自考概率论与数理统计二试题及答案解析
全国自考概率论与数理统计(二)试题和答案
B)14.设随机变量X 的分布律为,F (x )是X 的分布函数,则F (1)=______.正确答案:(2分) 2/315.设随机变量X 的概率密度为f (x )=2010,x x ≤≤⎧⎨⎩,,其他,则12P X ⎧⎫>⎨⎬⎩⎭=______.正确答案:(2分)3/416.已知随机变量X ~N (4,9),P {X >c }=P {X ≤c },则常数c =______. 正确答案:(2分) 417.设二维随机变量(X ,Y )的分布律为则常数a =______. 正确答案:(2分) 0.218.设随机变量X 与Y 相互独立,且X ~N (0,l),Y ~N (-1,1),记Z =X -Y ,则Z ~______. 正确答案:(2分) N(1,2)19.设随机变量X 服从参数为2的泊松分布,则E (X 2)=______. 正确答案:(2分) 620.设X ,Y 为随机变量,且E (X )=E (Y )=1,D (X )=D (Y )=5,ρXY =0.8,则E (XY )=______. 正确答案:(2分) 521.设随机变量X 服从区间[-1,3]上的均匀分布,随机变量Y =0111X X <⎧⎨≥⎩,,,,则E (Y )=______. 正确答案:(2分) 1/222.设随机变量X ~B (100,0.2),()x Φ为标准正态分布函数,()2.5Φ=0.9938,应用中心极限定理,可得P {20≤x ≤30)≈______. 正确答案:(2分) 0.493823.设总体X ~N (0,l),x 1,x 2,x 3,x 4为来自总体X 的样本,则统计量22221234x x x x +++~______.正确答案:(2分)x2(4)24.设总体X~N(μ,1),μ未知,x1,x2,…,x n为来自该总体的样本,x为样本均值,则μ的置信度为1-α的置信区间是______.正确答案:(2分)]1,1[22nuxnuxaa+-25.某假设检验的拒绝域为W,当原假设H0成立时,样本值(x1,x2,…,x n)落入W的概率为0.1,则犯第一类错误的概率为______.正确答案:(2分)0.1三、计算题(本大题共2小题,每小题8分,共16分)26.设二维随机变量(X,Y)的概率密度为26,01,01,()0,x y x yf x⎧≤≤≤≤⎪=⎨⎪⎩ 其他.求:(1)(X,Y)关于X的边缘概率密度f X(x);(2)P{X>Y}.正确答案:27.设总体X的概率密度为1,0,()0,0,xe xf xxθθ-⎧>⎪=⎨⎪≤⎩其中未知参数θ>0,x1,x2,…,x n是来自该总体的样本,求θ的极大似然估计.四、综合题(本大题共2小题,每小题12分,共24分)正确答案:28.有甲、乙两盒,甲盒装有4个白球1个黑球,乙盒装有3个白球2个黑球,从甲盒中任取1个球,放入乙盒中,再从乙盒中任取2个球.(1)求从乙盒中取出的是2个黑球的概率;(2)已知从乙盒中取出的是2个黑球,问从甲盒中取出的是白球的概率.正确答案:29.设随机变量X~N(0,l),记Y=2X.求:(1)P{X<-1>;(2)P{|X|<1};(3)Y的概率密度.(附:Φ(1)=0.8413)正确答案:五、应用题(10分)30.某产品的次品率为0.l,检验员每天抽检10次,每次随机取3件产品进行检验,且不存在误检现象,设产品是否为次品相互独立,若在一次检验中检出次品多于1件,则调整设备,以X表示一天调整设备的次数,求E(X).正确答案:。
自考概率论与数理统计(二)(02197)及答案
概率论与数理统计(二)(课程代码:02197)本试卷共五页,满分100分;考试时间150分钟。
一、单项选择题(每小题4分,共40分)1)、设事件A 、B 满足2.0)(=-A B P ,6.0)(=B P ,则)(AB P =( ) A )、0.12 B )、0.4 C )、0.6 D )、0.8 2)、设二维随机变量),(Y X 的分布律为 则}{Y X P ==( )A)、0.3 B )、0.5 C )、0.7 D )0.8 3)、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( ) A )、5.0)(,5.0)(==X D X EB )、25.0)(,5.0)(==X D X EC )、4)(,2)(==XD X ED )、2)(,2)(==X D XE 4)、设随机变量X 服从正态分布(0,4)N ,()x Φ为标准正态分布函数,则{36}( ).P X ≤≤=. (6)(3) . (3)(1.5) 3. (1.5)(1) . (3)()4A B C D Φ-ΦΦ-ΦΦ-ΦΦ-Φ5)、设随机变量)2,1( ~2-N X ,则X 的概率密度=)(x f ( ) A )、4)1(241+-x eπB )、8)1(241+-x eπC )、8)1(2221+-x eπD )、8)1(2221--x eπ6)、设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22Y X +( )A )、)2,0(NB )、)2(2χC )、)2(tD )、)1,1(F7)、设)2,1( ~2N X ,n X X ,,1 为X 的样本,记∑==n i i X n X 11则有( ) A )、)1,0(~/21N n X - B )、)1,0(~41N X - C )、)1,0(~21N X - D )、)1,0(~21N X - 8)、设总体),( ~2σμN X ,其中μ未知,4321,,,x x x x 为来自总体X的一个样本,则以下关于μ的四个估计:3211513151ˆx x x ++=μ,)(41ˆ43212x x x x +++=μ,1371ˆx =μ,2147261ˆx x +=μ中,哪一个是无偏估计?( )A )、1ˆμB )、2ˆμC )、3ˆμD )4ˆμ 9)、对随机变量X 来说,如果 EX DX ≠,则可断定X 不服从( )分布。
最新4月全国自学考试概率论与数理统计(二)试题及答案解析
