信号与系统连续时间系统的频率响应
第六章信号与系统的时域和频域特性
x(t)e j0t X ( j( 0 )) ——移频特性
7. Parseval 定理:
若 x(t) X ( j) 则
x(t) 2 dt 1 X ( j) 2d
2
这表明:信号的能量既可以在时域求得,也可以
在频域求得。由于 X ( j) 2表示了信号能量在频域的 分布,因而称其为“能量谱密度”函数。
yt由于的傅氏变换就是频率为的复指数信号通过由于的傅氏变换就是频率为的复指数信号通过lti系统时系统对输入信号在幅度上产生的影响所以称其为系统的系统时系统对输入信号在幅度上产生的影响所以称其为系统的频率响应
4.5 周期信号的傅里叶变换:
( The Fourier Transform for periodic signals ) 至此,周期信号用傅里叶级数、非周期信号用傅里
若 x(t) X ( j) 则
dx(t) jX ( j) (可将微分运算转变为代数运算) dt
t (将 x(t) 1 X ( j)e jtd 两边对 微分即可证明)
2
t x( )d 1 X ( j) X (0) ()
j
——时域积分特性
cos 0t
1 [e j0t 2
e
j0t
]
X ( j) [ ( 0 ) ( 0 )]
X ( j)
0 0 0
例3: x(t) (t nT ) n
x(t)
X ( j)
(1)
t
2T T 0 T 2T
( 2 ) T
根据卷积特性,在频域有: Y ( j) X ( j)H ( j) • 频域分析的步骤:
信号与系统-公式总结
信号与系统-公式总结信号与系统是电子信息类专业中的一门核心课程,主要研究信号的产生、变换、传输和处理过程,以及系统对信号的响应和处理。
信号与系统的学习需要掌握大量的数学知识和公式,下面就是信号与系统中一些重要的公式总结。
1. 信号的分类和表示:- 狄拉克脉冲函数:δ(t)- 单位阶跃函数:u(t)- 奇函数和偶函数性质:x(t) = x(-t) 和 x(t) = -x(-t)- 周期信号的频率和周期关系:f = 1/T2. 傅里叶变换:- 连续时间傅里叶变换(CTFT):X(jω)= ∫[−∞,∞]x(t)e^(-jωt)dt- 傅里叶反变换:x(t) = (1/2π) ∫[−∞,∞]X(jω)e^(jωt)dω- 周期信号的傅里叶级数展开:x(t) = ∑[k=−∞,∞]c(k)e^(jωk0t) - 频谱为实数的信号的性质:X(jω) = X*(−jω)3. 拉普拉斯变换:- 连续时间拉普拉斯变换(CTLT):X(s) = ∫[−∞,∞]x(t)e^(-st)dt- 拉普拉斯反变换:x(t) = (1 / 2πj) ∫[σ-j∞,σ+j∞]X(s)e^(st)ds- 零极点的性质:如果x(t)的拉普拉斯变换X(s)的极点位于左半平面,那么系统是稳定的。
4. Z变换:- 离散时间Z变换(DTZT):X(z) = ∑[n=−∞,∞]x(n)z^(-n) - Z反变换:x(n) = (1 / 2πj) ∮ X(z)z^(n-1)dz- 零极点的性质:如果X(z)的极点的模都小于1,则系统是稳定的。
5. 系统函数和频率响应:- 系统函数:H(s) = Y(s) / X(s) = L{h(t)}- 系统函数的零极点分解:H(s) = (s-z1)(s-z2)...(s-zn) / (s-p1)(s-p2)...(s-pm)- 频率响应:H(jω) = |H(jω)|e^(jφ(ω))6. 系统的时域响应和频域响应:- 系统的单位冲激响应:h(t) = L^{-1}{H(s)} 或 h(n) = Z^{-1}{H(z)}- 系统的频域响应:H(s) = ∫[−∞,∞]h(t)e^(-st)dt 或 H(z) =∑[n=−∞,∞]h(n)z^(-n)7. 信号的卷积运算:- 连续时间信号的卷积:y(t) = x(t) * h(t) = ∫[−∞,∞]x(t-τ)h(τ)dτ - 离散时间信号的卷积:y(n) = x(n) * h(n) = ∑[k=-∞,∞]x(k)h(n-k)8. 频域中的乘法和卷积:- 频域乘法:y(t) = x(t)h(t) = x(t) ⊗ h(t)- 频域卷积:y(t) = x(t) * h(t) = X(jω)H(jω)9. 系统的稳定性:- 连续时间系统的稳定性:系统零极点的实部都小于0时,系统是稳定的。
连续时间信号与系统的频域分析报告
连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。
本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。
2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。
傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。
具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。
