偶极子天线设计

合集下载

半波偶极子天线的HFSS仿真设计

半波偶极子天线的HFSS仿真设计

半波偶极子天线的HFSS仿真设计在开始仿真设计之前,首先需要进行天线的三维建模。

打开HFSS软件,并选择新建工程,设定仿真频率范围和单位。

然后点击导航栏的“模型创建”按钮,选择“3D模型”。

在新建的3D模型中,选择“导入”按钮,导入天线的CAD模型,或者手动绘制天线的几何结构。

根据具体的设计要求,设置天线的尺寸和材料等参数。

接下来,需要定义天线的材料特性。

点击导航栏的“材料”按钮,选择“创建材料”。

根据具体的天线材料属性,设置材料的介电常数、磁导率等参数。

点击“应用”按钮,完成材料属性的定义。

然后,进行边界条件的设置。

点击导航栏的“边界条件”按钮,选择“终止条件”。

选择边界条件的类型,如正常边界条件、电磁边界条件等。

根据具体的设计要求,设置边界条件的参数。

点击“应用”按钮,完成边界条件的设置。

接下来,需要设定仿真的激励模式。

点击导航栏的“激励”按钮,选择“微带激励端口”。

设置仿真的频率、激励电压等参数。

根据具体的设计要求,设置激励的位置和方向等参数。

然后,进行网格划分。

点击导航栏的“网格划分”按钮,选择“全局网格划分”。

根据具体的仿真要求,设置网格划分的密度、精度等参数。

点击“划分”按钮,生成网格。

完成网格划分后,需要进行仿真求解。

点击导航栏的“求解器设置”按钮,选择合适的求解器,如频域求解器或时域求解器等。

根据具体的仿真要求,设置求解器的参数。

然后点击“求解”按钮,进行仿真求解。

仿真求解完成后,可以进行结果的分析和优化。

点击导航栏的“结果”按钮,选择合适的结果显示方式,如3D图像、功率图等。

根据具体的设计要求,分析天线的辐射图案、增益等性能指标。

根据需要,进行参数的优化,如改变天线的尺寸、位置等。

再次进行仿真求解,直至达到预期的性能指标。

本文介绍了使用HFSS软件进行半波偶极子天线的仿真设计的步骤和方法。

通过三维建模、材料定义、边界条件设置、激励模式设定、网格划分、仿真求解和结果分析等步骤,可以实现对半波偶极子天线性能的仿真和优化。

第3章 偶极子天线 ppt课件

第3章 偶极子天线 ppt课件

2L = 3/2
2020/10/28
f
()
c
os 32π
c
os
sin
2L = 2
f()c
o 2πsc o s1 s in
20
3.3 偶极子天线
2020/10/28
21
3.3 偶极子天线
形成天线不同方向性的主要因素: • 基本元的方向性; • 天线上电流的振幅和相位分布; • 各基元到远区观察点的射线间的行程差。
r0
l
j 60Im cos(klcos) coskl e jkr0
r0
sin
2020/10/28
——偶极子天线辐射场表示式 17
3.3 偶极子天线
1)方向性函数
E 6r0 Im 0c
o kcslo () sc s in
k o ls6Im 0f()
r0
f()c
okscl(o )sc s in
oksl
2020/10/28
22
3.3 偶极子天线
偶极子天线的辐射功率和辐射电阻
P
r2 2
2
d
0
0
E2
sin
d
P
30
I
2 m
2
2
d
0
0
cos kl cos cos
sin
kl
2
d
P
1 2
I
2 m
R
R
30
2
d
0
0
cos
kl
cos
sin
cos
kl
2
d
2020/10/28
R1
2W t
W
Wt 1