1全国2018年4月自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A ,B 为两个互不相容事件,则下列各式中错误..的是( ) A .P (AB )=0B .P (A B )=P (A )+P (B )C .P (AB )=P (A )P (B )D .P (B -A )=P (B )2.设事件A ,B 相互独立,且P (A )=51)(,31 B P ,则)|(B A P =( )A .151B .51C .154 D .313.设随机变量X 在[-1,2]上服从均匀分布,则随机变量X 的概率密度f (x )为( ) A . .,0;21,31)(其他x x fB ..,0;21,3)(其他x x fC ..,0;21,1)(其他x x fD . .,0;21,31)(其他x x f4.设随机变量X ~B31,3,则P{X 1}=( )A .271B .278C .2719 D .272625.设二维随机变量(X ,Y )的分布律为则P{XY=2}=( ) A .51B .103 C .21 D .536.设二维随机变量(X ,Y )的概率密度为,,0;10,10,4),(其他y x xy y x f则当10 x 时,(X ,Y )关于X 的边缘概率密度为f x (x )=( ) A .x 21 B .2x C .y21D .2y7.设二维随机变量(X ,Y )的分布律为则(X ,Y )的协方差Cov(X ,Y )=( )A .-91 B .0 C .91 D .313i =1,2,…,)(Φx 为标准正态分布函数,则2)1(lim 1p np np X P n i i n ( )A .0B .1C .)2(ΦD .1-)2(Φ9.设x 1,x 2,…,x 100为来自总体X ~N (μ,42)的一个样本,而y 1,y 2,…,y 100为来自总体Y~N (μ,32)的一个样本,且两个样本独立,以y x ,分别表示这两个样本的样本均值,则y x ~( )A .N1007,0 B .N41,0C .N (0,7)D .N (0,25)10.设总体X ~N (μ2σ)其中μ未知,x 1,x 2,x 3,x 4为来自总体X 的一个样本,则以下关于μ的四个无偏估计:1ˆ =),(414321x x x x 4321252515151ˆx x x x 4321361626261ˆx x x x,4321471737271ˆx x x x中,哪一个方差最小?( ) A .1ˆ B .2ˆ C .3ˆD .4ˆ二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
4月全国自考概率论与数理统计(二)试题及答案解析
1全国2018年4月高等教育自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设P (A )=21,P (B )=31,P (AB )=61,则事件A 与B ( )A .相互独立B .相等C .互不相容D .互为对立事件2.设随机变量X ~B (4,0.2),则P {X>3}=( ) A .0.0016 B .0.0272 C .0.4096D .0.81923.设随机变量X 的分布函数为F (x ),下列结论中不一定成立.....的是( ) A .F (+∞)=1 B .F (-∞)=0 C .0≤F (x )≤1D .F (x )为连续函数4.设随机变量X 的概率密度为f (x),且P {X ≥0}=1,则必有( ) A .f (x)在(0,+∞)内大于零 B .f (x)在(-∞,0)内小于零 C .⎰+∞=01f(x)dxD .f (x)在(0,+∞)上单调增加5.设随机变量X 的概率密度为f (x)=812221)x (e+-π,-∞<x<+∞,则X ~( )A .N (-1,2)B .N (-1,4)C .N (-1,8)D .N (-1,16)6.设(X ,Y )为二维连续随机向量,则X 与Y 不相关...的充分必要条件是( ) A .X 与Y 相互独立B .E (X +Y )=E (X )+E (Y )C .E (XY )=E (X )E (Y )D .(X ,Y )~N (μ1,μ2,21σ,22σ,0)27.设二维随机向量(X ,Y )~N (1,1,4,9,21),则Cov (X ,Y )=( ) A .21 B .3 C .18D .368.已知二维随机向量(X ,Y )的联合分布列为( )则E (X )= A .0.6 B .0.9 C .1 D .1.69.设随机变量X 1,X 2,…,X n ,…独立同分布,且i=1,2…,0<p<1.令∑===ni i n .n ,X Y 121Λ,,Φ(x )为标准正态分布函数,则=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--∞→11lim n )p (np np Y P n ( ) A .0B .Φ(1)C .1-Φ(1)D .110.设总体X ~N (μ,σ2),其中μ,σ2已知,X 1,X 2,…,X n (n ≥3)为来自总体X 的样本,X 为样本均值,S 2为样本方差,则下列统计量中服从t 分布的是( ) A .221σS)n (X - B .221σμS)n (X --C .221σσμS)n (n/X -- D .22σσμSn/X -二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
全国自学考试概率论与数理统计二历年真题及答案
全国 2010 年 7 月高等教育自学考试概率论与数理统计(二)试题课程代码: 02197一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分 )在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设 A、B 为两事件,已知P(B)= 1,P(A B)= 2,若事件 A, B 相互独立,则P(A)=( )2 3A .1B .19 6 C.1 D .13 2 2.对于事件 A, B,下列命题正确的是( )A .如果 A,B 互不相容,则 A , B 也互不相容B.如果 A B,则 A BC.如果 A B,则 A BD.如果 A,B 对立,则 A , B 也对立3.每次试验成功率为p(0< p<1) ,则在3 次重复试验中至少失败一次的概率为( )3 B . 1-p 3A . (1-p)C. 3(1-p) D . (1- p)3+p(1- p) 2+p2(1-p)4.已知离散型随机变量X 的概率分布如下表所示:X -1 0 1 2 4P 1/ 10 1/5 1/10 1/5 2/5 则下列概率计算结果正确的是( )A . P(X=3)=0B . P(X=0)= 0C. P(X>-1)=1 D . P(X<4)= 15.