PCB工程师做layout的设计要点

合集下载

Layout(集成电路版图)注意事项及技巧总结材料

Layout(集成电路版图)注意事项及技巧总结材料

Layout主要工作注意事项●画之前的准备工作●与电路设计者的沟通●Layout 的金属线尤其是电源线、地线●保护环●衬底噪声●管子的匹配精度一、l ayout 之前的准备工作1、先估算芯片面积先分别计算各个电路模块的面积,然后再加上模块之间走线以及端口引出等的面积,即得到芯片总的面积。

2、Top-Down 设计流程先根据电路规模对版图进行整体布局,整体布局包括:主要单元的大小形状以及位置安排;电源和地线的布局;输入输出引脚的放置等;统计整个芯片的引脚个数,包括测试点也要确定好,严格确定每个模块的引脚属性,位置。

3、模块的方向应该与信号的流向一致每个模块一定按照确定好的引脚位置引出之间的连线4、保证主信号通道简单流畅,连线尽量短,少拐弯等。

5、不同模块的电源,地线分开,以防干扰,电源线的寄生电阻尽可能较小,避免各模块的电源电压不一致。

6、尽可能把电容电阻和大管子放在侧旁,利于提高电路的抗干扰能力。

二、与电路设计者的沟通搞清楚电路的结构和工作原理明确电路设计中对版图有特殊要求的地方包含内容:(1)确保金属线的宽度和引线孔的数目能够满足要求(各通路在典型情况和最坏情况的大小)尤其是电源线盒地线。

(2)差分对管,有源负载,电流镜,电容阵列等要求匹配良好的子模块。

(3)电路中MOS管,电阻电容对精度的要求。

(4)易受干扰的电压传输线,高频信号传输线。

三、layout 的金属线尤其是电源线,地线1、根据电路在最坏情况下的电流值来确定金属线的宽度以及接触孔的排列方式和数目,以避免电迁移。

电迁移效应:是指当传输电流过大时,电子碰撞金属原子,导致原子移位而使金属断线。

在接触孔周围,电流比较集中,电迁移更容易产生。

2、避免天线效应长金属(面积较大的金属)在刻蚀的时候,会吸引大量的电荷,这时如果该金属与管子栅相连,可能会在栅极形成高压,影响栅养化层质量,降低电路的可靠性和寿命。

解决方案:(1)插一个金属跳线来消除(在低层金属上的天线效应可以通过在顶层金属层插入短的跳线来消除)。

LAYOUT设计一般规则

LAYOUT设计一般规则

1. 一般规则1.1 PCB板上预划分数字、模拟、DAA信号布线区域。

1.2 数字、模拟元器件及相应走线尽量分开并放置於各自的布线区域内。

1.3 高速数字信号走线尽量短。

1.4敏感模拟信号走线尽量短。

1.5 合理分配电源和地。

1.6 DGND、AGND、实地分开。

1.7 电源及临界信号走线使用宽线。

1.8 数字电路放置於并行总线/串行DTE接口附近,DAA电路放置於电话线接口附近。

2. 元器件放置2.1 在系统电路原理图中:a) 划分数字、模拟、DAA电路及其相关电路;b) 在各个电路中划分数字、模拟、混合数字/模拟元器件;c) 注意各IC芯片电源和信号引脚的定位。

2.2 初步划分数字、模拟、DAA电路在PCB板上的布线区域(一般比例2/1/1),数字、模拟元器件及其相应走线尽量远离并限定在各自的布线区域内。

Note:当DAA电路占较大比重时,会有较多控制/状态信号走线穿越其布线区域,可根据当地规则限定做调整,如元器件间距、高压抑制、电流限制等。

2.3 初步划分完毕后,从Connector和Jack开始放置元器件:a) Connector和Jack周围留出插件的位置;b) 元器件周围留出电源和地走线的空间;c) Socket周围留出相应插件的位置。

2.4 首先放置混合型元器件(如Modem器件、A/D、D/A转换芯片等):a) 确定元器件放置方向,尽量使数字信号及模拟信号引脚朝向各自布线区域;b) 将元器件放置在数字和模拟信号布线区域的交界处。

2.5 放置所有的模拟器件:a) 放置模拟电路元器件,包括DAA电路;b) 模拟器件相互靠近且放置在PCB上包含TXA1、TXA2、RIN、VC、VREF信号走线的一面;c) TXA1、TXA2、RIN、VC、VREF信号走线周围避免放置高噪声元器件;d) 对於串行DTE模块,DTE EIA/TIA-232-E系列接口信号的接收/驱动器尽量靠近Connector并远离高频时钟信号走线,以减少/避免每条线上增加的噪声抑制器件,如电容等阻流圈和。

全了!268条PCBLayout设计规范(经典收藏)

全了!268条PCBLayout设计规范(经典收藏)

全了!268条PCBLayout设计规范(经典收藏)PCB是印刷电路板(即Printed Circuit Board)的简称。

印刷电路板是组装电子零件用的基板,是在通用基材上按预定设计形成点间连接及印制元件的印制板。

该产品的主要功能是使各种电子零组件形成预定电路的连接,起中继传输的作用,是电子产品的关键电子互连件,有“电子产品之母”之称。

印刷电路板作为电子零件装载的基板和关键互连件,任何电子设备或产品均需配备。

其下游产业涵盖范围相当广泛,涉及一般消费性电子产品、信息、通讯、医疗,甚至航天科技(资讯行情论坛)产品等领域。

随着科学技术的发展,各类产品的电子信息化处理需求逐步增强,新兴电子产品不断涌现,使PCB产品的用途和市场不断扩展。

新兴的3G手机、汽车电子、LCD、IPTV、数字电视、计算机的更新换代还将带来比现在传统市场更大的PCB市场。

Layout是布局规划的意思。

结合起来:PCB Layout就是印刷电路板布局布线的意思。

下面是268条超经典的PCB Layout设计规范,初学者一定要收藏!268条PCB Layout设计规范按部位分类技术规范内容1 PCB布线与布局PCB布线与布局隔离准则:强弱电流隔离、大小电压隔离,高低频率隔离、输入输出隔离、数字模拟隔离、输入输出隔离,分界标准为相差一个数量级。

