人教A版高中数学选修2-2知识点
人教版高中 数学选修二 全册知识点 归纳总结3篇
人教版高中数学选修二全册知识点归纳总结第一篇:数学选修二必修内容详解第一章函数及其应用1.函数及其概念:定义域、值域、图象、单调性、奇偶性、周期性、对称性等2.函数的运算:加法、减法、乘法、除法、复合函数、反函数等3.函数的应用:函数模型、函数方程、函数关系、函数表示、函数求值等第二章三角函数1.三角函数的基本概念:正弦、余弦、正切、余切、正割、余割2.三角函数的相互关系:借助单位圆解释正弦、余弦函数,借助正切函数解释余割、正割函数3.三角函数的简单运算:倍角公式、半角公式、和差公式、化简公式、合并公式、差积定理等4.三角函数的应用:角度关系、角度测量、三角函数图像、三角函数方程、三角函数求解等第三章解析几何1.二维平面直角坐标系的基本概念:点、直线、圆等2.二维坐标系中的直线方程:斜截式、截距式、一般式、交点式等3.圆的相关概念:圆的标准方程、圆的一般方程、圆心、半径、切线等4.解析几何的应用:确定方程、矢量运算、空间几何、曲线分析等第四章微积分1.导数及其基本概念:导数定义、导数运算、高阶导数、柯西—罗尔定理等2.微积分基本定理:牛顿—莱布尼茨公式、区分反函数、定积分、不定积分等3.微积分应用:函数极值、函数图像分析、相关变化率、微分方程、微积分定理等以上是数学选修二的必修内容,掌握这些知识点,能够帮助学生扎实掌握高中数学基本概念和方法,为进一步发展数学能力打下基础。
第二篇:数学选修二选修内容详解第五章数列及其应用1.数列的概念:等差数列、等比数列等2.数列的性质:通项公式、求和公式、收敛性、发散性等3.数列的应用:数学归纳法、数列问题的解答、计算器计算数列等第六章概率论与数理统计1.随机事件及其概率:基本概念、事件关系、样本空间等2.概率分布及其函数:二项分布、泊松分布、正态分布、指数分布等3.抽样分布及其统计推论:抽样中心极限定理、参数估计、假设检验等4.应用:概率模型、统计图表、数据分析、随机模拟等第七章矩阵论与线性代数1.基本知识:矩阵基本运算、行列式、逆矩阵、秩等2.线性方程组:高斯消元法、矩阵表示、特解、齐次线性方程组、基础解系等3.特征值和特征向量:特征方程、特征值、特征向量、对角化、相似变换等4.应用:向量分析、投影、方程求解、几何变换、矩阵算法等以上是数学选修二的选修内容,掌握这些知识点,能够帮助学生进一步拓展数学领域,学会使用不同的数学方法解决实际问题。
人教版高中数学选修2-2全套课件
(2)根据导数的定义
f′(x0)=Δlixm→0
ΔΔyx=Δlixm→0
fx0+Δx-fx0 Δx
= lim Δx→0
2x0+Δx2+4x0+Δx-2x20+4x0 Δx
= lim Δx→0
4x0·Δx+2Δx2+4Δx Δx
= lim Δx→0
(4x0+2Δx+4)
=4x0+4,
∴f′(x0)=4x0+4=12,解得 x0=2.
(1)函数f(x)在x1处有定义. (2)Δx是变量x2在x1处的改变量,且x2是x1附近的任意一点, 即Δx=x2-x1≠0,但Δx可以为正,也可以为负. (3)注意自变量与函数值的对应关系,公式中若Δx=x2-x1, 则Δy=f(x2)-f(x1);若Δx=x1-x2,则Δy=f(x1)-f(x2).
解析: (1)由已知∵Δy=f(x0+Δx)-f(x0) =2(x0+Δx)2+1-2x20-1=2Δx(2x0+Δx), ∴ΔΔyx=2Δx2Δx0x+Δx=4x0+2Δx. (2)由(1)可知:ΔΔxy=4x0+2Δx,当 x0=2,Δx=0.01 时, ΔΔyx=4×2+2×0.01=8.02.
(3)在 x=2 处取自变量的增量 Δx,得一区间[2,2+Δx]. ∴Δy=f(2+Δx)-f(2)=2(2+Δx)2+1-(2·22+1)=2(Δx)2+ 8Δx. ∴ΔΔyx=2Δx+8,当 Δx→0 时,ΔΔxy→8.
1.求瞬时变化率时要首先明确求哪个点处的瞬时
变化率,然后,以此点为一端点取一区间计算平均变化率,并逐步
已知f(x)=x2+3.
(1)求f(x)在x=1处的导数;
(2)求f(x)在x=a处的导数.
[思路点拨]
确定函数 的增量
高中数学人教A版选修2-2课件 1-7 定积分的简单应用 第13课时《定积分的简单应用》
解析:(1)由v(t)=8t-2t2≥0,得0≤t≤4,
即当0≤t≤4时,P点向x轴正方向运动,
当t>4时,P点向x轴负方向运动.
故t=6时,点P离开原点的路程为
s1=4(8t-2t2)dt-6(8t-2t2)dt
0
4
=4t2-23t3|40-4t2-23t3|64=1328.
a
成的曲边梯形的面积.
【练习1】 曲线y=cosx0≤x≤32π与坐标轴所围成的图形面积是
() A.2
B.3
5 C.2
D.4
3
3
解析:S= 2 a
cosxdx+|
2
cosxdx|=
2
0
cosxdx-
2
cosxdx=sinx|
2 0
-
(2)路程是位移的绝对值之和,因此在求路程时,要先判断速度 在区间内是否恒正,若符号不定,应求出使速度恒正或恒负的区间, 然后分别计算,否则会出现计算失误.
变式探究2 (1)一物体沿直线以v=3t+2(t单位:s,v单位:m/s)
的速度运动,则该物体在3 s~6 s间的运动路程为( )
A.46 m
3
(3t2-2t+4)dt=()-(8
2
-4+8)=18.