已知连续型随机变量X 服从区间 [a,b] 上的均匀分布,则概率P X2a b( )3A . 0B .13C.2 D . 1 36.设 (X,Y)的概率分布如下表所示,当X 与 Y 相互独立时 ,(p,q)=( )Y-1 1 X0 1p 151 1 Q51 3 2510A.(1,1 ) B.(1,1)5 15 15 5C.(1,2) D.(2,1)10 15 15107.设 (X,Y)的联合概率密度为f(x,y)= k( xy),0 x 2,0 y 1, 则k=() 0, 其他 ,A .1B .13 2C. 1 D . 38.已知随机变量 X~ N (0, 1),则随机变量Y=2X+10 的方差为 ( ) A . 1 B . 2C. 4 D.149.设随机变量 X 服从参数为0.5 的指数分布,用切比雪夫不等式估计P(|X-2| ≥ 3) ≤ ( )A .1B .29 9C.1 D .43 910.由来自正态总体 X~ N (μ, 22)、容量为400 的简单随机样本,样本均值为45,则未知参数μ的置信度为0.95的置信区间是 (u0.025=1.96,u0.05=1.645)( )A . (44, 46)B . (44.804,45.196)C. (44.8355, 45.1645) D . (44.9, 45.1) 二、填空题 (本大题共15 小题,每小题2分,共 30 分)请在每小题的空格中填上正确答案。
概率论与数理统计2含答案
一.填空题(共10分)已知P(A)=12,P BA c h=34,P(B) =58,则P( A ∣B ) =______ 。
设随机变量X 服从参数为 λ 的泊松分布,且已知P{ X= 7 } =P{ X= 9 },则 λ =___________。
3、样本(,,,)X X X n 12 来自总体2~(, )X N μσ,则22(1)~n n S σ- ______________;()~n X S μ- ____________。
其中X 为样本均值,S n X X n i n 22111=--=∑()。
4、设X X X n 12,, 是来自正态总体N (,)μσ2的样本,记1nn i ii Y a X ==∑,若n Y 为μ的无偏估计,则12,,...n a a a 满足的等式为 。
5、设总体~(1,)X B p ,其中未知参数01<<p , X X X n 12,, 是X 的 样本,则p的矩估计为________,样本的似然函数为_________。
(f x p p p x x(;)()=-1 为 X的 概 率 密 度 函 数 ) 二、选择题(共10分)6、4, 1, 0.6XY DX DY ρ===,则(32)D X Y -=( )。
( A ) 40 ( B ) 34 ( C ) 25.6( D ) 17.67、样本(,,,)X X X n 12 来自总体X ,已知X 服从参数λ=1的指数分布,则Max X X X n {,,,}12 的分布函数为( )。
( A )F z z e z z()=<-≥R S T - 0010 ( B ) F z z e z z n()()=<-≥R S T - 0010 ( C ) F z z e z z ()=<≥R S T - 000 ( D )0 0()n 0nzz F Z e z -<⎧=⎨≥⎩ 8、随机变量~(1,1)X N ,记X 的概率密度为f(x),分布函数为F( x ),则有( )。
最新 年月全国自考概率论与数理统计(二)试题及答案
1 / 10全国2018年7月自学考试概率论与数理统计(二)课程代码:02197试卷来自百度文库 答案由绥化市馨蕾園的王馨磊导数提供一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A ={2,4,6,8},B ={1,2,3,4},则A -B =( ) A .{2,4} B .{6,8} C .{1,3}D .{1,2,3,4}.B AB A B A B A B A 中的元素,故本题选中去掉集合合说的简单一些就是在集的差事件,记作与事件不发生”为事件发生而解:称事件“-2.已知10件产品中有2件次品,从这10件产品中任取4件,没有取出次品的概率为( )A .15B .14C .13D .12.31789105678;844104104848410C C C P C C ,故选本题的概率件正品中取,共有从件中没有次品,则只能若种取法;件,共有件产品中任取解:从=⨯⨯⨯⨯⨯⨯== 3.设事件A ,B 相互独立,()0.4,()0.7,P A P A B =⋃=,则()P B =( ) A .0.2 B .0.3 C .0.4D .0.52 / 10()()()()()()()()()()()()()().5.04.04.07.0D B P B P B P B P A P B P A P AB P B P A P B A P B P A P AB P B A ,故选,解得代入数值,得,所以,相互独立,,解:=-+=-+=-+=⋃= 4.设某实验成功的概率为p ,独立地做5次该实验,成功3次的概率为( )A .35CB .3325(1)C p p -C .335C pD .32(1)p p -()()()()()().1335.,...2,1,0110~23355B p p C P k n n k p p C k P k A p p A n p n B X kn kk n n ,故选,所以,本题,次的概率恰好发生则事件,的概率为次检验中事件重贝努力实验中,设每定理:在,解:-====-=<<-5.设随机变量X 服从[0,1]上的均匀分布,Y =2X -1,则Y 的概率密度为( )A .1,11,()20,,Y y f y ⎧-≤≤⎪=⎨⎪⎩其他 B .1,11,()0,,Y y f y -≤≤⎧=⎨⎩其他C .1,01,()20,,Y y f y ⎧≤≤⎪=⎨⎪⎩其他D .1,01,()0,,Y y f y ≤≤⎧=⎨⎩其他()()[]()()()()()()[]()[][][]..01,121.01,1211.01,1212121.01,12121211,1212112010101110~A y y y y f y f y y h y h f y f y h y y h y y x x y x x f U X X Y X Y X 故选其他,,其他,,其他,,,得其他,,由公式,,即,其中,解得由其他,,,,,,解:⎪⎩⎪⎨⎧-∈=⎪⎩⎪⎨⎧-∈⨯=⎪⎩⎪⎨⎧-∈⎪⎭⎫ ⎝⎛+=⎩⎨⎧-∈'=='+=-∈+=-=⎪⎩⎪⎨⎧≤≤=-=3 / 106.