概率统计期末复习资料(1)
概率论与数理统计期末考试复习资料
(1)排 列组合 公式
Pmn
m! (m n)!
C
n m
m! n!(m n)!
从 m 个人中挑出 n 个人进行排列的可能数。 从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
(2)加 法和乘 法原理
某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方 法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步
率。分布函数F(x) 表示随机变量落入区间(– ∞,x]内的概率。
分布函数具有如下性质:
1° 0 F(x) 1, x ;
2° F(x) 是单调不减的函数,即x1 x2 时,有 F(x1) F(x2) ;
3° F() lim F(x) 0, F() lim F(x) 1;
设F(x) 是随机变量 X 的分布函数,若存在非负函数 f (x) ,对任意 实数x ,有
F (x) x f (x)dx ,
则称 X 为连续型随机变量。f (x) 称为 X 的概率密度函数或密度函 数,简称概率密度。 密度函数具有下面 4 个性质: 1° f (x) 0 。
2° f (x)dx 1。
X
| x1, x2,, xk, 。
P( X xk) p1, p2,, pk,
显然分布律应满足下列条件:
(1) pk 0 ,k 1,2,, (2) pk 1。 k 1
(2)连 续型随 机变量 的分布 密度
概率统计复习资料
第一部分、复习纲要1、随机事件:掌握事件的表示,掌握事件之间的关系与运算,特别是事件的并、事件的交、差事件、逆事件以及对偶律。
2、事件的概率:会计算简单古典概型中的相关概率,理解概率的公理化定义,掌握概率的基本性质。
3、条件概率与事件的独立性:理解条件概率的概念,掌握乘法公式、全概率公式和贝叶斯公式,并会应用它们解决较简单的问题,理解事件的独立性定义,知道互不相容与相互独立的区别.4、随机变量及其分布:掌握分布函数的概念及性质,会用分布函数求有关概率,理解离散型随机变量的分布律与性质,会求简单离散型随机变量的分布律和分布函数;理解连续型随机变量的概率密度,掌握概率密度的性质,熟练掌握几种重要的分布:0—1分布、二项分布、泊松分布、均匀分布、正态分布、指数分布,会求这些分布的相关概率.5、二维随机变量及其分布:理解二维随机变量的分布函数的概念,掌握概率密度的性质及有关计算,能根据联合分布求边际分布,会利用随机变量的独立性进行相关计算,知道有限个独立正态随机变量的线性组合仍是正态分布.6、随机变量的函数及其分布:会求随机变量的简单函数的分布.7、随机变量的数学特征:掌握随机变量的期望及方差的计算,熟记期望及方差的性质,熟记常用分布的期望与方差,知道协方差及相关系数的定义及计算性质.第二部分、典型题型一、填空题1、设事件A 、B 互不相容,且q B P p A P ==)(,)(,则=)(B A P2、设A, B, C 为三个事件,则事件A, B, C 中不多于两个发生表示为3、已知事件A,B 满足)()(B A P AB P =,记p A P =)(,则=)(B P4、甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被击中,则它只是被甲射中的概率为5、两射手彼此独立地向同一目标射击,设甲射中目标的概率是0.9,乙射中目标的概率是0.8,则目标被射中的概率是6、3个人独立破译一份密码,他们能单独译出的概率分别为111,,543,则此密码被译出的概率是 7、随机变量T 在[1,6]上服从均匀分布,则方程 210x T x ++=有实根的概率为8、随机变量X 服从参数为λ的泊松分布(0λ>),且[(2)(3)]2E X X --=,则=λ9、设随机变量X 与Y 的相关系数为ρ,则121X X =+与132Y Y =+的相关系数为10、设~(1,3),~(2,4)X N Y N ,且X 与Y 相互独立,则~Y X +11、设随机变量),(~p n b X ,已知E (X )=2.4,D (X )=1.44,则n = ,=p12、设1()X P λ:,2()Y P λ:,且X 与Y 相互独立,则X Y +:13、设),Y X (的联合分布律为:且Y X 、相互独立,则α= ,β= .二、选择题1、已知)|()(),|()(B A P A P B A P A P ==,则下列说法正确的有( )(A )A 与B 相互独立 (B )A 与B 互逆 (C )A 与B 互斥 (D ))()(B P A P =2、设事件A ,B 互不相容,且()0P B >,则下列选项正确的是( )(A )()1()P A P B =- (B )(|)0P A B = (C )(|)1P A B = (D )()0P AB =3、将3个人随机地分配到4个房间去,每个房间所住人数不限,则每个房间里最多只有一个人的概率为( )(A )323 (B )83 (C )161 (D )81 4、有人打靶击中的概率为8.0,求他打了10枪,直到第十枪击中的概率为( ) (A )2.08.09⨯ (B )8.02.09⨯ (C )91102.08.0⨯⨯C (D )91108.02.0⨯⨯C5、一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为( )(A )11a a b -+- (B )(1)()(1)a a a b a b -++- (C )a a b+ (D )2()a a b + 6、设随机变量X 的分布函数为)(x F ,下列说法正确的是( )(A ))(x F 取值为),(+∞-∞ (B ))(x F 为连续函数 (C )1F(x) 1≤≤- (D) 1F(x) 0≤≤7、设()sin f x x =是某个连续型随机变量X 的密度函数,则X 的取值范围是( )(A )[0,]2π (B )[0,]π (C )[,]22ππ- (D )3[,]2ππ 8、设随机变量X 的分布函数为()X F x ,则35Y X =-的分布函数()Y F y 为( )(A )(53)X F y - (B )5()3X F y - (C )3()5X y F + (D )31()5X y F -- 9、设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立 (B )()D X Y DX DY -=+ (C )()D X Y DX DY -=- (D )()D XY DXDY =10、设相互独立的两个随机变量X 与Y 具有同一分布律,且X 的分布律为 1(0)(1)2P X P X ==== 则随机变量max(,)Z X Y =的分布律为( )(A )1(0)2P Z ==,1(1)2P Z == (B )(0)1P Z ==,(1)0P Z == (C )1(0)4P Z ==,3(1)4P Z == (D )3(0)4P Z ==,1(1)4P Z == 三、解答题 1、设2~(3,2)X N ,求(25)P X <≤,(||2)P X >.(其中(1)0.8413;Φ=(0.5)0.6915;(2.5)0.9938Φ=Φ=)2、设随机变量2~(108,3)X N ,试求: (1)(102117)P X <<;(2)常数a ,使得()0.95P X a <=. (其中(1.64)0.9495Φ=;(1.65)0.9505Φ=;(2)0.9772Φ=;(3)0.99876Φ=)3、设2~(8,4)X N ,求(0),(1220).P X P X ≤<≤(其中(1)0.8413;Φ=(0.5)0.6915;(2.5)0.9938Φ=Φ=)4、已知()0.5,()0.7,()0.8P A P B P A B ===U ,试求()P A B -与()P B A -.5、将3个球随机地放入4个杯子中去,每个杯子所放球数不限,以X 表示杯子中球的最大个数,求X 的分布律与分布函数.6、口袋中有5个球,编号分别为1、2、3、4、5,从中任取3个,以X 表示取出的3个球中的最大号码。
《工程数学》(概率统计)期末复习提要共12页word资料
《工程数学》(概率统计)期末复习提要工科普专的《工程数学》(概率统计)课程的内容包括《概率论与数理统计》(王明慈、沈恒范主编,高等教育出版社)教材的全部内容 . 在这里介绍一下教学要求,供同学们复习时参考 .第一部分:随机事件与概率⒈了解随机事件的概念学习随机事件的概念时,要注意它的两个特点:⑴在一次试验中可能发生,也可能不发生,即随机事件的发生具有偶然性;⑵在大量重复试验中,随机事件的发生具有统计规律性 .⒉掌握随机事件的关系和运算,掌握概率的基本性质要了解必然事件、不可能事件的概念,事件间的关系是指事件之间的包含、相等、和、积、互斥(互不相容)、对立、差等关系和运算 .在事件的运算中,要特别注意下述性质:概率的主要性质是指:①对任一事件,有③对于任意有限个或可数个事件,若它们两两互不相容,则⒊了解古典概型的条件,会求解简单的古典概型问题在古典概型中,任一事件的概率为其中是所包含的基本事件个数,是基本事件的总数 .⒋熟练掌握概率的加法公式和乘法公式,理解条件概率,掌握全概公式⑴加法公式:对于任意事件,有特别地,当时有⑵条件概率:对于任意事件,若,有称为发生的条件下发生条件概率 .⑶乘法公式:对于任意事件,有(此时),或(此时) .⑷全概公式:事件两两互不相容,且,则⒌理解事件独立性概念,会进行有关计算若事件满足(当时),或(当时),则称事件与相互独立 . 与相互独立的充分必要条件是.第二部分:随机变量极其数字特征⒈理解随机变量的概率分布、概率密度的概念,了解分布函数的概念,掌握有关随机变量的概率计算常见的随机变量有离散型和连续型两种类型 . 离散型随机变量用概率分布来刻画,满足:连续型随机变量用概率密度函数来刻画,满足:随机变量的分布函数定义为对于离散型随机变量有对于连续型随机变量有⒉了解期望、方差与标准差的概念,掌握求随机变量期望、方差的方法⑴期望:随机变量的期望记为,定义为(离散型随机变量,是的概率分布),(连续型随机变量,是的概率密度) .⑵方差:随机变量的方差记为,定义为(离散型随机变量),(连续型随机变量) .⑶随机变量函数的期望:随机变量是随机变量的函数,即,若存在,则在两种形式下分别表示为(离散型随机变量,是的概率分布),(连续型随机变量,是的概率密度),由此可得方差的简单计算公式⑷期望与方差的性质①若为常数,则;②若为常数,则;③若为常数,则.⒊掌握几种常用离散型和连续型随机变量的分布以及它们的期望与方差,熟练掌握正态分布的概率计算,会查正态分布表(见附表)常用分布:⑴二项分布的概率分布为特别地,当时,,叫做两点分布;⑵均匀分布的密度函数为⑶正态分布的密度函数为其图形曲线有以下特点:① ,即曲线在x 轴上方;② ,即曲线以直线为对称轴,并在处达到极大值;③在处,曲线有两个拐点;④当时,,即以轴为水平渐近线;特别地,当时,,表示是服从标准正态分布的随机变量 .