3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。
频率响应是系统对不同频率输入信号的响应情况。
通过系统函数H(ω)可以计算系统的频率响应。
系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。
4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。
通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。
常用的频域分析方法包括功率谱密度估计、谱线估计等。
5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。
通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。
6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。
通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。
进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。
7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。
频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。
总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。
频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。
何子述信号与系统习题解答第4章连续时间傅里叶分析(2012新)
2 2 3j 1
F δ t 1 δ
n
j t
F
n
再由傅里叶变换的线性,可得 h t 为
h t 2 t 3¢ t t
(c)同理可得
j Y 6Y j F 2 j F 3F
何子述
高等教育出版社
h t
题 4.8 解:
sin 1t πt
δ t
sin 2 t πt
该题中的单边带通滤波器的频率响应可看成是一个截止频率为 c 的低通滤波器的 频率响应在频谱上的一个搬移,搬移量为 3c ,由第三章傅里叶变化的频移特性知,信 号在时域乘以一个复指数信号 e j0t 后,其傅里叶变换在频域上平移 0 。 由主教材式(4.2.2)知,低通滤波器的冲激响应为
h t
由上可知,一定存在一个信号 g t ,使得
sin c t t
h t
且 g t 为
sin c t πt
g t
g t e j3c t
题 4.9 解: 由主教材式(4.2.1)知,理想低通滤波器的频率响应为
1, H 0,
由主教材式(4.2.2)知,其冲激响应为
c c
h t
sin c t πt
由主教材式(4.1.3)知,系统频率响应 H 可表示为
H H e jH
(a)由上式知,该滤波器对应的频率响应为
H1 H e
0 c c 0 其他
上式可看成截止频率为 c / 2 的低通滤波器被频移至 c / 2 和 c / 2 ,并分别乘上幅度 j 和 j ,且截止频率为 c / 2 的低通滤波器可表示为 H 2 ,所以 H 3 可表示为
信号与系统频率响应的定义
信号与系统频率响应的定义信号与系统是电子工程、通信工程等专业中的重要基础课程,频率响应是信号与系统中的一个关键概念。
本文将围绕着信号与系统的频率响应进行阐述,介绍其定义以及相关概念。
我们来了解一下信号与系统的基本概念。
信号是信息的载体,可以是电压、电流、光强等物理量的变化。
系统是对信号进行处理、传输和转换的过程,可以是电路、滤波器、通信系统等。
信号与系统的研究旨在分析和描述信号在系统中的传输、处理和转换过程。
在信号与系统中,频率响应是描述系统对不同频率信号响应能力的一种性质。
频率响应可以用来分析信号在系统中的传递特性,帮助我们理解系统的频率选择性和滤波效果。
频率响应的定义是系统对输入信号中各个频率成分的响应程度。
在频率响应中,有两个重要的概念需要了解,即幅频特性和相频特性。
幅频特性是指系统对不同频率信号幅度的响应程度。
通过幅频特性,我们可以知道系统对不同频率信号的增益或衰减程度。
幅频特性可以用频率响应曲线来表示,横轴表示频率,纵轴表示幅度。
相频特性是指系统对不同频率信号相位的响应程度。
相位是信号在时间或空间上的偏移量,相频特性可以用来描述系统对不同频率信号的相位延迟或提前程度。
相频特性也可以用频率响应曲线来表示,横轴表示频率,纵轴表示相位。
频率响应可以通过系统的冲激响应来求得,常用的方法有傅里叶变换和拉普拉斯变换。
通过对冲激响应进行变换,我们可以得到系统的频率响应函数,即系统的传递函数。
传递函数是频率响应的数学表达式,可以用来计算系统对不同频率信号的响应。
