常用函数曲线图形

合集下载

高中函数图像大全

高中函数图像大全

高中必考函数大全指数函数概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。

注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。

⒉指数函数的定义仅是形式定义。

指数函数的图像与性质:规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴;当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。

在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。

即:当a>1时,图像在R上是增函数;当0<a<1时,图像在R上是减函数。

4. 指数函数既不是奇函数也不是偶函数。

比较幂式大小的方法:1.当底数相同时,则利用指数函数的单调性进行比较;2.当底数中含有字母时要注意分类讨论;3.当底数不同,指数也不同时,则需要引入中间量进行比较;4.对多个数进行比较,可用0或1作为中间量进行比较底数的平移:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

对数函数1.对数函数的概念由于指数函数y=a x在定义域(-∞,+∞)上是单调函数,所以它存在反函数,我们把指数函数y=a x(a>0,a≠1)的反函数称为对数函数,并记为y=log a x(a>0,a≠1).因为指数函数y=a x的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x的定义域为(0,+∞),值域为(-∞,+∞).2.对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x. 据此即可以画出对数函数的图像,并推知它的性质.为了研究对数函数y=log a x(a>0,a≠1)的性质,我们在同一直角坐标系中作出函数y=log 2x ,y=log 10x ,y=log 10x,y=log 21x,y=log 101x 的草图由草图,再结合指数函数的图像和性质,可以归纳、分析出对数函数y=log a x(a >0,a ≠1)的图像的特征和性质.见下表. 图 象 a >1a <1性 (1)x >0(2)当x=1时,y=0质(3)当x>1时,y>00<x<1时,y<0 (3)当x>1时,y<0 0<x<1时,y>0(4)在(0,+∞)上是增函数(4)在(0,+∞)上是减函数补充性质设y1=log a x y2=log b x其中a>1,b>1(或0<a<1 0<b<1)当x>1时“底大图低”即若a>b则y1>y2当0<x<1时“底大图高”即若a>b,则y1>y2比较对数大小的常用方法有:(1)若底数为同一常数,则可由对数函数的单调性直接进行判断.(2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论.(3)若底数不同、真数相同,则可用换底公式化为同底再进行比较.(4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较.3.指数函数与对数函数对比名称指数函数对数函数一般形式y=a x(a>0,a≠1) y=log a x(a>0,a≠1)定义域(-∞,+∞) (0,+∞)值域(0,+∞) (-∞,+∞)函数值变化情况当a>1时,⎪⎩⎪⎨⎧<<==>>)0(1)0(1)0(1xxxa x当0<a<1时,⎪⎩⎪⎨⎧<>==><)0(1)0(1)0(1xxxa x当a>1时⎪⎩⎪⎨⎧<<==>>)1(0)1(0)1(0logxxxxa当0<a<1时,⎪⎩⎪⎨⎧<>==><)1(0)1(0)1(0logxxxxa单调性当a>1时,a x是增函数;当0<a<1时,a x是减函数. 当a>1时,log a x是增函数;当0<a<1时,log a x是减函数.图像y=a x的图像与y=log a x的图像关于直线y=x对称.幂函数幂函数的图像与性质幂函数ny x=随着n的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握ny x=,当112,1,,,323n=±±±的图像和性质,列表如下.从中可以归纳出以下结论:①它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限.② 11,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数.③ 1,1,22a =---时,幂函数图像不过原点且在()0,+∞上是减函数.④ 任何两个幂函数最多有三个公共点.n y x =奇函数偶函数非奇非偶函数1n >01n <<0n <定义域 R R R奇偶性奇奇奇非奇非奇OxyOxyOxyOxyOxyOx yOxyOxyOxy偶在第Ⅰ象限的增减性在第Ⅰ象限单调递增在第Ⅰ象限单调递增 在第Ⅰ象限单调递增 在第Ⅰ象限单调递增 在第Ⅰ象限单调递减幂函数y x α=(x ∈R ,α是常数)的图像在第一象限的分布规律是:①所有幂函数y x α=(x ∈R ,α是常数)的图像都过点)1,1(; ②当21,3,2,1=α时函数y x α=的图像都过原点)0,0(;③当1=α时,y x α=的的图像在第一象限是第一象限的平分线(如2c );④当3,2=α时,y x α=的的图像在第一象限是“凹型”曲线(如1c )⑤当21=α时,y x α=的的图像在第一象限是“凸型”曲线(如3c )⑥当1-=α时,y x α=的的图像不过原点)0,0(,且在第一象限是“下滑”曲线(如4c )当0>α时,幂函数y x α=有下列性质: (1)图象都通过点)1,1(),0,0(;(2)在第一象限内都是增函数;(3)在第一象限内,1>α时,图象是向下凸的;10<<α时,图象是向上凸的;(4)在第一象限内,过点)1,1(后,图象向右上方无限伸展。

