变化率与导数ppt课件
合集下载
高中数学选修1课件:3.1.1变化率与导数
r(V2 ) r(V1) f (x2 ) f (x1)
V2 V1
x2 x1
设某个变量 f 随 x 的变化而变化,
从 x 经过 △x , 量 f 的改变量为
f f (x x) f (x)
量 f 的平均变化率为
f f (x x) f (x)
x
x
令 x 0,则得到f 在x 的(瞬时)变化率:
t=0.2,0.4,0.6,0.8(min)时,血管中 药物浓度的瞬时变化率,把数据用表格 的形式列出。(精确到0.1)
血管中药物浓度的瞬时变化率, 就是药物浓度 函数f(t)在此时刻的导数, 从图象上看,它表示
曲线在该点处的切线的斜率. (数形结合,以直代曲)
以简单对象刻画复杂的对象
t
0.2
药物浓度的 瞬时变化率
(3) 物体在t =2时的瞬时速度.
v s 2g 1 gt
t
2
(1) 将 t=0.1代入上式,得
O s(2)
v 2.05g 20.09(m / s) (2) 将 t=0.01代入上式,得
s(2+t) s
v 2.005g 19.65(m / s)
( 3) 当t 0,2 t 2
平均速度 v 的极限为:
x0
x
T
P
f (x 0 )
o
x0
x 即 kPT tan f (x 0 )
函数y f (x)在点x0处的导数f (x0 )在几何上表示 曲线y f (x)在点M (x0, f (x0 ))处的切线的斜率。
曲线y f (x)在点M (x0 , f (x0 ))处
的切线方程为 y y0 f (x0 )(x x0 )
0.01 -13.149
2022-2023学年人教A版选择性必修第二册 5-1-1 变化率问题与导数的概念 课件(31张)
3.在 f′(x0)=lim Δx→0
fx0+ΔΔxx-fx0中,Δx 不可能为(
C
)
A.大于 0 B.小于 0
C.等于 0 D.大于 0 或小于 0
强研习·重点难点要突破
研习 1 函数的平均变化率
[典例 1] (1)函数 y=1x从 x=1 到 x=2 的平均变化率为( B )
A.-1
B.-12
C.-2
D.2
(2)已知函数 y=3x-x2 在 x0=2 处的增量为 Δx=0.1,则ΔΔxy的值为( B )
A.-0.11
B.-1.1
C.3.89
D.0.29
(1) [解析] 平均变化率为ΔΔxy=122- -11=-12. (2) [解析] ∵Δy=f(2+0.1)-f(2)=(3×2.1-2.12)-(3×2-22)=-0.11, ∴ΔΔyx=-00.1.11=-1.1.
研习 2 求瞬时速度 [典例 2] 一个做直线运动的物体,其位移 s 与时间 t 的关系是 s(t)=3t-t2. (1)求此物体的初速度; (2)求此物体在 t=2 时的瞬时速度.
[解] (1)当 t=0 时的速度为初速度. 在 0 时刻取一时间段[0,0+Δt],即[0,Δt], ∴Δs=s(Δt)-s(0)=[3Δt-(Δt)2]-(3×0-02)=3Δt-(Δt)2, ΔΔst=3Δt-ΔtΔt2=3-Δt, Δlit→m0ΔΔst=Δlit→m0(3-Δt)=3. ∴物体的初速度为 3.
时速度,即瞬时速度 v=lim Δt→0
ΔΔst=Δlit→ m0
st0+ΔΔtt-st0.
知识点 2 函数的平均变化率 对于函数 y=f(x),设自变量 x 从 x0 变化到 x0+Δx,相应地,函数值 y 就从 f(x0)变化到 f(x0+Δx).这时,x 的变化量为 Δx,y 的变化量为 Δy=___f_(x_0_+__Δ_x_)_-__f(_x_0_) __.我们把比值ΔΔyx, 即ΔΔyx=f__x0_+__Δ_Δx_x_-__f_x_0__叫做函数 y=f(x)从 x0 到 x0+Δx 的平均变化率.
人教A版高中数学选修22变化率与导数PPT课件
问题二:高台跳水
在高台跳水运动中,运动 员相对于水面的高度h(单位: m)与起跳后的时间t(单位:s) 存在函数关系
h(t) 4.9t 2 6.5t 10
V 如果用运动员在某段时间内的平均速度
描述其运动状态,那么:
(1)在0t0.5 这段时间里,V = h(0.5) h(0) 4.05(m / s)
微积分的创立
到了十七世纪,有许多科学问题需要解决,这些 问题也就成了促使微积分产生的因素。归结起来,大 约有四种主要类型的问题:第一类是研究运动的时候 直接出现的,也就是求即时速度的问题。第二类问题 是求曲线的切线的问题。第三类问题是求函数的最大 值和最小值问题。第四类问题是求曲线长、曲线围成 的面积、曲面围成的体积、物体的重心、一个体积相 当大的物体作用于另一物体上的引力。
0.5 0
(2)在1t2 这段时间里, V = h(2) h(1) -8.2(m / s)
21
人教A版高中数学选修22变化率与导数 PPT课 件
人教A版高中数学选修22变化率与导数 PPT课 件
探究
计算运动员在
0 t 65 49
这段时间
里的平均速度,并思考以下问题:
(1)运动员在这段时间是静止的吗?
lim x0 x x0 lim
x
x 0
x
x0 x( x0 x x0 )
lim
1
1
x0 x0 x x0 2 x0
例3 将原油精炼为汽油、柴油、塑胶等各种不同产品, 需要对原油进行冷却和加热. 如果在第 x h时, 原油的温 度为 y=f (x) = x2–7x+15 (0≤x≤8) . 计算第2h与第6h时, 原 油温度的瞬时变化率,并说明它们的意义.
