MPa。新鲜和循环的氢气从反应 器1的底部进入。物料从反应器3出来,经冷却 后于分离器8中分出氢气,然后去后处理。过 量氢气用泵循环。丙酮用量可为1.5-4mol/每 千克分子产品,过量丙酮循环使用。产品以蒸 馏或结晶法提纯。
• (2)氢化氟氯烃发泡剂 氢化氟氯烃 (HCFC)类发泡剂,分子中含有氢,化学 特性不稳定,比较容易分解,因此其 ODP要远远小于CFC-11,所以HCFC被 当作CFC发泡剂第一代替代产品,在过 渡时期内暂时使用,应尽可能在短时间 内被无氯化合物所取代。目前欧盟、美 国、日本禁止使用HCFC类发泡剂的时 间为2004年底,我国截止使用年限为 2030年。
• (1)ADC发泡剂。我国是全球最大的ADC生产 国与供应国,年生产能力达到15万吨,约占全 球总生产的50%,1995~2003年生产能力年 均增长率约为18%,呈现了快速的发展势头。 • 尽管我国ADC生产能力和工艺技术有较大进步, 但是仍普遍采用尿素法合成水合肼为原料,资 源浪费和环境污染严重;而国外主要采用酮氮 法或过氧化氢法原料生产ADC发泡剂。
4.6.2化学发泡剂
• 作为化学发泡剂使用的物质种类很多,按化学结构 分主要有N-亚硝化合物:如N,N-二亚硝基五次甲 基四胺(DPT)、N,N-二甲基-N,N-二亚对苯二甲 酰胺(NTA)等;偶氮化合物:如偶氮二甲酰胺 (ADC)、偶氮二异丁腈、偶氮二甲酸异丙酯、偶氮 二甲酸二乙酯、二偶氮氨基苯、偶氮二甲酸钡等; 酰肼类化合物:如4,4-二磺酰肼二苯醚(OBSH)、 对苯磺酰肼、3,3-二磺酰肼二苯砜、4,4-二苯二 磺酰肼、1,3-苯二磺酰肼、1,4-苯二磺酰肼等。 主要使用的品种有发泡剂ADC、DPT、DBSH等, 其中ADC在国外占化学发泡剂的90%,在我国占 95%以上。

高分子材料助剂介绍

高分子材料助剂介绍

聚合物的添加剂介绍1.介绍现代生活的方方面面均会涉及高分子材料。

高分子材料是由单体分子经聚合而得的高分子量材料,其分子量普遍大于1万。

高分子材料在应用上很少单独使用,几乎所有的高分子材料或多或少都会添加一定的其他物质,以满足不同的使用要求。

实际加工制造以及终端使用过程中,对高分子材料各方面特性有着多元化的要求,如机械结构件对材料的机械性有较高要求,电气零部件要求有良好的绝缘鞋等,因此,单一的添加剂往往难以满足。

根据添加剂实现的功能差异,大致可分为稳定剂、增塑剂、润滑剂、交联剂和固化剂、填充剂、抗冲击剂、抗静电剂等。

实际生产中,根据终端需求,添加多种添加剂,实现高分子材料的复配,满足制品需求。

2.稳定剂高分子材料制品长期暴露于自然或人工环境中,在光、热、氧、水、微生物等缓慢作用下,使高分子的表面结构甚至内部结构发生不可逆的质变或破坏,称之为材料的老化。