在实际应用中,频率响应对于信号与系统的分析和设计非常重要。
比如在通信系统中,我们需要对信号进行滤波以去除噪声和干扰。
通过分析系统的频率响应,我们可以选择合适的滤波器来达到所需的滤波效果。
总结起来,频率响应是信号与系统中重要的概念,用来描述系统对不同频率信号的响应程度。
通过幅频特性和相频特性,我们可以了解系统对不同频率信号的增益、衰减和相位延迟情况。
第三、四章连续时间信号与系统的频域分析内容总结
第
连续时间信号与系统的频域分析总结
8 页
例15、试求信号f(t)=cos(4t+ )的频谱 。 3
解:
X
第
连续时间信号与系统的频域分析总结
9 页
例16、一因果LTI系统的输入和输出,由下列微分方程表示:(采用傅里叶变
换计算)。 (1)求系统的单位冲激响应 h( t ) ;
d 2 y( t ) dy( t )
X
第
连续时间信号与系统的频域分析内容总结
2 页
第四章是傅里叶变换在LTI系统分析中的应用。 在第三章信号频域分解、分析基础上,研究不同激励信号 通过系统的响应、信号通过系统无失真条件、理想低通滤波器 模型以及物理可实现条件、希尔伯特变换、抽样定理等主要内 容。
X
第
连续时间信号与系统的频域分析总结
3) (j
5)
1ห้องสมุดไป่ตู้
j
3
1
j 5
2
j
4
y z s(t ) e 3t (t ) e 5t (t ) 2e 4t (t )
X
第
连续时间信号与系统的频域分析总结
10 页
例17、如图所示系统,其乘法器的两个输入端分别为:f (t) sin(2t) , s(t) cos(6t)
系统的频率响应为
8
15y( t ) 2 f ( t )
dt 2
dt
(2)若 f ( t ) e4t( t ) ,求该系统的零状态响应 yzs (t) 。
解: (1)
H ( j)
2
11
j2 8 j 15 j 3 j 5
h(t) e 3t(t) e 5t(t)
(2)
信号与系统§6.4 由系统函数求频率响应
m
s
z
j
m
j
ω
z
j
H jω H s sjω K
j 1 n
sjω K
j 1 n
s Pi
jω pi
i 1
i 1
可见H jω的特性与零极点的位置 有关。
令分子中每一项 jω z j N j ejψj 分母中每一项 jω Pi Mi ejθi
ω ψ1 ψ2 ψm θ1 θ2 θn
当沿虚轴移动时,各复数因子(矢量)的模和
辐角都随之改变,于是得出幅频特性曲线和相 频特性曲线。
s jω
Hjω ——幅频特性
ω ——相频特性(相移特性)
几种常见的滤波器
H ( j) 低通滤波器
H ( j) 高通滤波器
0
c
(a)
H ( j) 带通滤波器
0
c
H ( j)
(b)
带阻滤波器
0
c1
c 2
0
c1
c 2
(c)
(d)
图4-15 滤波网络频响特性示例
根据H(s)零极图绘制系统的频响特性曲线
H
jω
K
N1 e jψ1 M1 e jθ1
N2 e jψ2 M 2 e jθ2
Nm e jψm M n e jθn
K
N1N2
N e jψ1ψ2 ψm m
M1M2
M e jθ1θ2 θn n
H jω K N1N2 Nm
M1M 2 M n
将 jω z j、jω - pi都看作两矢量之差,将矢量图画于复 平面内。
管致中《信号与线性系统》(第5版)(章节题库 连续时间系统的频域分析)
)。(填“因果”或“非因果”)
【答案】时变、因果
【解析】根据时不变的定义,当输入为 x(t-t0)时,输出也应该为 y(t-t0)=
(
t
t0
5
) cos(
x(
t
1
பைடு நூலகம்t0
)
)
但当输入
x(t-t0)时实际的输出为 (
t
5
) cos(
x(
t
1
t0
)
)
,
与要求的输出不相等,所以系统是时变的,因果性的定义是指系统在 t0 时刻的响应只与
【解析】无失真传输的定义:无失真是指响应信号与激励信号相比,只是大小与出现
的时间不同,而无波形上的变化。
3.若某系统对激励 e(t)=E1sin(ω1t)+E2sin(2ω1t)的响应为 r(t)
=KE1sin(ω1t-φ1)+KE2sin(2ω1t-2φ1),响应信号是否发生了失真?(
)(失真
或不失真)
A.W B.2W C.ω0
1 / 97
圣才电子书
D.ω0-W
十万种考研考证电子书、题库视频学习平 台
【答案】B
【解析】f(t)乘上 cos(ωt0+θ)实际上就是对信号进行调制,将原信号的频谱搬
移到- 0 和 0 的位置,由于 ω0>>W,所以频谱无重叠,则频谱宽度为原来的 2 倍
答:因为
Sa
0t
0
G20
,所以
故 故得
4.图 4-3(a)所示系统,已知输入信号 f(t)的 F(jω)=G4(ω),子系统函数 。求系统的零状态响应 y(t)。
图 4-3 答:F(jω)的图形如图 4-3(b)所示。
川大951信号与系统大纲
川大951信号与系统大纲信号与系统是电子信息类专业中的一门重要基础课程,它主要研究信号的产生、传输和处理,以及系统的特性和性能。