设二维随机变量(X ,Y )的联合概率分布为( )则c =A .112B .16C .14 D .13()().611411211214161.1,...2,1,0B c c P j i P Y X jij iij ,故选,解得由性质②,得②,①:的分布律具有下列性质,解:==+++++==≥∑∑7.已知随机变量X 的数学期望E (X )存在,则下列等式中不恒成立....的是( ) A .E [E (X )]=E (X ) B .E [X +E (X )]=2E (X ) C .E [X -E (X )]=0D .E (X 2)=[E (X )]2()()()().D C B A XE X E E X E X 均恒成立,故本题选、、由此易知,即,期望的期望值不变,的期望是解:=8.设X 为随机变量2()10,()109E X E X ==,则利用切比雪夫不等式估计概率P{|X-10|≥6}≤( )A .14 B .518 C .34D .109364 / 10()()()()(){}(){}.416961091001092222A X P X D X E X P X E X E X D ,故选所以;切比雪夫不等式:,解:=≤≥-≤≥-=-=-=εε 9.设0,1,0,1,1来自X ~0-1分布总体的样本观测值,且有P {X =1}=p ,P {X =0}=q ,其中0<p <1,q =1-p ,则p 的矩估计值为( ) A .1/5 B .2/5 C .3/5D .4/5()()().53ˆ5301ˆC px p q p X E x X EX E x ,故选,所以,本题,,即估计总体均值用样本均值矩估计的替换原理是:解:===⨯+⨯== 10.假设检验中,显著水平α表示( ) A .H 0不真,接受H 0的概率 B .H 0不真,拒绝H 0的概率 C .H 0为真,拒绝H 0的概率D .H 0为真,接受H 0的概率{}.00C H H P ,故选为真拒绝即拒真,表示第一类错误,又称解:显著水平αα=二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
概率论与数理统计(二) 自考试题及答案
概率论与数理统计(二) 自考试题及答案一、填空题(共14题,共28分)1.一枚硬币连丢3次,观察正面H﹑反面T出现的情形.样本空间是:S=2.丢一颗骰子.A:出现奇数点,则A=();B:数点大于2,则B=()3.一枚硬币连丢2次,A:第一次出现正面,则A=();B:两次出现同一面,则=();C:至少有一次出现正面,则C=()4.一枚硬币连丢3次,观察出现正面的次数.样本空间是:S=5.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A 、B、C都不发生表示为:6.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A与B都发生,而C不发生表示为:7.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A与B都不发生,而C发生表示为:8.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A、B、C中最多二个发生表示为:9.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A、B、C中至少二个发生表示为:10.设A、B、C为三事件,用A、B、C的运算关系表示下列事件,A、B、C中不多于一个发生表示为:11.设S{x:0x5},A{x:1x3},B{x:24}:则12.设S{x:0x5},A{x:1x3},B{x:24}:则AB=13.丢甲、乙两颗均匀的骰子,已知点数之和为7,则其中一颗为1的概率是14.已知P(A)1/4,P(B|A)1/3,P(A|B)1/2,则二、问答题(共9题,共54分)15.有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人抽“中‘的概率相同。
16.第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随机地取一个球,求取到红球的概率。
17.某班有30个同学,其中8个女同学,随机地选10个,求正好有2个女同学的概率18.某班有30个同学,其中8个女同学,随机地选10个,求最多有2个女同学的概率19.某班有30个同学,其中8个女同学,随机地选10个,求至少有2个女同学的概率20.某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1)该厂产品能出厂的概率,(2)任取一出厂产品,求未经调试的概率。
自考概率论与数理统计二试题及答案解析
自考概率论与数理统计二试题及答案解析10月高等教育自学考试全国统一命题考试概率论与数理统计(二) 试卷(课程代码 02197)本试卷共4页,满分l00分,考试时间l50分钟。
考生答题注意事项:1.本卷所有试题必须在答题卡上作答。
答在试卷上无效,试卷空白处和背面均可作草稿纸。
2.第一部分为选择题。
必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。
3.第二部分为非选择题。
必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。
4.合理安排答题空间,超出答题区域无效。
第一部分选择题(共20分)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设A与B是两个随机事件,则P(A-B)=2.设随机变量石的分布律为A.O.1 B.O.2 C.O.3 D.0.63.设二维随机变量∽,n的分布律为且X与y相互独立,则下列结论正确的是A.d=0.2,b=0,2 B.a=0-3,b=0.3C.a=0.4,b=0.2 D.a=0.2,b=0.44.设二维随机变量(x,D的概率密度为5.设随机变量X~N(0,9),Y~N(0,4),且X 与Y相互独立,记Z=X-Y,则Z~6.设随机变量x服从参数为jl的指数分布,贝JJ D(X)=7.设随机变量2服从二项分布召(10,0.6),Y服从均匀分布U(0.2),则E(X-2Y)=A.4 B.5 C.8 D.108.设(X,Y)为二维随机变量,且D(.固>0,D(功>0,为X与y的相关系数,则第二部分非选择题(共80分)二、填空题(本大题共l5小题,每小题2分,共30分)11.设随机事件A,B互不相容,P(A)=0.6,P(B)=0.4,则P(AB)=_______。