HFSS_半波偶极子天线设计解析

HFSS_半波偶极子天线设计解析
(2)设置求解类型
在主菜单栏中选择HFSS----Solution Type,选中 Driven Model单选按钮,然后单击ok按钮,完 成设置。
(3)设置模型长度单位
在主菜单栏中选择Modeler----units,选择mm。
2.添加和定义设计变量 在HFSS中定义和添加如图1所示的变量。 在HFSS主菜单栏中选择HFSS----Design
▪ 对于半波偶极子天线而言,输入阻抗近似看为辐射电阻 73.2欧姆。
▪ 可见,半波偶极子天线的输入阻抗是纯电阻,易于和馈 线匹配,这也是它被较多采用的原因之一。
3.2 半波偶极子天线设计 变量定义
▪ 这里要求设计一个中心频 率为3GHz的半波偶极子 天线,天线沿z轴放置, 中心位于坐标原点,天线 材质使用理想导体,总长 度为0.48λ,半径为 λ/200.天线的馈电采用 集总端口激励方式,端口 距离为0.24mm,辐射边 界和天线的距离为λ/4。
2.添加和定义设计变量 在HFSS中定义和添加如图1所示的变量。 在HFSS主菜单栏中选择HFSS----Design
Properties命令,打开设计属性对话框,单击 ADD按钮,打开add property对话框,在add property对话框中的name输入lambda,初始值 100mm,然后单击ok。 依次定义变量length,初始值0.48*lambda;定义 变量gap,初始值0.24mm;定义变量 dip_length,初始值length/2-gap/2;定义变量 dip_radius,初始值lambda/200;定义变量 rad_radius,初始值dip_radius+lambda/4;定 义变量rad_height,初始值 dip_length+gap/2+lambda/10。 最后点确定按钮。

2.4G印制偶极子天线设计与仿真.docx

2.4G印制偶极子天线设计与仿真.docx

2. 4G印制偶极子天线设计与仿真答辩人:陈孙水指导老师:游佰强2007.6.1论文主要工作:■1、检索国内外相关资料,了解RFID技术发展、现况及目前标签天线种类与特点。

■2、学习相关理论,掌握ADS有关印制天线设计基本操作,对V形地平面偶极子天线进行设计。

■3、仿真讨论一些参数对天线性能影响,对所设计天线仿真并分析其结果。

RFID (Radio Frequency Identification无线射频识别):埃森哲实验室首席科学家弗格森认为RFID是一种突破性的技术.该技术正蓬勃发展,在航空业、物流运输业、动物识别等领域大展拳脚。

RFID发展简史■ 1948年哈里斯托克曼发表的“利用反射功率的通信”奠定了射频识别技术的理论基础。

■ 1950-1960年是射频识别技术早期的探索阶段。

■ 1970-1980年射频识别技术与产品研发得到大发展并于80年代进入商业成规模应用。

■ 2000年后标准化问题日趋为人们所重视。

之后, 射频识别技术的理论得到丰富和完善。

RFID现状■ RFID系统工作频率不高时,多用环天线。

大部分能量以交变磁场的形式耦合。

常用的有四种微型化设计方案:空心线圈、磁芯线圈、薄膜天线和集成天线■433MHz可采用平面倒F天线;915MHz可采用偶极子天线,典型的设计天线尺寸大小为:76.1 X44X1.2mm3o■工作在特高频(UHF)以上的RFID标签大多采用对称振子或是其变形结构的线天线(如折合振子天线,Vee型振子天线和领结振子天线等)・单极子天线开始在手机中得到了成功的应用,通过适当优化单集子的数目及天线(阵列)的长度,可全频段工作,使天线工作频率在850MHz〜6GHz频率范围内。

■24GHz以及更高的频率,微带馈电缝隙天线有较好的前景RFID应用■低频(从125KHZ到134KHZ):畜牧业的管理系统、汽车防盗和无钥匙开门系统的应用、马拉松赛跑系统的应用、门禁和安全管理系统■高频(工作频率为13.56MHz):图书管理系统的应用、三表预收费系统、大型会议人员通道系统、医药物流系统的管理和应用、智能货架的管■甚高频(工作频率为860MHz到960MHz之间):供应链上的管理和应用、生产线自动化的管理和应用、航空包裹、集装箱后勤管理系统的应用标签天线举例■环天线■分形天线■偶极子天线■单极子天线■缝隙天线b 波导馈电的缝隙阵天线4 “7 |¥1 I ( :1叫I 债电的 图4 Hilbert 分形天线常见偶极子变形——折合本论文工作: 由于工作频率升高,天线臂尺寸减小。

半波偶极子天线的HFSS

半波偶极子天线的HFSS

半波偶极子天线的HFSS仿真设计Xxxxxxxxxxxxxxxxxxx一、实验目的:1.以一个简单的半波偶极子天线设计为例,加深对对称阵子天线的了解;2.熟悉HFSS软件分析和设计天线的基本方法及具体操作;3.利用HFSS软件仿真设计以了解半波振子天线的结构和工作原理;4.通过仿真设计掌握天线的基本参数:频率、方向图、增益等。