在传感器、通信、图像处理、音频处理等领域都有广泛的应用。
下面是川大951信号与系统的大纲,以帮助同学们更好地了解和准备这门课程。
一、信号的基本概念1.信号的定义和分类2.连续信号和离散信号3.周期信号和非周期信号4.信号的基本运算和性质二、连续时间系统的描述1.连续时间系统的时域描述-简单系统的微分方程模型-线性时不变系统的冲激响应和单位阶跃响应-差分方程和差分方程的解法2.连续时间系统的频域描述-连续时间系统的频率响应-傅里叶级数展开和傅里叶变换-系统函数和信号的频谱特性三、离散时间系统的描述1.离散时间系统的差分方程模型2.离散时间系统的单位采样响应和单位阶跃响应3.离散时间系统的频率响应-离散时间傅里叶变换-离散时间卷积定理和频率域滤波四、系统的稳定性和性能分析1.系统的稳定性判据和稳定性分析方法2.因果系统和非因果系统3.系统的幅频响应和相频响应-幅频特性的测量和绘制-相频特性的测量和绘制五、采样和重构1.信号的离散化和重构2.采样定理和采样频率的选择3.信号的重构方法和误差分析六、滤波器设计和实现1.模拟滤波器和数字滤波器的概念和区别2.滤波器的频率响应设计-低通、高通、带通和带阻滤波器的设计方法-IIR滤波器和FIR滤波器的特点和设计七、多通道系统和信号处理系统1.多通道系统的概念和组成2.信号处理系统的基本结构和功能3.多通道滤波器组的设计和应用以上是川大951信号与系统的大纲,该课程主要涵盖了信号的基本概念、连续时间系统和离散时间系统的描述、系统的稳定性和性能分析、采样和重构、滤波器设计和实现、多通道系统和信号处理系统等内容。
学习这门课程能够为同学们打下坚实的信号与系统理论基础,为以后的专业深造和实践应用提供良好的支持。
系统的频率响应函数
系统的频率响应函数系统的频率响应函数是描述系统输入与输出之间的频率关系的数学函数。
它通常表示为H(ω),其中H是频率响应函数的符号,ω表示频率。
频率响应函数可以是连续时间系统的拉普拉斯变换,也可以是离散时间系统的Z变换。
在以下的讨论中,我们将主要关注连续时间系统的频率响应函数。
频率响应函数对系统的稳态性能和滤波特性具有重要的影响,因此对于系统的设计和分析来说是非常关键的。
下面我们将介绍一些关于系统频率响应函数的重要概念和性质。
1.频率响应函数的定义:频率响应函数是系统的输出与输入之间的幅度和相位关系的数学表示。
在连续时间系统中,频率响应函数H(ω)可以表示为系统的拉普拉斯变换:H(ω)=G(jω)其中,G(s)是系统的传递函数,s是复变量,j是虚数单位。
2. 幅频特性:系统的幅频特性是频率响应函数的幅度分布关系。
它决定了系统对不同频率的输入信号的放大或衰减程度。
通常用幅度特性曲线表示,可以是Bode图、奈奎斯特图等。
幅频特性的分析可以帮助我们了解系统的增益衰减情况和频率选择性能。
3.相频特性:系统的相频特性是频率响应函数的相位分布关系。
它决定了系统对不同频率的输入信号的相位变化。
相频特性也通常用相位特性曲线表示。
相频特性的分析可以帮助我们了解系统的相位延迟和相位失真情况。
4.幅相特性的分离:频率响应函数可以分解为幅度响应函数和相位响应函数的乘积形式:H(ω)=,H(ω),*ϕ(ω)其中,H(ω),表示幅度响应函数,ϕ(ω)表示相位响应函数。
幅相特性的分离可以使系统的分析更加方便和直观。
5.系统的稳定性:频率响应函数对系统的稳态性能具有重要影响。
当频率响应函数在所有ω值处有界时,系统是稳定的。
稳态性能的分析可以通过频率响应函数的幅值来进行,以确定系统的增益补偿。
6.频率响应函数的设计:频率响应函数的设计可以通过选择适当的系统传递函数来实现。
通常,需要根据特定的系统要求和设计目标来选择合适的传递函数,以达到所需的频率响应特性。
信号与系统连续时间系统的频率响应
实验报告实验名称:连续时间系统的频率响应一、实验目的:1 加深对连续时间系统频率响应理解;2 掌握借助计算机计算任意连续时间系统频率响应的方法。
二、实验原理:连续时间系统的频率响应可以直接通过所得表达式计算,也可以通过零极点图通过用几何的方法来计算,而且通过零极点图可以迅速地判断系统的滤波特性。
根据系统函数H(s)在s平面的零、极点分布可以绘制频响特性曲线,包括幅频特性 H(jw) 曲线和相频特性?(w)曲线。
这种方法的原理如下:假定,系统函数H(s)的表达式为当收敛域含虚轴时,取s = jw,也即在s平面中,s沿虚轴从- j∞移动到+ j∞时,得到容易看出,频率特性取决于零、极点的分布,即取决于Zj 、Pi 的位置,而式中K是系数,对于频率特性的研究无关紧要。
分母中任一因子(jw- Pi )相当于由极点 p 引向虚轴上某点 jw的一个矢量;分子中任一因子(jw-Zj)相当于由零点Zj引至虚轴上某点 jw的一个矢量。
在右图示意画出由零点Zj和极点 Pi 与 jw点连接构成的两个矢量,图中Nj、Mi 分别表示矢量的模,ψj、θi 表示矢量的辐角(矢量与正实轴的夹角,逆时针为正)。