答案:(1)B (2)D
考点三 利用定积分计算变力做功 例3 设有一长25 cm的弹簧,若加以100 N的力,由弹簧伸长到
30 cm,又已知弹簧伸长所需要的拉力与弹簧的伸长量成正比,求使 弹簧由25 cm伸长到40 cm所做的功.
∴W=∫00.1250xdx=25x2|00.12=0.36(J). 答案:0.36 J
最新人教版高中数学选修2-2第二章《数学归纳法》知识梳理
2.3 数学归纳法1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.1.数学归纳法证明一个与正整数n 有关的命题,可按下列步骤进行:第一步,归纳奠基:证明当n 取______________时命题成立.第二步,归纳递推:假设____________时命题成立,证明当________时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫做数学归纳法.数学归纳法的第一步中n 的初始值怎样确定? 【做一做1】 用数学归纳法证明1+a +a 2+…+a n +1=1-a n +21-a(a ≠1),在验证n =1时,等式左边为( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3【做一做2】 设S k =1k +1+1k +2+1k +3+…+12k ,则S k +1为( )A .S k +12k +2B .S k +12k +1+12k +2C .S k +12k +1-12k +2D .S k +12k +2-12k +1【做一做3】 在应用数学归纳法证明凸n 边形的对角线有12n (n -3)条时,第一步验证n等于__________.2.数学归纳法的框图表示答案:1.第一个值n 0(n 0∈N *) n =k (k ≥n 0,k ∈N *) n =k +1 思考讨论提示:数学归纳法的第一步中n 的初始值应根据命题的具体情况而确定,不一定是n 0=1,如证明n 边形的内角和为(n -2)·180°时,其初始值n 0=3.【做一做1】 C 因为左边式子中a 的最高指数是n +1,所以当n =1时,a 的最高指数为2,根据左边式子的规律可得,当n =1时,左边=1+a +a 2.【做一做2】 C 因式子右边各分数的分母是连续正整数,则由S k =1k +1+1k +2+…+12k ,①得S k +1=1k +2+1k +3+…+12k +12k +1+12(k +1).②由②-①,得S k +1-S k =12k +1+12(k +1)-1k +1=12k +1-12(k +1).故S k +1=S k +12k +1-12(k +1),故选C. 【做一做3】 3 ∵三角形是边数最少的凸多边形, ∴需验证的第一个n 值为3. 2.n =n 0 n =k +1 正整数1.如何理解数学归纳法? 剖析:数学归纳法是专门证明与正整数集有关的命题的一种方法,它是一种完全归纳法,是对不完全归纳法的完善.证明分两步,其中第一步是命题成立的基础,称为“归纳奠基”;第二步解决的是延续性问题,又称“归纳递推”.运用数学归纳法证明有关命题应注意以下几点:(1)两个步骤缺一不可.(2)在第一步中,n 的初始值不一定从1取起,也不一定只取一个数(有时需取n =n 0,n 0+1等),证明应视具体情况而定.(3)第二步中,证明n =k +1时,必须使用假设,否则就会打破数学归纳法步骤间的严密逻辑关系,造成推理无效.(4)证明n =k +1成立时,要明确求证的目标形式,一般要凑出假设里给出的形式,以便使用假设,然后再去凑出当n =k +1时的结论,这样就能有效减少论证的盲目性.数学归纳法的理论根据是皮亚诺的归纳公理:任何一个正整数集A ,若①1∈A ;②由k ∈A 可推出k +1∈A ,则A 含有所有的正整数.2.运用数学归纳法要注意哪些?剖析:正确运用数学归纳法应注意以下几点: (1)验证是基础.数学归纳法的原理表明:第一个步骤是要找一个数n 0,这个n 0就是我们要证明的命题对象的最小自然数,这个自然数并不一定都是“1”,因此“找准起点,奠基要稳”是我们正确运用数学归纳法第一个要注意的问题.(2)递推是关键.数学归纳法的实质在于递推,所以从“k ”到“k +1”的过程,必须把归纳假设“n =k ”作为条件来导出“n =k +1”时的命题,在推导过程中,要把归纳假设用上一次或几次.(3)正确寻求递推关系.我们已经知道数学归纳法的第二步递推是至关重要的,那么如何寻求递推关系呢? ①在第一步验证时,不妨多计算几项,并争取正确写出来,这样对发现递推关系是有帮助的.②探求数列通项公式要善于观察式子或命题的变化规律,观察n 处在哪个位置.③在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k )中的最后一项.除此之外,多了哪些项,少了哪些项都要分析清楚.题型一 用数学归纳法证明等式 【例题1】 用数学归纳法证明:⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116…⎝⎛⎭⎫1-1n 2=n +12n(n ≥2,n ∈N *). 分析:第一步先验证等式成立的第一个值n 0;第二步在n =k 时等式成立的基础上,等式左边加上n =k +1时新增的项,整理出等式右边的项.反思:在应用数学归纳法证题时应注意以下几点:①验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定为1.②递推是关键:正确分析由n =k 到n =k +1时式子项数的变化是应用数学归纳法成功证明问题的保障.③利用假设是核心:在第(2)步证明中一定要利用归纳假设,这是数学归纳法证明的核心环节,否则这样的证明方法就不是数学归纳法.题型二 用数学归纳法证明不等式【例题2】 已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1),(1)证明:a n ≥2n -1(n ∈N *). (2)试比较11+a 1+11+a 2+…+11+a n与1的大小,并说明理由. 分析:(1)求f ′(x )→得到式子a n +1≥(a n +1)2-1→利用数学归纳法证明a n ≥2n -1(n ∈N *)(2)由a n ≥2n -1得1+a n ≥2n →11+a n ≤12n →利用放缩法证明不等式成立 反思:利用数学归纳法证明与n 有关的不等式是数学归纳法的主要应用之一,应用过程中注意:①证明不等式时,从n =k 到n =k +1的推导过程中要应用归纳假设,有时需要对目标式进行适当的放缩来实现.②与n 有关的不等式的证明有时并不一定非用数学归纳法不可,还经常用到不等式证明中的比较法、分析法、配方法、放缩法等.题型三 用数学归纳法证明几何问题【例题3】 有n 个圆,其中每两个圆相交于两点,并且每三个圆都不相交于同一点,求证:这n 个圆把平面分成f (n )=n 2-n +2部分.分析:解答本题的关键是在第二步中如何正确地应用假设.反思:用数学归纳法证明几何问题的关键是“找项”,即几何元素从k 个变成(k +1)个时,所证的几何量将增加多少,这需用到几何知识或借助于几何图形来分析,在实在分析不出来的情况下,将n =k +1和n =k 分别代入所证的式子,然后作差,即可求出增加量,然后只需稍加说明即可,这也是用数学归纳法证明几何命题的一大技巧.