12.设随机事件A,B相互独立,且P(A)=0.5,P(B)=0.6,则=________。
全国自考概率论与数理统计(二)试题及解析
全国 2021 年 7 月高等教育自学考试概率论与数理统计〔二〕试题课程代码: 02197一、单项选择题〔本大题共10 小题,每题2 分,共 20 分〕在每题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多项选择或未 选均无分。
1.设事件 A 与 B 互不相容,且 P(A)>0,P(B)>0, 那么有〔 〕 A.P(A B)=P(A)+P(B) B.P(AB)=P(A)P(B) C.A= BD.P(A|B)=P(A)2.某人独立射击三次,其命中率为 ,那么三次中至多击中一次的概率为〔〕3.设事件 {X=K} 表示在 n 次独立重复试验中恰好成功 K 次,那么称随机变量 X 服从〔〕A. 两点分布B. 二项分布C.泊松分布D.均匀分布4.设随机变量 X 的概率密度为 K (4x 2 x 2 ),1 x 2〕f(x)=那么 K= 〔, 其它 A. 5 B. 1 162C.3D.44 55.设二维随机向量〔 X , Y 〕的联合分布函数 F 〔x,y 〕,其联合分布列为Y12 X-10 0 00 1那么 F(1,1) = 〔 〕1(6 x y),0 x 2,2 y 4,6.设随机向量〔 X , Y 〕的联合概率密度为 f(x,y)= 80,其它 ;那么 P 〔 X<1,Y<3 〕 =〔〕1A. 3B.4 8 85 7C. D.8 87.随机量 X 与 Y 相互独立,且它分在区[-1 ,3] 和[2, 4]上服从均匀分布,E〔XY 〕 =〔〕8. X 1, X2 , ⋯ ,X n,⋯独立同分布的随机量序列,且都服从参数1的指数分布,当 n 充分大,随机量21 nX i 的概率分布近似服从〔〕Y n=n i 1A.N 〔 2, 4〕B.N 〔 2,4〕nC.N 〔1, 1 〕 D.N 〔 2n,4n〕2 4n1 2 nN〔 0,1〕的随机本,X 本均,2 本方差,有〔〕9. X ,X ,⋯, X (n≥ 2)来自正体SA. nX ~ N( 0,1) 2~χ2(n)(n 1)X ( n 1)X 12~ F(1, n 1)C. ~ t(n 1)D. nSX i2i 210.假设未知参数的估量,且足E〔〕 = ,称是的〔〕A. 无偏估量B. 有偏估量C.近无偏估量D.一致估量二、填空〔本大共15 小,每小 2 分,共 30 分〕在每小的空格中填上正确答案。
2020年08月02197概率论与数理统计(二)试题及答案
2020年08月02197概率论与数理统计(二)试题及答案绝密★启用前2020年8月高等教育自学考试全国统一命题考试概率论与数理统计(二)试题答案及评分参考(课程代码 02197)一、单项选择题:本大题共10小题,每小题2分,共20分。
1.A2.D 3.D 4.B 5.D 6.B7.C 8.C 9.B 10.C二、填空题:本大题共15小题,每小题2分,共30分。
11.5812.9111 13.0.6 14.14 15.0.816.13 17.22e 5x ? 18.38(1e )(1e ) 19.3.8420.34 21.(1)t n ? 22.94 23.2(9)χ24.20σ25.0.1 三、计算题:本大题共2小题,每小题8分,共16分。
26.解 ()()()()()()()P B A B P AB P B A B P A P A == ,……2分()()()()0.8P A B P A P B P AB =+?= ,()()()()P AB P A AB P A P AB =?=?,……4分 ()()()0.2P AB P A P AB =?=,()()0.25P B A B = . ……8分27.解(1) 23 -23()d 016E X x x ==∫, 224 -2312()d 165E X x x ==∫, 2212()()[()]5D X E X E X =?=;……4分(2){}12()()15P X E X D X P X ?<=<=. ……8分四、综合题:本大题共2小题,每小题12分,共24分。
28.解(1)由{1,0}3{10}2{0}525P Y X b P Y X P X b ========+,又8125a b ++=,得1425a =,325b =;……4分(2)0125173252525X P ,011782525Y P ;……8分(3)由于2{0,0}25P X Y ===,51717{0}{0}2525125P X P Y =?==?=,{0,0}{0}{0}P X Y P X P Y ==≠=?=,故X 与Y 不独立.……12分 29.解(1)当0ρ=时,X 与Y 独立,(21)()2()11E X Y E X E Y ?+=?+=?,(21)()4()17D X Y D X D Y ?+=+=;……4分(2)[]22()()()5E Y D Y E Y =+=,Cov(,)1X Y ρ==?,()Cov(,)()()1E XY X Y E X E Y =+=?,……8分 22()()()6E Y XY E Y E XY ?=?=,……10分 (2)()4()4Cov(,)21D X Y D X D Y X Y ?=+?=.……12分五、应用题:10分。
2023年10月全国自考《02197概率论与数理统计二》真题及答案
2023年10月全国自考《02197概率论与数理统计二》真题及答案一、概率论部分选择题1. 在伯努利试验中,试验次数和事件的关系是()A. 试验次数越多,事件发生的概率越大B. 试验次数越多,事件发生的概率越小C. 试验次数和事件的概率无关D. 不能确定答案:C解析:在伯努利试验中,每次试验的结果只有两个可能的情况,且各次试验之间相互独立。
试验次数和事件发生的概率无关。
2. 设A和B为两个事件,且P(A)=0.4,P(B)=0.6,如果A和B相互独立,则P(A且B)=()A. 0.24B. 0.16C. 0.4D. 0.6答案:A解析:如果事件A和B相互独立,则P(A且B) = P(A) ×P(B) = 0.4 × 0.6 = 0.24。