对于任意零点Zj 、极点Pi ,相应的复数因子(矢量)都可表示为:于是,系统函数可以改写为当ω延虚轴移动时,各复数因子(矢量)的模和辐角都随之改变,于是得出幅频特性曲线和相频特性曲线。
这种方法称为s 平面几何分析。
通过零极点图进行计算的方法是: 1 在S 平面上标出系统的零、极点位置;2 选择S 平面的坐标原点为起始点,沿虚轴向上移动,计算此时各极点和零点与该点的膜模和夹角;3 将所有零点的模相乘,再除以各极点的模,得到对应频率处的幅频特性的值;4 将所有零点的幅角相加,减去各极点的幅角,得到对应频率处的相角。
三、实验内容用 C 语言编制相应的计算程序进行计算,要求程序具有零极点输入模块, 可以手工输入不同数目的零极点。
计算频率从0~5频段的频谱,计算步长为0.1,分别计算上面两个系统的幅频特性和相频特性,将所得结果用表格列出,并画出相应的幅频特性曲线和相频特性曲线。
信号与系统知识点汇总总结
信号与系统知识点汇总总结一、信号与系统概念1. 信号的定义和分类2. 系统的定义和分类3. 时域和频域分析二、连续时间信号与系统1. 连续时间信号与系统的性质2. 连续时间信号的基本操作3. 连续时间系统的性质4. 连续时间系统的特性方程和驻点三、离散时间信号与系统1. 离散时间信号与系统的性质2. 离散时间信号的基本操作3. 离散时间系统的性质4. 离散时间系统的特性方程和驻点四、傅里叶分析1. 傅里叶级数2. 傅里叶变换3. 傅里叶变换的性质4. 傅里叶变换的逆变换五、拉普拉斯变换1. 拉普拉斯变换的定义2. 拉普拉斯变换定理3. 拉普拉斯变换的性质4. 拉普拉斯变换的逆变换六、Z变换1. Z变换的定义2. Z变换的性质3. Z变换与拉普拉斯变换的关系4. Z变换在离散时间系统分析中的应用七、系统的时域分析1. 系统的冲击响应2. 系统的单位脉冲响应3. 系统的阶跃响应4. 系统的时域性能指标八、系统的频域分析1. 系统的频率响应2. 系统的幅频特性3. 系统的相频特性4. 系统的频域性能指标九、信号与系统的稳定性1. 连续时间系统的稳定性2. 离散时间系统的稳定性3. 系统的相对稳定性十、线性时不变系统1. 线性系统的性质2. 时不变系统的性质3. 线性时不变系统的连续时间性能分析4. 线性时不变系统的离散时间性能分析十一、激励响应系统1. 激励响应系统的特性2. 激励响应系统的连续时间分析3. 激励响应系统的离散时间分析十二、卷积运算1. 连续时间信号的卷积运算2. 离散时间信号的卷积运算3. 卷积的性质和应用结语信号与系统是电子信息专业的重要基础课程,掌握好这门课程的知识对学生日后的学习和工作都有重要的帮助。
通过本文的知识点汇总总结,相信读者对信号与系统这门课程会有更深入的理解和掌握,希望对大家的学习有所帮助。
信号与系统实验报告实验三 连续时间LTI系统的频域分析
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法与特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习与掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续与离散时间系统的频域数学模型与频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波与滤波器的概念,掌握利用MATLAB 计算与绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response),就是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况与响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号与响应信号,h(t)就是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3、1或者: )()()(ωωωj X j Y j H =3、2)(ωj H 为系统的频域数学模型,它实际上就就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt e t h j H tj ωω)()( 3、3由于H(j ω)实际上就是系统单位冲激响应h(t)的傅里叶变换,如果h(t)就是收敛的,或者说就是绝对可积(Absolutly integrabel)的话,那么H(j ω)一定存在,而且H(j ω)通常就是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的就是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3、4上式中,)j (ωH 称为幅度频率相应(Magnitude response),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
信号与系统第三版课后习题答案