将一般正态分布转化为标准正态分布的线性变换:若,令,则,且Y 的密度函数为服从标准正态分布的随机变量的概率为那么一般正态分布的随机变量的概率可以通过下列公式再查表求出常见分布的期望与方差:二项分布:;均匀分布:;正态分布:;⒋了解随机变量独立性的概念,了解两个随机变量的期望与方差及其性质对于随机变量,若对任意有则称与相互独立 .对随机变量,有若相互独立,则有第三部分:统计推断⒈理解总体、样本,统计量等概念,知道分布,分布,会查表所研究对象的一个或多个指标的全体称为总体,组成整体的基本单位称为个体,从总体中抽取出来的个体称为样品,若干个样品组成的集合称为样本 . 样本中所含的样品个数称为样本容量 .统计量就是不含未知参数的样本函数 .⒉掌握参数的最大似然估计法最大似然估计法:设是来自总体(其中未知)的样本,而为样本值,使似然函数达到最大值的称为参数的最大似然估计值 . 一般地,的最大似然估计值满足以下方程⒊了解估计量的无偏性,有效性概念参数的估计量若满足则称为参数的无偏估计量 .若都是的无偏估计,而且,则称比更有效 .⒋了解区间估计的概念,熟练掌握方差已知条件下单正态总体期望的置信区间的求法,掌握方差未知条件下单正态总体期望的置信区间的求法当置信度确定后,方差已知条件下单正态总体期望的置信区间是其中是总体标准差,是样本均值,是样本容量,由确定 .方差未知条件下单正态总体期望的置信区间是其中称为样本标准差,满足.⒌知道假设检验的基本思想,掌握单正态总体均值的检验方法,会作单正态总体方差的检验方法单正态总体均值的检验方法包括检验法和检验法:⑴ 检验法:设是正态总体的一个样本,其中未知,已知 . 用检验假设(是已知数),。
概率论与数理统计复习资料
概率论与数理统计复习资料### 概率论与数理统计复习资料#### 第一章:概率论基础1. 概率的定义与性质- 事件的概率定义- 概率的公理化体系- 概率的加法和乘法规则2. 条件概率与事件独立性- 条件概率的计算- 事件独立性的定义与性质- 贝叶斯定理3. 随机变量及其分布- 离散型随机变量及其分布律- 连续型随机变量及其概率密度函数- 随机变量的期望值与方差4. 多维随机变量及其分布- 联合分布函数- 边缘分布函数- 协方差与相关系数5. 大数定律与中心极限定理- 切比雪夫不等式- 伯努利大数定律- 中心极限定理的应用#### 第二章:数理统计基础1. 样本与统计量- 样本均值、方差与标准差- 样本矩- 顺序统计量2. 参数估计- 点估计与区间估计- 估计量的优良性准则- 极大似然估计3. 假设检验- 假设检验的基本原理- 单样本假设检验- 双样本假设检验4. 方差分析- 单因素方差分析- 双因素方差分析- 方差分析的计算步骤5. 回归分析- 一元线性回归- 多元线性回归- 回归模型的诊断#### 第三章:概率分布与随机过程1. 常见概率分布- 二项分布- 泊松分布- 正态分布2. 随机过程的基本概念- 随机过程的定义- 马尔可夫链- 泊松过程3. 随机过程的参数估计- 随机过程的均值与方差估计- 随机过程的回归分析4. 随机过程的模拟- 蒙特卡洛方法- 随机模拟的应用5. 随机过程的统计推断- 随机过程的假设检验- 随机过程的参数估计#### 第四章:统计决策与贝叶斯统计1. 统计决策理论- 损失函数- 风险函数- 决策规则2. 贝叶斯统计- 贝叶斯后验概率- 贝叶斯估计- 贝叶斯决策3. 贝叶斯网络- 贝叶斯网络的结构- 贝叶斯网络的推理- 贝叶斯网络的应用4. 统计推断的贝叶斯方法- 贝叶斯假设检验- 贝叶斯参数估计5. 贝叶斯模型选择- 贝叶斯信息准则- 交叉验证通过以上内容的复习,可以对概率论与数理统计的基本概念、理论及其应用有一个系统的理解。
14-15(一)概率统计(多概率)复习资料
14-15(⼀)概率统计(多概率)复习资料14-15(⼀)概率统计(多概率)复习资料⼀、填空题('105'2=?)1. 古典概型(第⼀章)例:(1)2013-2014期末A ⼀1:掷两枚质地均匀的骰⼦,则点数之和为4的概率P = 1/12 .(2)2012-2013期末A ⼆1:袋中有3⽩1红共4只质量、⼤⼩相同的球,甲先任取⼀球,观察后放回;然后⼄再任取⼀球,则⼆⼈取相同颜⾊球的概率为(① 1016)(3)检2⼀1,2,3⼆.检4⼆2.2. 分布列和概率密度(第⼆章)例:(1)2012-2013期末A ⼀4:若随机变量X 的概率密度为 (),()x f x ae x -=-∞<<+∞,则=a 0.5 ;(0)P X == 0 .(2) 检5⼀3: 若随机变量X 的概率密度为 41,0()40,0x e x f x x -?>?=??≤?,则(4)P X ≤= ;(48)P X <<= .(3)检4⼀⼆1,3.检5⼀⼆.检7⼀⼆.检8⼀4.3. 数学期望与⽅差(第三章)例:(1)2013-2014期末A ⼀3,4:3.若随机变量X 服从泊松分布)(λP ,已知=)(X E 1,则λ= 1 , (2)D X = 4 .4.已知两个相互独⽴随机变量)9.0,10(~B X ,)1(~e Y ,则=-)2(Y X E 7 ,()D X Y -= 1.9 .(2)2012-2013期末A ⼀3,5:3. 若随机变量X 的概率函数为1.03.03.02.01.043210p X ,则()3P X >= 0.1 ;()E X = 2.1 .5. 若相互独⽴的随机变量X 与Y 满⾜1)(=X D ,4)(=Y D ,则=-)2(Y X D 8 .(3)检8⼀1,2,3,5,⼆三1.检11⼀1.检13⼀2.4. 协⽅差(第三章)例:(1)2013-2014期末A ⼀5:若~N(0,1),Y ~N(0,1)X ,相关系数41),(-=Y X R ,则(,)cov X Y =-1/4 ;=+)2(Y X D 4 . (2)检9⼆2:随机变量X 与Y 相互独⽴是0),cov(=Y X 的(充分)条件.(3)检9⼀2,3,⼆2.检11⼆3.5. 未知参数的矩估计(第六章)例:(1)检15⼀1:设总体~(6,)X B p ,n X X X ,,,21 为来⾃总体X 的样本,则未知参数p 的矩估计量为.(2)检15三2:设连续总体X 的概率密度函数为1,01( )0,x x f x θθθ-?<<=??;其他其中0θ>.n X X X ,,,21 为来⾃总体X 的样本,求未知参数θ的矩估计量.⼆、选择题('155'3=?)1. 随机变量的分布函数(第⼆章)例:(1)2013-2014期末A ⼆3:若随机变量X 的分布函数为)(x F ,则以下结论⼀定正确的是( A ).(2012-2013期末A ⼆2类似)A .()()()P a X b F b F a <≤=-;B .()()()P a X b F b F a <<=-;C . ()()()P a X b F b F a <<≠-;D . ()0P X a ==(2)检4⼆1:设随机变量X 的分布列为01230.10.30.40.2X p ,)(x F 为其分布函数,则)2(F = ( ③ ) ① 0.2 ② 0.4 ③ 0.8 ④ 1(3)检7⼆1:设X 的分布函数为)(x F ,则随机变量函数13+=X Y 的分布函数为①① 1()3y F -;② )13(+y F ;③ 1)(3+y F ;④ 31)(31-y F 2. 相关系数(第三章)例:(1)2012-2013期末A ⼆3:若随机变量X 与Y ⽅差存在,且满⾜1Y X =-,则相关系数=),(Y X R (②)① 1;② -1;③ 0.5;④ -0.5.3. 正态分布(第四章)例:(1)检11⼆1,2:1. 设随机变量2(,)X N µσ,则随σ的增⼤,概率{}P X µσ-<应(③).①单调增⼤;②单调减少;③保持不变;④增减不定.2. 设随机变量X 的概率密度为2(3) 4()x f x e +-=则服从标准正态分布的随机变量是(②).① 32X +;②;③ 32X -;④. 4. 统计量的分布(第五章)例:(1)2013-2014期末A ⼆2:设随机变量~(2)X t ,则2X 服从__B _.A .()22χB .()1,2FC .()2,2FD .()2,1F(2)2012-2013期末A ⼆5:设总体2~(,)X N µσ,X 为该总体的样本均值,则()P X µ>__④__.①14< ② 14= ③ 12> ④ 12= (3)检14⼀⼆(尤其注意⼀1⼆2).5. 待定例:有可能是条件概率和概率乘法公式;随机变量函数的分布;连续性随机变量概率密度;切⽐雪夫不等式;中⼼极限定理;最⼤似然估计;估计量的⽆偏性等(1)2013-2014期末A ⼀6:设123,,X X X 为来⾃总体X 的样本,123()X X X µθ=++是总体均值µ的⽆偏估计量,则θ= 1/3 .(2)检5⼆1,检10全部,检12⼆,检15⼆.三⾄九(或⼗)、计算与证明题('75)1. 条件概率和概率乘法公式。
高二数学期末复习之一概率与统计
高二数学期末复习之一概率与统计第一部分.复习目标:1. 了解典型分布列:0~1分布,二项分布,几何分布。
2. 了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。
3. 在实际中经常用期望来比较两个类似事件的水平,当水平相近时,再用方差比较两个类似事件的稳定程度。
4. 了解正态分布的意义,能借助正态曲线的图像理解正态曲线的性质。
5. 了解标准正态分布的意义和性质,掌握正态总体),(2σμN 转化为标准正态总体N (0,1)的公式)()(σμ-Φ=x x F 及其应用。
6. 通过生产过程的质量控制图,了解假设检验的基本思想。
第二部分.内容小结: (Ⅰ)基础知识详析㈠随机事件和统计的知识结构:㈡随机事件和统计的内容提要 1.主要内容是离散型随机变量的分布列、期望与方差,抽样方法,总体分布的估计,正态分布和线性回归。
2.随机变量的概率分布(1)离散型随机变量的分布列:两条基本性质①,2,1(0=≥i p i ...); ②P 1+P 2+ (1)(2)连续型随机变量概率分布:由频率分布直方图,估计总体分布密度曲线y=f(x);总体分布密度函数的两条基本性质: ①f(x) ≥0(x ∈R);②由曲线y=f(x)与x 轴围成面积为1。
3.随机变量的数学期望和方差 (1)离散型随机变量的数学期望:++=2211p x p x E ε…;反映随机变量取值的平均水平。
(2)离散型随机变量的方差:+-+-=222121)()(p E x p E x D εεε…+-+n n p E x 2)(ε…;反映随机变量取值的稳定与波动,集中与离散的程度。
(3)基本性质:b aE b a E +=+εε)(;εεD a b a D 2)(=+。
4.三种抽样方法。