材料的老化往往意味着性能的恶化,可分为外观的变化以及物理化学性能的变化。

外观变化有表面变黄、光泽度和透明度的降低、裂纹的产生等;物理化学变化有机械强度和绝缘性能的下降、脆性增加、溶解度等的改变等。

材料的老化是其耐候性或耐久性的直接体现,影响因素诸多,可分为内因和外因。

内因方面,主要取决于高分子链的化学结构和聚集态结构。

化学结构主要取决于化学键的强度,键能越低,键断裂所需能量越小,材料也越容易发生老化。

聚集态结构主要指结晶度。

通常,高分子材料可分为结晶区和无定型区,结晶区密度大于无定型区,氧、水等物质更难渗透进内部结构,因此相应的老化速率也较慢。

外因方面则包括物理因素(光、热、应力、电场、射线等)、化学因素(氧、臭氧、重金属离子、化学介质等)与生物因素(微生物与小动物)。

诸多外因中,以光、氧、热三个因素最为重要。

内因为高分子材料的固有特性,难以通过添加剂等改变。

因此改善高分子材料的老化性能唯有从外因入手。

根据所针对的外部因素的不同,可将添加的稳定剂分为抗氧剂、光稳定剂和热稳定剂三类。

抗氧剂获奖课件

抗氧剂获奖课件
脆化﹑变硬﹑弹性下降。
聚合物旳热氧化循环
每经过一种循环初始烷基自由基变成三个,浓度越来越高,速度越来越快。
抗氧剂旳作用机理
抗氧剂要么设法预防游离基旳产生, 要么预防游离基链旳传递
按此将抗氧剂分为两类
链终止型抗氧剂 预防型抗氧剂。
链终止型抗氧剂
能终止氧化过程中自由基链旳传递与增长,此种
抗氧剂能与自由基 R•﹑RO2• 等结合,形成稳定旳游离 基或终止化合物中断裂而增长,又称主抗氧剂,以AH
还进行分解﹑交联、环合等多种类型旳反应。
H H2C C CH2
O.
R + H2C CH CH CH2
C. H CH2 CH2 CH2 CH CH CH2
O
H2C CH +
H2C
HH H2C C C CH2
R
.CH2 CH2
经过重排﹑分解而造成断裂,使分子量大幅下降造成机械性能下降。 因为无序旳交联形成无法控制旳网状构造,使分子量增长造成材料
NH2
O
+ 2 H3C C CH3
苯磺酸 155~165oC
HCl 95~98
CH3
N
结构不清
H
n
CH3
+ 2H2O N H
防老剂AW具有抗臭氧能力旳天然及合成橡胶制品旳防老剂
EtO
O
CH3 EtO
+ 2 H3C C CH3
155~165oC
NH2
N H
BLE
NH
O
280~290oC
+ H3C C CH3
抗氧剂及其应用
目录
1定义及分类 2 作用机理 3多种抗氧剂
高分子材料旳老化及影响原因
聚合物及其制品在制备、加工和应用过程中不可 防止地会发生构造旳变化,使强度和外观受损,直至 失去使用价值。这种现象称为高分子材料旳老化。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子材料助剂学年论文题目The Review of Antioxidant)抗氧剂综述汪朝武(20061000814)034061-21指导老师:马睿(中国地质大学(武汉)430074)摘要:简单介绍聚合物氧化机理,详细介绍抗氧剂的作用机理、分类、性能及其发展趋势。

关键词:抗氧剂;氧化;机理;性能;发展The Review of AntioxidantChaowu Wang(20061000814)034061-21Instructs teacher:Chunjie Yan(China University of Geosciences(Wuhan)430074)Abstract:Introduce oxidation mechanism of polymer simply.Introduce the role of mechanism,classification,performance and trends of antioxidant in detail.Key word:antioxidant;oxidation;mechanism;performance;development引言大多数工业有机材料无论是天然的还是合成的都易发生氧化反应。

如塑料、纤维、橡胶、粘合剂、燃料油、润滑油以及食品和饲料等都具有与氧反应的性质。

与氧反应后物质就会失去原有的属性。

高分子材料如果老化。

其表面会变粘、变色、脆化和龟裂,物性和机械性能同时也会发生改变,致使高分子材料失去使用价值。

燃料油氧化会产生沉淀,堵塞机器阀门或油管,致使发动机不能正常工作,酸性的氧化产物又会加快机器腐蚀速度,并使燃料油提前点火[1]。

人们为了设法抑制、阻止或延迟上述反应的发生,寻找出了一种间接的方法加入一些能延缓被保护物质氧化老化的化合物,即可达到保护原物质的目的,这类化合物即抗氧剂。

抗氧剂是一种纯化合物或是几种纯化合物的混合物。

它可以捕获活性游离基生成非活性的游离基,从而使链锁反应终止或者能够分解氧化过程中产生的聚合物氢过氧化物生成稳定的非活性产物,从而中断链锁反应[2]。

1聚合物氧化机理[3]许多聚合物在隔绝氧的情况下,即使加热到较高温度也是比较稳定的。

但在大气中,由于氧的存在,即使在较低的温度下,也会发生降解。

1.1高分子自动氧化反应机理塑料类高分子在聚合过程中,由于钦或铬系及其它主催化剂、助催化剂、添加剂等金属离子的残留、反应过程中金属杂质带入等等,在氧气环境下,受温度、光线等外部因素的影响,诱发并导致了高活性自由基的产生,在氧气环境下,迅速氧化成高活性的ROO·自由基,并以此为主要物种存在。