信号与系统第三版课后习题答案信号与系统第三版课后习题答案信号与系统是电子信息类专业中一门重要的基础课程,它是研究信号的产生、传输、处理和识别的学科。
在学习这门课程时,课后习题是非常重要的,它可以帮助我们巩固所学的知识,并且提高解决问题的能力。
下面是信号与系统第三版课后习题的答案。
第一章:信号与系统的基本概念1. 信号是指随时间、空间或其他独立变量的变化而变化的物理量。
系统是指能够对输入信号进行处理并产生输出信号的物理设备或数学模型。
2. 连续时间信号是在连续时间范围内定义的信号,可以用连续函数表示。
离散时间信号是在离散时间范围内定义的信号,可以用数列表示。
3. 周期信号是指在一定时间间隔内重复出现的信号,具有周期性。
非周期信号是指不具有周期性的信号。
4. 奇对称信号是指关于原点对称的信号,即f(t)=-f(-t)。
偶对称信号是指关于原点对称的信号,即f(t)=f(-t)。
5. 系统的线性性质是指系统满足叠加原理,即对于输入信号的线性组合,输出信号也是这些输入信号的线性组合。
6. 系统的时不变性质是指系统对于不同时间的输入信号,输出信号的特性是不变的。
7. 系统的因果性质是指系统的输出只依赖于当前和过去的输入信号,而不依赖于未来的输入信号。
第二章:连续时间信号与系统的时域分析1. 奇偶分解是将一个信号分解为奇对称和偶对称两个部分的过程。
奇偶分解的目的是简化信号的处理和分析。
2. 卷积是信号处理中常用的一种操作,它描述了两个信号之间的相互作用。
卷积的定义为:y(t) = ∫[x(τ)h(t-τ)]dτ。
3. 系统的冲激响应是指系统对于单位冲激信号的输出响应。
冲激响应可以用来描述系统的特性和性能。
4. 系统的单位阶跃响应是指系统对于单位阶跃信号的输出响应。
单位阶跃响应可以用来描述系统的稳定性和响应速度。
5. 系统的单位斜坡响应是指系统对于单位斜坡信号的输出响应。
单位斜坡响应可以用来描述系统的积分特性。
连续时间信号与系统知识点总结
连续时间信号与系统是信号处理和通信系统领域的重要基础知识。
以下是关于连续时间信号与系统的一些核心知识点总结:
1. 信号的基本概念:包括信号的定义、分类(连续、离散、确定、随机)、信号的表示方法(波形图、时域表达式、频域表示等)。
2. 连续时间信号的运算:包括信号的加、减、乘、卷积等基本运算,以及信号的平移、反转、尺度变换等变换。
3. 系统的基本概念:包括系统的定义、分类(线性时不变、线性时变、非线性等)、系统的描述方法(微分方程、差分方程、传递函数等)。
4. 线性时不变系统的分析:包括系统的响应(零状态响应和零输入响应)、系统的稳定性、系统的频率响应等。
5. 连续时间傅里叶分析:包括傅里叶级数、傅里叶变换及其性质、频率域的信号分析等。
6. 系统函数的性质和表示方法:包括系统函数的极点、零点,以及它们对系统特性的影响。
7. 信号通过线性时不变系统的分析:包括冲激响应和阶跃响应的分析,以及信号的频谱分析和系统对不同类型信号的响应。
8. 滤波器设计:包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器的设计,以及滤波器的频率响应和群时延特性。
9. 采样定理与信号重建:包括采样定理的理解,以及由采样信号重建原始信号的方法。
10. 连续时间系统的模拟与实现:包括模拟电路和数字电路实
现连续时间系统的方法,以及模拟与数字系统之间的转换。
以上知识点为连续时间信号与系统的基础内容,掌握这些知识点有助于理解实际通信系统和信号处理应用的原理。
如需更深入的学习,建议参考相关的教材或专业课程。
信号与系统 连续时间LTI系统的频率响应
上述两式称为希尔伯特变换对。 说明: 具有因果性系统的频率响应的实部 H R ( ) 被已 知的虚部 H I ( ) 唯一地确定,反过来也一样。 推广:上述结论可以推广到因果信号 f (t ) f (t )u (t )
F ( ) FR ( ) jFI ( )
则 FR ( ) 和 FI ( ) 之间也构成希尔伯特变换对。
解: 因为
所以系统稳定,其傅里叶变换存在。 则系统的频率响应为
h( ) d e
0
e
2
d
H ( )
h( )e j d (e -e 2 )e j d
0
1 1 1 1 j 2 j 2 2 j3
H( )
2
d
注意:只是系统物理可实现的必要条件,而非充分条件。
信号与系统
(4) 因果系统的频率响应的实部和虚部具有某种相互制约的
特性。
对于因果系统,其冲激响应h (t)可表示为 h(t ) h(t )u(t ) 由傅立叶变换的频域卷积性质,可得
1 H ( ) 2
1 1 H ( ) ( ) j j
2 2 j (1 e ) (e j j
j
2
.e
j
2
e
j
2
.e
j
2
)
j j 2 1 j j (e 2 e 2 )e 2 2 Sa( )e 2 2j 2 2
信号与系统
解:
I (t )
R
H(ω) 称为系统的频率响应特性,简称系统频率响应或频率特性。
信号与系统常用公式汇总_