在高台跳水运动中,运动 员相对于水面的高度h(单位: m)与起跳后的时间t(单位:s) 存在函数关系
h(t) 4.9t 2 6.5t 10
V 如果用运动员在某段时间内的平均速度
描述其运动状态,那么:
(1)在0t0.5 这段时间里,V = h(0.5) h(0) 4.05(m / s)
微积分的创立
到了十七世纪,有许多科学问题需要解决,这些 问题也就成了促使微积分产生的因素。归结起来,大 约有四种主要类型的问题:第一类是研究运动的时候 直接出现的,也就是求即时速度的问题。第二类问题 是求曲线的切线的问题。第三类问题是求函数的最大 值和最小值问题。第四类问题是求曲线长、曲线围成 的面积、曲面围成的体积、物体的重心、一个体积相 当大的物体作用于另一物体上的引力。
0.5 0
(2)在1t2 这段时间里, V = h(2) h(1) -8.2(m / s)
21
人教A版高中数学选修22变化率与导数 PPT课 件
人教A版高中数学选修22变化率与导数 PPT课 件
探究
计算运动员在
0 t 65 49
这段时间
里的平均速度,并思考以下问题:
(1)运动员在这段时间是静止的吗?
lim x0 x x0 lim
x
x 0
x
x0 x( x0 x x0 )
lim
1
1
x0 x0 x x0 2 x0
例3 将原油精炼为汽油、柴油、塑胶等各种不同产品, 需要对原油进行冷却和加热. 如果在第 x h时, 原油的温 度为 y=f (x) = x2–7x+15 (0≤x≤8) . 计算第2h与第6h时, 原 油温度的瞬时变化率,并说明它们的意义.
【精品课件】3.1.1-2变化率问题与导数的概念
§1.1
1 2
变化率 谁创立了导数 与导数
导数是在怎样的背景之下产生的 呢
背景
十七与十八世纪的数学家们常把自己的数学活动跟各种 不同自然领域(物理、化学、力学、技术)中的研究活动联 系起来,并由实际需要提出了许多数学问题。历史上,导数
概念产生于以下两个实际问题的研究。第一:求曲线的切线
问题,这是一个非常古老的问题,可以追溯到希腊著名的科 学家阿基米德(Archimedes,287-212B.C);第二:求非 均速运动的速度,它最早由开普勒(kepler:1571-1630),伽 利略(Galileo:1564—1642),牛顿(Newton:1642-1727)等 提出来.
y
f (x2)
f f ( x2 ) f ( x1 ) 表示函数f(x) 的图像上 x x2 x1 的两点( x1 , f ( x1 )), ( x2 , f ( x2 ))连线的斜率.
f (x1)
x2 – x1 x1 x2
y = f (x)
f (x 2) – f (x1)
4)物体从3s到3 ts的平均速度 v s(3 t ) s(3) 30 5t (m / s)
(3 t ) 3
平均速度 v 近似地刻画了在某一时间段内物体运动的快慢. 如何精确地刻画物体在某一时刻的速度呢?
物体在某一时刻的速度称为瞬时速度。
即如何求物体在t=3s的瞬时速度呢?
t 0
10t0
定义:
函数 y = f (x) 在 x = x0 处的瞬时变化率是
f ( x0 Δx) f ( x0 ) y lim lim x 0 x x 0 x 称为函数 y = f (x) 在 x = x0 处的导数, 记作 f ( x0 )
1 2
变化率 谁创立了导数 与导数
导数是在怎样的背景之下产生的 呢
背景
十七与十八世纪的数学家们常把自己的数学活动跟各种 不同自然领域(物理、化学、力学、技术)中的研究活动联 系起来,并由实际需要提出了许多数学问题。历史上,导数
概念产生于以下两个实际问题的研究。第一:求曲线的切线
问题,这是一个非常古老的问题,可以追溯到希腊著名的科 学家阿基米德(Archimedes,287-212B.C);第二:求非 均速运动的速度,它最早由开普勒(kepler:1571-1630),伽 利略(Galileo:1564—1642),牛顿(Newton:1642-1727)等 提出来.
y
f (x2)
f f ( x2 ) f ( x1 ) 表示函数f(x) 的图像上 x x2 x1 的两点( x1 , f ( x1 )), ( x2 , f ( x2 ))连线的斜率.
f (x1)
x2 – x1 x1 x2
y = f (x)
f (x 2) – f (x1)
4)物体从3s到3 ts的平均速度 v s(3 t ) s(3) 30 5t (m / s)
(3 t ) 3
平均速度 v 近似地刻画了在某一时间段内物体运动的快慢. 如何精确地刻画物体在某一时刻的速度呢?