ROO·和碳链R一H反应的结果是又生成新的碳链自由基(R·),于是构成了一轮循环,结果是新的自由基不断生成,即构成链增长阶段。

链增长阶段产生的高活性的自由基(ROO·)和过氧化物(ROOH),经过一系列链转移反应,产生大量的高活性自由基(R·RO·等),整个反应构成了循环,见图。

尤其是在加工温度下,ROOH物种只有几十秒钟的寿命,主要是热分解反应,生成的RO·和·OH物种反应迅速增加聚合物中游离自由基总浓度,加速了降解反应。

在氧气环境下,循环一为主要的,一旦生成了过氧化物ROOH,则引发出循环二,所以循环二是次生的,二者同时存在。

链终止阶段,生成了ROOR、R一R等非活性分子,即产生了交联和降解。

1.2金属离子的催化作用塑料在生产、后加工及制成品等过程中常接触金属如铁件、电缆常见铜、颜料常见钻和锰等,其离子子奢、嵘十己十、厂此、已二十等对活性过氧化物具有较强的催化分解作用。

作用的结果是加速了链转移反应,加快整个氧化过程。

2抗氧剂的分类抗氧剂的品种繁多,分类方法也有多种。

按功能不同可将其分为链终止型抗氧剂和预防型抗氧剂,按化学结构则可分为酚类、胺类、含硫化合物、含磷化合物、有机金属盐类抗氧剂等一般按作用机理又可分为链终止型氢给予体、游离基捕获剂、电子给予体、过氧化物分解剂、金属离子钝化剂。

根据抗氧剂的毒性大小,可分为有毒性抗氧剂和无毒抗氧剂;根据抗氧剂的变色和着色性大小,可分为着色性抗氧剂(或称污染性抗氧剂)和非着色性抗氧剂(或称非污染性抗氧剂)。

按抗氧剂在聚合物中的存在方式,可分为添加型抗氧剂和反应型抗氧剂;按抗氧剂的分子量,可分为低分子量抗氧剂和高分子量抗氧剂,低分子抗氧剂就是通常所说的抗氧剂,高分子量抗氧剂有相对分子量为500~1000之间的复杂大分子化合物和由具有抗氧基团的单体聚合而成的齐聚物。

3聚合物抗氧稳定理论[4]20世纪90年代以来,随着理论研究的深入,一些传统的抗氧理论受到了挑战,刺激和带动了抗氧剂应用技术的进步。

归纳起来,聚合物抗氧稳定理论研究进展主要表现在几个方面。

3.1自由基的俘获和清除当一个化合物能和上述氧化反应中所产生的自由基反应,从而中断自由基链反应,就能防止有机物的氧化。

具有自由基俘获功能的抗氧剂有炭黑、某些亚硝基化合物(nitroso)和稳定自由基化合物,结构如下所示:地用作橡胶轮胎的抗氧剂和补强剂。

含2%炭黑的聚乙烯和30%碳黑的轮胎其户外使用寿命分别达20a~10a。

从2,2,6,6-四甲基哌啶衍生的稳定氮氧自由基化合物(N-O·),是有效的自由基清除剂。

最近研究表明,NO·氮氧稳定自由基仅能清除烷基自由基(R·),且在100℃以下才能有效地抑止热氧化,而100℃以上,它会促进高分子的热氧化,故包括氮氧稳定自由基在内的受阻胺光稳定剂,虽是最有效的光稳定剂,但不是最有效的抗氧剂。

但稳定自由基化合物已广泛地用作自由基聚合的阻聚剂和分子量调节剂。

3.2电子给予作用某些叔胺可按下式的给电子作用,破坏自由基自氧化的链反应,保护有机高分子材料免于氧化:有趣的是,含有叔胺的受阻胺GW-2608,GW-2650,具有极高的抗氧化效率,显然,这和上述化合物中含有叔胺的给电子作用有关:几个具有电子给予作用功能的抗氧剂如下:3.3质子给予作用受阻酚和芳胺是最有效的抗氧剂,其作用机理是通过质子给予作用而破坏自由基自氧化链反应实现的:最近,对受阻酚在防止高分子热氧化中所产生的一系列中间产物进行了详细的研究,结果表明,包括醌类在内的中间产物,对防止高分子的热氧化有重要意义。

3.4氢过氧化物的分解作用氢过氧化物的生成和积聚是有机高分子材料降解最关键的步骤,当一定浓度的氢过氧化物生成后,自由基枝化链的自氧化反应即快速推进。

氢过氧化物可按均解和杂解方式分解:ROOH——RO·+·OH(均解,自由基方式,E=42kcal/mol)ROOH——ROO-++H(杂解,离子方式,E=90kcal/mol)由于自由基均解活化能较低(E=42kcal/mol),故在室温下,高分子和有机物的氢过氧化物总是按自由基方式均解,从而引起自由基加速自氧化反应。