5.二项分布和正态分布(1)记ε是n 次独立重复试验某事件发生的次数,则ε~B (n ,p );其概率,2,1,0,1()(=-==-k p q q p C k P kn k k n n …),n 。
概率论与数理统计期末考试复习题集-01
复习题 (A )备用数据:220.990.9950.9950.0050.9952.326,(99) 2.575,(99)66.510,(99)138.987u t u χχ=≈===一、选择题(20分,每题4分,请将你选的答案填在( )内)1、 下列结论哪一个不正确 ( ))(A 设A,B 为任意两个事件,则A B A B -=; )(B 若A B =,则A,B 同时发生或A,B 同时不发生; )(C 若A B ⊂,且B A ⊂,则A B =; )(D 若A B ⊂,则A-B 是不可能事件.2、 设(,)X Y 的联合概率函数为则(1)概率(13,0)P Y X ≤<≥等于 ( ))(A 58; )(B 12; )(C 34; )(D 78.(2)Z X Y =+的概率函数为 ( ))(A()B()C()D3、 如果2EX <∞,2EY <∞,且X 与Y 满足()()D X Y D X Y +=-,则必有 ( ))(A X 与Y 独立;)(B X 与Y 不相关; )(C ()0D Y =; )(D ()()0D X D Y =. 4、若()25,()36D X D Y ==,X 和Y 的相关系数,0.4X Y ρ=,则,X Y 的协方差(,)Cov X Y 等于( ))(A 5; )(B 10; )(C 12; )(D 36. 二、(12分)设X,Y 为随机变量,且3(0,0)7P X Y ≥≥=,4(0)(0)7P X P Y ≥=≥= 求(1)(min(,)0)P X Y <;(2)(max(,)0)P X Y ≥.三、(10分)一个男子在某城市的一条街道遭到背后袭击和抢劫,他断言凶犯是黑人.然而,当调查这一案件的警察在可比较的光照条件下多次重新展现现场情况时,发现受害者正确识别袭击者肤色的概率只有80%,假定凶犯是本地人,而在这个城市人口中90%是白人,10%是黑人,且假定白人和黑人的犯罪率相同,(1)问:在这位男子断言凶犯是黑人的情况下,袭击他的凶犯确实是黑人的概率是多大? (2)问:在这位男子断言凶犯是黑人的情况下,袭击他的凶犯是白人的概率是多大? 四、(10分)某商业中心有甲、乙两家影城,假设现有1600位观众去这个商业中心的影城看电影,每位观众随机地选择这两家影城中的一家,且各位观众选择哪家影城是相互独立的.问:影城甲至少应该设多少个座位,才能保证因缺少座位而使观众离影城甲而去的概率小于0.01. (要求用中心极限定理求解.)五、(16分)设二维随机变量),(Y X 的联合概率密度函数为2,01(,)0,x y f x y <<<⎧=⎨⎩其它(1)求Y X ,的边缘密度函数(),()X Y f x f y ; (2)求条件概率113(0)224P X Y <<<<;(3)问:X 与Y 是否相互独立?请说明理由; (4)求Z X Y =+的概率密度函数()Z f z . 六、(14分)某地交通管理部门随机调查了100辆卡车,得到它们在最近一年的行驶里程(单位:100km )的数据12100,,,x x x ,由数据算出145x =,样本标准差24s =.假设卡车一年中行驶里程服从正态分布),(2σμN ,分别求出均值μ和方差2σ的双侧0.99置信区间.(请保留小数点后两位有效数字.)七、(18分) 设n X X X ,,,21 是取自总体X 的简单随机样本,总体X 的密度函数为(1),(;)0,e x x ef x θθθθ-+⎧>=⎨⎩其它 ,其中θ为未知参数,01θ<<.(1)求出θ的极大似然估计; (2)记1αθ=,求参数α的极大似然估计;(3)问:在(2)中求到的α的极大似然估计是否为α的无偏估计?请说明理由.复习题(B )备用数据:220.9750.0250.9750.995(2)0.9772,(8) 2.31,(8) 2.18,(8)17.54, 2.575,t u χχΦ=====一、选择题(共20分,每题4分,请将你选的答案填在( )内) 1、 下列命题哪一个是正确的? ( )()A 若()()0P A P B >>,则()()P A B P B A <; ()B 若()()0P A P B >>,则()()P A B P B A ≥; )(C 若()0P B >,则()()P A P A B ≥; )(D 若()0P B >,则()()P A B P AB ≤.2、已知1()()()2P A P B P C ===,1()()()4P AB P AC P BC ===,()0P ABC =,判断下列结论哪一个是正确的( ))(A 事件A ,B ,C 两两不独立,但事件A ,B ,C 相互独立;)(B 事件A ,B ,C 两两独立,同时事件A ,B ,C 相互独立;)(C 事件A ,B ,C 两两独立,但事件A ,B ,C 不相互独立; )(D 事件A ,B ,C 不会同时都发生.3、 设12,X X 相互独立,且都服从参数1的指数分布,则当0x >时,12min(,)X X 的分布函数()F x 为( ))(A 121(1)e ---; )(B 21(1)x e ---; )(C 2x e ; )(D 21x e --.4、 已知(,)X Y 的联合概率函数为若X ,Y 独立,则,αβ的值分别为 ( ))(A 12,99αβ==; )(B 21,99αβ==;)(C 15,1818αβ==; )(D 51,1818αβ==.5、 设15,,X X 是取自正态总体(0,1)N 的样本,已知22212345()()X a X X b X X +-+-(0,0)a b >>服从2χ分布,则这个2χ分布的自由度为( ))(A 5; )(B 4; )(C 3; )(D 2.二、(12分)已知男性患色盲的概率为0.005,女性患色盲的概率为0.0025,如在某医院参加体检的人群中,有3000个男性,2000个女性,现从这群人中随机地选一人,(1)求此人患有色盲的概率; (2)若经检验此人的确患有色盲,问:此人为男性的概率是多大?三、(12分)设随机变量Y 服从参数为1的指数分布(1)E .定义随机变量0,1,k Y kX Y k≤⎧=⎨>⎩ , 1,2.k =(1)求12(,)X X 的联合概率函数; (2)分别求12,X X 的边缘概率函数.四、(10分)有100位学生在实验室测定某种化合物的PH 值,假设各人测量都是独立进行的,每人得到的测定结果服从相同的分布,且这个相同分布的期望为5,方差为4,设i X 表示第i 位学生的测定结果,1,,100i =,10011100i i X X ==∑,求(4.6 5.4)P X << .(要求用中心极限定理求解.)五、(16分) 设二维随机变量),(Y X 的联合概率密度函数为1,01,02(,)0,x y x f x y <<<<⎧=⎨⎩且其它求(1)Y X ,的边缘密度函数(),()X Y f x f y ; (2)21Z X =+的概率密度函数()Z f z ;(3)(2)(2)E X Y D X Y --和; (4)11()22P Y X ≤≤. 六、(14分)某医生为研究铅中毒患者与正常成年人的脉搏数的关系,他随机调查了9例患者,测得其脉搏数分别为129,,,x x x ,并由此算出99211675,50657i i i i x x ====∑∑. 设铅中毒患者的脉搏数服从正态分布),(2σμN ,分别求出均值μ和标准差σ的置信水平0.95的双侧置信区间.(请保留小数点后两位有效数字.)七、(16分) 设n X X X ,,,21 是取自总体X 的简单随机样本,总体X 的概率密度函数为1,0(;)0xex f x θθθ-⎧>⎪=⎨⎪⎩,其它,其中θ是未知参数,0θ>。
概率论与数理统计期末复习题(1)
期末复习题一、填空题1. 设A,B 为随机事件,已知P(A)=0.7,P(B)=0.5,P(A-B)=0.3,则P (B-A )= 。
2.设有20个零件,其中16个是一等品,4个是二等品,今从中任取3个,则至少有一个是一等品的概率是 .3.设()4 ,3~N X ,且c 满足()()c X P c X P ≤=>,则=c 。
4. 设随机变量X 服从二项分布,即===n p EX p n B X 则且,7/1,3),,(~ .5. 设总体X 服从正态分布)9,2(N ,921,X X X 是来自总体的样本,∑==9191i i X X 则=≥)2(X P 。
6. 设B A ,是随机事件,满足===)(,)(),()(B P p A P B A P AB P 则 .7. B A ,事件,则=⋃B A AB 。
8. 设随机变量Y X ,相互独立,且)16,1(~),5,1(~N Y N X ,12--=Y X Z 则的相关系数为与Z Y9.随机变量=≤≤-=Φ=Φ}62{,9772.0)2(,8413.0)1(),4,2(~X P N X 则 . 10. 设随机变量X 服从二项分布,即===n p EX p n B X 则且,5/1,3),,(~ . 11. B A ,事件,则=⋃B A AB 。
12. 连续型随机变量X 的概率密度为()⎩⎨⎧≤>=-00,0,3x x e x f x λ则=λ .13. 盒中有12只晶体管,其中有10只正品,2只次品.现从盒中任取3只,设3只中所含次品数为X ,则()==1X P .14. 已知二维随机变量221212(,)~(,;,;)X Y N μμσσρ,且X 与Y 相互独立,则ρ=______ .15. 设随机变量X 服从二项分布),(p n B ,则=+)83(X D . .二、选择题1. 设离散型随机变量X 的分布列为其分布函数为F(x),则F(3)= .A. 0B. 0.3C. 1D. 0.8 2. 设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤<-≤≤=其它,021,210,x x x x x f则X 落在区间()2.1 ,4.0内的概率为( ).(A) 0.64;(B) 0.6; (C) 0.5; (D) 0.42.3. 矩估计是( )A. 点估计B. 极大似然估计C. 区间估计D. 无偏估计 4. 甲乙两人下棋,每局甲胜的概率为0.4,乙胜的概率为0.6,。
概率论与数理统计 期末复习1