物体在某一时刻的速度称为瞬时速度。
即如何求物体在t=3s的瞬时速度呢?
t 0
10t0
定义:
函数 y = f (x) 在 x = x0 处的瞬时变化率是
f ( x0 Δx) f ( x0 ) y lim lim x 0 x x 0 x 称为函数 y = f (x) 在 x = x0 处的导数, 记作 f ( x0 )
高中数学北师大版选修1-1课件:第三章变化率与导数2导数的概念及其几何意义
例2 已知曲线y=2x2上一点A(1,2),求:
(1)点A处的切线的斜率;
解
lim
Δx→0
ΔΔyx=Δlixm→0
21+Δx2-2×12 Δx
4Δx+2Δx2
= lim Δx→0
Δx
=lim (4+2Δx)=4, Δx→0
∴点A处的切线的斜率为4.
(2)点A处的切线方程.
解 点A处的切线方程是y-2=4(x-1),
得a=-7.
反思感悟 利用导数的几何意义将数与形联系起来,根据图像中切线与割线 的倾斜角的大小确定数据的大小.
跟踪训练4 (1)已知函数f(x)在R上可导,其部分图像如图所示,设 f2-f1= 2-1
a,则下列不等式正确的是 A.f′(1)<f′(2)<a
√B.f′(1)<a<f′(2)
C.f′(2)<f′(1)<a
反思感悟 根据切线斜率求切点坐标的步骤 (1)设切点坐标(x0,y0). (2)求导函数f′(x). (3)求切线的斜率f′(x0). (4)由斜率间的关系列出关于x0的方程,解方程求x0. (5)点(x0,y0)在曲线f(x)上,将x0代入求y0,得切点坐标.
跟踪训练3 已知直线l:y=4x+a与曲线C:y=f(x)=x3-2x2+3相切,求a的 值及切点坐标.
D.a<f′(1)<f′(2)
解析 由图像可知,在(0,+∞)上,函数f(x)为增函数,且曲线切线的斜率越
来越大,
f2-f1
∵
=a,∴易知 f′(1)<a<f′(2).
2-1
(2)曲线y=x3在点(a,a3)(a≠0)处的切线与x轴及直线x=a围成的三角形的面积 为 16,则a=__±_1__.
1.1.1和1.1.2变化率问题、导数的概念课件人教新课标1
x
【解析】(1)自变量x从1变到2时,函数f(x)=2x+1的函数值的
增量为Δy=5-3=2,故增量之比是2.
答案:2
(2)函数f(x)=x2在x=1处的瞬时变化率是 lim f (1 x) f (1)
x0
x
lim (1 x)2 12 lim (2 x) 2.
x0
x
x0
答案:2
(3)函数y=f(x)= 1 在x=-1处的导数可表示为f′(-1)或
【微思考】
(1)函数f(x)在区间[x1,x2]上的平均变化率的大小与曲线 y=f(x)在区间[x1,x2]上的“峻峭”程度有什么关系? 提示:平均变化率的绝对值越大,曲线y=f(x)在区间[x1,x2]
上越“峻峭”,反之亦然. (2)平均变化率可以是零吗? 举例说明. 提示:可以是零,如函数f(x)=a(a为常数).
Δx趋于0的距离要多近有多近,即|Δx-0|可以小于给定的任
意小的正数,且始终Δx≠0.
3.对导数概念的两点说明
(若1)当xy 的Δ极x≠限0不时存,在比,值则xyf的 (x极)在限点存x在0处,不则可f导(x或)在无点导x数0处.可导;
(2)在点x=x0处的导数的定义可变形为f′(x0)=
lim f (x0 x) f (x0 )
取定值,x1取不同的数值时,函数的平均变化率也是不同的.
特别地,当函数f(x)为常数函数时,Δy=0,则 y =0.
x
2.对平均变化率的三点说明 (1)y=f(x)在区间[x1,x2]上的平均变化率是曲线y=f(x)在 区间[x1,x2]上峻峭程度的“数量化”,曲线峻峭程度是平 均变化率的“视觉化”. (2)平均变化率的几何意义就是函数y=f(x)图象上两点P1(x1,
【解析】(1)自变量x从1变到2时,函数f(x)=2x+1的函数值的
增量为Δy=5-3=2,故增量之比是2.
答案:2
(2)函数f(x)=x2在x=1处的瞬时变化率是 lim f (1 x) f (1)
x0
x
lim (1 x)2 12 lim (2 x) 2.
x0
x
x0
答案:2
(3)函数y=f(x)= 1 在x=-1处的导数可表示为f′(-1)或
【微思考】
(1)函数f(x)在区间[x1,x2]上的平均变化率的大小与曲线 y=f(x)在区间[x1,x2]上的“峻峭”程度有什么关系? 提示:平均变化率的绝对值越大,曲线y=f(x)在区间[x1,x2]
上越“峻峭”,反之亦然. (2)平均变化率可以是零吗? 举例说明. 提示:可以是零,如函数f(x)=a(a为常数).
