控制系统的稳定性

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.8 控制系统的稳定性

3.8 控制系统的稳定性

稳定性是控制系统最重要的特性之一。它表示了控制系统承受各种扰动,保持其预定工作状态的能力。不稳定的系统是无用的系统,只有稳定的系统才有可能获得实际应用。我们前几节讨论的控制系统动态特性,稳态特性分析计算方法,都是以系统稳定为前提的。

3.8.1 稳定性的定义

图3.26(a)是一个单摆的例子。在静止状态下,小球处于A位置。若用外力使小球偏离A而到达A’,就产生了位置偏差。考察外力去除后小球的运动,我们会发现,小球从初始偏差位置A',经过若干次摆动后,最终回到A点,恢复到静止状态。图3.26(b)是处于山顶的一个足球。足球在静止状态下处于B位置。如果我们用外力使足球偏离B位置,根据常识我们都知道,足球不可能再自动回到B位置。对于单摆,我们说A位置是小球的稳定位置,而对于足球来说,B则是不稳定的位置。

图 3.26 稳定位置和不稳定位置

(a)稳定位置;(b)不稳定位置

处于某平衡工作点的控制系统在扰动作用下会偏离其平衡状态,产生初始偏差。稳定性是指扰动消失后,控制系统由初始偏差回复到原平衡状态的性能。若能恢复到原平衡状态,我们说系统是稳定的。若偏离平衡状态的偏差越来越大,系统就是不稳定的。

在控制理论中,普遍采用了李雅普诺夫(Liapunov)提出的稳定性定义,内容如下:

设描述系统的状态方程为

(3.131)

式中x(t)为n维状态向量,f(x(t),t)是n维向量,它是各状态变量和时间t的函数。如果系统的某一状态,对所有时间t,都满足

(3.132)

则称为系统的平衡状态。是n维向量。当扰动使系统的平衡状态受到破坏时,系统就会偏离平衡状态,在时,产生初始状态=x。在时,如果对于任一实数,都存在另一实数,使得下列不等式成立

(3.133)

(3.134)

则称系统的平衡状态为稳定的。

式中称为欧几里德范数,定义为:

(3.135) 矢量的范数是n维空间长度概念的一般表示方法。

这个定义说明,在系统状态偏离平衡状态,产生初始状态以后,即以后,系统的状态将会随时间变化。对于给定的无论多么小的的球域S(),总存在另一个的球域,只要初始状态不超出球域,则系统的状态

的运动轨迹在后始终在球域S()内,系统称为稳定系统。

当t无限增长,如果满足:

(3.136)

即系统状态最终回到了原来的平衡状态,我们称这样的系统是渐近稳定的。对于任意给定的正数,如果不存在另一个正数,即在球域内的初始状态,在后,的轨迹最终超越了球域S(),我们称这种系统是不稳定的。

图3.27是二阶系统关于李雅普诺夫稳定性定义的几何说明。

图 3.27 李雅普诺夫稳定性

(a)稳定;(b)渐近稳定;(c)不稳定

图3.27(a)说明只要初始状态在的圆内变化,则系统的状态就不超出S()

的圆域。这种情况定义为系统是稳定的。是给定的状态的偏差范围。或者说明=Ax解的偏差范围,而则是根据所确定的容许的初始状态的偏差范围。如果可以选得任意大,我们称这样的系统为大范围稳定。

图3.26(b)说明,只要初始状态在的圆内变化,则随时间的增大,系统的

状态最终会回到原点(即原来的平衡状态)。这种情况定义为系统是渐近稳定的。由图可见,渐近稳定情况下,,即稳定的条件更严格一些。或者说渐近稳定具有比稳定更强的特性,工程上要求控制系统稳定是指要求系统具有渐近稳定性。

图3.26(c)是不稳定情况。x(t)的轨迹离开了圆S()。

3.8.2 线性定常系统的稳定性

稳定性表明了控制系统在所受扰动消失后,自由运动的性质。线性定常系统的稳定性是系统的固有特性,与输入变量无关。我们只要讨论齐次方程的解即可。在控制工程中,只有李雅普诺夫稳定性定义下的渐近稳定的系统才能工作。所以,我们以下讨论的控制系统的稳定性都是指渐近稳定的系统。不是渐近稳定的系统都视为不稳定系统。

线性定常系统的状态方程

(3.137)

式中A为n*n方阵。设系统原来的平衡状态为,在扰动产生了初始状态

以后,系统的状态x(t)将从开始按下列规律转移:

(3.138)

如果对于任意初始状态,由它引起的系统的运动满足

(3.139)

那么,线性定常系统就是稳定的(李雅普诺夫定义下的渐近稳定)。

线性定常系统稳定的充分必要条件是其系数矩阵A的特征值全都具有负实部。一个n*n矩阵的特征值就是方程

(3.140)

的根。这个方程称为矩阵A的特征方程。

如果描述控制系统特性的是输入——输出微分方程,则对应的齐次方程的解可表示为

(3.14

1)

而系统的传递函数则具有以下形式

(3.142) 若方程的解在时间趋于无穷大时也趋于零,即

(3.143)

这说明系统在扰动消除后具有恢复到原平衡状态的能力。而满足式(3.143)的条件则是(3.142)式表示的系统的传递函数的闭环极点或特征方程的根具有负实部。如果特征方程的根有为零的根,则对应的项就会出现常数或等幅振荡,若特征方程的根有正实部的根,则对应的项随时间增大将越来越大。所以,线性定常系统稳定的充分必要条件还可以表述为:系统闭环特征方程的所有根都具有负实部。如果按照闭环极点在S平面上的分布来讨论稳定性,则线性定常系统稳定的充分必要条件是系统的闭环极点都位于S平面的左半边。

对于单输入单输出的线性定常系统按系统状态方程和按输入——输出微分方程

(或传递函数)得出的控制系统稳定的充分必要条件之间有什么关系呢?由于状态变量的选取不同,描述同一系统的状态方程可以有无穷多种,这叫状态变量的非唯一性。这些状态方程之间存在线性变换的关系。而这所有状态方程的系数矩阵A的特征值,则始终不变,这叫特征值的不变性。状态方程系数矩阵的特征值,就是相应的输入——输出微分方程(或传递函数)的特征方程的特征根。所以,控制系统稳定的充分必要条件的表述是一致的。

例10 描述控制系统的微分方程为

式中y(t)为输出变量,u(t)为输入变量。求该系统的特征根。

解系统的传递函数为

其特征方程为

特征方程的根为

若把微分方程转换为状态变量表达式,则有

相关文档
最新文档