概率论与数理统计 期末复习(一)第二章 随机变量及其分布一、了解离散性随机变量及其概率分布:特征:可列无穷多 二、熟练掌握三种常用离散性随机变量的分布律(0-1)分布 、 二项分布、 泊松分布(泊松定理的应用) (知道:期望方差)【例1-1】某种型号器件的寿命X(以小时计)具有概率密度()⎪⎩⎪⎨⎧>=,其他00100,10002x x x f现有一大批此种器件(设备损坏与否相互独立),任取5只,问其中至少有2只寿命大于1500小时的概率.【例1-2】设顾客在某银行窗口等待服务的时间X(min)服从指数分布,其概率密度为()⎪⎩⎪⎨⎧>=-,其他00,515/x ex f x X 某顾客在窗口等待服务,若超过10min ,他就离开,他一个月要到银行5次,以Y 表示一个月内他未等到服务而从窗口离开的次数,写出Y 的分布律,并求出{}1≥Y P .【例1-3】设有80台同类型设备,各台工作是相互独立的,发生故障的概率都是0.01,且一台设备的故障能由一个人处理.考虑两种配备维修工人的方法,其一是由4人维护,每人维护20台;其二是由3人共同维护80台.试比较这两种方法在设备发生故障时不能及时维修的概率的大小.【例2-1】一电话总机每分钟收到呼唤的次数服从参数为4的泊松分布,求某一分钟内呼唤次数大于2的概率.【例2-2】保险公司在一天内承保了5000张相同年龄,为期一年的寿险保单,每人一份.在合同有效期内若投保人死亡,则公司需赔付3万元. 设在一年内,该年龄段的死亡率为0.0015,且各个投保人是否死亡相互独立. 求该公司对于这批投保人的赔付金额总数不超过30万元的概率.三、熟练掌握连续型随机变量分布函数的概念,以及概率密度和随机变量分布函数的关系要点: {}x X P x F ≤=)(;⎰=∞-xdt t f x F )()(,若)(x F 在x 点连续,则有)()('x f x F =; 概率密度的性质:⎰=≥∞∞-1)(,0)(dx x f x f 满足这两个条件的函数才可以认为是概率密度;四、熟练掌握三种连续型随机变量的分布 均匀分布、指数分布、正态分布(知道:概率密度、分布函数、期望方差) 【例3-1】设随机变量X 的分布函数为:⎪⎩⎪⎨⎧≥<≤<=e x e x x x x F X ,11,ln 1,0)((1) 求{}{}⎭⎬⎫⎩⎨⎧<<≤<<252,30,2X P X P X P ;(2) 求概率密度)(x f X .【例3-2】设随机变量X 的概率密度为:()⎪⎩⎪⎨⎧<≤-<≤=其他,,,021210x x x x x f求X 的分布函数.【例3-3】设()()x g x f ,都是概率密度函数,求证:()()()()10,1≤≤-+=αααx g x f x h 是一个概率密度函数.【例4-1】设K 在(0,5)服从均匀分布,求关于x 的方程:02442=+++K Kx x有实数根的概率.【例4-2】(记住正态分布引理) 设随机变量()22,3~N X :(1) 求{}52≤<X P ;(2) 试确定常数c,使得{}{}c X P c X P ≤=>;(3) 试确定常数d 的最小值,使得{}9.0≥>d X P .【例4-3】设顾客在某银行窗口等待服务的时间X(min)服从指数分布,其概率密度为()⎪⎩⎪⎨⎧>=-,其他00,515/x ex f x X 某顾客在窗口等待服务,若超过10min ,他就离开,他一个月要到银行5次,以Y 表示一个月内他未等到服务而从窗口离开的次数,写出Y 的分布律,并求出{}1≥Y P .五、求随机变量的函数分布的两种方法: (1)直接法:{}{})]'())[(?()())(?()()(111y g y g x f y f y g x F y x g P y Y P y F X Y X Y ---=⇒=≤=≤=(2)定理法:P52 定理直接套公式(套公式要注意在x 的定义域上)(x g y =必须是严格单调!)【例5-1】设)1,0(~N X (1) 求X e Y =的概率密度;(2) 求122+=X Y 的概率密度; (3) 求X Y =的概率密度.【例5-2】设随机变量X 的概率密度为()⎪⎩⎪⎨⎧>=-,其他00,x e x f x 求2X Y =的概率密度.【练习】1. 某人进行射击,设每次射击的命中率为0.02,独立射击400次,试估计他至少击中2次的概率.2. 设()λπ~X ,且{}{}21===X P X P ,求{}4=X P .3. 设()λπ~X ,其分布律为{},...2,1,0,!===-k k e k X P kλλ,试确定k 的值,使得{}k X P =最大.4. 设()p n b X ,~,其分布律为{}10.,...,2,1,0,)1(<<=-==-p n k p p C k X P k n kk n ,试确定k 的值,使得{}k X P =最大.5. 设连续型随机变量X 的分布函数为: ()()+∞<<∞-+=x x B A x F arctan(1) 求B A ,的值;(2) 求X 的概率密度()x f .6. 设连续型随机变量X 的概率密度为:()⎩⎨⎧<<+=其他,010,x b ax x f且8521=⎭⎬⎫⎩⎨⎧>X P ,(1) 求b a ,的值;(2) 求⎭⎬⎫⎩⎨⎧≤<2141x P ;(3) 求随机变量X 的分布函数()x F .7. 对某地区考生抽样调查的结果表明,考生的数学成绩(百分制)近似服从()2,72σN ,其中σ未知,已知96分以上的考生占总数的2.3%.试求考生的数学成绩介于60分与84分之间的概率.8. 设321,,X X X 是随机变量,且()()()232213,5~,2,0~,1,0~N X N X N X ,{}22≤≤-=x P P j ,(j=1,2,3),则( )(13-8)(A) 321P P P >> (B) 312P P P >> (C) 213P P P >> (D) 231P P P >>9. (13-14)设随机变量Y 服从参数为1的指数分布,a 为常数且大于零,则{}a Y a Y P >+≤1的值为.10. (11-8)设()()x F x F 21,为2个分布函数,其相对应的概率密度为()()x f x f 21,,其都是连续函数,则下列选项中必为概率密度的是( )(A) ()()x f x f 21 (B) ()()x F x f 122 (C) ()()x F x f 21 (D) ()()()()x F x f x F x f 1221+11. (10-8)设()x f 1为标准正态分布的概率密度,()x f 2为[-1,3]上均匀分布的概率密度,若()()())0,0(0,0,21>>⎩⎨⎧>≤=b a x x bf x x af x f 为概率密度,则b a ,应该满足( )(A) 432=+b a (B) 423=+b a (C) 1=+b a (D) 2=+b a12. (06-14)设随机变量X 服从正态分布()2111,σμN ,随机变量Y 服从正态分布()2222,σμN ,且{}{}1121<-><-μμY P X P ,则下列结论成立的是( )(A) 21σσ< (B) 21σσ> (C) 21μμ< (D) 21μμ>13. (02-21)设随机变量X 的概率密度为: ()⎪⎩⎪⎨⎧≤≤=其他,00,2cos 21πx x x f 对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.14. 设随机变量),(~σμN X ,求证:随机变量)0,(≠+=a b a b aX Y 为常数,也服从正态分布 ()2','~σμN Y ,并指出2','σμ的值.15. 设随机变量X 在区间()10,服从均匀分布. (1) 求X e Y =的概率密度;(2) 求X Y ln 2-=的概率密度.。
概率统计 期末复习-经管(1)
第一章 随机事件及其概率一、基本概念1. 事件的关系与运算、运算规律因为事件是样本空间的一个集合, 故事件之间的关系与运算可按集合之间的关系和运算来处理。
事件间的关系及运算与集合的关系及运算是一致的表1.1没有相同的元素与互不相容和事件事件的差集与不发生发生而事件事件的交集与同时发生与事件事件的和集与至少有一个发生与事件事件的相等与相等与事件事件的子集是发生发生导致事件的余集的对立事件子集事件元素基本事件空集不可能事件全集必然事件样本空间集合论概率论记号B A B A AB B A B A B A B A B A AB B A B A B A B A B A B A B A B A B A A A A A ∅=-=⊂∅Ω ω,对偶律:A B A B = ,A B A B =2、概率的定义频率:A n n f (A )n=,其中n 为试验次数, A n 为事件A 发生的次数概率的统计定义:在相同条件下重复进行n 次试验,若事件A 发生的频率A n n f (A )n=随着试验次数n 的增大而稳定地在某个常数p ()10≤≤p 附近摆动,则称p 为事件的概率,记为)(A P古典概型:具有下列两个特征的随机试验模型: 1. 随机试验只有有限个可能的结果; 2. 每一个结果发生的可能性大小相同.概率的古典定义:在古典概型的假设下,设事件A包含其样本空间S中k个基本事件, 即},{}{}{21ki i i e e e A =则事件A发生的概率.)()()(11中基本事件的总数包含的基本事件数S A n k e P e P A P kj i k j i jj====∑== 概率的公理化定义:设E 是随机试验, S 是它的样本空间,对于E 的每一个事件A 赋于一个实数, 记为)(A P , 若)(A P 满足下列三个条件: 1. 非负性:对每一个事件A ,有 0)(≥A P ;2. 完备性:1)(=S P ;3. 可列可加性:设,,21A A 是两两互不相容的事件,则有.)()(11∑∞=∞==i ii i A P A P 则称)(A P 为事件A 的概率.概率的基本性质:○1()0P ;∅=○2设12n A ,A ,,A 是两两互不相容的事件,则有11nni i i i P(A )P(A ).===∑○3()()1P A P A ;=-○4()()()P A B P A P AB ;-=-特别地,若B A ⊂,则()()()P A B P A P B ;-=-()()P A P B ;≥○5对任一事件A 有()1P A ≤○6对于任意两个事件A ,B 有()()()()P A B P A P B P AB =+-3、条件概率与独立性条件概率:)()()|(A P AB P A B P =(0)(>A P ),在事件A 发生的条件下,事件B 的条件概率.事件的独立性:A ,B 相互独立P(AB )P(A)P(B )⇔=n A A A ,,,21 相互独立()111j jk ki i j j k,k n,P A P A ==⎛⎫⇔∀≤≤= ⎪⎝⎭∏事件独立的性质: ○1当0)(>A P ,0)(>B P 时, A ,B 相互独立与A ,B 互不相容不能同时成立. 但∅与S 既相互独立又互不相容(自证). ○2 设A ,B 是两事件, 且0)(>A P ,若A ,B 相互独立, 则)()|(A P B A P =. 反之亦然.伯努利概型(试验的独立性)设随机试验只有两种可能的结果:事件A 发生(记为A )或事件A 不发生(记为A ),则称这样的试验为伯努利(Bermourlli)试验。
概率统计期末复习题[1]..