隔离方法包括:空间远离、地线隔开。

2 PCB布线与布局晶振要尽量靠近IC,且布线要较粗3 PCB布线与布局晶振外壳接地4 PCB布线与布局时钟布线经连接器输出时,连接器上的插针要在时钟线插针周围布满接地插针5 PCB布线与布局让模拟和数字电路分别拥有自己的电源和地线通路,在可能的情况下,应尽量加宽这两部分电路的电源与地线或采用分开的电源层与接地层,以便减小电源与地线回路的阻抗,减小任何可能在电源与地线回路中的干扰电压6 PCB布线与布局单独工作的PCB的模拟地和数字地可在系统接地点附近单点汇接,如电源电压一致,模拟和数字电路的电源在电源入口单点汇接,如电源电压不一致,在两电源较近处并一1~2nf的电容,给两电源间的信号返回电流提供通路7 PCB布线与布局如果PCB是插在母板上的,则母板的模拟和数字电路的电源和地也要分开,模拟地和数字地在母板的接地处接地,电源在系统接地点附近单点汇接,如电源电压一致,模拟和数字电路的电源在电源入口单点汇接,如电源电压不一致,在两电源较近处并一1~2nf的电容,给两电源间的信号返回电流提供通路8 PCB布线与布局当高速、中速和低速数字电路混用时,在印制板上要给它们分配不同的布局区域9 PCB布线与布局对低电平模拟电路和数字逻辑电路要尽可能地分离10 PCB布线与布局多层印制板设计时电源平面应靠近接地平面,并且安排在接地平面之下。

PCBLAYOUT安规设计注意事项

PCBLAYOUT安规设计注意事项

PCBLAYOUT安规设计注意事项PCB(Printed Circuit Board)Layout的设计是电子工程师在电路设计中不可或缺的一部分。

PCB Layout的设计必须遵循一定的安规设计准则和注意事项,以确保最终产品的质量符合相关法规和标准,同时还要保证电路板能够正常工作。

下面将介绍一些PCB Layout的安规设计注意事项。

1. 防静电破坏静电对于电子元器件的损坏是十分严重的。

在PCB Layout 中,我们必须考虑如何减少静电破坏的风险,并确保PCB板及其上元器件不遭受静电损坏。

对于一些静电敏感的元器件,如场效应晶体管等,我们需要注意以下几点:(1)在装配元器件之前,要确保工作区域的接地系统得到有效的连接;(2)元器件需要使用袋式包装或者静电包装,确保元器件表面的防静电材料不受损坏;(3)在PCB Layout上,为防止静电累积,要合理安排元器件的布局,对那些静电敏感的部分,需要进行特殊处理。

2. 灵敏度和抗干扰能力在PCB Layout设计中,元器件的灵敏度和通信接口的干扰容忍度十分重要。

在光、磁、电场和射频辐射等电磁干扰的环境下,必要时需要采取一些措施来保证电路板的抗干扰能力。

例如,为了减少介质损失,一种方法是使用高频线路的微带线(microstrip lines)。

3. 温度和湿度电子元器件的温度和湿度对它们的性能和寿命都有很大的影响。

在PCB Layout设计中,我们需要考虑环境条件,并采取必要的措施来确保元器件长期稳定工作。

例如在元器件周围设置散热装置或者风扇,以保持元器件周围的温度。

这样可以有效降低元器件电阻和电容的漂移,同时还可以提高元器件的稳定性。

4. 接地和电源接地和电源设计是PCB Layout安规设计中很重要的一部分。

在接地设计中,应该遵循单点接地和保持最小全流接地的原则。

这种方法可以减少环路电流和降低噪声。

在电源设计中,需要考虑到电源稳定性和供电电流等因素。

5. 安全性和可靠性在PCB Layout安规设计中,需要考虑到电路板的安全性和可靠性。

PCB Layout工程师需要注意的地方

PCB Layout工程师需要注意的地方

PCB工程师需要注意的地方较多的PCB工程师,他们经常画电脑主板,对Allegro等优秀的工具非常的熟练,但是,非常可惜的是,他们居然很少知道如何进行阻抗控制,如何使用工具进行信号完整性分析.如何使用IBIS模型我觉得真正的PCB高手应该还是信号完整性专家,而不仅仅停留在连连线,过过孔的基础上对布通一块板子容易,布好一块好难。

小资料对于电源、地的层数以及信号层数确定后,它们之间的相对排布位置是每一个PCB工程师都不能回避的话题;单板层的排布一般原则:元件面下面(第二层)为地平面,提供器件屏蔽层以及为顶层布线提供参考平面;所有信号层尽可能与地平面相邻;尽量避免两信号层直接相邻;s主电源尽可能与其对应地相邻;兼顾层压结构对称。

对于母板的层排布,现有母板很难控制平行长距离布线,对于板级工作频率在50MHZ以上的(50MHZ 以下的情况可参照,适当放宽),建议排布原则:元件面、焊接面为完整的地平面(屏蔽);无相邻平行布线层;所有信号层尽可能与地平面相邻;关键信号与地层相邻,不跨分割区。

注:具体PCB的层的设置时,要对以上原则进行灵活掌握,在领会以上原则的基础上,根据实际单板的需求,如:是否需要一关键布线层、电源、地平面的分割情况等,确定层的排布,切忌生搬硬套,或抠住一点不放。