论述题1. 离散随机变量与连续随机变量有哪些区别?离散随机变量与连续随机变量是概率论中的两个重要概念,它们有以下区别:•取值方式:离散随机变量的取值是有限的或可列的,而连续随机变量的取值是连续的。
•概率密度函数和概率质量函数:离散随机变量用概率质量函数描述,连续随机变量用概率密度函数描述。
•概率计算:对于离散随机变量,可以通过概率质量函数计算各取值的概率,并通过求和得到整体概率。
对于连续随机变量,需要通过概率密度函数计算某一区间内的概率,通过积分得到整体概率。
•可数性:离散随机变量的取值可以一一列举,而连续随机变量的取值是无限的,无法一一列举。
•概率分布:离散随机变量的概率可以用概率分布列或概率质量函数表示,连续随机变量的概率可以用概率密度函数表示。
综上所述,离散随机变量和连续随机变量在取值方式、概率表示和概率计算等方面有明显的区别。
二、数理统计部分选择题1. 样本均值的分布称为()A. 参数估计B. 假设检验C. 正态分布D. 抽样分布答案:D解析:样本均值的分布称为抽样分布,它是对总体均值的估计。
2. 如何计算样本的方差?A. 样本方差等于样本标准差的平方B. 样本方差等于样本标准差除以样本大小减一C. 样本方差等于样本标准差除以样本大小D. 样本方差等于样本标准差的平方除以样本大小减一答案:D解析:样本的方差等于样本标准差的平方除以样本大小减一。
浙江7月高等教育自学考试概率论与数理统计(二)试题及答案解析
浙江省2018年7月高等教育自学考试概率论与数理统计(二)试题课程代码:02197一、填空题(每空2分,共32分)1.袋中装有3只白球、5只红球,在袋中取球两次,每次取1只,作不放回抽样,则取到2只红球的概率为________________2.设A 、B 是两个相互独立的事件,已知P(A)=0.3,P(B)=0.2,则P(A ∪B)=_______3.设正方形的边长在区间[0,2]服从均匀分布,则正方形面积A=X 2的期望为_________4.设X 的分布函数为F(x)=⎪⎩⎪⎨⎧>-其它,0100x ,x 1001, 其他则P{X>1500}=_________, P{2000<X ≤3000}=_________5.设D(X)=1,D(Y)=4,相关系数ρxy=12,则COV(X,Y)=_______6.设X 服从参数λ=3的泊松分布,则P{X<2}=_________7.设(X则Y 2+1的概率分布列为_______8.已知F 0.05(3,4)=6.59,则F 0.95(4,3)=________________;已知F ~F(5,9),则F1~_____ 布9.设(X ,Y)服从二维正态分布N(μ1,μ2,σ21,σ22,ρ),则X 的概率密度为____________,X ,Y 相互独立的充分且必要的条件是ρ=________________10.设X ~N(1,3),X 1、X 2,X 3,X 4是来自X 的样本,则31X -~________________分布,∑=-41i 2)31X (~________________分布,X 1+X 2~_________分布。
11.设x 21~x 2(2),x 22~x 2(3),且x 21、x 22相互独立,则x 21+x 22~_________分布。
二、计算题及应用题(共68分)1.一人携3发子弹去靶场打靶,命中一发或子弹打完他即离开靶场,他的射击命中率为p.设各次是否击中相互独立,求他离开靶场时己命中一发的概率(6分)2.设(X ,Y)的概率密度为f(x,y)=⎩⎨⎧≤≤≤≤+其它,01y 0,1x 0,Y X (1)求边缘概率密度f X (x),f Y (y)(4分)(2)问X 、Y 是否相互独立(需说明理由)(4分)(3)求E(X),D(X)(4分)(4)求概率P{Y ≤X/3}(4分)3.设随机变量X 的概率密度为(6分) f(x)=⎪⎩⎪⎨⎧<<-其它,01x 1,x 2320,其他求Y=3X+1的概率密度4.经验表明,有20%的顾客预订了餐厅的座位,但不来就餐,餐厅有30个座位,预订给了32位顾客(设各预订者是否来就餐相互独立),以X 表示预订了座位的顾客前来就餐的人数(1)写出X 的概率分布列(6分)(2)求前来就餐的顾客都有座位的概率(6分)5.0<θ<1,θ为未知参数,取到一个来自X 的样本X 1,X 2,…,X n(1)求θ的矩估计量(6分)(2)证明所得的矩估计量是无偏的(4分)6.设这两个总体依次服从正态分布N(μ1,σ2),N(μ2,σ2),μ1,μ2,σ2,均未知,试在水平 α=0.05下检验假设:H 0:μ1=μ2H 1: μ1≠μ2备用数据(x 2分布,t 分布的上侧α分位数):t 0.05(10)=1.8125 t 0.025(8)=2.3060 t 0.025(10)=2.22817.设随机变量X ~N(2,2),Y ~N(-1,4),且X ,Y 独立(1)求P{X<2,Y<4}(4分)(2)求E(XY)+D(X-Y)(4分)(3)求(X ,Y)的概率密度(4分)备用数据:Φ(0)=0.5Φ(1.25)=0.8944Φ(2.5)=0.9938Φ(x)为标准正态分布函数。
全国4月高等教育自学考试概率论与数理统计(二)试题及答案解析历年试卷及答案解析
全国2018年4月高等教育自学考试概率论与数理统计(二)试题课程代码:02197第一部分 选择题 (共20分)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1.设随机事件A 与B 互不相容,且P(A)>0,P(B)>0,则( ) A.P(A)=1-P (B ) B.P(AB)=P(A)P(B) C.P(A ∪B)=1 D.P(AB )=12.设A ,B 为随机事件,P(A)>0,P (A|B )=1,则必有( ) A.P(A ∪B)=P(A) B.A ⊂B C.P(A)=P(B) D.P(AB)=P(A)3.将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为( ) A.2422B.C C 2142C.242!AD.24!!4.某人连续向一目标射击,每次命中目标的概率为34,他连续射击直到命中为止,则射击次数为3的概率是( ) A.()343B.()34142⨯C. ()14342⨯D.C 4221434()5.已知随机变量X 的概率密度为f X (x ),令Y=-2X ,则Y 的概率密度f Y (y)为( ) A.2f X (-2y)B.f X ()-y 2C.--122f y X ()D.122f y X ()- 6.