概率统计期末复习题一、选择部分(30题)1.随机事件A 、B 、C 至少有一个不发生的事件是( )A. AB AC BC ++B. A B C ++C. A B C ++D. ABC ABC ABC 2.设A 、B 、C 是三个随机事件,则 事件A B C ⋃⋃表示( )A 三个事件恰有一个发生B 三个事件至少有一个发生C 三个事件都发生D 三个事件都不发生3.三个元件寿命分别是123,,,T T T 并联成一个系统,只要有一个元件能正常工作,系统便能正常工作,事件“系统的寿命超过t ”为( )A 123{}T T T t ++>B 123{}T T T t >C 123{m in{}}T T T t >D 123{m ax{}}T T T t >4.将一枚硬币掷三次“三次均出现正面”的概率为( )A12 B 18 C 13 D 385.A 、B 是两个随机事件,已知()0.3,()0.4P A P B ==,()0.5P A B = ,()P A B = ( )A 0.7B 0.3C 0.2D 0.8 6.如果()0P AB =,则( )A. A 与 B 不相容B. A 与 B 不相容C.()()P A B P A -=D.()()()P A B P A P B -=- 7.设()()1P A P B +=,则( )A.()1P A B =B.()0P A B =C.()P A B = ()P A BD.()P A B = ()P A B 8.设A ,B 为任意两个事件,且.0()1,A B P B ⊂<<则( ) A ()(|)P A P A B < B ()(|)P A P A B ≤ C ()(|)P A P A B > D ()(|)P A P A B ≥9.一种零件的加工由两道工序完成,第一道工序的废品率是p ,第二道工序的废品率是q ,则该零件的成品率为( )A. 1p q --B.1pq -C.1p q pq --+ D .2p q --10.10件产品中有3件次品,从中抽出2件,至少抽到1件次品的概率是( ) A 13B 25C715 D 81511.设0()1,0()1,(|)(|)1P A P B P A B P A B <<<<+=,则A 与B 的关系是( ) A.互不相容 B. 相互独立 C .互不独立 D .互为对立 12.设事件A 和B 满足(|)1,P A B =则( )A.B 是必然事件B.(|)0P B A = C .A B ⊂ D .()0P A B -=13.设随机变量X的概率密度为11()0x f x -<<=⎩其它,则常数a 取值为( )A aπ= B 1aπ=C 2a π=D 2a π=14.设~(0,1)X N X 的分布函数()x φ,方程2240t Xt ++=无实根的概率为( ) A 2(2)1φ- B 2(1)1φ- C (2)φ D (2)(1)φφ- 15.设~(0,1)X U ,则方程210tXt ++=没有实根的概率为( )A 15B 25C 35D 4516.设X 与Y 是两个随机变量 则下列各式正确的是( ) A ()()()E XY E X E Y =B ()()()D XY D X D Y =C ()()()E X Y E X E Y +=+D ()()()D X Y D X D Y +=+17.设随机变量X 的概率密度为201()0Ax x f x ⎧<<=⎨⎩其它,则常数A 取值为( )A 3B 2C 1D 1-18.设1()F x 与2()F x 分别为任意两个随机变量的分布函数,令12()()()F x aF x bF x =+ 能使()F x 为分布函数的是( )A 32,55a b ==B 22,33a b ==C 31,22a b ==D 13,22a b == 19.设~(,)X B n p 且() 2.4,() 1.44E X D X == 则,n p 的取值为( )。
概率统计考试总复习一
总复习 一.填空题1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)A (p ==,则(1) 若B A ,互斥,则=)B -A (p 0.5 ; (2) 若B A ,独立,则=)B A (p 0.65 ; (3) 若2.0)(=⋅B A p ,则=)B A (p 3/7 .2、 A 、B 是两个随机事件,已知0.125P(AB)0.5,)B (p ,52.0)A (p ===,则=)B -A (p 0.125 ;=)B A (p 0.875 ;=)B A (p 0.25 .3、袋子中有大小相同的红球7只,黑球3只,(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为:7/15 。
(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 21/50 。
(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 21/55 .4、袋子中有大小相同的5只白球, 4只红球, 3只黑球, 在其中任取2只。
(1)4只中恰有2只白球1只红球1只黑球的概率为:412131425C C C C . (2) 4只中至少有2只红球的概率为:4124814381C C C C +-. (3 4只中没有白球的概率为:41247C C5、10把钥匙中有板有3把能打开门,今任取2把,能将门打开的概率为:112237372210108(1)15C C C C C C +=-或 6、设离散型随机变量X 的概率分布P{X=0}=0.2,P{X=1}=0.3,P{X=2}=0.5, 则P{X ≤1.5}= 0.5 . 7.设随机变量X~U(0,1),则2-3X的概率密度函数为:112()(3Y y f y ⎧-<<⎪=⎨⎪⎩参考教材P61例2)其他8、设随机变量X 的分布函数为01(1)(),{1}00xx x e F x P X x -≥⎧-+=≤=⎨<⎩则1(1)12F e -=-.9、设X~N(1,2),Y~N(0,3),Z~N(2,1),且X,Y ,Z 独立,则 P{0≤2X+3Y-Z ≤6}=0.3413(提示:2X+3Y-Z~N(0,36))10、设随机变量X 服从泊松分布}8{}7{),(===X P X p λπ,则{}=XE 811、设随机变量X 服从B (2,0. 8)的二项分布,则{}==2X p 0.64 , Y 服从B (8,0. 8)的二项分布, 且X 与Y 相互独立,则}1{≥+Y X P =1- 0.210,=+)(Y X E 8 。
概率论与数理统计第一章期末复习
概率论与数理统计第一章期末复习(一)随机事件1.随机现象定义1在一定的条件下,并不总是出现相同结果的现象称为随机现象.定义2只有一个结果的现象称为确定性现象.2.样本空间定义3一个试验如果满足下述条件:(1)试验可以在相同的情形下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.就称这样的试验是一个随机试验,记作E.定义4随机试验E的所有可能结果组成的集合称为E的样本空间,记作Ω.样本空间的元素,即E的每个结果,称为样本点,记作ω.3.随机事件定义5随机试验的某些样本点的集合称为随机事件,简称事件,常用大写英文字母A,B,C,…表示.定义6由样本空间Ω中的单个元素组成的子集称为基本事件.而样本空间Ω的最大子集(即Ω本身)称为必然事件,样本空间Ω的最小子集(即空集∅)称为不可能事件.4.事件的关系与运算下面的讨论总是假设在同一个样本空间Ω中进行.1)包含关系⊂如果属于A的样本点必属于B,则称A包含于B或称B包含A,记作A B ⊃.用概率的语言说:事件A发生必然导致事件B发生.或B A对任一事件A,必有∅Ω⊂A.⊂2)相等关系如果属于A的样本点必属于B,且属于B的样本点必属于A,即BA⊂且=.AB⊂,则称事件A与B相等,记作A B3)互不相容(互斥)如果A 与B 没有相同的样本点,则称A 与B 互不相容(互斥).即事件A 与事件B 不可能同时发生.4)两事件的和事件“事件A 与B 中至少有一个发生”,这样的一个事件称作事件A 与B 的和(或并),记作B A .5)两事件的积事件“事件A 与B 同时发生”,这样的一个事件称作事件A 与B 的积(或交),记作B A (或AB ).6)两事件的差事件“事件A 发生而B 不发生”,这样的事件称为事件A 对B 的差,记作A B -.7)对立事件或逆事件若=AB ∅且Ω=B A ,则称A 与B 为对立事件或互为逆事件,事件A 的对立事件记作A .【例1】设A 、B 、C 是Ω中的随机事件,则(1)事件{A 发生且B 与C 至少有一个发生}可表示为:)(C B A ;(2)事件{A 与B 发生而C 不发生}可表示为:C AB ;(3)事件{A 、B 、C 中至少有两个发生}可表示为:BC AC AB ;(4)事件{A 、B 、C 中至多有两个发生}可表示为:ABC ;(5)事件{A 、B 、C 中不多于一个发生}可表示为:AB BC AC ;(6)事件{A 、B 、C 中恰有一个发生}可表示为:ABC ABC ABC .【例2】关系()成立,则事件A 与B 为对立事件.A .=AB ∅B .Ω=B AC .=AB ∅,Ω=B AD .=AB ∅,Ω≠B A 【解析】由对立事件的概念可知选项C 正确.【例3】甲、乙两人谈判,设事件A ,B 分别表示甲、乙无诚意,则B A 表示()A .两人都无诚意B .两人都有诚意C .两人至少有一人无诚意D .两人至少有一人有诚意【解析】由题可知A 与B 分别表示甲、乙有诚意,则B A 表示甲、乙两人至少有一人有诚意,故选项D 正确.5.事件的运算性质(1)交换律:A B B A =,BA AB =;(2)结合律:C B A C B A )()(=,)()(BC A C AB =;(3)分配律:()()()A B C AB AC = ,()()()A B C A C B C = ;(4)对偶律:B A B A = ,B A AB =.