以下为单板层的排布的具体探讨:*四层板,优选方案1,可用方案3方案电源层数地层数信号层数1 2 3 41 1 12 S G P S2 1 2 2 G S S P3 1 1 2 S P G S方案1 此方案四层PCB的主选层设置方案,在元件面下有一地平面,关键信号优选布TOP层;至于层厚设置,有以下建议:满足阻抗控制芯板(GND到POWER)不宜过厚,以降低电源、地平面的分布阻抗;保证电源平面的去藕效果;为了达到一定的屏蔽效果,有人试图把电源、地平面放在TOP、BOTTOM层,即采用方案2:此方案为了达到想要的屏蔽效果,至少存在以下缺陷:电源、地相距过远,电源平面阻抗较大电源、地平面由于元件焊盘等影响,极不完整由于参考面不完整,信号阻抗不连续实际上,由于大量采用表贴器件,对于器件越来越密的情况下,本方案的电源、地几乎无法作为完整的参考平面,预期的屏蔽效果很难实现;方案2使用范围有限。

layout注意事项

layout注意事项

Layout注意问题一:ESD 器件由于ESD器件选择和摆放位置同具体的产品相关,下面是一些通用规则:1.让元器件尽量远离板边。

2.敏感线(Reset,PBINT)走板内层不要太靠近板边;RTC部分电路不要靠近板边。

3.可能的话,PCB四周保留一圈露铜的地线。

4. ESD器件接地良好,直接(通过VIA)连接到地平面。

5. 受保护的信号线保证先通过ESD器件,路径尽量短。

二:天线13MHz泄漏,会导致其谐波所在的Channel: Chan5, Chan70,Chan521、586、651、716、781、846等灵敏度明显下降;13MHz相关线需要充分屏蔽。

一般FPC和LCDM离天线较近,容易产生干扰,对FPC上的线需要采取滤波(RC 滤波)措施和屏蔽FPC,并可靠接地。

靠近天线部分的板上线(不管什么类型)尽量要走到内层或采取一定的屏蔽措施,来降低其辐射。

(板内的其他信号可能耦合到走在表层的信号线上,产生辐射干扰。

)三.LCD注意FPC连接器的信号定义:音频信号线最好两边有地线保护;音频信号线与电平变换频繁的信号线要有足够间距;FPC上的时钟信号及其他电平变换频繁的信号要有地线保护减少EMI影响;LCD的数据线格式是否和BB芯片匹配?例如i80或M68在时序上要求不一致等问题。

设计中对LCM 上的JPEG IC时钟信号的频率,幅值要满足需求。

如果时钟幅度不够可能导致JPEG不工作或不正常;注意Camera的输入时钟对Preview的影响,通常较高的Preview刷新帧数要求时钟频率高。

布局上,升压电路远离天线;音频器件和音频走线;给Camera供电的LDO靠近Camera放置;主板上Hall器件的位置要恰当,不能对应上盖LCD屏的位置,否则上盖的磁铁不能正对着Hall器件。

四.音频设计PCB布局音频器件远离天线、RF、数字部分,防止天线辐射对音频器件(音频功放等)的干扰;如果靠的很近,应该考虑使用屏蔽罩。

PCBLayout基础必学知识点

PCBLayout基础必学知识点

PCBLayout基础必学知识点以下是PCB布局基础必学的知识点:1. PCB布局软件:了解并熟悉主流的PCB布局软件,如Altium Designer、Cadence Allegro等。

2. 元器件选型:根据设计需求选择合适的元器件,包括尺寸、功耗、特性等。

3. 片上布线规则:根据芯片厂商提供的设计指南,了解片上布线规则,如禁止区域、差分信号布线等。

4. 封装库管理:熟悉PCB封装库的使用,包括添加、编辑、创建封装符号等。

5. 杂散信号管理:合理引导与管理高速信号、地和电源信号的传输路径,避免信号互相干扰。

6. 信号完整性:了解信号完整性的概念和影响因素,如反射、串扰等,设计合理的终端匹配和阻抗控制。

7. 热管理:根据设计需求和元器件的热特性,合理布局散热元件,如散热片、散热孔等。

8. 电源管理:合理布局电源元件,降低电源噪声,确保供电稳定。

9. 关键信号布线:关键信号如时钟、复位等需要特殊布线,如避免交叉、降低噪声等。

10. 纹理规则:根据PCB制造厂商提供的纹理要求,了解合理规划纹理布局。

11. 设计规范:遵循相关的设计规范和标准,如IPC规范,确保设计的可靠性和可制造性。

12. DFM(Design For Manufacturability)设计:考虑到PCB制造过程中的制造要求和限制,设计合理的布局并优化PCB制造流程。

13. EMI(Electromagnetic Interference)控制:合理布局和布线,减小电磁干扰,确保设计的EMI性能。

14. 文件输出:掌握PCB制造文件的输出,如Gerber文件、BOM表格等。

这些是PCB布局基础必学的知识点,掌握这些知识可以帮助设计师设计出高质量和可靠的PCB布局。

pcb layout 的指导思想与基本走线要求

pcb layout 的指导思想与基本走线要求

pcb layout 的指导思想与基本走线要求2009年03月30日星期一上午 11:05pcb layout时,可以参照这些资料,介绍PCB布线以及画PCB时的一些常用规则,画出一块优质的PCB,当然,按照实际需要,也可以自由变通这是一个完整的PCB Layout设计规则,文章从元器件的布局到元件排列,再到导线布线,以及线宽及间距这些,还有的是焊盘,都做了详细的分析以下是详细内容:一、元件的布局PCB设计规则的元件的布局方式包括:元器件布局要求,元器件布局原则,元器件布局顺序,常用元器件的布局方法二、元器件排列方式元器件在PCB上的排列可采用不规则、规则和网格等三种排列方式中的一种,也可同时采用多种。