正弦曲线的图像

正弦曲线的图像

正弦曲线的图像细品教材众所周知,海⽔会发⽣潮汐现象,⼤约在每⼀昼夜的时间⾥,潮⽔会涨落两次,因此潮汐是周期现象.当潮汐发⽣时,⽔的深度会发⽣周期性的变化,这种周期性的变化,与正弦函数的周期性变化有什么联系吗?⼀、正弦函数的图象正弦函数的图象⼀、1.正弦函数y=sinx,x∈[0,2π]的图象利⽤单位圆中的正弦线作y=sinx,x∈[0,2π]的图象.如下图,在直⾓坐标系的x轴的负半轴上任取⼀点O1,以O1为圆⼼作单位圆,从⊙O1与x轴的交点A起把圆弧分成12等份,过⊙O1上各分点分别作x轴的垂线,得到对应于⾓等分点的正弦线.相应地,再把x轴上从0到2π这⼀段分成12等份,再把⾓x所对应的正弦线向右平移,使它的起点与x轴上的点x重合,最后⽤光滑曲线把这些正弦线的终点连接起来,就得到了函数y=sinx,x∈[0,2π]的图象.2.正弦曲线(1)任意给定⼀个实数x,有唯⼀确定的值sinx与之对应.由这个对应法则所确定的函数y=sinx叫做正弦函数,其定义域是R.(2)根据诱导公式⼀,终边相同的⾓的三⾓函数值相等,可知函数y=sinx,x∈[2kπ,2(k+1)π),k∈Z且k≠0的图象,与函数y=sinx,x∈[0,2π)的图象的形状完全⼀致,只是位置不同.我们只需把y=sinx,x∈[0,2π)的图象左、右平移(每次2π个单位长度),就可得到正弦函数y=sinx,x∈R的图象(如下图).正弦函数的图象叫做正弦曲线.技术提⽰(1)利⽤单位圆和三⾓函数线画三⾓函数图象的⽅法称为⼏何法作图,其优点是图象精确,缺点是画图⽐较⿇烦,影响解题速度.(2)作图象时,函数的⾃变量要⽤弧度制,这样⾃变量与函数值均为实数,因此在x轴、y轴上可以统⼀单位,作出的图象较为准确.【⽰例】函数y=1-sinx,x∈[0,2π]的⼤致图象为下图中的( )【⽰例】思路分析:令x=0,则y=1-sinx=1,因此图象过(0,1),可排除C、D,⼜令,则y=1-sinx=2,思路分析:可排除A.答案:B状元笔记“五点法”作图中的“五点”是指函数的最⾼点、最低点以及图象与坐标轴的交点.这是作正、余弦函数图象、研究正、余弦函数性质时的最常⽤⽅法.⼆、“五点法”作简图通过正弦曲线可以发现,这些曲线可以按照闭区间…,[-4π,-2π],[-2π,0],[0,2π],[2π,4π],…分段,这些闭区间的长度都等于2π个单位长度,并且在每⼀个闭区间上曲线的形状完全⼀致.因此,要研究曲线的形状,只需选⼀个闭区间,在这⾥,我们不妨选择[0,2π],显然,有五个点在确定其对应图象的形状时起着关键作⽤.对于正弦曲线(如下图),它们是(0,0),,(π,0),,(2π,0)因此,在精确度要求不太⾼时,可先找出这五个关键点,再⽤光滑的曲线将它们连接起来,就得到相应函数的简图.这种⽅法称为“五点(画图)法”.技术提⽰五点法作简图抓住了正弦函数图象的特征,反映了正弦曲线的基本特征,其中需特别注意的是曲线的⾛向,把握住简图的画法,有助于快速解题.综合探究1.余弦曲线根据诱导公式,可知y=cosx与是同⼀函数,⽽的图象可由y=sinx的图象向左平移个单位得到,即余弦函数的图象是由正弦函数的图象向左平移个单位⽽得到的.如下图所⽰:余弦函数的图象叫做余弦曲线.事实上,,可知余弦函数y=cosx,x∈R与函数也是同⼀函数,余弦函数的图象也可以通过将正弦曲线向右平移个单位⽽得到.五点法画正、余弦函数的图象余弦函数的图象2.五点法画正、画正弦函数y=sinx,x∈[0,2π]的图象,有五个关键点,它们是(0,0),,(π,0),,(2π,0),因此描出这五点后,正弦函数y=sinx,x∈[0,2π]图象的形状基本上就确定了.