一些有用的等式:A A A = ,A Ω=Ω ,A A ∅= AA A =,A A Ω=,A ∅=∅A B A AB AB -=-=,A B A B A =【例4】化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .【解】(1) A B B A B A B A ==)())((ØA =;(2)AC B C A B C B B A ==)())((;(3)))(())((B A B B A B A B A B A =AB AB A A B A A === )(.(二)随机事件的概率1.概率的公理化定义定义1设E 是随机试验,Ω是它的样本空间.对于E 的每一事件A 赋予一个实数,记为)(A P ,称为事件A 的概率,如果集合函数)(⋅P 满足下列条件:(1)非负性0)(≥A P ,对Ω∈A ;(2)规范性()1P Ω=;(3)可列可加性若=j i A A ∅,j i ≠, ,2,1,=j i ,有∑+∞=+∞==11)()(i i i i A P A P .2.概率的性质性质1不可能事件的概率为0,即()0P ∅=.性质2概率具有有限可加性,即若=j i A A ∅(n j i ≤<≤1),则∑===ni i n i i A P A P 11)()( .性质3对任一随机事件A ,有()1()P A P A =-.性质4若A B ⊂,则)()()(B P A P B A P -=-.推论若A B ⊂,则)()(B P A P ≥.性质5对任意的两个事件A ,B ,有)()()(AB P A P B A P -=-.性质6对任意的两个事件A ,B ,有()()()()P A B P A P B P AB =+- .对任意三个事件A ,B ,C ,有)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= .推论对任意的两个事件A ,B ,有)()()(B P A P B A P +≤ .【例1】设A 与B 互不相容,且0)(>A P ,0)(>B P ,则下列结论正确的是()A .A 与B 为对立事件B .A 与B 互不相容C .)()()(B P A P B A P -=-D .)()(A P B A P =-【解析】因为A 与B 互不相容,所以AB =∅,0)(=AB P ,故选项A :互不相容不一定对立,故选项A 错误;选项B :互不相容不一定对立,故B A 不一定等于Ω,所以B A B A =不一定等于∅,即A 与B 不一定互不相容,故选项B 错误;选项C :)()()()(A P AB P A P B A P =-=-,故选项C 错误,进而选项D 正确.【例2】已知B A ⊂,3.0)(=A P ,5.0)(=B P ,求(A P ,)(AB P ,)(B A P 和)(B A P .【解】(1)7.0)(1)(=-=A P A P ;(2)∵B A ⊂,∴A AB =,则3.0)()(==A P AB P ;(3)2.0)()()()(=-=-=AB P B P A B P B A P ;(4))(1()(B A P B A P B A P -==5.0)]()()([1=-+-=AB P B P A P .【注】事件的概率的计算常常需要结合对偶律,应用性质3.【例3】已知事件A ,B ,B A 的概率分别是0.4,0.3,0.6,求(B A P .【解】)()()()(AB P B P A P B A P -+= )(3.04.06.0AB P -+=所以1.0)(=AB P ,则3.0)()()((=-=-=AB P A P B A P B A P .【例4】已知41)()()(===C P B P A P ,0)(=AB P ,161)()(==BC P AC P .求:(1)A ,B ,C 中至少发生一个的概率;(2)A ,B ,C 都不发生的概率.【解】(1)因为0)(=AB P ,且AB ABC ⊂,所以由概率的单调性知0)(=ABC P ;再由加法公式,得A ,B ,C 中至少发生一个的概率为)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= 8516243=-=.(2)因为{A ,B ,C 都不发生}的对立事件为{A ,B ,C 中至少发生一个},所以A ,B ,C 都不发生的概率为83851(=-=C B A P .3.古典概型定义2若随机试验E 具有下述特征:(1)样本空间的元素(即样本点)只有有限个,不妨设为n 个,并记它们为12,,,n ωωω .(2)每个样本点出现的可能性相等(等可能性),即有12()()()n P P P ωωω=== .则称这种等可能性的概率模型为古典概型.对任意一个随机事件Ω∈A ,有nk A A P =Ω=中所有样本点的个数所含有样本点的个数事件)(.【例5】袋中有大小相同的4个白球,3个黑球,从中任取3个至少有2个白球的概率为.【解析】袋中共有7个球,从中任取3个,共有37C 中取法,即样本空间Ω中共有37C 个样本点.取出的3个球中至少有2个白球,分为2个白球1个黑球和3个白球两种情况.当取出的3个球中有2个白球1个黑球时,共有1324C C 中取法;当取出的3个球中有3个白球时,共有0334C C 中取法.记=A {从中任取3个至少有2个白球},则事件A 中共有03341324C C C C +个样本点.因此3522)(3703341324=+=C C C C C A P .(三)条件概率1.条件概率定义1设A 与B 是样本空间Ω中的两个事件,若0)(>B P ,则称)()()(B P AB P B A P =为“在事件B 发生条件下事件A 发生的条件概率”,简称条件概率.【例1】已知31)()(==B P A P ,61)(=B A P ,求(B A P .【解】∵61)()()(==B P AB P B A P ,∴181)(=AB P ,)(1)()()()(B P B A P B P B A P B A P -== )(1)]()()([1B P AB P B P A P --+-=127=.【注】条件概率的计算通常与概率的性质结合使用.【技巧】在计算过程中,只要有概率的性质可以用,就一直用概率的性质计算,直到没有概率的性质可用时,对得到的式子进行化简整理,代入已知数据计算.2.乘法公式定理1(乘法公式)(1)若0)(>B P ,则)()()(B A P B P AB P =.(2)若0)(121>-n A A A P ,则)()()()()(12121312121-=n n n A A A A P A A A P A A P A P A A A P .【例2】一批零件共100个,次品率为10%,每次从其中任取一个零件,取出的零件不再放回,求第三次才取得合格品的概率.【解】设=i A {第i 次取得合格品},3,2,1=i .由题意知,所求概率为)(321A A A P ,易知10010)(1=A P ,999)(12=A A P ,9890)(213=A A A P .由此得)()()()(213121321A A A P A A P A P A A A P =0083.0989099910010≈⋅⋅=.3.全概率公式定义2设Ω为试验E 的样本空间,1B ,2B ,…,n B 为E 的一组事件.如果=j i B B ∅,j i ≠,n j i ,,2,1, =且Ω=n B B B 21,则称1B ,2B ,…,n B 为样本空间Ω的一个划分.定理2(全概率公式)设1B ,2B ,…,n B 为样本空间Ω的一个划分,若0)(>i B P ,n i ,,2,1 =,则对任一事件A 有)()()(1i ni i B A P B P A P ∑==.4.贝叶斯公式定理3(贝叶斯公式)设1B ,2B ,…,n B 为样本空间Ω的一个划分,若0)(>A P ,0)(>i B P ,n i ,,2,1 =,则∑==n i j j i i i B A P B P B A P B P A B P 1)()()()()(,n i ,,2,1 =.【例3】一批同型号的零件由编号为Ⅰ、Ⅱ、Ⅲ的三台机器共同生产,各台机器生产的零件占这批零件的比例分别为35%、40%和25%,各台机器生产的零件的次品率分别为3%、2%和1%.(1)求该批零件的次品率;(2)现从该批零件中抽到一颗次品,试问这颗零件由Ⅰ号机器生产的概率是多少?【解】设=A {零件是次品},=1B {零件由Ⅰ号机器生产},=2B {零件由Ⅱ号机器生产},=3B {零件由Ⅲ号机器生产},则由题设知35.0)(1=B P ,4.0)(2=B P ,25.0)(3=B P ,03.0)(1=B A P ,02.0)(2=B A P ,01.0)(3=B A P .(1)题目要求的是)(A P ,由全概率公式,得∑==31)()()(i i i B A P B P A P 021.0=.(2)题目要求的是)(1A B P ,由贝叶斯公式,得21)|()()|()()(31111==∑=i i i B A P B P B A P B P A B P .【例4】有甲、乙、丙三厂同时生产某种产品.甲、乙、丙三厂的产量之比为1:1:3,次品率分别为4%,3%,2%.(1)若从一批产品中随机抽出一件,求这件产品为次品的概率.(2)若产品的售后部门接到一名顾客投诉,说其购买的产品为次品,请问哪个厂最该为此事负责,为什么?【解】设=A {产品为次品},=1B {产品由甲厂生产},=2B {产品由乙厂生产},=3B {产品由丙厂生产},则由题设知,2.0)(1=B P ,2.0)(2=B P ,6.0)(3=B P ,04.0)(1=B A P ,03.0)(2=B A P ,02.0)(3=B A P .(1)题目要求的是)(A P ,由全概率公式,得∑==31)()()(i i i B A P B P A P 026.0=.