二、实验步骤:本次实验设计一个中心频率为3GHz的半波偶极子天线。

天线沿着Z轴放置,中心位于坐标原点,天线材质使用理想导体,总长度为0.48λ,半径为λ/200。

天线馈电采用集总端口激励方式,端口距离为0.24mm,辐射边界和天线的距离为λ/4。

1、添加和定义设计变量参考指导书,在Add Property对话框中定义和添加如下变量:2、设计建模1)、创建偶极子天线模型首先创建一个沿Z轴方向放置的细圆柱体模型作为偶极子天线的一个臂,其底面圆心坐标为(0,0,gap/2),半径为dip_radius,长度为dip_length,材质为理想导体,模型命名为Dipole,如下:然后通过沿着坐标轴复制操作生成偶极子天线的另一个臂。

此时就创建出了偶极子的模型如下:2)、设置端口激励半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面,并设置端口平面的激励方式为集总端口激励。

该矩形面需要把偶极子天线的两个臂连接起来,因此顶点坐标为(0,-dip_radius,-gap/2),长度和宽度分别为2*dip_radius和gap。

如下:然后设置该矩形面的激励方式为集总端口激励。

由之前的理论分析可得,半波偶极子天线的输入阻抗为73.2Ω,为了达到良好的阻抗匹配,将负载阻抗也设置为73.2 Ω。

随后进行端口积分线的设置。

此处积分线为矩形下边缘中点到矩形上边缘中点。

3)、设置辐射边界条件要在仿真软件中计算分析天线的辐射场,必须先设置辐射边界条件。

本次设计中采用辐射边界和天线的距离为1/4个工作波长。

第四章-偶极子天线

第四章-偶极子天线
• 赫芝偶极子,电流元:
• 短偶极子:
• 有限长度偶极子:偶极子天线,对称振子
偶极子天线是一种经典的、迄今为止使 用最广泛的天线,单个半波偶极子可简单地 独立使用或用作为抛物面天线的馈源,也可 采用多个半波偶极子天线组成天线阵。
标准半波偶极子天线
实际偶极子天线
用于电视接收 用于宽带通信
一、偶极子天线
二、输入阻抗的求解
1. 测量得到 2. 由辐射阻抗求输入阻抗 3. 由等效传输线法求输入阻抗
由辐射阻抗求输入阻抗
振子的输入阻抗:
PA
1 2
I
2 0
Z
A
辐射功率:
P
1 2
I
2 m
Z
设振子没有损耗,则 PA P
I
2 m
Z
I
2 0
Z
A
ZA
Im I0
2 Z
设天线振子上的电流近似按正弦规律分布,则
I0 Im sin kl
流分布是均匀的,则 dz 所产生的场为:
Z
M dz 1 r1
r0
z 0 r2 z 2
dE
j
60I zdz sine jkr r
dz
天线在M点产生的场是无数 dz 在M点产生
的场的积分:
E
l j 60I zdz sine jkr l r
代入:
Iz
I m I m
sin sin
k l k l
X
30sin
2kl c
ln
1 ka
ci4kl
2 ci2kl
cos2klsi4kl 2si2kl
2si2kl
当a 0, l 时,
4 R 73.1

印制偶极子天线设计

印制偶极子天线设计
所示 3. 弹出对话框图 17,
a) Postion 输入:-L1 ,-W1/2 ,H b) Axis:Z c) XSize:-W2 d) YSize:-L2
图 18 调整试图(to fit the view) 4. 选择菜单下拉选项 ViewFit AllActive View,或者按“ctrl+D”
Point2:-W3-L4 ,W1/2 ,0mm
图 35
镜像生成左侧的三角形和矩形 1. 同时选中 Rectangle1 和 Polyline2
图 36
图 37 2. 菜单下 EditDuplicateMirror,生成新物体名称为 Rectangle1_1 和 Polyline2_1
a) X:0.0,Y:0.0,Z:0.0,按“Enter”按键 b) dX:0.0,dY:1,dZ:0.0,按“Enter”按键
图 25
图 26
创建下表面金属片 1. 创建介质层 BOTTOM 面的金属片----传输线 Top_patch_1(采用镜像的方法进行绘制) 2. 选中 Dip_Patch,菜单下 EditDuplicateMirror,生成新物体名称为 Dip_Patch_1
a) X:0.0,Y:0.0,Z:0.0,按“Enter”按键 b) dX:0.0,dY:1,dZ:0.0,按“Enter”按键
图1
二)设置工具选项
1.选择菜单中的工具(Tools)选项(Options)HFSS 选项 (HFSS Options)如图 2 所示
图2 2. 弹出对话框 HFSS Options,如图 3 所示
图3
1) 点击常规(General)标签 a) 建立新边界时,使用数据登记项的向导(Use Wizards for data entry when creating new bound boundaries): 勾选上。 b) 用 几 何 形 状 复 制 边 界 ( Duplicate boundaries/mesh operations with geometry):勾选上。 c) 点击确定