三、元器件的间距与安装尺寸讲述的是在PCB设计当中,元器件的排放时,元间的间距以及安装的尺寸四、印制导线布线布线是指对印制导线的走向及形状进行放置,它在PCB的设计中是最关键的步骤,而且是工作量最大的步骤五、印制导线的宽度及间距印制导线的宽度及间距,一般导线的最小宽度在0.5-0.8mm,间距不少于1mm六、焊盘的孔径及形状介绍PCB设计的基础知识,包括焊盘的形状,以及焊般的孔径►详细参数与基本规则1.CLK(包括DDR-CLK)基本走线要求:1. clk 部分不可过其它线, Via 不超过两个.2. 不可跨切割,零件两Pad 间不能穿线.3. Crystal 正面不可过线,反面尽量不过线..4. Differential Pair 用最小间距平行走线.且同层5 clk 与高速信号线(1394,usb 等)间距要大于50mil.2. VGA:基本走线要求:1. RED、GREEN、BLUE 必须绕在一起,视情况包GND. R.G.B 不要跨切割。

2 HSYNC、VSYNC 必须绕在一起, 视情况包GND.3. LAN:基本走线要求1. 同一组线,必须绕在一起。

2 Net: RX,TX:必须differential pair 绕线4.1394:基本走线要求:1. Differential pair 绕线,同层,平行,不要跨切割.2. 同一组线,必须绕在一起。

最全的PCB Layout规范

最全的PCB Layout规范

PCB Layout规范PCB Layout规范一、安全间距1. LN之间3mm以上,空间距离1.8mm以上,不足时开1mm以上的槽增加沿面距离。

2. 初次级间6.4mm以上,空间距离5mm以上,不足时开1mm以上的槽增加沿面距离。

3. 初级与外壳地4.5mm以上,空间距离3mm以上,不足时开1mm以上的槽增加沿面距离。

4.高压与地之间铜箔距离1mm以上,其它无要求铜箔间距离0.5mm以上。

二、走线、铜箔、焊盘、过孔1. 电源PCB最小走线0.3mm以上;2. 铜箔、走线与板边、挖槽处距离0.5mm以上;3.焊盘孔边与孔边距1mm以上,与板边距离1mm以上;4.SMD元件焊点与直立插件焊点间距需≥0.4mm;4.焊盘孔大小=元件引脚大小+(0.2~0.4 mm),变压器多引脚元件、自动插件元件应加0.4mm;5.焊盘孔径最小为0.8mm,同一块PCB孔径大小的类型越少越好,减少PCB加工成本;6.焊盘大小通常为孔径大小的2.0~2.3倍;7.后焊零件需开流锡槽,这样过波峰焊时内孔才不会被封住;8.过孔的大小由它的载流量决定,需要的载流量越大,所需的过孔尺寸越大,如电源层和地层与其它层联接所用的过孔就要大一些;9.Chip元件焊盘设计应掌握以下关键要素:三、自动插件技术1、零件方向以水平或垂直为主;2、零件与零件本体距离需1.0mm以上,零件本体与板边距离0.5mm以上;3、焊点与焊点间距离需0.5mm以上;4.自动插件元件焊盘孔径需≥1mm,一般为元件引脚大小+0.4mm;4、电阻、二极管等元件以卧式放置才可自动插件;7.自动插件电阻、二极管、跳线等卧式元件,脚距应为2.5mm的整数倍四、表面贴着技术1.零件方向以水平或垂直为主;2.SMD 贴片零件最小间距要求0.3mm;3.SMD零件摆设时需考虑过锡炉的方向,以防止阴影效应;波峰焊SMD元件的排布方向:4.SMD零件两端焊点铺铜应平均分布,以防止墓碑效应。

PCB Layout 设计需知及要领

PCB Layout 设计需知及要领

修正圖面
詳細流程圖及說明:
每日16:00繪制草圖 給工程師核對, 並隔日回饋問題
工程師檢查是否錯誤
工程師檢查是否錯誤
機種 LAYOUT
核對原始LAYOUT 有無錯誤
開始LAYOUT
完成草圖 (繪制草圖核對)
完成正式圖 (繪制正式圖核對)
繪製各層別圖 檢察是否錯誤
出圖 樣品:12:00前 發行:10:00前
1.3.6 雙面SMD布置者,為避免錫膏印刷機之夾爪 夾到零件,零件與板邊需保持10mm距离
1.3.7 Guid Line p45 螺絲孔至SMD零件之規範,修訂如下
避免鎖螺絲時對周邊產生之應力損壞SMD零件,所有螺絲 孔附近之半徑以內,不得佈置SMD,如下表。
螺絲孔周圍佈置限制
條件 ❖二極體、電容 ❖其餘零件 ❖螺柱≧螺絲頭
(2)將變更: REVISION, CODE。 請保留:REVISION ,CODE 。
a.若須變更REVISION在其 內打勾,變更CODE在其 內打勾。
b.須保留前面板本之PCB請將保留板本之REVISION
,CODE
填入。
(3)客戶名稱:
請將客戶名稱填入,若為標準品請填寫 Standard 。
PWB instead of PCB
主要原因為: PCB(PRINT CIRCIT BOARD 板名稱(Polychlorinated bipheny)多氯聯苯(有 毒),改為 PWB(Print Wire Board印刷線路 版),此項變更對爾後客戶(SONY))來稽核時較不會 有爭議.所有規格及表格PCB字樣須改為PWB;資 料中心審核組會作規格的卡關
E.此項變更: 需, 不需 報備安規。
F.此次變更要: 製做樣品(