(2)由贝叶斯公式,得134)|()()|()()(31111==∑=i i i B A P B P B A P B P A B P ,133)|()()|()()(31222==∑=i i i B A P B P B A P B P A B P ,136)|()()|()()(31333==∑=i i i B A P B P B A P B P A B P .所以在产品为次品的情况下,产品来自丙厂的可能性最大,丙厂最该负责.【注】全概率公式与贝叶斯公式通常一起考试.(四)独立性1.两个事件的独立性定义1若)()()(B P A P AB P =成立,则称事件A 与事件B 相互独立,简称A 与B 独立.否则称A 与B 不独立或相依.定理1若事件A 与B 独立,则A 与B 独立;A 与B 独立;A 与B 独立.【例1】甲、乙两人彼此独立的向同一个目标射击,甲击中目标的概率为0.9,乙击中目标的概率为0.8,求目标被击中的概率.【解】设=A {甲击中目标},=B {乙击中目标},则=B A {目标被击中}.则)()()()(AB P B P A P B A P -+= )()()()(B P A P B P A P -+=98.0=.【例2】若事件A 与B 相互独立,8.0)(=A P ,6.0)(=B P ,求:)(B A P 和)|(B A A P .【解】∵A 与B 相互独立,∴)()()()(AB P B P A P B A P -+= )()()()(B P A P B P A P -+=92.0=.)())(()|(B A P B A A P B A A P =)()()()()(B A P B P A P B A P B A P ==13.0=.【例3】设)()(B A P B A P =,证明:A 与B 相互独立.【证】因为)()(B A P B A P =,所以有)(1)()()(1)()()()()(B P AB P A P B P B A P B P B A P B P AB P --=--==,即有)]()()[()](1)[(AB P A P B P B P AB P -=-,整理得)()()(B P A P AB P =,所以A 与B 相互独立.2.多个事件的相互独立性定义2设A ,B ,C 是三个事件,若有⎪⎩⎪⎨⎧===)()()()()()()()()(C P B P BC P C P A P AC P B P A P AB P (1)第11页共11页则称A ,B ,C 两两独立.若还有)()()()(C P B P A P ABC P =,(2)则称A ,B ,C 相互独立.注意:只有(1)式与(2)式同时成立,事件A ,B ,C 才相互独立.(1)式成立不能保证(2)式成立;反过来,(2)式成立也不能保证(1)式成立.定义3设有n 个事件1A ,2A ,…,n A ,对任意的n k j i ≤<<<≤ 1,若以下等式均成立⎪⎪⎩⎪⎪⎨⎧===)()()()()()()()()()()(2121n n k j i k j i j i j i A P A P A P A A A P A P A P A P A A A P A P A P A A P 则称此n 个事件1A ,2A ,…,n A 相互独立.定理2如果n (2≥n )个事件1A ,2A ,…,n A 相互独立,则其中任何m (n m ≤≤1)个事件换成相应的对立事件,形成的n 个新的事件仍相互独立.【例4】三人独立地去破译一份密码,已知各人能译出的概率分别为51,31,41,问三人中至少有一人能将此密码译出的概率是多少?【解】设A ,B ,C 分别表示三人独立译出密码,则51)(=A P ,31)(=B P ,41)(=C P ,且A ,B ,C 相互独立,有方法1:)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= )()()()()()()()()()()()(C P B P A P C P B P C P A P B P A P C P B P A P +---++=6.0=.方法2:)(1)(C B A P C B A P -=(1C B A P -=()()(1C P B P A P -=53411)(311)(511(1=----=.。
概率统计复习重点【范本模板】
《概率统计》期末重点第一章 随机事件及其概率【说明】本章最主要的知识点是全概率公式和贝叶斯公式,所以就讲这一部分,其余的参考书本.两个公式: 全概率公式;设实验E 的样本空间为Ω,事件12,,,n A A A 构成完备事件组(Ω的一个划分),且()()01,2,,i P A i n >=,对于事件B 有()()()1|ni i i P B P A P B A ==∑贝叶斯公式:设实验E 的样本空间为Ω,事件12,,,n A A A 构成完备事件组(Ω的一个划分),且()()01,2,,i P A i n >=,对于事件B (()0P B >)有()()()()()1|||j j j niii P A P B A P A B P A P B A ==∑【例1-1】一商店为甲、乙、丙三个厂销售同类型号的家电产品。
这三个厂产品的比例为1:2:1,且它们的次品率为0。
1,0.15,0。
2,某顾客从这些产品中任意选购一件,试求:(1) 顾客买到正品的概率;(2) 若已知顾客买到的是正品,则它是甲厂生产的概率是多少? 解:设{}{}{}{}123A A A B ====买到产品甲厂生产买到产品乙厂生产买到产品丙厂生产顾客买到正品由题意()()()()()()123123111424|0.9|0.85|0.8P A P A P A P B A P B A P B A ======1) 由全概率公式()0.85P B =2) 由贝叶斯公式()()()()111|9|34P A P B A P A B P B ==【例1-2】设甲袋中有四个红球和两个白球,一代中有三个红球和两个白球。
现从甲袋中任取两个球(不看颜色)放到乙袋后,再从乙袋中任取一个球,发现取出的球是白球,则从甲袋中取出(放入乙袋)的两个球都是白球的概率是多少. 解:设{}{}{}{}123A A A B ====甲袋中取出的两个都是红球甲袋中取出一个红球一个白球甲袋中取出的两个都是白球乙袋中取出的是白球由题()()()()()()123123681151515234|||777P A P A P A P B A P B A P B A ======由贝叶斯公式()()()()()22231|1|10|iii P A P B A P A B P A P B A ===∑ 第三章 随机变量的数字特征【说明】本章主要介绍随机变量的数学期望、方差、协方差、相关系数等知识,比较重要,难度不是很大。
概率统计期末考试复习要点
《概率统计》复习要点第一章随机事件与概率随机事件的概念;掌握随机事件间的关系及运算;随机事件的表示;理解样本空间的概念,能写出随机事件的样本空间;熟练掌握概率的性质及其应用;掌握古典概型的概念及其计算法;会求条件概率,会使用乘法公式;理解随机事件的独立性,两个事件相互独立的充分必要条件;会用全概率公式和贝叶斯公式解决概率问题;第二章随机变量的分布与数字特征1.理解随机变量的概念,能用随机变量的表达式表示随机事件;2.随机变量的期望和方差的定义与计算;3.牢记几种常见的重要分布的分布律或概率密度的表达式;4.牢记常见分布的数学期望和方差;5.理解分布函数的定义;6.给定分布律,会求分布函数;7.给定分布函数,会求分布律或概率密度;8.熟悉概率分布律的性质、概率密度的性质,熟悉分布函数的性质;9.能够使用概率密度的性质和分布函数的性质确定概率分布、概率密度或分布函数中的待定常数;10.掌握正态分布,二项分布,指数分布,泊松分布的相关计算。
第三章随机向量1.给定联合概率密度函数,会求较简单的边缘密度函数;2.给定联合分布律,会求边缘分布;3.给定分布函数如何求数学期望;4.牢记并会使用相互独立的随机变量的线性组合的期望与方差公式;比如,若X与Y独立,那么E(aX+bY)=?D(aX+bY)=?5.已知联合密度函数(,),要求至少要能够正确表示f x y,如何计算{(,)}P X Y D为二次积分;6.会使用中心极限定理;统计部分1. 理解统计量的概念及常见统计量;2. 点估计估计量的判别标准;.2. 理解最大似然估计法估计参数;理解对正态总体均值和方差的区间估计方法;3. 掌握单个正态总体的假设检验第 1 页共1页。
概率论与数理统计期末总复习PPT
注:(1) 事件的关系与运算可用维恩图形象表之
(2) 事件的和与积的运算可推广到有限个事 件或可数无限个事件的情形.
(3) 事件的和与积的另一记法:A B A B, A B AB.
8. 完备事件组
设 A1, A2 ,, An , 是有限或可数个事件,若其
满足:
(1)Ai Aj , i j, i, j 1,2,;
y
y
f (x)
f (x)
P{a X b}
F( x)
Ox
x
Oa b
x
三、分布密度(概率密度)
离散型:P{ X xi } pi , i 1,2, 连续型: f ( x )
1、分布密度的性质
(1) 离散型: pi 0,i 1,2,; pi 1.
i
(2) 连续型:f ( x) 0;
f ( x)dx 1.
i 1
性质3 P( A) 1 - P( A).
性质4 P( A - B) P( A) - P( AB). 特别地,若 B A, 则
(1) P( A - B) P( A) - P(B); (2) P( A) P(B). 性质5 对任一事件A,P( A) 1.
例. 设 A、B 都出现的概率与 A、B 都不出现的概率 相等,且 P( A) p, 求 P(B).
3. 可列可加性: 对任意可数个两两互不相容的
事件 A1, A2 ,, An ,, 有 P(A1 A2 An ) P(A1) P(A2 )
P(An ) , 则称 P(A)为事件A的概率.
三、概率的性质
性质1 P() 0.