半波偶极子天线设计

半波偶极子天线设计

微波技术与天线实验报告
3.创建天线的一个臂
将天线的臂命名为yuanzhu,并设置天线的材料为pec,透明度为0.6,位置用La
4.创建天线的另一个臂
将第一个臂进行复制,即可生成第二个臂。

Edit--Duplicate--Around Axis,Axis选
6.设置端口激励
将长方形贴片设置为激励端口,半波偶极子的输入阻抗为73.2Ω。

设置完成后进行辐射边界的设置,选中圆柱体后右键选择Assign Boundary--Radiation。

三:求解设置
检查设计的正确性,正确无误后进行下一项。

从图中可以看出,当频率为3.0GHz时,S11的值最小,为-24.07dB。

从圆图中可以看出,在3.0GHz时,天线的归一化阻值为0.8905+0.0449i 2.查看天线的电压驻波比。

从图中可以看出,当频率为2.7GHz-3.3GHz之间,电压驻波比小于2.
3.查看E场的增益图。

在Radiation节点设置E平面。

此图为电场的切面图。

从此图可以看出增益最大为z轴方向,值为2.44dB。

第三章 偶极子和单极子天线设计课件

第三章 偶极子和单极子天线设计课件
32
通信天线设计
1
3 偶极子和单极子天线设计
❖ 概述 ❖ 偶极子天线HFSS设计
2
3.1 概述
3
3.1 概述
4
3.1 概述
5
3.1 概述
6
❖ 主平面方向图:E面—与电场矢量平行的且包含最
3.1 概述
大辐射方向的平面。H面—与磁场矢量平行的且包 含最大辐射方向的平面(垂直于E面)。
7
3.1 概述
17
❖ 二.Step2 设定边界条件
1、将air设置成辐射边界条件;
在对象列表中选中air,单击鼠标右键,进入Assign Boundary选项, 点击Raditation选项。并此边界命名为air。
设置辐射边界
辐射边界示意图
18
❖ 三.Step3设置激励 1、绘制激励所在的矩形 1)在绘图区域中切换为yz平面。
xy平面
2)绘制矩形
yz平面
选择rectangle图标
切 换 到 参 数 设 置 区 , 设 置 长 方 形 的 基 坐 标 为 (x=0mm,y=2.5mm,z=-1.25mm); 按下Enter 键后输入长度:x 方向0mm, y 方1向9
参数设置区
3)更改名称 把矩形名称更改为“port1”。
求解进度
选择分析求解
选择Convergence,查看是否收敛 26
❖ 六.Step6后处理 1、S参数
27
2、方向图
28
课后练习:
29
课后练习:
30
上机实验一:
备注:上机实验必须完成,并提交实验报告。课后练习尽量完成,提交 HFSS工程文件,作为平时成绩额外加分依据。
31
Thank You !

第3章 偶极子天线

第3章 偶极子天线

3.3 偶极子天线
柱面上的波印廷矢量的法向分量,z方向上的积分为零
1 * S x = − Ez Hϕ 2 1 * S z = Ex Hϕ 2 P = 2 ∫ ∫ S x adϕdz
0 0 l 2π
3.3 偶极子天线
P = − ∫ E I dz
0 * x Z l
1 * P = Im ImZ∑ 2 2 l * Z∑ = − E x I Z dz * ∫0 ImIm
3.3 偶极子天线
代入积分式:
Eθ = ∫ dEθ
−l l
60πI m − jkr0 = j sin θe sin k (l − z )e jkz cosθ dz ∫l λr0 −
l
60 I m cos(kl cos θ ) − cos kl − jkr0 = j e r0 sin θ
——偶极子天线辐射场表示式
天线
3.3 偶极子天线
将振子辐射的功率等效为沿天线臂的电阻 损耗,且此损耗电阻均匀地分布在天线臂 上。设振子单位长度损耗电阻为R1整个振 子的损耗功率为
1 1 2 2 Pr = ∫ I z R1dz = I m R∑ 20 2
l
将I Z = I m sin k (l − z ) 代入上式得
2 R∑ R1 = sin 2kl l (1 − ) 2kl
设振子单位长度损耗电阻为整个振子的损耗功率为klkl33偶极子天线根据传输线理论电感单位长度电阻为理想传输线的特性阻为相位常数衰减常数为传播常数入阻抗为的终端开路传输线的输特性阻抗为长度为ln12033偶极子天线ln120ln120ln12033偶极子天线chklsh33偶极子天线33偶极子天线在偶极子天线长度确定的情况下随着频率的变化方向图或最大辐射方向会改变副瓣电平可能增大阻抗匹配将变坏等