如果函数f(x)=x a x b x a x b,;,≤≤或0<>⎧⎨⎩是某连续随机变量X 的概率密度,则区间[a,b]可以是( ) A.〔0,1〕 B.〔0,2〕 C.〔0,2〕 D.〔1,2〕 7.下列各函数中是随机变量分布函数的为( )A.F x xx 1211(),=+-∞<<+∞B.F x x x x x 20010(),;,.=+>⎧⎨⎪⎪⎩⎪⎪≤C.F x e x x 3(),=-∞<<+∞-D.F x arctgx x 43412(),=+-∞<<+∞π8.)则P{X=0}= A. 112 B. 212 C.412D.5129.已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)=( ) A. 3 B. 6 C. 10 D. 12 10.设Ф(x)为标准正态分布函数,X i =10,,事件发生;事件不发生,A A ⎧⎨⎩ i=1,2,…,100,且P(A)=0.8,X 1,X 2,…,X 100相互独立。
7月全国自考概率论与数理统计(二)试题及答案解析试卷及答案解析
1全国2018年7月高等教育自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A ,B 为两个事件,已知P (A ⋃B )=21,P (A B )=31,则P(A)=( ) A .61B .31C .21D .43 2.同时掷3枚均匀的硬币,恰好有两枚正面向上的概率为( ) A .0.125 B .0.25 C .0.325D .0.3753.设随机变量X 的分布律为P{X=K}=15K ,K=1,2,3,4,5,则P{25X 21≤<}=( ) A .51B .52C .53D .54 4.设随机变量X~N (1,22),Φ(1)=0.8413,则事件“1≤X ≤3”的概率为( ) A .0.1385 B .0.2413 C .0.2934D .0.34135.设随机变量X 的概率密度为f(x)=)x 1(12+π,+∞<<-∞x ,则Y=2X 的概率密度为( ) A .)y 1(12+π B .)y 4(22+π C .)4y 1(12+πD .)y 41(12+π 6.设随机变量X ,Y 相互独立,X~P (1λ) Y~P (2λ) 则X+Y 服从的分布是( ) A .P (1λ)B .P (2λ)2C .P (1λ+2λ)D .P (1λ-2λ)7.设二维随机向量(X ,Y )的联合分布函数为F (x,y ),则(X ,Y )关于Y 的边缘分布函数F Y (y )=( ) A .F(x,+∞) B .F(x,-∞) C .F(-∞,y)D .F(+∞,y)8.设随机变量X~B(n,p),q=1-p,则D (X )=( ) A .npB .np 2C .npqD .pq9.设随机变量X ,Y 相互独立,E (X )=5, E (Y )=6,则E (XY )=( ) A .1 B .11 C .30D .3510.设X 1,X 2,…, X n 是总体N (2,σμ)的样本,X ,S 2分别是样本均值和样本方差,则22S )1n (σ-服从的分布是( )A .N (0,1)B .2χ(n-1)C .2χ(n)D .t(n-1)二、填空题(本大题共15小题,每小题2分,共30分) 请在每小题的空格中填上正确答案。
全国历年自学考试概率论与数理统计(二)02197试题与答案
全国历年⾃学考试概率论与数理统计(⼆)02197试题与答案全国2011年4⽉⾃学考试概率论与数理统计(⼆)课程代码:02197 选择题和填空题详解试题来⾃百度⽂库答案由王馨磊导师提供⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共20分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。
错选、多选或未选均⽆分。
1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发⽣”可表⽰为() A .C B A B .C B A C .C B A D .C B A.A BC A A ABC CB AC B A C B A C B A ABC C B A A A A 故本题选;不发⽣,记作④仅;不全发⽣,记作,,不多于两个发⽣,即,,③;都不发⽣,记作,,②;都发⽣,记作,,①;的对⽴事件,记作不发⽣”为事件解:事件“2.设随机事件A 与B 相互独⽴, 且P (A )=51, P (B )=53, 则P (A ∪B )= ( )A .253B .2517C .54D .2523故本题选B.3.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( ) A .0.352 B .0.432 C .0.784 D .0.936解:P{X ≥1}=1- P{X=0}=1-(1-0.4)3=0.784,故选C. 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( ) A .0.2 B .0.35 C .0.55 D .0.8解:P {-2<X ≤4}= P {X =-1}+ P {X =2}=0.2+0.35=0.55,故选C. 5.设随机变量X 的概率密度为4)3(2e2π21)(+-=x x f , 则E (X ), D (X )分别为( ) A .2,3-B .-3, 2.251753515351)()()()()()()()(=?-+=-+=-+=B P A P B P A P AB P B P A P B A P B A 相互独⽴,与事件解:事件C .2,3D .3, 2()(),,度为解:正态分布的概率密+∞<<∞=--x ex f x -21222σµσπ与已知⽐较可知:E(X)=-3,D(X)=2,故选B. 6.设⼆维随机变量 (X , Y )的概率密度为?≤≤≤≤=,,0,20,20,),(其他y x c y x f 则常数c =( )A .41C .2D .4解:设D 为平⾯上的有界区域,其⾯积为S 且S>0,如果⼆维随机变量(X ,Y )的概率密度为则称(X ,Y )服从区域D 上的均匀分布,由0≤x ≤2,0≤y ≤2,知S=4,所以c=1/4,故选A.7.