PCB layout 注意事项

PCB layout 注意事项

时钟电路1.无源晶体电路a:一个无源晶体和两个小电容(22pF/33pF)组成,整个电路尽可能的靠近芯片放置,一般线长必须控制在100MIL以内b:需保证信号先过电容再到芯片,两信号线按差分线处理,线宽粗些(10mil左右)c:器件面需铺地铜,加地孔,晶体下方不能有其他同层信号线穿过d:若晶体的频率在25M以上,建议在两信号之间加匹配电阻(1M),电阻放电容之后2.有源晶体电路a:电路由一个有源晶体、一个匹配电阻(33Ω)、一个小电容(0.1uF)、一个大电容(10uF)、一个磁珠组成,其中两个电容和磁珠组成一个LC滤波电路b:整个电路的布局尽可能的靠近芯片放置,使时钟的布线尽可能的短c:布局时小容值电容需靠近晶体电源PIN放置,匹配电阻应靠近晶体放置,一般不超过200mild:器件面需铺地铜,加地孔,晶体下方不能有其他同层信号线穿过e:匹配电阻两端的信号线严格按照时钟线布线要求处理3.时钟驱动电路a:时钟电路、驱动芯片、去耦电容、匹配电阻组成b:布局紧凑,时钟电路及匹配电阻尽量靠近驱动芯片放置(200mil)c:保证驱动芯片有足够的去耦电容及Buck电容d:驱动芯片内部要铺POWER SHAPE,其他信号的孔不能朝内部打e:按常规的时钟线要求布线,驱动芯片下方不能有其他信号穿过f:其他无关的电路及信号要远离,可能的话多做谢屏蔽处理接口电路1.网口电路-100M以太网;1000M以太网【4对差分线】;集成变压器a:连接器(RJ45)、隔离变压器、数据收发桥片、去耦电容、匹配电阻:部分带防护电路和Smith电路b:变压器与RJ45应尽量近(1000mil以内),与桥片也尽可能的近,有时应空间关系可适当的远些c:变压器中心抽头每个pin要有一个去耦电容(0.1uF),有时初级端连成RC形式来处理d:网口信号由两对差分线组成,初级端的线不控制阻抗,线尽量粗些(12mil),次级线按一般信号线处理e:变压器中心抽头经电容按地的信号线宽要粗些,一般20milf:变压器中间对应的所有层都必须掏空g:所有外来信号线都不得在变压器下方布线,更不允许信号线从初次级间跨过h:常规RJ45下方需做全部掏空处理2.光口电路a:3.3V供电模块、上拉电阻、光模块b:2对差分线(收发分层)和6根控制线常规处理c:外壳的GND PIN一般接到CGND(保护地)3.串口电路(RS-232-C)a:布局时阻容尽量靠近芯片放置,布线时加粗他们的管脚引线b:Tx和Rx不需要做成差分形式4.JTAG电路a:测试连接器和上下拉电阻b:信号线:TCK TDI TDO TMS TRSTc:布局时,上下拉电阻要靠近JTAG连接器放置d:表贴的JTAG连接器,一般不要在内部打孔B接口电路(5V电源)a:6个管脚---2个固定管脚,4个信号管脚(1脚电源,2脚USB_N,3脚USB_P,4脚GND)5.音/视频接口电路Audio(音频)a:阻抗控制在75Ωb:音频连接器、去耦电容、磁珠、上拉电阻、匹配电阻c:布线时线宽尽量加粗(15mil)d:布线时远离高压信号,可能的话,单独给他们包地处理Vudio(视频):R、G、B、HSYNC、VSYNC/75Ω阻抗a:VGA连接器、去耦电容、磁珠、上拉电阻、匹配电阻、供电电源b:RGB的磁珠尽量靠近连接器放置,信号要做到先去耦再输入,RGB的上拉电阻可放在芯片端c:RGB的信号尽量加粗(15mil)三根线相互间距及其他信号的间距应尽量大,可能的话对RGB三根信号线进行单独包地处理d:HSYNC、VSYNC是行场同步信号,这两根信号需按差分形式布线,远离其他信号,可能的话也进行包地处理。

LAYOUT设计一般规则

LAYOUT设计一般规则

1. 一般规则1.1 PCB板上‎预划分数字‎、模拟、DAA信号‎布线区域。

1.2 数字、模拟元器件‎及相应走线‎尽量分开并‎放置於各自‎的布线区域‎内。

1.3 高速数字信‎号走线尽量‎短。

1.4敏感模拟信‎号走线尽量‎短。

1.5 合理分配电‎源和地。

1.6 DGND、AGND、实地分开。

1.7 电源及临界‎信号走线使‎用宽线。

1.8 数字电路放‎置於并行总‎线/串行DTE‎接口附近,DAA电路‎放置於电话‎线接口附近‎。

2. 元器件放置‎2.1 在系统电路‎原理图中:a) 划分数字、模拟、DAA电路‎及其相关电‎路;b) 在各个电路‎中划分数字‎、模拟、混合数字/模拟元器件‎;c) 注意各IC‎芯片电源和‎信号引脚的‎定位。

2.2 初步划分数‎字、模拟、DAA电路‎在PCB板‎上的布线区‎域(一般比例2‎/1/1),数字、模拟元器件‎及其相应走‎线尽量远离‎并限定在各‎自的布线区‎域内。

Note:当DAA电‎路占较大比‎重时,会有较多控‎制/状态信号走‎线穿越其布‎线区域,可根据当地‎规则限定做‎调整,如元器件间‎距、高压抑制、电流限制等‎。

2.3 初步划分完‎毕后,从Conn‎e ctor‎和Jack‎开始放置元‎器件:a) Conne‎c tor和‎J ack周‎围留出插件‎的位置;b) 元器件周围‎留出电源和‎地走线的空‎间;c) Socke‎t周围留出‎相应插件的‎位置。

2.4 首先放置混‎合型元器件‎(如Mode‎m器件、A/D、D/A转换芯片‎等):a) 确定元器件‎放置方向,尽量使数字‎信号及模拟‎信号引脚朝‎向各自布线‎区域;b) 将元器件放‎置在数字和‎模拟信号布‎线区域的交‎界处。