在描点时,光滑曲线是指经过最⾼点或最低点的连线要保持近似“圆弧”形状,经过位于x轴的点时要改变“圆弧的圆⼼位置”.⽤五点法画余弦函数y=cosx的图象时也是⼀样.注意:(1)五点法是我们画三⾓函数图象的基本⽅法,与五点法作图有关的问题曾出现在历届⾼考试题中.(2)作图象时,函数⾃变量要⽤弧度制,这样⾃变量与函数值均为实数.对于⼀些正、余弦函数的变形形式,如画,的图象时,应当令分别等于得到对应的x值与y 值,然后再描点连线成图.其取值如下表:描点连线如下图:【⽰例】试⽤五点法画函数的简图.【⽰例】思路分析:抓住关键点,横坐标依次为的点.思路分析:解:列表:解:画图(如图):余弦函数的对称性质3.正、.正、余弦函数的对称性质正弦函数y=sinx图象的对称轴为直线,并且对称轴与正弦曲线的交点的纵坐标是正弦函数的最值,对称中⼼为(kπ,0)(k∈Z),正弦函数的图象与x轴的交点均是正弦函数的对称中⼼.余弦函数y=cosx图象的对称轴为直线x=kπ(k∈Z),并且对称轴与余弦曲线的交点的纵坐标是余弦函数的最值,对称中⼼为,余弦函数的图象与x轴的交点均是余弦函数的对称中⼼.归纳整理本节的主要内容是正、余弦函数的图象——正、余弦曲线的画法:⼏何法与五点法.⼏何法是⽤单位圆和三⾓函数线作图,图形准确但画图⿇烦;五点法只能作简图,但⽅便快捷.重点是会⽤五点法画函数简图,以解决相关问题.答案:①单位圆 ②三⾓函数线 ③(0,0) ④ ⑤(π,0) ⑥ ⑦(2π,0) ⑧(0,1) ⑨ ⑩(π,-1) (2π,1)思考发现1.y=sinx的五个特殊点(0,0)、,(π,0),、(2π,0);y=cosx的五个特殊点(0,1)、、(π,-1)、、(2π,1).2.五点法作y=Asin(ωx+φ)的简图,五点的取法是ωx+φ分别等于来求得相应的x值及对应的y 值,最后描点成图.3.含有三⾓式、指数式、对数式的⽅程叫做超越⽅程,⽤初等解⽅程的⽅法不能求它的解;通常把这类⽅程分解成两个函数,把求⽅程的解转化为求两个函数的交点问题.4.利⽤单位圆或正弦曲线解简单三⾓不等式时,可先在长度为[0,2π]的区间上找到适合不等式的解,再把它扩展到整个定义域中去.。

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质图像1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。

定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R值域:R奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。

倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。

设一直线的倾斜角为a,则该直线的斜率k=tg(a)。

2.二次函数:题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。

定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式]此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);3.反比例函数在平面直角坐标系上的图象为双曲线。

新教材人教A版5.4.1正弦函数余弦函数的图象课件(44张)

新教材人教A版5.4.1正弦函数余弦函数的图象课件(44张)