题型四 易错辨析【例题4】 用数学归纳法证明:1+4+7+…+(3n -2)=12n (3n -1).错解:证明:(1)当n =1时,左边=1,右边=1,左边=右边,等式成立. (2)假设当n =k (k ≥1,k ∈N *)时等式成立,即1+4+7+…+(3k -2)=12k (3k -1),则当n =k +1时,需证1+4+7+…+(3k -2)+[3(k +1)-2]=12(k +1)(3k +2)(*).由于等式左边是一个以1为首项,公差为3,项数为k +1的等差数列的前n 项和,其和为12(k +1)(1+3k +1)=12(k +1)(3k +2),所以(*)式成立,即n =k +1时等式成立.根据(1)和(2),可知等式对一切n ∈N *都成立.错因分析:判断用数学归纳法证明数学问题是否正确,关键要看两个步骤是否齐全,特别是第二步假设是否被应用,如果没有用到假设,那就是不正确的.错解在证明当n =k +1等式成立时,没有用到假设“当n =k (k ≥1,k ∈N *)时等式成立”,故不符合数学归纳法证题的要求.答案:【例题1】 证明:(1)当n =2时,左边=1-14=34,右边=2+12×2=34,∴左边=右边.(2)假设n =k (k ≥2,k ∈N *)时结论成立,即⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19…⎝⎛⎭⎫1-1k 2=k +12k . 那么n =k +1时,利用归纳假设有:⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19…⎝⎛⎭⎫1-1k 2⎣⎡⎦⎤1-1(k +1)2=k +12k ⎣⎡⎦⎤1-1(k +1)2=k +12k ·k (k +2)(k +1)2 =k +22(k +1)=(k +1)+12(k +1).∴即n =k +1时等式也成立.综合(1)(2)知,对任意n ≥2,n ∈N *等式恒成立. 【例题2】 (1)证明:∵f ′(x )=x 2-1, ∴a n +1≥(a n +1)2-1=a 2n +2a n .①当n =1时,a 1≥1=21-1,命题成立;②假设当n =k (k ≥1,k ∈N *)时命题成立,即a k ≥2k -1; 那么当n =k +1时,a k +1≥a 2k +2a k =a k (a k +2)≥(2k -1)(2k-1+2)=22k -1≥2k +1-1.即当n =k +1时,命题成立, 综上所述,命题成立. (2)解:11+a 1+11+a 2+…+11+a n<1. ∵a n ≥2n -1,∴1+a n ≥2n .∴11+a n ≤12n . ∴11+a 1+11+a 2+…+11+a n≤12+122+…+12n =1-12n <1. 【例题3】 证明:(1)当n =1时,分为两部分,f (1)=2,命题成立; (2)假设n =k (k ≥1,k ∈N *)时,被分成f (k )=k 2-k +2部分;那么当n =k +1时,依题意,第k +1个圆与前k 个圆产生2k 个交点,第k +1个圆被截为2k 段弧,每段弧把所经过的区域分为两部分,∴平面上增加了2k 个区域.∴f (k +1)=f (k )+2k =k 2-k +2+2k =(k +1)2-(k +1)+2,即n =k +1时命题成立, 由(1)(2)知命题成立.【例题4】 正解:证明:(1)当n =1时,左边=1,右边=1,左边=右边,等式成立.(2)假设当n =k (k ≥1,k ∈N *)时等式成立,即1+4+7+…+(3k -2)=12k (3k -1),则当n =k +1时,1+4+7+…+(3k -2)+[3(k +1)-2]=12k (3k -1)+(3k +1)=12(3k 2+5k +2)=12(k +1)(3k +2)=12(k +1)[3(k +1)-1], 即当n =k +1时等式成立.根据(1)和(2),可知等式对一切n ∈N *都成立.1用数学归纳法证明3n≥n 3(n ≥3,n ∈N ),第一步应验证( ) A .n =1 B .n =2 C .n =3 D .n =42已知f (n )=11112n n n +++++ (21),则( ) A .f (n )共有n 项,当n =2时,f (2)=1123+B .f (n )共有n +1项,当n =2时,f (2)=111234++C .f (n )共有n 2-n 项,当n =2时,f (2)=1123+D .f (n )共有n 2-n +1项,当n =2时,f (2)=111234++3已知n 为正偶数,用数学归纳法证明1111234-+-+…+11n -=1112242n n n ⎛⎫++⋅⋅⋅+ ⎪++⎝⎭时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立4设平面内有n 条直线,其中任何两条直线不平行,任何三条直线不共点.若k 条直线将平面分成f (k )个部分,k +1条直线将平面分成f (k +1)个部分,则f (k +1)=f (k )+__________.5用数学归纳法证明2222111111234n n+++⋅⋅⋅+<-(n ≥2,n ∈N *).答案:1.C 由题知,n 的最小值为3,所以第一步验证n =3是否成立,选C. 2.D 由题意知f (n )最后一项的分母为n 2, 故f (2)=2111232++,排除选项A ,选项C. 又f (n )=211101()n n n n n ++++++-…, 所以f (n )的项数为n 2-n +1项.故选D.3.B 因为假设n =k (k ≥2为偶数),故下一个偶数为k +2,故选B.4.k +1 第k +1条直线与原来的k 条直线相交,有k 个交点,这k 个交点把第k +1条直线分成k +1部分(线段或射线),这k +1部分把它们所在的平面区域一分为二,故平面增加了k +1部分.5.分析:证明:(1)当n =2时,左边=21124=,右边=11122-=. 因为1142<,所以不等式成立. (2)假设n =k (k ≥2,k ∈N *)时,不等式成立, 即2222111111234k k++++<-…, 则当n =k +1时,22222211111111234(1)(1)k k k k +++++<-+++… =22222(1)1(1)111(1)(1)(1)k k k k k k k k k k k k +-+++-=-<-+++ =111k -+. 所以当n =k +1时,不等式也成立.综上所述,对任意n ≥2的正整数,不等式都成立.。
1.3.1函数的单调性与导数-人教A版高中数学选修2-2课件
已知导函数的下列信息:
分析:
当2 x 3时,f '( x) 0; f ( x)在此区间递减
当x 3或x 2时,f '( x) 0; f ( x)在此区间递增
当x 3或x 2时,f '( x) 0. f ( x)图象在此两处
附近几乎没有升降
试画出函数 f ( x) 图象的大致形状。变化,切线平行x轴
内的图象平缓.