半波偶极子天线的HFSS仿真设计

半波偶极子天线的HFSS仿真设计

半波偶极子天线的HFSS仿真设计一、实验目的1、学会简单搭建天线仿真环境的方法,主要是熟悉HFSS软件的使用方法;2、了解利用HFSS仿真软件设计和仿真天线的原理、过程和方法;3、通过天线的仿真,了解天线的主要性能参数,如驻波比特性、smith圆图特性、方向图特性等;4、通过对半波偶极子天线的仿真,学会对其他类型天线仿真的方法;二、实验仪器1、装有windows系统的PC一台2、HFSS13.0软件3、截图软件三、实验原理1、首先明白一点:半波偶极子天线就是对称阵子天线。

图1 对称振子对称结构及坐标2、对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。

一臂的导线半径为a,长度为l。

两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=2l。

对称振子的长度与波长相比拟,本身已可以构成实用天线。

3、在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布。

取图1的坐标,并忽略振子损耗,则其电流分布可以表示为:式中,Im为天线上波腹点的电流;k=w/c为相移常数、根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心点对称;超过半波长就会出现反相电流。

4、在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z)、长度为dz的电流元件串联而成。

利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。

图2 对称振子辐射场的计算如图2 所示,电流元I(z)所产生的辐射场为其中5、方向函数四、实验步骤1、设计变量设置求解类型为Driven Model 类型,并设置长度单位为毫米。

提前定义对称阵子天线的基本参数并初始化2、创建偶极子天线模型,即圆柱形的天线模型。

其中偶极子天线的另外一个臂是通过坐标轴复制来实现的。

3、设置端口激励半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面。

4、设置辐射边界条件要在HFSS中计算分析天线的辐射场,则必须设置辐射边界条件。

【案例分析】天线设计教程:2.4GHz对称偶极子!

【案例分析】天线设计教程:2.4GHz对称偶极子!

【案例分析】天线设计教程:2.4GHz对称偶极子!之前的文章讲了很多和天线有关的东西,但是天线到底是怎么出来的呢? 到底是如何设计的,又是如何修改调试的呢?本期小编将为大家带来天线教程,手把手教你如何制作2.4G对称偶极子天线!首先我们先要准备一下制作天线的工具和材料:工具:刻刀、烙铁、铜箔、尺子、剥线钳;材料:一块空白的PCB板子、带I-PAX头射频线一根、焊锡丝若干;仪器:矢量网络分析仪一台;东西已经备齐,接下来就该开工了!我们要做的是一个2.4GHz的天线,上一篇文章我们讲过如何通过频率来计算天线的长度。

2.4GHZ wifi天线用的频段是2.4GHz~2.5GHz,中间频点为2.45GHz;频率知道了那么套用公式λ=c/f,算出波长λ≈0.122m 四分之一波长的话就是30.5mm。

本期我们要做的是对称偶极子天线,偶极天线由两根导体组成,每根为1/4波长,即天线总长度为半波长。

所以偶极子天线又叫半波振子。

首先我们用刻刀和尺子,切出一条3mm宽,65mm长的条状铜箔,并粘贴在PCB板上。

然后用尺子量出两段30.5mm长的铜箔,中间段开出间隔2mm,多余部分用刻刀切掉。

然后把射频线剥好,焊接到铜箔上。

接下来就是见证奇迹的时候了,把天线连到网分上看看怎么样。

这个就是天线的驻波比了,指驻波波腹电压与波节电压幅度之比,又称为驻波系数、驻波比;驻波比等于1,表示能量完全进入天线,没有任何反射。

当然这个是理想值,所以我们设计天线的时候都是想办法将驻波拉向1,图中三个小三角处分别对应2.4GHz、2.45GHz、2.5GHz。

从驻波来看,此时天线的最佳谐振点是在2.1GHz附近,从之前计算天线尺寸的公式中能看出来,频率越低对应的天线尺寸越长,这里天线的最佳谐振点偏向2.1G了,即偏低频,用调试的术语就是天线“长了”。