Δx趋于0的距离要多近有多近,即|Δx-0|可以小于给定的任
意小的正数,且始终Δx≠0.
3.对导数概念的两点说明
(若1)当xy 的Δ极x≠限0不时存,在比,值则xyf的 (x极)在限点存x在0处,不则可f导(x或)在无点导x数0处.可导;
(2)在点x=x0处的导数的定义可变形为f′(x0)=
lim f (x0 x) f (x0 )
取定值,x1取不同的数值时,函数的平均变化率也是不同的.
特别地,当函数f(x)为常数函数时,Δy=0,则 y =0.
x
2.对平均变化率的三点说明 (1)y=f(x)在区间[x1,x2]上的平均变化率是曲线y=f(x)在 区间[x1,x2]上峻峭程度的“数量化”,曲线峻峭程度是平 均变化率的“视觉化”. (2)平均变化率的几何意义就是函数y=f(x)图象上两点P1(x1,
高中数学 第二章 变化率与导数 2.1 变化的快慢与变化率课件 北师大版选修22
∴瞬时速度为4a,即4a=8.∴a=2.
Δ
即为平均速度,
Δ
答案:A
=
5-3(1+Δ)2 -5+3×12
=-3Δt-6.
Δ
探究一
探究二
探究三
思维辨析
瞬时变化率
1
【例2】 已知s(t)= 2gt2,其中g=10 m/s2.
(1)求t从3 s到3.1 s的平均速度;
(2)求t从3 s到3.01 s的平均速度;
(3)求t在t=3 s时的瞬时速度.
(2)函数y=3x2+2在区间[2,2+Δx]上的平均变化率为
(2+Δ)-(2)
Δ
=
3(2+Δ)2 +2-(3×22 +2)
Δ
=
12Δ+3(Δ)2
=12+3Δx.
Δ
反思感悟求函数平均变化率的步骤
第一步,求自变量的改变量Δx=x2-x1,
第二步,求函数值的改变量Δy=f(x2)-f(x1).
Δ
=
4Δ+(Δ)2
=4+Δt,
Δ
∵≤5,∴4+Δt≤5,∴Δt≤1.
又∵Δt>0,∴Δt的取值范围是(0,1].
答案:(0,1]
探究一
探究二
探究三
思维辨析
因错用平均变化率公式而致误
【典例】 已知曲线y=-2x3+2和这条曲线上的两个点P(1,0),Q(2,14),求该曲线在PQ段的平均变化率.
名师点拨对平均变化率的理解
(1)y=f(x)在区间[x1,x2]上的平均变化率是曲线y=f(x)在区间[x1,x2]
上陡峭程度的“数量化”,曲线陡峭程度是平均变化率的“视觉化”.
导数的概念 课件
A.物体5 s内共走过42 m B.物体每5 s钟运动42 m C.物体开始运动到第5 s运动的平均速度是42 m/s D.物体以t=5 s时的瞬时速度运动的话,每经过一秒, 物体运动的路程为42 m
由导数的定义求导数,是求导数的基本方法,必须严格 按以下三个步骤进行:
(1)求函数的增量Δy=f(x0+Δx)-f(x0);
解析:
f′(1)= lim Δx→0
f1+ΔΔxx-f1=
lim
Δx→0
1+ΔΔxx2-1=Δlixm→0
(2+Δx)=2.
同理可得f′(3)=6.
1.一直线运动的物体,从时间t到t+Δt时,物体的位移
为Δs,那么 lim Δt→0
Δs Δt
为(
B
)
A.从时间t到t+Δt时,物体的平均速度
B.时间为t时该物体的瞬时速度
变化率与导数 导数的概念
基础梳理
1. 函数f(x)在x=x0处的瞬时变化率定义:
一般地,lim Δx→0
ΔΔyx=Δlixm→0
fx0+Δx-fx0 Δx
,我们称它为函数y=
f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,
即y′|x=x0=f′(x0)=Δlixm→0
fx0+Δx-fx0 Δx
C.当时间为Δt 时该物体的速度
D.从时间t到t+Δt时位移的平均变化率
2.Biblioteka 设函数f(x)在x0处可导,则
lim
Δx→0
fx0-Δx-fx0 Δx
=(
C
)
A.f′(x0)
B.f′(-x0)
C.-f′(x0)
D.-f(-x0)
3.一物体运动满足方程s=4t2+2t-3且s′(5)=42(m/s), 其实际意义是( D )
由导数的定义求导数,是求导数的基本方法,必须严格 按以下三个步骤进行:
(1)求函数的增量Δy=f(x0+Δx)-f(x0);
解析:
f′(1)= lim Δx→0
f1+ΔΔxx-f1=
lim
Δx→0
1+ΔΔxx2-1=Δlixm→0
(2+Δx)=2.