设 f '(x)是函数 f ( x) 的导函数,y f '(x)的图象如
右图所示,则 y f (x) 的图象最有可能的是( C )
y
y f (x)
y
y f (x)
y
y f '(x)
o 1 2x o 1 2x
o
2x
(A)
(B)
y y f (x)
y y f (x)
2
o1
x o 12
2:求函数 y 3x2 3x 的单调区间。
解: y' 6x 3
令y ' 0得x 1 , 令y ' 0得x 1
2
2
y 3x2 3x 的单调递增区间为 (1 , ) 2
单调递减区间为 (, 1) 2
变1:求函数 y 3x3 3x2 的单调区间。
解: y' 9x2 6x 3x(3x 2)
步骤:
(1)求函数的定义域 (2)求函数的导数 (3)令f’(x)>0以及f’(x)<0,求自变量x的取值范围,即 函数的单调区间。
练习:判断下列函数的单调性
• (1)f(x)=x3+3x; • (2)f(x)=sinx-x,x∈(0,π); • (3)f(x)=2x3+3x2-24x+1; • (4)f(x)=ex-x;
2020版人教A版数学选修2-2___第一章 导数及其应用 定积分的概念
知识梳理
【做一做 1】
在定积分的概念中,定积分
������ ������
������(x)dx 的大小(
)
A.与f(x)和积分区间[a,b]有关,与ξi的取法无关 B.与f(x)有关,与区间[a,b]以及ξi的取法无关 C.与f(x)以及ξi的取法有关,与区间[a,b]无关 D.与f(x)、积分区间[a,b]和ξi的取法都有关 解析:根据定积分的概念可知,选项A正确,选项B,C,D都不正确,故
2×2sin
π 3
=
2π 3
−
3,
S 矩形=AB·BC=2 3,
所以 1
-1
4-������2dx=2
3 + 2π −
3
3 = 2π +
3
3.
题型一
题型二
(2)函数y=1+sin x的图象如图所示,
5π
所以
2 π
(1+sin
x)dx=2S
矩形
ABCD=2π.
2
典例透析
������
·1 =
������
∑
������ ������=1
3(������-1) ������ 2
+
5 ������
=
3 ������ 2
[0+1+2+…+(n-1)]+5
3 ������2-������ = 2 · ������2 + 5
13 3
= 2 − 2������.
(3)取极限
2 1
−
������+������-1 = 1.
������
������
-12学年高中数学122基本初等函数的导数公式及导数运算法则2同步练习新人教A版选修2-2
-12学年高中数学122基本初等函数的导数公式及导数运算法则2同步练习新人教A版选修2-2基本初等函数的导数公式及导数运算法则是高中数学中非常重要的内容,它们在求导过程中起到了关键的作用。
本文将介绍选修2-2《函数的导数与微分》中的基本初等函数的导数公式及导数运算法则,并提供一些同步练习,帮助大家更好地掌握这些知识点。
一、常数函数和幂函数的导数公式1.常数函数的导数公式:常数函数f(x)=C(C为常数)的导数为f'(x)=0。
2.幂函数的导数公式:幂函数f(x)=x^n(n为自然数)的导数为f'(x)=nx^(n-1)。
二、三角函数和反三角函数的导数公式1.三角函数的导数公式:(1)正弦函数f(x)=sinx的导数为f'(x)=cosx。
(2)余弦函数f(x)=cosx的导数为f'(x)=-sinx。
(3)正切函数f(x)=tanx的导数为f'(x)=sec^2x。
(4)余切函数f(x)=cotx的导数为f'(x)=-csc^2x。
2.反三角函数的导数公式:(1)反正弦函数f(x)=arcsinx的导数为f'(x)=1/√(1-x^2)。
(2)反余弦函数f(x)=arccosx的导数为f'(x)=-1/√(1-x^2)。
(3)反正切函数f(x)=arctanx的导数为f'(x)=1/(1+x^2)。
(4)反余切函数f(x)=arccotx的导数为f'(x)=-1/(1+x^2)。
三、指数函数和对数函数的导数公式1.指数函数的导数公式:指数函数f(x)=a^x(a>0且a≠1)的导数为f'(x)=lna·a^x。
2.自然对数函数的导数公式:自然对数函数f(x)=lnx的导数为f'(x)=1/x。
四、导数运算法则1.和差法则:导数具有线性性质,即[f(x)+g(x)]'=f'(x)+g'(x),[f(x)-g(x)]'=f'(x)-g'(x)。
人教版高中数学选修2-2第一章导数及其应用第五节(第一课时)曲边梯形的的面积和定积分的概念(共19张
n nn
nn
nn
每个区间的长度为 x i i 1 1 nn n
过各区间端点作x轴的垂线,从而得到n 个小曲边梯形,他们的面积分别记作
S1, S2,, Si ,, Sn.