既然长了,那我们就把他剪短,拿起刻刀,将2片铜箔从两头同时剪短,保持长度一致。

剪了几刀,最佳谐振点向高频偏移了一些,接下来慢慢剪短,直到刚刚好最佳谐振在2.4GHz~2.5GHz之间。

超宽带双极化平面交叉偶极子天线设计

超宽带双极化平面交叉偶极子天线设计

达系统电磁环境效应数据,从而为建立复杂电磁环境要素和效应之间的映射关系提供数据支撑。

1 电磁环境要素参数化表征方法复杂电磁环境要素表征是在对特定区域各种电磁信号的类型、属性和分布等情况进行定性和定量分析的基础上,选取主要表征参数对电磁环境特性进行描述,构建电磁环境要素样本空间的基向量。

因此,为了分析复杂电磁环境对电子信息系统产生的不同效应影响,以及建立复杂电磁环境要素与电子信息系统复杂电磁环境效应现象之间的量化关系,将复杂电磁环境按照不同信号样式分为背景信号、压制干扰信号、欺骗干扰信号、杂波信号等,并建立包含不同样本的数学模型和参数表征样本集X ,其中的每个样本X i 是按照频域、能量域和调制等域构建参数集,建立不同参数下不同取值的数据组合。

上述四类电磁环境要素参数多样且表述不一,如果用全要素描述则参数空间维数庞大。

参数集大小由要素类型、要素取值区间和取值间隔确定,是乘积关系,因此,需要精心设计尽量减少数据量,否则后续使用非常困难。

可采用理论推导和仿真分析相结合的手段,基于雷达系统各个环节对电磁环境要素的敏感性分析,筛选出各要素中影响雷达性能的关键因素,从而降低电磁环境要素参数维数。

2 雷达电磁环境效应表征方法复杂电磁环境效应包括多种形式,主要有能量效应、信息效应和管控效应,本文主要考虑雷达系统的信息效应。

雷达电磁环境效应表征是根据雷达系统环节进行分级,对不同分级的输出效应现象进行参数化表示,建立特征参数量化的样本集。

根据雷达系统复杂电磁环境效应研究需求和不同功能,可分为接收前端、信号处理单元和数据处理单元。

为了建立不同模块与环境要素之间的映射关系,将接收前端按照不同功能模块分为限幅器、低噪放、衰减器、混频器、滤波器、放大器和混频器等节点;将信号处理单元按照不同功能模块分为数字下变频(Digital Down Conversion ,DDC)、脉冲压缩、动目标显示(Moving Target Indication ,MTI)及动目标检测(Moving Target Detection ,MTD)、恒虚警检测(Constant False Alarm Rate ,CFAR)等节点;将数据处理单元分为量测预处理、数据关联、跟踪、航迹等节点。

可穿戴偶极子天线与超宽带印刷天线的设计

可穿戴偶极子天线与超宽带印刷天线的设计
4、更高的集成度:将天线与其他射频组件集成在一起,实现更小的体积和 更高的可靠性。
5、更环保的材料:使用更加环保的材料来制造天线,以减少对环境的影响。
结论
宽带印刷偶极子天线作为一种高性能、易于制造和集成度高的天线类型,在 通信、广播和军事等领域有着广泛的应用前景。未来,随着科技的不断进步和创 新,宽带印刷偶极子天线将继续朝着更高性能、更宽频带、更小尺寸和更高集成 度的方向发展。其重要的应用价值和优势表明了它在未来无线通信和其他领域中 的广阔发展前景。
应用场景
宽带印刷偶极子天线的应用场景非常广泛,主要包括以下几个方面:
1、通信领域:适用于多种无线通信系统,如Wi-Fi、蓝牙、GPS等,提供了 宽频带和高效率的无线通信服务。
2、广播领域:可用于电视和广播发射机,提高了信号覆盖范围和接收质量。
3、军事领域:适用于军用无线通信和雷达系统,提供了高性能和可靠的无 线连接。
可穿戴偶极子天线与超宽带印刷天 线的设计
目录
01 一、引言
03
三、超宽带印刷天线 设计
02 二、偶极子天线设计
四、可穿戴偶极子天
04 线与超宽带印刷天线 的设计与制作
目录
05 五、实验结果与分析
07 参考内容
06 六、结论
可穿戴偶极子天线与超宽带印刷 天线:设计与应用

随着科技的快速发展,无线通信技术在日常生活和工作中的应用越来越广泛。 可穿戴设备和超宽带技术作为两大科技热门,其结合带来的可穿戴偶极子天线与 超宽带印刷天线,具有十分重要的意义。本次演示将介绍这两种天线的特点、设 计原理、制作方法以及实验分析,最后对它们的优劣和应用前景进行总结。
3、测试:对制作好的天线进行性能测试,包括阻抗匹配、辐射方向、增益 等指标的测量。