2.5 放置所有的‎模拟器件:a) 放置模拟电‎路元器件,包括DAA‎电路;b) 模拟器件相‎互靠近且放‎置在PCB‎上包含TX‎A1、TXA2、RIN、VC、VREF信‎号走线的一‎面;c) TXA1、TXA2、RIN、VC、VREF信‎号走线周围‎避免放置高‎噪声元器件‎;d) 对於串行D‎T E模块,DTE EIA/TIA-232-E系列接口信‎号的接收/驱动器尽量‎靠近Con‎n ecto‎r并远离高‎频时钟信号‎走线,以减少/避免每条线‎上增加的噪‎声抑制器件‎,如电容等阻‎流圈和。

PCBlayout问题总结(全面)

PCBlayout问题总结(全面)

PCBlayout问题总结(全面)第一篇:PCB layout 问题总结(全面)PCB layout结合生产的七大设计要点总结能够应用和生产,继而成为一个正式的有效的产品才是PCB layout最终目的,layout的工作才算告一个段落。

那么在layout的时候,应该注意哪些常规的要点,才能使自己画的文件有效符合一般PCB加工厂规则,不至于给企业造成不必要的额外支出? 这篇文章为是为大家总结出目前PCBlayout一般要遵行七大规则:一、外层线路设计规则:(1)焊环(Ring环):PTH(镀铜孔)孔的焊环必须比钻孔单边大8mil,也就是直径必需比钻孔大16mil.Via孔的焊环必须比钻孔单边大8mil,直径必需比钻孔大16mil.总之不管是通孔PAD还是Via,设置内径必须大于12mil,外径必须大于28mil,这点很重要啊!(2)线宽、线距必须大于等于4mil,孔与孔之间的距离不要小于8mil.(3)外层的蚀刻字线宽大于等于10mil.注意是蚀刻字而不是丝印。

(4)线路层设计有网格的板子(铺铜铺成网格状的),网格空处矩形大于等于10*10mil,就是在铺铜设置时line spacing不要小于10mil,网格线宽大于等于8mil.在铺设大面积的铜皮时,很对资料都建议将其设置成网状,一来可以防止PCB板的基板与铜箔的黏合剂在浸焊或受热时,产生挥发性气体﹑热量不易排除,导致铜箔膨胀﹑脱落现象;二来更重要的是网格状的铺地其受热性能,高频导电性性能都要大大优于整块的实心铺地。

但是本人认为在散热方面不能以网格铺铜的优点以偏概全。

应考虑到局部受热而会导致PCB变形的情况下,以损耗散热效果而保全PCB完整性为条件应采用网格铺铜,这种铺铜相对铺实铜的好处就是,板面温度虽有一定提高,但还在商业或工业标准的范围之内,对元器件损害有限;但是如果PCB板弯曲带来的直接后果就是出现虚焊点,可能会直接导致线路出故障。

相比较的结果就是采用以损害小为优。

PCB Layout的设计要点

PCB Layout的设计要点

PCB Layout的设计要点在集成电路应用设计中,项目原理图设计完成之后,就需要进行PCB布板的设计。

PCB设计是一个至关重要的环节。

设计结果的优劣直接影响整个设计功能。

因此,合理高效的PCB Layout是芯片电路设计调试成功中至关重要的一步。

本次我们就来简单讲一讲PCB Layout的设计要点。

PCB Layout设计要点元器件封装选择电阻选择: 所选电阻耐压、最大功耗及温度不能超出使用范围。

电容选择: 选择时也需要考虑所选电容的耐压与最大有效电流。

电感选择: 所选电感有效值电流、峰值电流必须大于实际电路中流过的电流。

电路设计常见干扰串扰: 设计线路平行走线距离过长时, 导线间的互容、互感将能量耦合至相邻的传输线。

可以通过以下方法减少串扰影响:1.加入安全走线2.实际时尽量让相邻走线互相垂直3.每走一段距离的平行线,增大两者间的间距反射: 由于布线的弯角、分支太多造成传输线上阻抗不匹配,可以通过减少线路上的弯角及分支线或者避免直角走线及分支线补强来进行改善。

确定接地方式单点接地(适用于低频电路):所有的电路接地线接到公共地线同一点,接线简单且减少地线回路相互干扰。

多点接地(适用于多层板电路/高频电路):系统内部各部分就近接地,提供较低的接地阻抗。

增加滤波、旁路电容为保证输入/输出电压稳定,增加输入/输出电容。

在电源和IC间增加旁路电容,以保证输入电压稳定并滤除高频噪声。

阻抗位置设计相对来说阻抗越高的位置, 越容易被干扰。

如下为一同步降压芯片的PCB阻抗位置设计。

PCB Layout设计技巧电源/地线处理既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降. 布线时尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线。

对数字电路的PCB可用宽的地导线组成一个回路,即构成一个地网来使用(模拟电路不能使用该方法)。

用大面积敷铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。

PCB电源板layout的设计注意事项说明

PCB电源板layout的设计注意事项说明

PCB电源板layout的设计注意事项说明做了几年的电源板layout,总结了一些主要注意的地方,主要是从以下这几个地方考虑:一、功率回路部分功率板中比较重要首当其冲的就是功率回路部分,在layout的时候应该首先要知道所布的功率部分的电路性质,在电源中功率电路主要分di/dt电路和dv/dt电路,这两种电路在布局走线的时候走法是不一样的。

di/dt电路因为它的单位时间内电流的变化比较大,所以这部分电路在走线的时候重点要关注整个电路的环路面积应尽可能的小,最好是一个环路的走线在不同的层重叠走,这样电路的环路面积最小,本身产生的干扰可以自身就耦合掉。

dv/dt电路它的侧重点就完全不一样,因为这种电路在单位时间内电压变化会比较大,所以它容易对外界产生干扰,所以这种电路在走线的时候铜皮不能太宽,在满足承载电流的情况下铜皮宽度尽可能的小,不同层的重叠区域尽可能小,敏感信号尽可能远离这些走线。