2、近似代替
S第i个黄色矩形
1 n
f
(i-1) n
10
S第1个黄色矩形
n
f
() n
0
S第2个黄色矩形
1 n
f
(1) n
1 n3
凡 事 都是 多 棱 镜 , 不 同 的 角 度 会 看 到 不 同 的 结果 。 若 能 把 一 些 事 看 淡 了 ,就 会 有 个 好 心 境 , 若 把 很 多事 看 开 了 , 就 会有 个 好 心 情 。 让 聚 散 离 合 犹 如 月 缺 月 圆那 样 寻 常 , 让 得 失 利 弊 犹 如花 开 花 谢 那 样 自 然 , 不 计 较, 也 不 刻 意 执 着; 让 生 命 中 各 种 的 喜 怒 哀 乐 , 就 像 风 儿一 样 , 来 了 , 不 管 是 清 风 拂面 , 还 是 寒 风 凛 冽 , 都 报 以自 然 的 微 笑 , 坦然 的 接 受 命 运 的 馈 赠 , 把 是 非 曲 折 , 都当 作 是 人
n
i 1
f i x
n i 1
ba n
f i
当n→∞时,上式无限接近某个常数,这个常数叫做函数
f
(x)在区间[a,b]上的定积分
记作 b a
f
xdx
b a
f xdx lim n
n i 1
ba n
f i
定积分的定义:即
b a
f
(x)dx
lim
n
n i1
第1章导数及其应用专解8 求曲边图形的面积-人教A版高中数学选修2-2
【必备知识点】1. 如图,由三条直线x a=,x b=()a b<,x轴(即直线()0y g x==)及一条曲线()y f x=(()0f x≥)围成的曲边梯形的面积:()[()()]b ba aS f x dx f x g x dx==-⎰⎰2.如图,由三条直线x a=,x b=()a b<,x轴(即直线()0y g x==)及一条曲线()y f x=(0)(≤xf)围成的曲边梯形的面积:()()[()()]b b ba a aS f x dx f x dx g x f x dx==-=-⎰⎰⎰3.由三条直线,(),x a x b a c b x==<<轴及一条曲线()y f x=(不妨设在区间[,]a c上()0f x≤,在区间[,]c b上()0f x≥)围成的图形的面积:()caS f x dx=+⎰()bcf x dx⎰=()caf x dx-⎰+()bcf x dx⎰.4. 如图,由曲线11()y f x=22()y f x=12()()f x f x≥及直线x a=,x b=()a b<围成图形的面积:1212[()()]()()b b baaaS f x f x dx f x dx f x dx =-=-⎰⎰⎰【典例展示】例1(北京)直线l 过抛物线C :y x 42=的交点且与y 轴垂直,则l 与C 所围成的图形的面积等于( ) A.43 B.2 C.38D.3216【解析】直线l 的方程为y=1,直线l 与抛物线y x 42=交于(-2,1),(2,1)两点,所以l 与C 围成图形的面积为384122202=⎪⎪⎭⎫ ⎝⎛-⨯⨯=⎰dx x S .答案:C例2.计算由两条抛物线2y x =和2y x =所围成的图形的面积.【解析】 201y xx x y x⎧=⎪⇒==⎨=⎪⎩及,所以两曲线的交点为(0,0)、(1,1), 面积S=120xdx x dx =-⎰⎰,所以1312320021211d d 33333S x x x x x x ⎛⎫=-=-=-= ⎪⎝⎭⎰⎰例3.求抛物线2y x =与直线230x y --=所围成的图形的面积.【解析】解法一:解方程组2,230,y x x y ⎧=⎨--=⎩得11x y =⎧⎨=-⎩或93x y =⎧⎨=⎩即交点(1,1),(9,3)A B -.由于阴影的面积不易直接由某个函数的定积分来求得,我们把它合理的划分一下,便于进行积分计算。
高中数学 2.1《合情推理与演绎推理》课件(1) 新人教A版选修2-2
思考2 思考2:科学家们发现火星具有一些与地 球类似的特征, 球类似的特征,如火星也是围绕太阳运 绕轴自转的行星,也有大气层, 行、绕轴自转的行星,也有大气层,在 一年中也有季节的变更, 一年中也有季节的变更,而且火星上大 部分时间的温度适合地球上某些已知生 物的生存,等等.运用类比推理, 物的生存,等等.运用类比推理,你有什 么猜想?其推理过程是怎样形成的? 么猜想?其推理过程是怎样形成的? 猜想:火星上也可能有生命存在. 猜想:火星上也可能有生命存在.
不能! 不能!
思考6 对于等式:1·2+2·3+ 思考6:对于等式:1·2+2·3+3·4 n(n+1)= 3n+ n=1, +…+n(n+1)=3n2-3n+2,当n=1, 时等式成立吗? 2,3时等式成立吗?能否由此断定这个 等式对所有正整数n都成立? 等式对所有正整数n都成立? 思考7:应用归纳推理可以发现一般结 思考7 其不足之处是什么? 论,其不足之处是什么? 由归纳推理得出的结论不一定正确, 由归纳推理得出的结论不一定正确,其 真实性有待进一步证明. 真实性有待进一步证明.
圆的概念和性质 圆的周长 圆的面积 球的类似概念和性质 球的面积 球的体积
圆心与弦(非直径)中点 球心与截面(非大圆)圆心的 球心与截面(非大圆) 圆心与弦(非直径) 连线垂直于截面 的连线垂直于弦 与圆心距离相等的两弦相 等,与圆心距离不等的两 弦不等, 弦不等,距圆心较近的弦 较长. 较长. 圆的方程为: 圆的方程为: (x- (y- (x-x0)2+(y-y0)2=r2 与球心距离相等的两截面积相 等,与球心距离不等的两截面 积不等, 积不等,距球心较近的截面积 较大. 较大 球的方程
如图所示, 例1 如图所示,有三根针和套在一根针 上的若干金属片,按下列规则, 上的若干金属片,按下列规则,把金属片 从一根针上全部移到另一根针上. 从一根针上全部移到另一根针上. 每次只能移动1个金属片; (1)每次只能移动1个金属片; (2)较大的金属片不能放在较小的金属 片上面. 片上面. 试推测: 个金属片从1 试推测:把n个金属片从1号针移到3号 个金属片从 号针移到3 最少需要移动多少次? 针,最少需要移动多少次?