【解题策略】 “五点法”画函数y=Asin x+b(A≠0)在[0,2π]上的简图的步骤 (1)列表
(2)描点:在平面直角坐标系中描出下列五个点:(0,y1),(
2

y 3) ,
(π,y3),(
3 2

y
4 ) ,(2π,y5).
(3)连线:用光滑的曲线将描出的五个点连接起来.
【跟踪训练】 请补充完整下面用“五点法”作出y=-sin x(0≤x≤2π)图象的列表.
(ⅰ)画出正弦曲线在[0,2π]上的图象的五个关键点(0,0),__2____,
(π,0),_(_32_ _, _ _1 )_,(2π,0),用光滑的曲线连接;
(ⅱ)将所得图象向左、向右平行移动(每次2π个单位长度).
(3)本质:正弦曲线是正弦函数的图形表示,是正弦函数的一种直观表示.
(4)应用:根据正弦曲线,能帮助学生更直观地认识正弦函数,进而根据正弦
5.4.1 正弦函数、余弦函数的 图象
必备知识·自主学习
(1)正弦曲线 正弦函数y=sin x,x∈R的图象叫正弦曲线.
(2)正弦函数图象的画法 ①几何法: (ⅰ)利用正弦线画出y=sin x,x∈[0,2π]的图象;
(ⅱ)将图象向左、向右平行移动(每次2π个单位长度).
②“五点法”:
( ,1 )
x∈[0,2π]与y=sin x,x∈[2π,4π]的图象 ( )
A.重合
B.形状相同,位置不同
C.关于y轴对称
D.形状不同,位置不同
【解析】选B.根据正弦曲线的作法可知函数y=sin x,x∈[0,2π]与y=
sin x,x∈[2π,4π]的图象只是位置不同,形状相同.
4.如图是下列哪个函数的图象 ( ) A.y=1+sin x,x∈[0,2π] B.y=1+2sin x,x∈[0,2π] C.y=1-sin x,x∈[0,2π] D.y=1-2sin x,x∈[0,2π] 【解析】选C.把 ( , 这0 ) 一点代入选项检验,即可排除A、B、D.

高中常见函数图像及基本性质

高中常见函数图像及基本性质

常见函数性质汇总及简单评议对称变换常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线一次函数 f (x )=kx +b (k ≠0,b ∈R)1)、两种常用的一次函数形式:斜截式——点斜式——2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势:3)、|k|越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R单调性:当k>0时 ;当k<0时奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数(特殊情况下:K=±1并且b=0的时候)。

补充:反函数定义:例题:定义在r 上的函数y=f (x ); y=g (x )都有反函数,且f (x-1)和g -1(x)函数的图像关于y=x 对称,若g (5)=2016,求)=周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法: xy b Of (x )=bx y Of (x )=kx +b R 2)点关于直线(点)对称,求点的坐标反比例函数 f (x )=xk(k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞单 调 性:当k> 0时;当k< 0时 周 期 性:无 奇 偶 性:奇函数 反 函 数:原函数本身补充:1、反比例函数的性质2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此)3、反函数变形(如右图) 1)、y=1/(x-2)和y=1/x-2的图像移动比较 2)、y=1/(-x)和y=-(1/x )图像移动比较3)、f (x )=dcx bax ++ (c ≠0且 d ≠0)(补充一下分离常数)(对比标准反比例函数,总结各项内容)二次函数一般式:)0()(2≠++=a c bx ax x f 顶点式:)0()()(2≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f图象及其性质:①图形为抛物线,对称轴为 ,顶点坐标为②当0>a 时,开口向上,有最低点 当0<a 时。

常用的函数曲线

常用的函数曲线
幂函数曲线根据指数的不同,展现出不同的形态,如直线、抛物线等。指数函数曲线则呈现பைடு நூலகம்快速增长或衰减的特点。对数函数曲线增长缓慢,逐渐趋于平稳。三角函数曲线,包括正弦、余弦、正切等,具有周期性和波动性。反三角函数曲线则是三角函数的反函数,形态与三角函数相对应。双曲函数曲线,如双曲正弦、双曲余弦等,具有类似于指数函数的增长趋势,但形态更为复杂。反双曲函数曲线则是双曲函数的反函数,同样具有独特的形态。这些经典函数曲线在数学分析、物理、工程等领域有着广泛的应用,是理解和掌握函数性质的重要工具。

函数的图象(课件)八年级数学下册(人教版)