性质2
(有限可加性)设
n
A1 ,
A2 ,, An
概率论与数理统计期末复习知识点
fZ(z)
f (z y, y)dy
f (x, z x)dx
当X 和Y 相互独立:卷积公式
fZ (z) f X ( x) fY (z x)dx
f X (z y) fY ( y)dy
(2) 当X 和Y 相互独立时:
M = max(X,Y ) 的分布函数
Fmax(z) P{M z} FX (z)FY (z)
E(Y ) E[g( X )] g( xk )pk k 1
(1-3)设( X,Y ) 离散型随机变量. 分布律为:
P{X xi , Y y j } pij i, j 1,2,
若 Z=g(X,Y)(g为二元连续函数)
则 E(Z ) E[g( X ,Y )]
g( xi , y j )pij
(2) 连续型随机变量的分布函数的定义
x
F ( x) f (t)dt
f(x)的性质
1. f (x) 0
2. f ( x)dx 1
3. P{x1 X x2}
x2 f ( x)dx
x1
4. F( x) f ( x),在f ( x)的连续点.
⁂ 三种重要的连续型随机变量
(一)均匀分布
pi1
p•1
pi2
p•2
pij pi•
p• j 1
性质:
1 0 pij 1
2
pij 1.
j 1 i1
2.边缘分布律
3. 独立性
pij pi• p• j , ( i, j 1,2, )
4.分布函数 ( x, y) R2
F ( x, y) pij xi x yjy
n
n
则
Ai Ai
Ai Ai
i 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》课程期末复习资料注:以下是考试的参考内容,不作为实际考试范围,考试内容以教学大纲和实施计划为准;注明“了解”的内容一般不考。
1、能很好地掌握写样本空间与事件方法,会事件关系的运算,了解概率的古典定义2、能较熟练地求解古典概率;了解概率的公理化定义3、掌握概率的基本性质和应用这些性质进行概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、能准确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的概念及性质。
5、理解随机变量的概念,能熟练写出(0—1)分布、二项分布、泊松分布的分布律。
6、理解分布函数的概念及性质,理解连续型随机变量的概率密度及性质。
7、掌握指数分布(参数λ)、均匀分布、正态分布,特别是正态分布概率计算8、会求一维随机变量函数分布的一般方法,求一维随机变量的分布律或概率密度。
9、会求分布中的待定参数。
10、会求边缘分布函数、边缘分布律、条件分布律、边缘密度函数、条件密度函数,会判别随机变量的独立性。
11、掌握连续型随机变量的条件概率密度的概念及计算。
12、理解二维随机变量的概念,理解二维随机变量的联合分布函数及其性质,理解二维离散型随机变量的联合分布律及其性质,理解二维连续型随机变量的联合概率密度及其性质,并会用它们计算有关事件的概率。
13、了解求二维随机变量函数的分布的一般方法。
14、会熟练地求随机变量及其函数的数学期望和方差。
会熟练地默写出几种重要随机变量的数学期望及方差。
15、较熟练地求协方差与相关系数.16、了解矩与协方差矩阵概念。
会用独立正态随机变量线性组合性质解题。
17、了解大数定理结论,会用中心极限定理解题。
18、掌握总体、样本、简单随机样本、统计量及抽样分布概念,掌握样本均值与样本方差及样本矩概念,掌握χ2分布(及性质)、t分布、F分布及其分位点概念。
19、理解正态总体样本均值与样本方差的抽样分布定理;会用矩估计方法来估计未知参数。
20、掌握极大似然估计法,无偏性与有效性的判断方法。
21、会求单正态总体均值与方差的置信区间。
会求双正态总体均值与方差的置信区间。
23、明确假设检验的基本步骤,会U检验法、t检验、2χ检验法、F检验法解题。
24、掌握正态总体均值与方差的检验法。
概率论部分必须要掌握的内容以及题型1.古典概型中计算概率用到的基本的计数方法。
2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质。
3.准确地选择和运用全概率公式与贝叶斯公式。
4.一维、二维离散型随机变量的分布律,连续型随机变量的密度函数性质的运用。
分布中待定参数的确定,分布律、密度函数与分布函数的关系,联合分布与边缘分布、条件分布的关系,求数学期望、方差、协方差、相关系数,求函数的分布律、密度函数及期望和方差。
5.会用中心极限定理解题。
6.熟记(0-1)分布、二项分布、泊松分布的分布律、期望和方差,指数分布(参数λ)、均匀分布、正态分布的密度函数、期望和方差。
数理统计部分必须要掌握的内容以及题型 1.统计量的判断。
2.计算样本均值与样本方差及样本矩。
3.熟记正态总体样本均值与样本方差的抽样分布定理。
4.会求未知参数的矩估计、极大似然估计。
5.掌握无偏性与有效性的判断方法。
6.会求正态总体均值与方差的置信区间。
7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤。
概率论部分必须要掌握的内容以及题型1.古典概型中计算概率用到的基本的计数方法。
古典概型例子 摸球模型例1:袋中有a 个白球,b个黑球,从中接连任意取出m (m ≤a +b)个球,且每次取出的球不再放回去,求第m 次取出的球是白球的概率;例2:袋中有a 个白球,b个黑球,c 个红球,从中任意取出m(m ≤a +b)个球,求取出的m 个球中有k 1(≤a ) 个白球、k 2(≤b ) 个黑球、k 3(≤c ) 个红球(k 1+k 2+k 3=m )的概率. 占位模型例:n 个质点在N 个格子中的分布问题.设有n 个不同质点,每个质点都以概率1/N 落入N 个格子(N ≥n)的任一个之中,求下列事件的概率:(1) A ={指定n 个格子中各有一个质点};(2) B ={任意n 个格子中各有一个质点}; (3) C ={指定的一个格子中恰有m (m ≤n )个质点}. 抽数模型例:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少?2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质。
如对于事件A ,B ,A 或B ,已知P (A ),P (B ),P (AB ),P (A B ),P (A |B ),P (B |A )以及换为A 或B 之中的几个,求另外几个。
例1:事件A 与B 相互独立,且P (A )=0.5,P (B )=0.6,求:P (AB ),P (A -B ),P (A B ) 例2:若P (A )=0.4,P (B )=0.7,P (AB )=0.3,求: P (A -B ),P (A B ),)|(B A P ,)|(B A P ,)|(B A P 3.准确地选择和运用全概率公式与贝叶斯公式。
若已知导致事件A 发生(或者是能与事件A 同时发生)的几个互斥的事件B i ,i =1,2,…,n ,…的概率P (B i ) ,以及B i 发生的条件下事件A 发生的条件概率P (A |B i ),求事件A 发生的概率P (A )以及A 发生的条件下事件B i 发生的条件概率P (B i | A )。
例:玻璃杯成箱出售,每箱20只。
假设各箱含0、1、2只残次品的概率相应为0.8、0.1和0.1,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回。
试求:(1)顾客买下该箱的概率;(2)在顾客买下的该箱中,没有残次品的概率。
4.一维、二维离散型随机变量的分布律,连续型随机变量的密度函数性质的运用。
分布中待定参数的确定,分布律、密度函数与分布函数的关系,联合分布与边缘分布、条件分布的关系,求数学期望、方差、协方差、相关系数,求函数的分布律、密度函数及期望和方差。
(1)已知一维离散型随机变量X 的分布律P (X =x i )=p i ,i =1,2,…,n ,… 确定参数求概率P (a <X <b ) 求分布函数F (x )求期望E (X ),方差D (X )求函数Y =g (X )的分布律及期望E [g (X )]例:随机变量X 的分布律为.确定参数k求概率P (0<X <3),}31{<<X P 求分布函数F (x )求期望E (X ),方差D (X )求函数2)3(-=X Y 的分布律及期望2)3(-X E(2)已知一维连续型随机变量X 的密度函数f (x ) 确定参数求概率P (a <X <b ) 求分布函数F (x )求期望E (X ),方差D (X )求函数Y =g (X )的密度函数及期望E [g (X )]例:已知随机变量X 的概率密度为()⎩⎨⎧<<=其他0202x kx x f ,确定参数k求概率}31{<<X P 求分布函数F (x )求期望E (X ),方差D (X )求函数X Y =的密度及期望)(X E (3)已知二维离散型随机变量(X ,Y )的联合分布律P (X =x i ,Y =y j )=p ij ,i =1,2,…,m ,…;j =1,2,…,n ,… 确定参数求概率P {(X ,Y )∈G }求边缘分布律P (X =x i )=p i.,i =1,2,…,m ,…;P (Y =y j )=p .j , j =1,2,…,n ,… 求条件分布律P (X =x i |Y =y j ),i =1,2,…,m ,…和P (Y =y j |X =x i ), j =1,2,…,n ,… 求期望E (X ),E (Y ),方差D (X ),D (Y )求协方差 cov(X ,Y ),相关系数XY ρ,判断是否不相关 求函数Z =g (X , Y )的分布律及期望E [g (X , Y )] 例求概率P (X 求边缘分布律P (X =k ) k =0,1,2 和P (Y =k ) k =0,1,2,3求条件分布律P (X =k |Y =2) k =0,1,2和P (Y =k |X =1) k =0,1,2,3 求期望E (X ),E (Y ),方差D (X ),D (Y )求协方差 cov(X ,Y ),相关系数XY ρ,判断是否不相关 求Z =X +Y ,W =max{X ,Y },V =min{X ,Y }的分布律(4)已知二维连续型随机变量X 的联合密度函数f (x , y ) 确定参数求概率P {(X ,Y )∈G }求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立 求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望E (X ),E (Y ),方差D (X ),D (Y )求协方差 cov(X ,Y ),相关系数XY ρ,判断是否不相关 求函数Z =g (X , Y )的密度函数及期望E [g (X , Y )]例:已知二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<=其它,01,),(22y x y cx y x f ,确定常数c 的值;求概率P (X <Y )求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立 求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望E (X ),E (Y ),方差D (X ),D (Y )求协方差 cov(X ,Y ),相关系数XY ρ,判断是否不相关 5.会用中心极限定理解题。
例1:每次射击中,命中目标的炮弹数的均值为2,方差为25.1,求在100次射击中有180到220发炮弹命中目标的概率.例2:设从大批发芽率为0.9的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率。
6.熟记(0-1)分布、二项分布、泊松分布的分布律、期望和方差,指数分布(参数λ)、均匀分布、正态分布的密度函数、期望和方差。
数理统计部分必须要掌握的内容以及题型 1.统计量的判断。
对于来自总体X 的样本n X X X ,,,21 ,由样本构成的各种函数是否是统计量。
2.计算样本均值与样本方差及样本矩。
3.熟记正态总体样本均值与样本方差的抽样分布定理。
4.会求未知参数的矩估计、极大似然估计。
例:设总体X 的概率密度为()()⎩⎨⎧<<+=其它,010,1x x x f θθ,n X X ,,1 是来自总体X 的一个样本,求未知参数θ的矩估计量与极大似然估计量. 5.掌握无偏性与有效性的判断方法。