同理可得f′(3)=6.
1.一直线运动的物体,从时间t到t+Δt时,物体的位移
为Δs,那么 lim Δt→0
Δs Δt
为(
B
)
A.从时间t到t+Δt时,物体的平均速度
B.时间为t时该物体的瞬时速度
变化率与导数 导数的概念
基础梳理
1. 函数f(x)在x=x0处的瞬时变化率定义:
一般地,lim Δx→0
ΔΔyx=Δlixm→0
fx0+Δx-fx0 Δx
,我们称它为函数y=
f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,
即y′|x=x0=f′(x0)=Δlixm→0
fx0+Δx-fx0 Δx
C.当时间为Δt 时该物体的速度
D.从时间t到t+Δt时位移的平均变化率
2.Biblioteka 设函数f(x)在x0处可导,则
lim
Δx→0
fx0-Δx-fx0 Δx
=(
C
)
A.f′(x0)
B.f′(-x0)
C.-f′(x0)
D.-f(-x0)
3.一物体运动满足方程s=4t2+2t-3且s′(5)=42(m/s), 其实际意义是( D )
北师大版高中数学2-2第二章《变化率与导数》导数的计算 课件
(3) cost ;
(4) -sin .
3 ( 5) 4 ; x
2013-4-2
1 ( 6) 3 2 . 3 x
2.选择题
(1)下列各式正确的是(
C)
A.(sin )' cos (为常数) B . cos x )' sin x ( C .(sin x )' cos x 1 6 D.( x )' x 5
1 x ′ (x)=____。 (8)若f(x)=lnx,则f
2013-4-2
e
(a>0,且a≠1);
课堂小结: (1)基本初等函数公式的求导公式 (2)公式的应用 作业布置: 见练习册P34页3、4、6、7
五、教学反思:
2013-4-2
(3)若f(x)=sinx,则f
cosx ′(x)=_____;
-sinx ′(x)=_____; (4)若f(x)= cosx,则f xlna(a>0) a x,则f ′(x)=____; (5)若f(x)=a
2013-4-2
x x,则f′ (x)=____; (6)若f(x)=e
1 ′ (x)=_____ a x ln (7)若f(x)=logax,则f
'
记 一
1 公式7 (1oga ) 记 1 x ln a ' 公式8 (1nx ) x 不需推导,但要注意符号的运算.
x '
2013-4-2
公式5 (a ) a ln a x ' x 公式6 (e ) e
x ' x
记忆公式5遍!
2013-4-2
练习
(1)
4 5x
;
(2)
导数平均变化率课件
详细描述
当一元函数的导数大于0时,函数图像在该区间内为凹形;当导数小于0时,函数 图像为凸形。因此,通过研究导数的符号变化,我们可以判断函数图像的凹凸性 。
导数与极值点
总结词
导数可以用来判断函数的极值点。
详细描述
函数在极值点处的导数为0,即一阶导数为0的点可能是极值点。此外,二阶导数的符号变化也可以用来判断极值 点的类型(极大值或极小值)。
02 导数在几何中的应用
导数与切线斜率
总结词
导数在几何中最重要的应用之一是表 示切线的斜率。
详细描述
在函数图像上任取一点,该点处的导 数即为切线的斜率。通过导数,我们 可以精确地描述函数图像在某一点的 切线斜率,进而研究函数的增减性。
导数与函数图像的凹凸性
总结词
导数的符号决定了函数图像的凹凸性。
谢谢聆听
03
隐函数求导
$frac{dy}{dx} = frac{-F(x)}{F(y)}$
幂函数的导数计算
$(x^n)' = nx^{n-1}$ $(x^{-n})' = -nx^{-n-1}$
$(x^{1/n})' = frac{1}{n}x^{-frac{1}{n}-1}$
对数函数、三角函数和反三角函数的导数计算
导数与平均变化率课 件
目录
• 导数与平均变化率的基本概念 • 导数在几何中的应用 • 平均变化率在实际问题中的应用 • 导数的计算方法与技巧 • 导数的应用实例分析
01 导数与平均变化率的基本概念
导数的定义与性质
导数的定义
导数是函数在某一点的变化率,表示函数在该点的切线的斜率。
导数的性质
导数具有一些重要的性质,如线性性质、乘积法则、商的法则、链式法则等, 这些性质在研究函数的单调性、极值和曲线的形状等方面有广泛应用。
当一元函数的导数大于0时,函数图像在该区间内为凹形;当导数小于0时,函数 图像为凸形。因此,通过研究导数的符号变化,我们可以判断函数图像的凹凸性 。
导数与极值点
总结词
导数可以用来判断函数的极值点。
详细描述
函数在极值点处的导数为0,即一阶导数为0的点可能是极值点。此外,二阶导数的符号变化也可以用来判断极值 点的类型(极大值或极小值)。
02 导数在几何中的应用
导数与切线斜率