信号与系统常用公式汇总_1.傅里叶级数公式:信号x(t)的周期为T时,它的傅里叶级数展开式为:x(t) = a0 + Σ(an*cos(nω0t) + bn*sin(nω0t)),其中n为整数,ω0 = 2π/T,an和bn为傅里叶系数。
2.傅里叶变换公式:连续时间信号x(t)的傅里叶变换为:X(ω) = ∫( -∞到+∞ ) x(t)*e^(-jωt)dt。
3.逆傅里叶变换公式:连续频率信号X(ω)的逆傅里叶变换为:x(t)=(1/2π)*∫(-∞到+∞)X(ω)*e^(jωt)dω。
4.傅里叶变换对称性:X(-ω)=X(ω)*,即傅里叶变换对称于原点。
5.卷积定理:连续时间卷积的傅里叶变换等于信号的傅里叶变换之积,即:x(t)*h(t)的傅里叶变换为X(ω)*H(ω)。
6.系统频率响应:系统的频率响应H(ω)是指系统对频率为ω的输入信号的增益和相位的影响。
7.系统单位冲激响应:系统对单位冲激信号δ(t)的响应称为系统的单位冲激响应h(t)。
8.系统的冲激响应和频率响应的关系:系统的冲激响应h(t)和频率响应H(ω)满足傅里叶变换的关系:H(ω) = ∫( -∞到+∞ ) h(t)*e^(-jωt)dt。
9.系统的传递函数:系统的传递函数H(ω)是频率响应H(ω)的傅里叶变换。
10.系统的单位阶跃响应:系统对单位阶跃信号u(t)的响应称为系统的单位阶跃响应s(t)。
11.傅里叶变换的线性性质:对于信号x(t)和y(t)和常数a和b,有以下性质:a*x(t)+b*y(t)的傅里叶变换为a*X(ω)+b*Y(ω)。
12.傅里叶变换的时移性质:对于信号x(t),有以下性质:x(t-t0)的傅里叶变换为e^(-jωt0)*X(ω)。
13.周期信号的傅里叶变换:周期信号x(t)的傅里叶变换可以通过傅里叶级数的频谱乘以δ函数的序列得到。
14.采样定理:若连续时间信号x(t)的带宽为BHz,则它的采样频率应大于2BHz,以避免采样失真。
信号与系统实验报告实验三连续时间LTI系统的频域分析
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MATLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt et h j H tj ωω)()( 3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
实验名称:连续时间系统的频率响应
一、实验目的:
1 加深对连续时间系统频率响应理解;
2 掌握借助计算机计算任意连续时间系统频率响应的方法。
二、实验原理:
连续时间系统的频率响应可以直接通过所得表达式计算,也可以通过零极点
图通过用几何的方法来计算,而且通过零极点图可以迅速地判断系统的滤波特
性。
根据系统函数H(s)在s平面的零、极点分布可以绘制频响特性曲线,包括幅
频特性 H(jw) 曲线和相频特性?(w)曲线。
这种方法的原理如下:
假定,系统函数H(s)的表达式为
当收敛域含虚轴时,取s = jw,也即在s平面中,s沿虚轴从- j∞移动到+ j∞时,
得到
容易看出,频率特性取决于零、极点的分布,即取决于Zj 、Pi 的位置,而式中K
是系数,对于频率特性的研究无关紧要。
分母中任一因子(jw- Pi )相当于由极点 p 引向虚轴上某点 jw的一个矢量;分子中任一因子(jw-Zj)相当于由零点Zj引至虚轴上某点 jw的一个矢量。
在右图示意画出由零点Zj和极点 Pi 与 jw点连接构成的两个矢量,图中Nj、Mi 分别表示矢量的模,ψj、θi 表示矢量的辐角(矢量与正实轴的夹角,逆时针为正)。
对于任意零点Zj 、极点Pi ,相应的复数因子(矢量)都可表示为:
于是,系统函数可以改写为
当ω延虚轴移动时,各复数因子(矢量)的模和辐角都随之改变,于是得出幅频特性曲线和相频特性曲线。
这种方法称为s 平面几何分析。
通过零极点图进行计算的方法是: 1 在S 平面上标出系统的零、极点位置;
2 选择S 平面的坐标原点为起始点,沿虚轴向上移动,计算此时各极点和零点与该点的膜模和夹角;
3 将所有零点的模相乘,再除以各极点的模,得到对应频率处的幅频特性的值;
4 将所有零点的幅角相加,减去各极点的幅角,得到对应频率处的相角。
三、实验内容
用 C 语言编制相应的计算程序进行计算,要求程序具有零极点输入模块, 可以手工输入不同数目的零极点。
计算频率从0~5频段的频谱,计算步长为0.1,分别计算上面两个系统的幅频特性和相频特性,将所得结果用表格列出,并画出相应的幅频特性曲线和相频特性曲线。
判断所给系统的滤波特性,对于带通滤波器,计算出 3dB 带宽的起始频点和结束频点;对于低通或高通滤波器,计算出3dB 带宽的截止或开始的频率。
四、画出系统一和系统二的零极点图
系统一 系统二 五、程序流程图和程序代码 程序流程图如下:
#include<stdio.h>
#include<math.h>
#define Pi 3.1415926 struct fushu{
float re;
float im;
};