所谓氢过氧物的分解剂的抗氧剂就是一种使氢过氧化物按离子型机理分解的化合物,通过这种分解作用,从而防止了自由基枝化链自氧化反应。

某些含硫、亚磷酸酯的有机物是非常有效的氢过氧化物的分解剂。

研究表明,一个分子的含硫分解剂可分解20个氢过氧化物;而一个含亚磷酸酯分子可分解6个氢过氧化物,且在室温下有效。

3.5降低金属离子的活性作为有害杂质的金属离子总是存在于高分子和有机材料中,它们是在合成、加工、包装存放和使用中被引入上述材料中。

某些金属离子通过单电子氧化—还原反应,加速了氢过氧化物的自由基方式的分解,从而加速了材料的自氧化反应,特别是变价金属如Cu、Fe、Ni、Co、Ti、Cr等的存在更易促进材料的自氧化,因此,降低金属离子活性,常有效地用作防护高分子—有机材料氧化:其方法是把有害的金属离子络合物化,减少这些离子的催化氧化活性,使高分子—有机材料免于氧化,肟的有机物常用作铜离子的络合剂,可非常有效地防止电缆、电线(铜—高分子)的热氧化,其抗氧效率和受阻酚相当(结构如下)。

显然,高分子—有机材料的热氧化,可以用上述五个方法来有效地防止,许多新型的抗氧剂就是基于上述五种抗氧剂的作用机理而开发的。

4抗氧剂的应用性能[8]概括来说,抗氧剂及其用量和聚合物类型、加工条件、制品的应用条件以及抗氧剂本身的性能(抗氧效率、稳定性、挥发性、相容性、毒性等)相关。

4.1变色及污染性选择抗氧剂时应注意考虑到抗氧剂的变色和污染是否满足制品英语的要求。

例如酚类不污染性抗氧剂(物色或浅色)可用于无色或浅色的塑料、橡胶制品。

芳胺的产物一般有较强的变色性和污染性,故一般的胺类抗氧剂不适于浅色产品。

橡胶轮胎中因添加了炭黑,故可选用效率高且污染也大的按类抗氧剂。

4.2挥发性挥发性是抗氧剂从聚合物中损失的主要形式之一,挥发性依赖于抗氧剂分子结构和分子量。

如果其他条件相同,分子量较大的抗氧剂挥发性较低,分子类型的不同比分子量的影响更大。

例如,2,6-二叔丁基-4-甲酚(相对分子质量220)的挥发性比N,N’-二苯基对苯二胺(相对分子质量260)大3000倍。

挥发性还与抗氧剂所处的温度、暴露表面的大小,空气流动情况有关。

4.3溶解性理想的抗氧剂的溶解性是在聚合物中溶解度高,在其他介质中溶解度低。

相容性取决于抗氧剂的化学结构、聚合物种类、温度等因素。

相容性小乃是指没有喷霜的情况下,只有少量的抗氧剂被溶解。

酚类和亚磷酸酯类抗氧剂在橡胶中溶解度高,没有喷霜问题。

N,N’-二苯基对苯二胺在天然橡胶中,用量0.3%就会喷霜,而在丁苯硫化胶中相容性较好。

4.4稳定性为了保持长期的抗氧效率,抗氧剂对光、热、氧、水的稳定性是非常重要的。

就看抗氧剂自身的氧化来看,对苯二胺衍生物最敏感,烷基化二苯胺次之。

在对苯二酚类内,二烷基对苯二胺短期氧化就会有较大的破环,烷基芳基对苯二胺及二芳基对苯二胺却又相当的持久性。

胺类抗氧剂在光和氧的作用下变色,不同的胺发生这种变化的程度差别很大。

受阻酚不可在酸性物质存在下加热,否则发生拖烃反应造成抗氧效率下降。

4.5其他抗氧剂的物理状态也是选择时必须考虑的因素之一,在聚合物制造过程中应优先选用液体的,易乳化的抗氧剂。

在橡胶加工过程中则宜选用那些固体的、易分散的、无尘的抗氧剂。

还有抗氧剂的毒性,在食品工业中应选用符合卫生标准的抗氧化剂。

5抗氧剂的结构与抗氧性能的关系[5]聚合物抗氧剂的结构,决定了其抗氧性能的优劣。

由氧化机理可知,抗氧剂应具备以下的性能:(1)具有活泼的氢原子,它应比高分子链上的活泼氢原子更活泼;(2)抗氧剂自由基应具有足够的稳定性;(3)抗氧剂本身应较难氧化,否则自身被氧化而起不到抗氧化作用。

由于高分子材料(尤其是塑料)常在较高温度下加工成型,这就要求使用的抗氧剂具有足够的热稳定性和足够高的沸点,否则在加工温度下分解或挥发,不但会严重影响其抗氧化的效果,还会污染环境。

相关文档
最新文档