无线局域网的双频带印刷偶极子天线设计

无线局域网的双频带印刷偶极子天线设计

无线局域网的双频带印刷偶极子天线设计随着人们对通信质量和通信设备的集成要求不断增强。

作为通信设备子部件,天线也需要更高的性能以满足通信系统的需要。

截止目前,已有多种形式的天线被研发和应用。

Yi-Chieh Lee等人提出了一种开环形槽的贴片天线,它可以工作在2.4 GHz和5.2GHz两个频段。

Johanna M Steyn,Johan Joubert和Johann W Odendaal展示了一种工作在2.4 GHz和5.2 GHz频段的DBDP(Dual-Band Dual-Polarized)天线阵。

Zhang Q Y,Chu Q X,Wang Y提出了一种带有集成巴伦的贴片天线,覆盖了WLAN系统中的3个频段。

Li X,Yang L,Gong S X,Yang Y J提出了一种偶极子天线,偶极子的两个臂上有对称的开槽,使得天线可以在3个频段上工作。

另外还有一些其他形式的天线,比如对数天线,准八木天线等各种形式的天线。

而这些天线或因尺寸太大,不便集成和共形,或因结构复杂不便制作。

而采用耦合馈电的印刷偶极子天线是一种结构非常简单,而且易共形天线,适用于通信终端。

本文介绍了一种可用于WLAN的印刷偶极子天线,采用巴伦来耦合馈电40 nnn×50 mm的尺寸,结构非常简单,覆盖了WLAN的两个频段(2.4 GHz和5.8 GHz),适用于WLAN系统。

1 天线结构由偶极子的工作原理可知,其谐振臂的长度约为谐振波长的1/4。

为了能够双频工作,必须要有能激起两个谐振的面电流,对于偶极子就需要有两对谐振臂。

为了缩小天线的尺寸,一般采取弯曲谐振臂使电流长度变长的方式达到减小天线谐振臂的长度。

对于WLAN的两个频段2 400~2484 MHz和5 725~5 825MHz。

由偶极子的工作原理可知,对应于低频段f0=2.4GHz的谐振电流长度约为31mm,而对应于高频段f0=5.8 GHz的谐振电流长度约为13 mm。

2024-印刷偶极子天线设计

2024-印刷偶极子天线设计

在Layout中绘制天线
将设计的层 面改为cond ,重复上面 的设计,完 成对于顶层 cond的设计 ,可以得到 右图:
图中,红色是对应cond层〔顶层〕,黄色对应 cond2〔底层〕,下面在顶层与底层之间加上一个 通孔
在Layout中绘制天线
下面在cond与cond2层之间加 一个通孔〔Via〕,选择层为 :
同样,点击鼠标右键的 “measure〞,可以测量 相对尺寸,如右图:
在Layout中绘制天线
完成对底层cond2的全部设计,如以下图中
在Layout中绘制天线
选择: Option=>Layers, 将cond2的Shape Display由filled 改为outlined, 这样便于测量尺 寸。可得右图:
在Layout中绘制天线
由于我们设计的 是双面天线,在 一个介质板上贴 有上下两层,上 层为馈线,下层 为偶极子天线和 地板。
首先设计底层, 选择cond2,如图
在Layout中绘制天线
由于我们设计的矩形天 线,所以我们选择 ,然后在窗口中选择一 点,开始画矩形,矩形 大小的控制可以看右下 角的右边的坐标,它表 示相对位置的距离。
加通孔,因为是圆形 的通孔,所以选择 , 如以下图中:
这样就完成了天线尺寸的根本设计。
层定义
这是至关重要的一步。 由Momentum=>Substrate=>Create/Modify,进入层定义 对话窗口。作如下设置: 将地面GND的边界由Closed改为Open〔1〕,然后点击左 下角的Add,增加一层Alumina_0〔2〕,并且把这一层重 新定义如下所示〔3〕,即跟上面的FreeSpace定义完全 一样,重新命名为FreeSpace_bottom,当然命名为其他 名字也是没有问题的。这样上下形成了对称的结构。最 后定义Alumina中的各个参数,即定义Real为4.6,Loss Tangent为0.018〔4〕,表示损耗正切为0.018。我们需 要的天线的层结构如以下图中所示:

超宽带双极化交叉偶极子天线设计

超宽带双极化交叉偶极子天线设计

第19卷 第3期太赫兹科学与电子信息学报Vo1.19,No.3 2021年6月 Journal of Terahertz Science and Electronic Information Technology Jun.,2021 文章编号:2095-4980(2021)03-0438-05超宽带双极化交叉偶极子天线设计陈盛嘉,陈星(四川大学电子信息学院,四川成都 610064)摘 要:提出一种结构简单的新型超宽带双极化天线。