高中数学(人教A版,选修22)1.2 导数的计算 课件+同步练习(9份)22 1.2.1
求函数y=1x在点-3,-13处的切线方程.
[解析] y′=1x′=-x12, 切线的斜率k=y′|x=-3=-19. 又切线过点-3,-13. 所以切线方程为y--13=-19(x+3), 即x+9y+6=0.
∴-x120=-1 x20=b
,解得xb0==21 或xb0==--21 .
即当b=2时,切点为(1,1);
当b=-2时,切点为(-1,-1).
典例探究学案
常用函数的导数
(1)求函数f(x)=π的导数. (2)求函数y=1x在点(1,1)处的切线方程.
[解析] (1)∵π为常数,∴f ′(x)=0. (2)∵k=y′=-x12, 当x=1时,k=-1, ∴切线方程为:y-1=-(x-1), 即x+y-2=0.
5.若直线 y=-x+b 为函数 y=1x的图象的切线,求 b 及 切点坐标.
[解析] 设切点坐标为(x0,y0), 因为 y′=1x′=-x12,所以切线斜率为 k=-x120. 所以切线方程为 y-x10=-x120(x-x0) 即 y=-x120x+x20 .
又切线方程为y=-x+b,
∴切线与x轴交点为(32,0),与直线x=2的交点为(2,2).
∴S=12×(2-32)×2=12.
规范答题样板
如图,已知曲线f(x)=2x2+a(x≥0)与曲线g(x)= x(x≥0)相切于点P,且在点P处有相同的切线l.求点P的坐标 及a的值.
[解题思路探究] 第一步,审题. 一审结论探索解题方向.求点P坐标和a值,需利用条件建 立坐标及a的方程求解; 二审条件找解题突破口.两曲线相切于点P,在点P处有相 同切线表明切点是关键,切点在两曲线上和切线上,这是解题 的突破口. 第二步,建联系确定解题步骤. 只要设出切点坐标,则过点P的两曲线切线的斜率相等, 由此可求出切点坐标,代入f(x)解析式中可求出a. 第三步,规范解答.
人教A版高中数学选修2-2知识点
数学选修2-2知识点总结导数及其应用一.导数概念的引入 1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即0()f x '=000()()lim x f x x f x x∆→+∆-∆ 例1. 在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t(单位:s)存在函数关系2() 4.9 6.510h t t t =-++运动员在t=2s 时的瞬时速度是多少?解:根据定义0(2)(2)(2)lim 13.1x h x h v h x∆→+∆-'===-∆ 即该运动员在t=2s 是13.1m/s,符号说明方向向下2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即 0000()()lim ()n x n f x f x k f x x x ∆→-'==- 3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆ ()y f x c ==的导数()y f x x ==的导数2()y f x x ==的导数1()y f x x==的导数 基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=;2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln x f x a a '=6 若()x f x e =,则()xf x e '= 7 若()log x a f x =,则1()ln f x x a'=8 若()ln f x x =,则1()f x x '= 导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f x g x f x g x g x g x ''•-•'= 复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数(())()y f g x g x '''=•1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增;如果()0f x '<,那么函数()y f x =在这个区间单调递减.极值反映的是函数在某一点附近的大小情况.求函数()y f x =的极值的方法是:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;(2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值;4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤(1) 求函数()y f x =在(,)a b 内的极值;(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.利用导数的知识,,求函数的最大(小)值,从而解决实际问题第二章 推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.考点三 数学归纳法1. 它是一个递推的数学论证方法.2. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础;B.假设在n=k 时命题成立C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。
高中数学人教版选修2-2导数及其应用知识点总结
高中数学人教版选修2-2导数及其应用知识点总结高中数学人教版选修2-2导数及其应用学问点总结数学选修2-2导数及其应用学问点必记1.函数的平均变化率是什么?答:平均变化率为f(x2)f(x1)f(x1x)f(x1)yfx2x1xxx注1:其中x是自变量的转变量,可正,可负,可零。
注2:函数的平均变化率可以看作是物体运动的平均速度。
2、导函数的概念是什么?答:函数yf(x)在xx0处的瞬时变化率是limf(x0x)f(x0)y,则称limx0xx0x函数yf(x)在点x0处可导,并把这个极限叫做yf(x)在x0处的导数,记作f"(x0)或y"|xx0,即f"(x0)=limf(x0x)f(x0)y.limx0xx0x3.平均变化率和导数的几何意义是什么?答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。
4导数的背景是什么?答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。
5、常见的函数导数和积分公式有哪些?函数导函数不定积分ycy"0xn1xdxn1nyxnnN*y"nxn1yaxa0,a1y"alnay"exxaxadxlnaxyexedxex xylogaxa0,a1,x0ylnxy"1xlna1x1xdxlnxy"ysinxy"cosxcosxdxsinxsinx dxcosxycosxy"sinx6、常见的导数和定积分运算公式有哪些?答:若fx,gx均可导(可积),则有:和差的导数运算f(x)g(x)f(x)g(x)""f"(x)g"(x)f"(x)g(x)f(x)g"(x)积的导数运算特殊地:Cfx"Cf"x商的导数运算f(x)f"(x)g(x)f(x)g"(x)(g(x)0)g(x)2g(x)"1g"(x)特殊地:"2gxgx复合函数的导数yxyuux微积分基本定理fxdxab(其中F"xfx)和差的积分运算ba[f1(x)f2(x)]dxf1(x)dxf2(x)dxaabb特殊地:积分的区间可加性bakf(x)dxkf(x)dx(k为常数)abbaf(x)dxf(x)dxf(x)dx(其中acb)accb6.用导数求函数单调区间的步骤是什么?答:①求函数f(x)的导数f"(x)②令f"(x)>0,解不等式,得x的范围就是递增区间.③令f"(x)8.利用导数求函数的最值的步骤是什么?答:求f(x)在a,b上的最大值与最小值的步骤如下:⑴求f(x)在a,b 上的极值;⑵将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。
2014-2015学年高中数学(人教版选修2-2)配套课件第一章 1.1 1.1.2 导数的概念
栏 目 链 接
∴4 s 时物体的瞬时速度为 2+6×4=26.