总结词
导数在几何中最重要的应用之一是表 示切线的斜率。
详细描述
在函数图像上任取一点,该点处的导 数即为切线的斜率。通过导数,我们 可以精确地描述函数图像在某一点的 切线斜率,进而研究函数的增减性。
导数与函数图像的凹凸性
总结词
导数的符号决定了函数图像的凹凸性。
谢谢聆听
03
隐函数求导
$frac{dy}{dx} = frac{-F(x)}{F(y)}$
幂函数的导数计算
$(x^n)' = nx^{n-1}$ $(x^{-n})' = -nx^{-n-1}$
$(x^{1/n})' = frac{1}{n}x^{-frac{1}{n}-1}$
对数函数、三角函数和反三角函数的导数计算
导数与平均变化率课 件
目录
• 导数与平均变化率的基本概念 • 导数在几何中的应用 • 平均变化率在实际问题中的应用 • 导数的计算方法与技巧 • 导数的应用实例分析
01 导数与平均变化率的基本概念
导数的定义与性质
导数的定义
导数是函数在某一点的变化率,表示函数在该点的切线的斜率。
导数的性质
导数具有一些重要的性质,如线性性质、乘积法则、商的法则、链式法则等, 这些性质在研究函数的单调性、极值和曲线的形状等方面有广泛应用。
《平均变化率与导数》课件
平均变化率可以用来估计函数在某一 点处的导数,即当时间间隔趋近于0时 ,平均变化率的极限值即为该点的导 数值。
02
导数
导数的定义
瞬时速度
导数被定义为函数在某一点处的切线的斜率,即 函数在该点的瞬时变化率。
几何意义
在几何上,导数表示曲线在某一点处的切线的斜 率。
函数变化
导数描述了函数在某一点附近的局部变化情况, 反映了函数在该点的变化趋势。
对于参数方程$x = x(t), y = y(t)$, 其导数为$frac{dy}{dx} = frac{y'(t)}{x'(t)}$。
05
导数的应用
利用导数研究函数的单调性
总结词
通过导数的符号,判断函数在某区间内的单调性。
详细描述
导数在某区间内的符号决定了函数在该区间内的单调性。如果导数大于0,则函数在该区间内单调递 增;如果导数小于0,则函数在该区间内单调递减。因此,利用导数可以方便地研究函数的单调性。
反函数求导法则
03
对于反函数$y = f^{-1}(x)$,其导数为$(f^{-1})' = frac{1}{f'}$
。
隐函数的导数计算
对数求导法则
对于隐函数$y = f(x)$满足$e^y = f(x)$,其导数为$frac{dy}{dx} = frac{f'(x)}{f(x)}$。
参数方程求导法则
详细描述
在解决实际问题时,如最优化问题、经济问 题等,可以利用导数来求解最优解。通过建 立数学模型,将实际问题转化为求函数的最 值问题,然后利用导数求出最优解,为实际 问题的解决提供理论支持。
THANKS
感谢观看
当自变量改变量趋于0时,平均变化率趋于导数,即导数是平 均变化率的极限形式。
02
导数
导数的定义
瞬时速度
导数被定义为函数在某一点处的切线的斜率,即 函数在该点的瞬时变化率。
几何意义
在几何上,导数表示曲线在某一点处的切线的斜 率。
函数变化
导数描述了函数在某一点附近的局部变化情况, 反映了函数在该点的变化趋势。
对于参数方程$x = x(t), y = y(t)$, 其导数为$frac{dy}{dx} = frac{y'(t)}{x'(t)}$。
05
导数的应用
利用导数研究函数的单调性
总结词
通过导数的符号,判断函数在某区间内的单调性。
详细描述
导数在某区间内的符号决定了函数在该区间内的单调性。如果导数大于0,则函数在该区间内单调递 增;如果导数小于0,则函数在该区间内单调递减。因此,利用导数可以方便地研究函数的单调性。
反函数求导法则
03
对于反函数$y = f^{-1}(x)$,其导数为$(f^{-1})' = frac{1}{f'}$
。
隐函数的导数计算
对数求导法则
对于隐函数$y = f(x)$满足$e^y = f(x)$,其导数为$frac{dy}{dx} = frac{f'(x)}{f(x)}$。
参数方程求导法则
详细描述
在解决实际问题时,如最优化问题、经济问 题等,可以利用导数来求解最优解。通过建 立数学模型,将实际问题转化为求函数的最 值问题,然后利用导数求出最优解,为实际 问题的解决提供理论支持。
THANKS
感谢观看
当自变量改变量趋于0时,平均变化率趋于导数,即导数是平 均变化率的极限形式。
3.1变化率与导数
h2 t h2 我们称确定值 13.1是 当t趋近于0时的极限. t
速度v就无限趋近于 t 2时的瞬时速度 .因此, 运动 员在 t 2时的瞬时速度是 13.1m / s. h2 t h2 为了表述方便 , 我们用 lim 13.1 t 0 t 表示"当t 2, t 趋势近于 0时, 平均速度 v 趋近于确 定值 13.1".