二、驱动部分驱动部分的线首先要考虑整个驱动回路的面积,要尽可能的小,要远离干扰源,离被驱动的部分尽可能的近。

像MOS管之类工功率元件的驱动,在走线的时候要特别注意G极和D极的走线不要平行走,因为在大多数情况下MOS管的D极部分的电路是dv/dt的电路,G极是驱动电路,如果平行走的话,驱动信号很容易被干扰,从而导致MOS的误动作。

三、采样信号在功率板中像一些电压采样和电流采样之类的采样信号也是至关重要的,因为这些信号准确与否直接关系到控制端,所有这些采样信号也要尽量避开其他信号,如果有条件的话这些采样信号可以用差分采样,并且在相对应的走线地方能够给他们一个完整的地平面。

四、地的处理地的重要性就更不用说了,无论在哪种板子上,对于地的处理都是非常重要的。

在功率板中地相对来说会比较复杂,因为很多时候功率部分走大电流的地、控制部分一些小电流的。

PCB-LAYOUT设计规范

PCB-LAYOUT设计规范

1.目的规范产品的PCB设计工艺要求,规定PCB 工艺设计的相关参数,使PCB设计满足可生产性等到技术要求。

2.范围适用于恒晨公司所有PCB板的设计;3.权责1、LAYOUT组:负责建立和规范PCB文件库,并严格执行以下要求。

4.规范内容4.1 PCB板的锡膏印刷机定位孔:4.1.1位置:PCB板的4个角上。

4.1.2尺寸:¢1.2±0.1mm。

4.2 V-CUT槽深度要求:4.2.1要求上下V-CUT槽的深度各占板厚的1/3。

4.3 PCB板尺寸要求:4.3.1对于大板,宽度不超过250MM,拼板长度不超过300MM。

4.3.2对于连接板等小板,拼板长度不超过80MM。

4.3.3宽度超过250MM的板卡需在板中间的5MM区域不放元器件,用于过炉夹具使用。

4.3.4 PCB 尺寸、板厚需在PCB 文件中标明、确定,尺寸标注应考虑厂家的加工公差。

板厚(±10%公差)规格:0.8mm、1.0mm、1.2mm、1.6mm、2.0mm、2.5mm、3.0mm、3.5mm;4.4 PCB板元器件布局要求4.4.1所有的插件零件尽量摆在同一面。

4.4.2 DIP元件与SMT元件安全距离:TOP面为1MM,BOT面为2MM。

4.4.3插座的固定孔要求统一一致4.4.4电容、二极管等有方向的元器件方向必须一致。

4.4.5 CHIP元件之间的安全距离:0.75MM;4.4.6 CHIP与IC之间的安全距离:0.5MM;4.4.7 IC与IC之间的安全距离:2MM。

2MM4.4.8 SMT焊盘与过孔/通孔之间的安全距离:0.5MM。

4.4.9 IC、连接器等密脚元件,当相邻焊盘相连时,需要引出后再连接。

如下图:4.4.10 经常插拔器件或板边连接器周围3mm 范围内尽量不布置SMD,以防止连接器插拔时产生的应力损坏器件。

如下图:4.4.11 为了保证可维修性,BGA 器件周围需留有3mm 禁布区,最佳为5mm 禁布区。

PCB Layout——怎样画好PCB

PCB Layout——怎样画好PCB

一、布件原则图11、如下开关电源原边主要电路结构图2在图2布线中,驱动电阻R3应靠近Q1(MOS管),电流取样电阻R4应靠近U1的Pin3,即上图一所说的R、D应尽量缩短高阻抗线路。

又因运算放大器输入端阻抗很高,易受干扰。

输出端阻抗较低,不易受干扰。

一条长线相当于一根接收天线,容易引入外界干扰。

图3A+图3B在图3A中,R1、R2要靠近三极管Q1放置,因Q1的输入阻抗很高,基极线路过长,易受干扰,所以R1、R2不能远离Q1。

在图3B中,C2要靠近D1,因为Q3三极管输入阻抗很高,如Q2至D1的线路太长,易受干扰,则C2应移至D1附近。

2、光电耦合器件易受干扰,应远离强电场、强磁场器件。

如大电流走线、变压器、高电位脉动器件等。

下图是一片六层板,最先布局是,元件面放控制部份,焊锡面放功率部份,在调试时发现干扰很大,原因是3843与光耦位置摆放不合理,如:如上图,3843与光耦放在MOS管底下,它们之间只有一层2.0mm的PCB隔开,MOS管直接干扰3843,后改进为:3、滤波电容尽量贴近开关管或整流二极管。

如下图,C1尽量靠近Q1,C3靠近D1等。

4、如下图,MOS管、变压器离入口太近,EMI传导通不过。

脉冲电流流过的区域远离输入、输出端子,使噪声源和输入、输出口分离。

修改为下图,刚可通过传导EMI。

5、以每个功能电路的核心元件为中心,围绕它来进行布局,元器件应均匀整齐,紧凑地排列在PCB上,尽量减小和缩短各元件之间的连接引线。

6、易受干扰的元器件不能和强干扰器件相互挨得太近,输入输出元件尽量远离。

7、除温度开关、热敏电阻…外,对温度敏感的关键元器件(如IC)应远离发热元件,发热较大的器件应与电容等影响整机寿命的器件有一定的距离。

电容、IC 等与热元件(散热器、整流桥、续流电感、功率电阻)要保持距离。

以避免受热而受到影响。

8、对于PCB板上的贴片元件长轴心线尽量与PCB板长轴心线垂直的方向排列、不易折断。

PCB LAYOUT 设计规范

PCB LAYOUT 设计规范

PCB LAYOUT设计规范1. 目的和作用1.1。

2. 适用范围1.13. 责任3.1 XXX开发部的所有电子工程师、4. 资历和培训4.1 有电子技术基础;4.24.3 熟悉利用电脑PCB绘图软件.5. 工艺要求(所有长度单位为MM)5.1 铜箔最小线宽:单面板0.3MM,双面板0.2MM,边缘铜箔最小要0。