题型2
利用导数的定义求导数
例2 利用导数的定义解下列各题:
1 (1)求函数 f(x)= 在 x=1 处的导数; x+1 (2)已知函数 f(x)=ax2+2x 在 x=1 处的导数为 6, 求a 的值.
-Δx 1 1 Δy 解析: (1)因为 Δy=f(1+Δx)-f(1)= - = , 所以 Δx 2+Δx 2 22+Δx 1 Δy 1 =- ,于是 f(x)在 x=1 处的导数 f′(1)=Δ lim =- . x→0 Δx 4 22+Δx
1 2 2. 已知物体做自由落体运动的方程为 s(t)= gt , 若 Δt→0 时, 2 s1+Δt-s1 无限趋近于 9.8 m/s,则正确的说法是( Δt A.9.8 m/s 是物体在 0~1 s 这段时间内的速度 B.9.8 m/s 是物体在 1 s~(1+Δt)s 这段时间内的速度 C.9.8 m/s 是物体在 t=1 s 这一时刻的速度 D.9.8 m/s 是物体从 1 s~(1+Δt)s 这段时间内的平均速度
栏 目 链 接
点评:由导数的定义求导数,是求导数的基本方法, 必须严格按以下三个步骤进行: ①求函数的增量 Δy=f(x0+Δx)-f(x0); Δy fx0+Δx-fx0 ②求平均变化率 = ; Δx Δx Δy ③取极限,得导数 f′(x0)=Δ lim . x→0 Δx
例:设函数 y=f(x)=3x2,则 Δy=f(1+Δx)-f(1) Δy Δy 2 6Δ x + 3(Δ x ) 6 + 3Δ x =________________, =______________,Δ lim x→0 Δx Δx
6 6 =______________ ;f′(1)=______________.
1.1.1变化率问题1.1.2导数的概念课件高二下学期数学人教A版选修22
度, 写成
lim
t 0
h(2
+
t) t
-
h(2)
.
即
lim
t 0
h(2
+
t) t
-
h(2)
=
-13.1.
2. 瞬时变化率
对于函数的平均变化率
y = f (x2 ) - f (x1) ,
x
x2 - x1
由△x=x2-x1 得 x2=△x+x1,
y = f (x + x1) - f (x1) .
x
x
当△x 很小很小时, △x+x1 就接近于 x1.
我们用符号
lim
x0
表示△x
趋近于零,
用平均变化
率的极限 lim y = lim f (x + x1) - f (x1)
x x0
x0
x
表示函数在 x1 处的瞬时变化率.
3. 导数
一般地, 函数 y=f(x) 在 x=x0 处的瞬时变化率是
lim f (x0 + x) - f (x0 ) = lim y ,
x0
x
x0 x
我们称它为函数 y=f(x) 在 x=x0 处的导数, 记作 f(x0)
或 y |x=x0, 即
f
(x0) =
lim
x0
f
(x0 + x)x
f
(x0) .
问题 1 中, 运动员在时间 t=2 时的瞬时速度就是 求函数 h(x) 在 t=2 时的导数.
导数可以描述任何物体的瞬时变化.
由导数的定义可知, 求函数 y = f (x)的导数的一般方法:
人教A版·高中数学·选修2-2 第一章
高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案
导数的几何意义当点趋近于点时,割线
趋近于确定的位置,这个确定位置的直线 P n P (,f ()) x 0x 0 P P n P P
).
.
.
.
高考不提分,赔付1万元,关注快乐学了解详情。
解析:图像中每点的斜率均表示这一时刻的速度.
答案:解析:4. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为
,则导函数 的图象大致为
.
A .
B .
C
.D .
A
导函数 为单位时间内五角星出水的面积率,由图可知当一个角出来时,面积率由 开始,逐渐增多,当一个角
都出完了,则面积率一下由最大开始减小,当出最后两个角时,面积率会先增加,然后减小到 .
t S (t )(S (0)=0)y =(t )S ′()y =(t )S ′0。
人教版高中数学选修2-2《代数基本定理》
试一试在复数集内解下列方程: (1) x 1=0,x1 1. (2) x 2 1 0, x1 1, x2 1. 1 3 1 3 (3) x 1 0, x1 1, x2 i, x3 i. 2 2 2 2 (4) x 4 1 0, x1 1, x2 1, x3 i, x4 i.
思考1:已知1 2i是方程x 2 ax b 0(a, b R)的一个根, 则a
2
,b
3
.
探究2:如果虚数a bi是实系数一元n次方程 an x n an 1 x n 1 …… a1 x a0 0 的根,那么它的共轭虚数a bi也是方程的根“ ( 虚数成对” ).
3 2
x1 2, x2 3.
x1 1 2i, x2 1 2i.
(7) x x 3 x 3 0 x1 1, x2 3i, x 3 3i. (8) x 2 ix 0, (9) x3 ix 2 x i 0.
x1 0, x2 i.
n个
f n ( x) ( x x1 ) f n1 ( x)
n 1个
fx (x x)( xx f n)f )x) n 2) 2 ( x( fn ( )1 () x ( x x 1 2 n 2
……
n 1
n 2个
……
f1 ( x) an ( x xn )
……
fna (n x( )x (x x2 )…… x f1 (x )n ) fn ( x) x1 )(xx xx ( x( xnx )( x 1 )( 1 )x 2 )…… n 1
Hale Waihona Puke 站在巨人
的
[高二数学]数学选修2-2-导数及其应用
三、函数的单调性与导数 1.导数与函数单调性 函数y=f(x)在某个区间(a,b)内可导,如果f′(x)>0,则 y=f(x)在这个区间内单调递增;如果f′(x)<0,则y=f(x)在 这个区间内单调递减.