设⼆维随机变量 (X , Y )~N (-1, -2;22, 32;0), 则X -Y ~ ( ) A .N (-3, -5) B .N (-3,13) C .N (1, 13) D .N (1,13)解:由题设知,X~N(-1,22),Y~N(-2,32),且X 与Y 相互独⽴,所以E(X-Y)=E(X)-E(Y)=-1-(-2)=1,D(X-Y)=D(X)+D(Y)=13,故选D. 8.设X , Y 为随机变量, D (X )=4, D (Y )=16, Cov (X ,Y )=2, 则XY ρ=( ) A .321 B .161C .81D .41..41422)()()(D Y D X D Y X Cov xy 故选,解:直接代⼊公式=?==ρ 9.设随机变量X ~2χ(2), Y ~2χ(3), 且X 与Y 相互独⽴, 则3/2/Y X ~ ( ) A .2χ (5) B .t (5) C .F (2,3)D .F (3,2).)(~)(~)(~21212221C n m F F F n m nX mX F X X n x X m x X ,据此定义易知选,记为分布,的与的分布是⾃由度为独⽴,则称与,,解:设=10.在假设检验中, H 0为原假设, 则显著性⽔平α的意义是 ( ) A .P {拒绝H 0|H 0为真} B .P {接受H 0|H 0为真} C .P {接受H 0|H 0不真} D .P {拒绝H 0|H 0不真}解:在0H 成⽴的情况下,样本值落⼊了拒绝域W 因⽽0H 被拒绝,称这种错误为第⼀类错误;()??∈=其他,,),,(0,1D y x S x f.}|{..,""}|{0002002A H H P H W u u u H H u u P ,故本题选为真拒绝即即为显著⽔平,⽽概率即为误的由此可见,犯第⼀类错,从⽽拒绝了即样本值落⼊了拒绝域满⾜本值算得的成⽴的条件下,根据样,在成⽴因为αααααα=>=>⼆、填空题 (本⼤题共15⼩题, 每⼩题2分, 共30分)请在每⼩题的空格中填上正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年10月高等教育自学考试全国统一命题考试
概率论与数理统计(二) 试卷
(课程代码 02197)
本试卷共4页,满分l00分,考试时间l50分钟。
考生答题注意事项:
1.本卷所有试题必须在答题卡上作答。
答在试卷上无效,试卷空白处和背面均可作草稿纸。
2.第一部分为选择题。
必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。
3.第二部分为非选择题。
必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。
4.合理安排答题空间,超出答题区域无效。
第一部分选择题(共20分)
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题
卡”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设A与B是两个随机事件,则P(A-B)=
2.设随机变量石的分布律为
A.O.1 B.O.2 C. D.0.6
3.设二维随机变量∽,n的分布律为
且X与y相互独立,则下列结论正确的是
A.d=0.2,b=0,2 B.a=0-3,b=0.3
C.a=0.4,b=0.2 D.a=0.2,b=0.4
4.设二维随机变量(x,D的概率密度为
5.设随机变量X~N(0,9),Y~N(0,4),且X与Y相互独立,记Z=X-Y,则Z~
6.设随机变量x服从参数为jl的指数分布,贝JJ D(X)=
7.设随机变量2服从二项分布召(10,0.6),Y服从均匀分布U,则E(X-2Y)=
A.4 B.5 C.8 D.10
8.设(X,Y)为二维随机变量,且D(.固>0,D(功>0,为X与y的相关系数,则
第二部分非选择题(共80分)
二、填空题(本大题共l5小题,每小题2分,共30分)
11.设随机事件A,B互不相容,P(A)=0.6,P(B)=0.4,则P(AB)=_______。
12.设随机事件A,B相互独立,且P(A)=0.5,P(B)=0.6,则=________。
13.已知10件产品中有1件次品,从中任取2件,则末取到次品的概率为_____.
14.设随机变量x的分布律为,则常数a=_______.
15.设随机变量石的概率密度,X的分布函数F(x)=_________. 16.设随机变量,则_______.
17.设二维随机变量(X,Y)的分布律为
18.设二维随机变量(X,Y)的概率密度为分布函数f(x,y),则
f(3,2)=________。
19.设随机变量X的期望E(X)=4,随机变量Y的期望E(Y)=2,又E(XY)=12,则Cov(X,Y)=__________.20.设随机变量2服从参数为2的泊松分布,则层(X2)=________.
21.设髓机交量x与y相互独立,且X~N(0,1),Y~N(0,4),则D(2X+Y)=_______.
22.设随机变量X~B(100,0.8),应用中心极限定理可算得______.
(附:=0.8413)
23.设总体石为来自X的样本,勇为样本均值,则=_______.
24.设总体X服从均匀分布是来自工的样本,为样本均值,
则θ的矩估计=_________.
25.设总体肖的概率密度含有未知参数护,且为来自X的样本,为样本均值.若的无偏估计,则常数c=_______.
三、计算题(本大题共2小题,每小题8分,共16分)
26.设甲、乙、丙三个工厂生产同一种产品,由于各工厂规模与设备、技术的差异,三个工厂产品数量比例为1:2:1,且产品次品率分别为1%2%3%.
求:(1)从该产品中任取1件,其为次品的概率P2。
(2)在取出1件产品是次品的条件下,其为丙厂生产的概率魏.
27.设二维随机变量(X,Y)的概率密度为
四、综合题(本大题共2小题,每小题12分,共24分)
28.已知某型号电子元件的寿命X(单位:小时)具有概率密度
一台仪器装有3个此型号的电子元件,其中任意一个损坏时仪器便不能正常工作.假设3个电子元件损坏与否相互独立。
求:(1)X的分布函数;
(2)一个此型号电子元件工作超过2500小时的概率;
(3)一台仪器能正常工作2500小时以上的概率.
29.设随机变量石的概率密度为
五、应用题(10分)
30.设某车间生产的零件长度 (单位:mm),现从生产如的一批零件中随机抽取25件,测
得零件长度的平均值α=1970,标准差s=100,如果σ2未知,在显着性水平α=0.05下,能否认为该车间生产的零件的平均长度是2020 mm?
(24)=2.064)。