struct shuchu{
float w;
float fu;
float xiang;
};
struct fushu jianfa(struct fushu,struct fushu);
float MO(struct fushu);
float FU(struct fushu);
main()
{
char i,j;
int Li,Ji;
float w,Hw,Jw,ZH;
struct fushu lingdian[10],jidian[10],ww,LJ;
struct shuchu jieguo[51]; //根据分析,可知本实验中最后只有51个结果FILE *fp;
fp=fopen("D:\\实验二第二个.txt","w");
ZH=180/Pi;
printf("请输入零点个数:\n");
scanf("%d",&Li);
printf("请输入零点:\n");
for(i=0;i<Li;i++)
scanf("%f%f",&lingdian[i].re,&lingdian[i].im);
printf("请输入极点个数:\n");
scanf("%d",&Ji);
printf("请输入极点:\n");
for(i=0;i<Ji;i++)
scanf("%f%f",&jidian[i].re,&jidian[i].im);
for(i=0,w=0;w<=5;w=w+0.1,i++) //求相频和幅频,循环执行{
Hw=1;Jw=0;
ww.re=0;ww.im=w;
for(j=0;j<Li;j++) //处理零点{
LJ=jianfa(ww,lingdian[j]);
Hw=MO(LJ)*Hw;
Jw+=FU(LJ);
}
for(j=0;j<Ji;j++) //处理极点{
LJ=jianfa(ww,jidian[j]);
Hw=Hw/MO(LJ);
Jw-=FU(LJ);
}
jieguo[i].w=w; //存储数据
jieguo[i].fu=Hw;
jieguo[i].xiang=Jw;
}
for(i=0;i<51;i++)
{
while(1) //将角度限定合适范围{
if(jieguo[i].xiang<=-Pi)
jieguo[i].xiang=jieguo[i].xiang+2*Pi;
else if(jieguo[i].xiang>Pi)
jieguo[i].xiang=jieguo[i].xiang-2*Pi;
else break;
}
jieguo[i].xiang=ZH*jieguo[i].xiang;
}
printf("最终结果为:\n");
printf(" w值\tH(w)值\t F(w)值\n");
fprintf(fp,"最终结果为:\n");
fprintf(fp," w值\tH(w)值\t F(w)值\n");
for(i=0;i<51;i++) //列表输出结果
{
printf("%3.2f\t%5.3f\t%5.3f\n",jieguo[i].w,jieguo[i].fu,jieguo[i].xiang);
fprintf(fp,"%3.2f\t%5.3f\t%5.3f\n",jieguo[i].w,jieguo[i].fu,jieguo[i].xiang) ;
}
printf("输出完毕\n");
fprintf(fp,"输出完毕");
}
struct fushu jianfa(struct fushu a,struct fushu b) //两个复数相减
{
struct fushu m;
m.re=a.re-b.re;
m.im=a.im-b.im;
return(m);
}
float MO(struct fushu a) //计算a的模
{
float m;
m=a.re*a.re+a.im*a.im;
m=sqrt(m);
return(m);
}
float FU(struct fushu m) //计算m的幅角
{
float jiao;
if(m.re==0) //在虚轴上时的情况(不含原点){
if(m.im>0) jiao=Pi/2;
else if(m.im<0) jiao=-Pi/2;
}
else if(m.im==0) //在实轴上时的情况{
if(m.re>=0) jiao=0;
else if(m.im<0) jiao=Pi;
}
else //四个象限时的情况
{
jiao=fabs(m.im/m.re);
jiao=atan(jiao); //先求出对应第一象限的角度
if(m.re<0&&m.im>0)
jiao=Pi-jiao;
else if(m.re<0&&m.im<0)
jiao=jiao-Pi;
else if(m.re>0&&m.im<0)
jiao=-jiao;
}
return(jiao);
}
六、所得幅频特性和相频特性用表格列出
系统二所得结果列表
七、画出相应的幅频特性和相频特性曲线系统一的幅频和相频特性曲线
幅频特性
相频特性
系统二的幅频和相频特性曲线
幅频特性
相频特性。