2.讨论函数单调性应注意的问题 (1)在利用导数来讨论函数的单调区间时,首先要确定函数的 定义域,解决问题的过程只能在定义域内通过讨论导数的符号 来判断函数的单调区间. (2)一般利用使导数等于零的点来分函数的单调区间. (3)如果一个函数具有相同单调性的单调区间不止一个,那么 这些单调区间之间不能用“∪”连接,而只能用“,”或“和” 字隔开.
二、导数的计算
1.基本初等函数的导数公式
(1)(c)′=0,(c为常数).
(2)(xα)′=αxα-1(α∈Q*).
(3)(sinx)′=cosx.
(4)(cosx)′=-sinx.
(5)(ax)′=axlna(a>0且a≠1).
(6)(ex)′=ex.
(7)(logax)′=
1 x ln a
(a>0且a≠1).
(4)注意在某一区间内f′(x)>0(或f′(x)<0)是函数f(x)在 该区间上为增(或减)函数的充分不必要条件,而不是充要条件 (例如,f(x)=x3). (5)如果函数在某个区间内恒有f′(x)=0,则f(x)为常数函数. (6)利用导数的符号判断函数的增减性,这是导数的几何意义 在研究曲线变化规律中的一个应用,它充分体现了数形结合思 想. (7)若在某区间上有有限个点使f′(x)=0,在其余的点恒有 f′(x)>0,则f(x)在该区间上仍为增函数.
七、微积分基本定理
定理内容
符号表示
作用
如果f(x)是区间[a,b]上 的连续函数,并且 F′(x)=f(x),那么
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学选修2-2知识点总结
导数及其应用
一.导数概念的引入 1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是
000()()lim x f x x f x x
∆→+∆-∆, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即
0()f x '=000()()lim x f x x f x x
∆→+∆-∆ 例1. 在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t(单位:
s)存在函数关系
2() 4.9 6.510h t t t =-++
运动员在t=2s 时的瞬时速度是多少?
解:根据定义
0(2)(2)(2)lim 13.1x h x h v h x
∆→+∆-'===-∆ 即该运动员在t=2s 是13.1m/s,符号说明方向向下
2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与
曲线相切。
容易知道,割线n PP 的斜率是00
()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即
0000
()()lim ()n x n f x f x k f x x x ∆→-'==- 3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()
y f x =的导函数有时也记作y ',即
0()()()lim
x f x x f x f x x
∆→+∆-'=∆ 二.导数的计算
1.函数()y f x c ==的导数
2.函数()y f x x ==的导数
3.函数2()y f x x ==的导数
4.函数1()y f x x
==的导数 基本初等函数的导数公式:
1若()f x c =(c 为常数),则()0f x '=;
2 若()f x x α=,则1()f x x αα-'=;
3 若()sin f x x =,则()cos f x x '=
4 若()cos f x x =,则()sin f x x '=-;
5 若()x f x a =,则()ln x
f x a a '=
6 若()x f x e =,则()x f x e '=
7 若()log x a f x =,则1()ln f x x a
'=
8 若()ln f x x =,则1()f x x '= 导数的运算法则
1. [()()]()()f x g x f x g x '''±=±
2. [()()]()()()()f x g x f x g x f x g x '''•=•+•
3. 2
()()()()()[]()[()]f x f x g x f x g x g x g x ''•-•'= 复合函数求导
()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=•
三.导数在研究函数中的应用
1.函数的单调性与导数:
一般的,函数的单调性与其导数的正负有如下关系:
在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减.
2.函数的极值与导数
极值反映的是函数在某一点附近的大小情况.
求函数()y f x =的极值的方法是:
(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;
(2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值;
4.函数的最大(小)值与导数
函数极大值与最大值之间的关系.
求函数()y f x =在[,]a b 上的最大值与最小值的步骤
(1) 求函数()y f x =在(,)a b 内的极值;
(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个
最大值,最小的是最小值.
四.生活中的优化问题
利用导数的知识,,求函数的最大(小)值,从而解决实际问题
第二章 推理与证明
考点一 合情推理与类比推理
根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理
根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.
类比推理的一般步骤:
(1) 找出两类事物的相似性或一致性;
(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);
(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某
些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.
(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比
得出的命题越可靠.
考点二 演绎推理(俗称三段论)
由一般性的命题推出特殊命题的过程,这种推理称为演绎推理.
考点三 数学归纳法
1. 它是一个递推的数学论证方法.
2. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础;
B.假设在n=k 时命题成立
C.证明n=k+1时命题也成立,
完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。
考点三 证明
1. 反证法:
2. 分析法:
3. 综合法:
第一章 数系的扩充和复数的概念
考点一:复数的概念
(1) 复数:形如(,)a bi a R b R +∈∈的数叫做复数,a 和b 分别叫它的实部和虚部.
(2) 分类:复数(,)a bi a R b R +∈∈中,当0b =,就是实数; 0b ≠,叫做虚数;当0,0a b =≠时,
叫做纯虚数.
(3) 复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等.
(4) 共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数.
(5) 复平面:建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴除去原点的部
分叫做虚轴。
(6) 两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。
考点二:复数的运算
1.复数的加,减,乘,除按以下法则进行
设12,(,,,)z a bi z c di a b c d R =+=+∈则
12()()z z a c b d i ±=±+±
12()()z z ac bd ad bc i •=-++
1222
2()()(0)z ac bd ad bc i z z c d -++=≠+ 2,几个重要的结论
(1) 2222121212||||2(||||)z z z z z z ++-=+ (2) 22||||z z z z •==
(3)若z 为虚数,则22||z z ≠
3.运算律
(1) m n m n z z z +•=;(2) ()m n mn z z =;(3)1212()(,)n n n z z z z m n R •=•∈
4.关于虚数单位i 的一些固定结论:
(1)21i =- (2)3i i =- (3)41i = (2)2340n n n n i i i i ++++++=。