当△t = – 0.01时, v 13.051
当△t = – 0.001时, v 13.0951
△t = – 0.00001, △t = – 0.000001,
v 4.9t 13.1
当△t = 0.01时,
v 13.149
当△t =0.001时, v 13.1049
2 2
2
y lim lim (2 x) 2 x 0 x x 0 ' y | x 1 2
f (x) = x2 – 7x+15 ( 0≤x≤8 ) .
计算x=2和x=6时的导数.
根据导数的定义,
f (2 x) f (2) 4x (x) 2 7x x 3 x x f lim (x 3) 3. 所以, f (2) lim x 0 x x 0
称为函数f(x)从x1到x2的平均变化率
若设Δx=x2-x1,
Δf=f(x2)-f(x1)
这里Δx看作是对于x1的一个 “增量”可用x1+Δx代替x2 同样Δf=Δy=f(x2)-f(x1)
则平均变化率为
f x
f(x2 ) f ( x1 ) x2 x1
理解
y 1、式子中△x 、△ y 的值可正、可负,但 x
1 0
5.1 导数的概念及其意义(变化率问题、导数的概念)课件高二数学人教A版(2019)选择性必修第二册
Δ
=
( 2 )-( 1 )
.
2 - 1
【变式训练 2】 分别求函数 y=sin x 从 0
比较它们的大小.
π
π
π
到6 和从 3 到 2 的平均变化率,并
解:自变量 x 从 0
自变量 x
π
π
从3 变到 2 ,函数
3
∵2-√3<1,∴
π
>
∴自变量 x 从 0
自变量 x
π
变到 ,函数
6
)
A.Δx-3
C.-3
B.(Δx)2-3Δx
(0+x)2 -3(0+x)-02 +3×0
解析:f'(0)= lim
x
Δ→0
故选C.
答案:C
D.0
=
(Δ)2 -3Δ
Δ
x→0
= lim (Δx-3)=-3.
Δ→0
【思考辨析】
判断下列说法是否正确,正确的在后面的括号里画“√”,错误的画“×”.
Δ
∴
Δ
=
3(Δ)2 +(6+)Δ
=3Δx+6+a,
Δ
y
∴ lim
Δ→0 x
= (3Δx+6+a)=6+a.
∴f'(1)=6+a.
x→0
【易错辨析】
对导数的概念理解不清而致错
【典例】 已知
A.4
f(x 0 +2x)-f(x 0 )
f'(x0)=4,则 lim
的值为(
x
Δ→0
B.2
C.8
f(x 0 +2x)-f(x 0 )
=
( 2 )-( 1 )
.
2 - 1
【变式训练 2】 分别求函数 y=sin x 从 0
比较它们的大小.
π
π
π
到6 和从 3 到 2 的平均变化率,并
解:自变量 x 从 0
自变量 x
π
π
从3 变到 2 ,函数
3
∵2-√3<1,∴
π
>
∴自变量 x 从 0
自变量 x
π
变到 ,函数
6
)
A.Δx-3
C.-3
B.(Δx)2-3Δx
(0+x)2 -3(0+x)-02 +3×0
解析:f'(0)= lim
x
Δ→0
故选C.
答案:C
D.0
=
(Δ)2 -3Δ
Δ
x→0
= lim (Δx-3)=-3.
Δ→0
【思考辨析】
判断下列说法是否正确,正确的在后面的括号里画“√”,错误的画“×”.
Δ
∴
Δ
=
3(Δ)2 +(6+)Δ
=3Δx+6+a,
Δ
y
∴ lim
Δ→0 x
= (3Δx+6+a)=6+a.
∴f'(1)=6+a.
x→0
【易错辨析】
对导数的概念理解不清而致错
【典例】 已知
A.4
f(x 0 +2x)-f(x 0 )
f'(x0)=4,则 lim
的值为(
x
Δ→0
B.2
C.8
f(x 0 +2x)-f(x 0 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r(2) r(1) 0.16 2-1
气球的平均膨胀率减小了,所以我们感觉气球变大1得0 越来越慢。
思考:
空气容量从V1增加到V2时,气球 的平均膨胀率是多少?
r(V2 ) r(V1 ) V2 V1
11
问题二:高台跳水
在高台跳水运动中,运动
员相对于水面的高度h(单位: m)与起跳后的时间t(单位:s) 存在函数关系
9
问题一:气球膨胀率 V 4 r3 r 3 3V
3
4
很多人都吹过气球,可以发现,随着气球空气容
量的增加,气球的半径增加得越来越慢。从数学的角
度,如何解释这个现象呢?
空气容量从0增加到 1时,气球的平均膨
r(1) r(0) 0.62 10
胀率为:
空气容量从1增加到 2时,气球的平均膨 胀率为:
,
21
探究
计算运动员在
0 t 65 49
这段时间
里的平均速度,并思考以下问题:
(1)运动员在这段时间是静止的吗?
(2)你认为用平均速度描述运动员的运动状态有 什么问题吗?
答:(1)
h(65) h(0) 10 49
V = h 0 t
(2)平均速度不能准确反映该段时间的运
动状态.