采用交叉偶极子天线实现双线极化;每只偶极子天线由两个八边形环振子构成,同时在八边形环内部加载寄生枝节,引入新谐振点增加天线带宽;天线结构紧凑,尺寸仅为0.3λL 0.3λL(λL为低频截止频率对应的空间自由波长)。

对天线进行加工测试,测试结果表明,该天线在 1.24~4.42 GHz能够实现电压驻波比(VSWR)<2,相对带宽达到125%,方向图带宽为95%(1.24~3.60 GHz)。

天线定向辐射性能良好,在方向图带宽内增益大于7 dB。

关键词:双极化;超宽带;交叉偶极子天线;定向辐射中图分类号:TN821+.4 文献标志码:A doi:10.11805/TKYDA2021009Design of cross dipole antenna with ultra-wide band anddual-polarization propertiesCHEN Shengjia,CHEN Xing(School of Electronic and Information Engineering,Sichuan University,Chengdu Sichuan 610064,China)Abstract:A new type of ultra-wide band dual-polarized antenna with simple structure is presented.The antenna uses cross dipole antennas to generate dual polarization, each dipole antenna is composed oftwo octagonal rings. The stubs are loaded inside the octagonal ring to introduce new resonance frequencypoints, which greatly increases the bandwidth. The presented antenna has a compact structure with aplanar size of only 0.3λL×0.3λL, where λL is the wavelength corresponding to the lowest frequency withinthe whole working frequency band. An antenna sample has been fabricated and tested. The measuredresults show that the antenna can achieve Voltage Standing Wave Ratio(VSWR)<2 in 1.24-4.42 GHz. Therelative bandwidth is 125% and the pattern bandwidth is 95%(1.24-3.60 GHz). The directional radiationperformance is good, and the gain in the pattern bandwidth is greater than 7dB.Keywords:dual-polarization;ultra-wide band;cross dipole antenna;directional radiation随着无线通信技术的发展,在基站、陆地移动无线电设备、数据采集与监控系统、应急通信以及其他众多通信领域,对天线设计提出了苛刻的要求,需要定向天线同时具有超宽带、双线极化和结构紧凑等特性。

基于HFSS的偶极子天线设计与仿真

基于HFSS的偶极子天线设计与仿真

基于HFSS的偶极子天线设计与仿真偶极子天线是一种常见的无线通信天线,具有简单的结构和较高的工作频率范围。

在HFSS(High Frequency Structure Simulator)软件中,可以进行偶极子天线的设计和仿真,以评估其性能和优化设计。

首先,设计偶极子天线需要确定工作频率范围和天线结构。

根据通信系统的需求,可以选择工作频率范围,例如2.4GHz或5.8GHz,以及天线结构,例如半波长偶极子天线、全波长偶极子天线等。

这些参数决定了天线的尺寸和形状。

其次,使用HFSS软件创建一个新项目,并绘制天线的几何结构。

可以使用绘制工具(例如直线、圆弧)绘制偶极子天线的导线元件,以及其他必要的辅助结构(例如基板、地面平面)。

确保导线元件合适地分布在基板上,并具有所需的长度和间距。

在绘制完成后,为偶极子天线和辅助结构分配材料属性。

可以选择适当的材料,例如导电性能好的金属材料作为导线元件,介电常数合适的绝缘材料作为基板。

通过指定材料的属性,可以准确地模拟天线的电磁特性。

接下来,设置仿真参数,例如频率范围、网格分辨率等。

确保仿真参数能够覆盖所需的工作频率范围,并设置适当的网格分辨率以获得更准确的结果。

然后,进行天线的仿真分析。

使用HFSS软件的求解器进行电磁场的求解,并得到天线的电磁特性,例如S参数、辐射图案、增益等。

通过观察仿真结果,可以评估天线的性能,并进行设计优化。

根据仿真结果,可以进行天线的优化设计。

例如,可以调整导线长度和间距以改变天线的共振频率和阻抗匹配。

也可以通过修改基板尺寸和形状,进一步改善天线性能。

在进行优化设计时,可以使用HFSS软件的参数化设计功能,通过自动改变参数值进行批量仿真分析,以便更高效地寻找最优解。

最后,根据优化设计的结果,可以制作并测试实际的偶极子天线样品,以验证仿真结果的准确性。

根据测试结果,可以对天线进行细微调整,以进一步优化性能。

总之,HFSS是一款强大的工具,可用于设计和仿真偶极子天线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档