5MM5.2 铜箔最小间隙:单面板:0.35MM,双面板:0.25MM.5.3 铜箔与板边最小距离为0.5MM,元件与板边最小距离为1MM,焊盘与板边最小距离为1MM。

5.4 一般通孔安装元件的焊盘的大小(直径)为孔径的两倍,双面板最小为 1.5MM,单面板最小为2.0MM,建议(2.5MM)。

如果不能用圆形焊盘,可用腰圆形焊盘,大小如下图所示(如有标准元件库,则以标准元件库为准):焊盘长边、短边与孔的关系为:a B c0.6 2.8 1.270.7 2.8 1.520.8 2.8 1.650.9 2.8 1.741.02.8 1.841.12.8 1.945.5 电解电容不可触及发热元件,如大功率电阻,热敏电阻,变压器,散 热器等.电解电容与散热器的间隔最小为10.0MM,其它元件到散热器的间隔最小为2.0MM.5.6 大型元器件(如:变压器、直径15.0MM以上的电解电容、大电流的插座等)加大铜箔及上锡面积如下图;阴影部分面积肥最小要与焊盘面积相等。

5.7 螺丝孔半径5.0MM内不能有铜箔(除要求接地外)及元件.(或按结构图要求).5.8 上锡位不能有丝印油.5.9 焊盘中心距小于2.5MM的,该相邻的焊盘周边要有丝印油包裹,丝印油宽度为0.2MM(建议0.5MM).5.10 跳线不要放在IC下面或马达、电位器以及其它大体积金属外壳的元件下.5.11 在大面积PCB设计中(大约超过500CM2以上),为防止过锡炉时PCB板弯曲,应在PCB板中间留一条5至10MM宽的空隙不放元器件(可走线),以用来在过锡炉时加上防止PCB板弯曲的压条,如下图的阴影区:5.12 每一粒三极管必须在丝印上标出e,c,b脚.5.13 需要过锡炉后才焊的元件,焊盘要开走锡位,方向与过锡方向相反,宽度视孔的大小为0.5MM到1.0MM。

PCB板layout的12个细节

PCB板layout的12个细节

PCB板layout的12个细节1、贴片之间的间距贴片元器件之间的间距是工程师在layout时必须注意的一个问题,如果间距太小焊膏印刷和避免焊接连锡难度非常大。

距离建议如下贴片之间器件距离要求:同种器件:≥0.3mm异种器件:≥0.13*h+0.3mm(h为周围近邻元件最大高度差)只能手工贴片的元件之间距离要求:≥1.5mm.上述建议仅供参考,可按照各自公司的PCB工艺设计规范2、直插器件与贴片的距离如上图,直插式电阻器件与贴片之间应保持足够的距离,建议在1-3mm之间,由于加工比较麻烦现在用直插件的情况已经很少了。

3、对于IC的去耦电容的摆放每个IC的电源端口附近都需要摆放去耦电容,且位置尽可能靠近IC的电源口,当一个芯片有多个电源口的时候,每个口都要布置去耦电容。

4、在PCB板边沿的元器件摆放方向与距离需要注意由于一般都是用拼板来做PCB,因此在边沿附近的器件需要符合两个条件。

第一就是与切割方向平行(使器件的机械应力均匀,比如如果按照上图左边的方式来摆放,在拼板要拆分时贴片两个焊盘受力方向不同可能导致元元件与焊盘脱落)第二就是在一定距离之内不能布置器件(防止板子切割的时候损坏元器件)5、相邻焊盘需要相连的情况需要注意如果相邻的焊盘需要相连,首先确认在外面进行连接,防止连成一团造成桥接,同时注意此时的铜线的宽度。

6、如果焊盘落在普通区域需要考虑散热如果焊盘落在铺通区域应该采取右边的方式来连接焊盘与铺通,另根据电流大小来确定是连接1根线还是4跟线。

如果采取左边的方式的话,在焊接或者维修拆卸元器件时比较困难,因为温度通过铺的铜把温度全面分散导致焊不上鱼差不下。

7、引线比插件焊盘小的话需要加泪滴如果导线比直插器件的焊盘小的话需要加泪滴上图右边的方式。

加泪滴有如下接个好处:(1) 避免信号线宽突然变小而造成反射,可使走线与元件焊盘之间的连接趋于平稳过渡化。

(2) 解决了焊盘与走线之间的连接受到冲击力容易断裂的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PCB 工程师做layout 的设计要点
PCB 最佳设计方法:将PCB 原理图传递给版图(layout)设计时需要考虑的六件事。

本文中提到的所有例子都是用MulTIsim 设计环境开发的,不过在使用不同的EDA 工具时相同的概念同样适用。

初始原理图传递
通过网表文件将原理图传递到版图环境的过程中还会传递器件信息、网表、版图信息和初始的走线宽度设置。

下面是为版图设计阶段准备的一些推荐步骤:
1.将栅格和单位设置为合适的值。

为了对元器件和走线实现更加精细的布局控制,可以将器件栅格、敷铜栅格、过孔栅格和SMD 栅格设计为1mil.
2.将电路板外框空白区和过孔设成要求的值。

PCB 制造商对盲孔和埋孔设置可能有特定的最小值或标称推荐值。

3.根据PCB 制造商能力设置相应的焊盘/过孔参数。

大多数PCB 制造商都能支持钻孔直径为10mil 和焊盘直径为20mil 的较小过孔。

相关文档
最新文档