13
平均变化率的定义
h(t) 4.9t 2 6.5t 10
V 如果用运动员在某段时间内的平均速度
描述其运动状态,那么:
(1)在0 t 0.5 这段时间里V = h(0.5) h(0) 4.05(m / s)
, (2)在1
t
0.5 0
2 这段时间里 V = h(2) h(1) -8.2(m / s) 12
5
牛顿
莱布尼茨
6
微积分的创立
牛顿和莱布尼茨建立微积分 的出发点是直观的无穷小量,因 此这门学科早期也称为无穷小分 析,这正是现在数学中分析学这 一大分支名称的来源。
牛顿研究微积分着重 于从运动学来考虑,莱布 尼茨却是侧重于几何学来 考虑的。
7
人民教育出版社 高中数学
1.1 变化率与导数
8
1、变化率问题
t
t
-4.9t 13.1 显然,当t 0时,V t 2时的瞬时速度 21
(3)
2.1
17
1.1 1
0.1
例2 求函数 y=5x2+6在区间[2,2+△x]上的平均 变化率.
分析:平均变化率= y f ( x x)
x
x
(1)求y f ( x x);
(2)求 y . x
18
例2 求函数 y=5x2+6在区间[2,2+△x]上的平均 变化率.
解:y f (2 x) f (2)
3
微积分的创立
十七世纪的许多著名的数学家、天文学家、物理 学家都为解决上述几类问题作了大量的研究工作,如 法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗 、瓦里士;德国的开普勒;意大利的卡瓦列利等人都 提出许多很有建树的理论。为微积分的创立做出了贡 献。
4
微积分的创立
十七世纪下半叶,在前人工作的基础上,英 国大科学家牛顿和德国数学家莱布尼茨分别在自 己的国度里独自研究和完成了微积分的创立工作 ,虽然这只是十分初步的工作。他们的最大功绩 是把两个貌似毫不相关的问题联系在一起,一个 是切线问题(微分学的中心问题),一个是求积 问题(积分学的中心问题)。
A. f(x0+△x) C. f(x0)·△x
B.f(x0)+△x D. f(x0+△x)-f(x0)
20
2、瞬时变化率
瞬时速度:物体在某一时刻的速度
在高台跳水中,函数关系是h=-4.9t2+6.5t+10 如何求t=2时的瞬时速度?
计算函数在[2,2+△t]内的平均速度
V h(2 t) h(2) h(2 t) h(2)
式子
f
(
x2 ) x2
f( x1
x1
)
称为函数f(x)从x1到
x2的平均变化率.
x 若设 y
x2 y2
x1 y1
,
则平均变化率为
y x
这里,我们称△x是相对于x1的一个增量 (也叫做自变量的增量),可用x1+△x代替x2, 同理△y叫做函数值的增量,可用y1+△y代替y2
14
注意:△x(△y)是一个整体,可正可负!
[5(2 x)2 6] (5 22 6)
不能写成 △x2
5(x)2 20x
y 所以平均变化率为 5x 20
x 19
课堂练习
1、一质点运动的方程为 s=1-2t2,则在一段时间 [1,2]内的平均速度为( ) A. -4 B. -8 C. -6 D. 6
2. 设函数y=f(x),当自变量x由x0改变到x0+△x 时,函数的该变量为( )
人民教育出版社 高中数学
1.1 变化率与导数
1
微积分简介
微积分(Calculus)是高等数学中研究函数的微 分(Differentiation)、积分(Integration)以及有关 概念和应用的数学分支。它是数学的一个基础学科。 内容主要包括极限、微分学、积分学及其应用。微分 学包括求导数的运算,是一套关于变化率的理论。它 使得函数、速度、加速度和曲线的斜率等均可用一套 通用的符号进行讨论。积分学,包括求积分的运算, 为定义和计算面积、体积等提供一套通用的方法。
平均变化率表示直线AB的斜率
16
例1 已知函数f(x)=x2,分别计算在下列区间上, f(x)的平均变化率. (1)[1,3];(2)[1,2];(3)[1,1.1]
解:(1) f (3) f (1) 9 1 4
31
2
(2) f (2) f (1) 4 1 3
21
1
f (1.1) f
到了十七世纪,有许多科学问题需要解决,这些 问题也就成了促使微积分产生的因素。归结起来,大 约有四种主要类型的问题:第一类是研究运动的时候 直接出现的,也就是求即时速度的问题。第二类问题 是求曲线的切线的问题。第三类问题是求函数的最大 值和最小值问题。第四类问题是求曲线长、曲线围成 的面积、曲面围成的体积、物体的重心、一个体积相 当大的物体作用于另一物体上的引力。
于是,函数f(x)从x1到x2的平均变化率等于 函数值的增量/自变量的增量,即
y f ( x2 ) f ( x1 )
x
x2 x1
f ( x1 x) f ( x1 ) x
15
思考
y
根据平均变化率的定义:
=
f ( x2 )
f ( x1 )
x
x2 x1
你认为其几何意义是什么?
设A( x1, f ( x1 ))、B( x2 , f ( x2 ))