函数的图象(课件)八年级数学下册(人教版)
边上有一动点P沿A→B→C→D→A运动一周,则点P的纵
坐标y与点P走过的路程s之间的函数关系用图象表示大致
是( D )
9.如图是某地一天气温随时间的变化的图象,根据图象回答,在这一天中:
10
(1)_____时,气温最高为______;____时,气温最低为_______;
2
14℃
-2℃
(2)14时的气温是______;_______时的气温是8℃;
(1)这一天内,上海与北京何时气温相同?
(2)这一天内,上海在哪段时间比北京气温高?在哪段时间比北京气温低?
例3.在下列式子中,对于x的每一个确定的值,y有唯一的对应值,即y是x的
函数.画出这些函数的图象:
(1) y=x+0.5
6

(2) y= (x>0)
(1) y=x+0.5
解:Ⅰ.列表:
Ⅱ.描点:以表中各组对应值作为点的坐标,
2×1-1≠3
2×2.5-1=4
【点睛】把点的横坐标(即自变量x)的取值代入解析式求出相应的函数值y

点A,B不在函数y=2x-1的图象上,点C在函
值,看是否等于该点的纵坐标,如果等于,则该点在函数图象上;如不在,
数y=2x-1的图象上.
则该点不在函数图象上.
例3.下图反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后回
30千米;
(2)他到达离家最远的地方是什么时间?
离家多远?
(2)到达离家最远的时间是12时,离家30
千米;
10.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离
与时间的变化情况.(如图所示)
(3)11时到12时他行驶了多少千米?

各种函数图象

各种函数图象

各种函数图象底数与指数函数图像:(1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。

(2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。

(3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低”。

(如右图)》。

右图给出对于不同大小a所表示的函数图形: 可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1) 对数函数的定义域为大于0的实数集合。

(2) 对数函数的值域为全部实数集合。

(3) 函数图像总是通过(1,0)点。

(4) a大于1时,为单调增函数,并且上凸;a大于0小于1时,函数为单调减函数,并且下凹。

(5) 显然对数函数无界。

形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

当a取非零的有理数时是比较容易理解的,而对于a取无理数时,初学者则不大容易理解了。

因此,在初等函数里,我们不要求掌握指数为无理数的问题,只需接受它作为一个已知事实即可,因为这涉及到实数连续统的极为深刻的知识。

特性对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q次根号下(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,,?)。

当指数a是负整数时,设a=-k,则y=1/(x^k),显然x?0,函数的定义域是(,?,0)?(0,,?)。

因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排除了为0与负数两种可能,即对于x>0,则a可以是任意实数; 排除了为0这种可能,即对于x<0或x>0的所有实数,q不能是偶数; 排除了为负数这种可能,即对于x为大于或等于0的所有实数,a就不能是负数。

高中六个特殊函数图像

高中六个特殊函数图像

高中六个特殊函数图像高中函数的学习是一项重要而又令人兴奋的任务,它可以帮助学生理解和操作数学,并使其能够应用于实际的问题。

函数的图形是有关函数的重要性的可视化表示,它们可以帮助学生更好地理解和应用函数。

在本文中,我们将关注高中函数的六个特殊函数图像--正弦函数、余弦函数、指数函数、对数函数、幂函数和反比例函数。

正弦函数是一种经常用于描述物理系统周期性变化的函数。

它是由三角函数和 Trilogy组合构成的,表达式是 y=asin(bx+c)。

它的图像表示为一条由纵轴和横轴(即x轴)上的点组成的曲线,每个点的位置可以通过x的变换而不断变化。

图像的形状取决于a,b,c参数的取值。

正弦函数的图像可以用来描述物体的阻力,从而更好地了解某些不可预知的系统物理现象。

余弦函数也是一种经常用于描述物理系统变化的函数,表达式为y=acos(bx+c)。

它的图像表示为由点组成的曲线,和正弦函数类似,控制参数由a,b,c决定图像的形状。

余弦函数的图像可以用来描述惯性力,反应物体在不同重力中的运动变化,从而更好地了解物理过程。

指数函数是一种常用的数学函数,表达式为 y=aebx,其中e是自然对数的基数。

指数函数的图像表示为由点组成的抛物线,参数由a和b决定图形的形状,它表示了数与数之间关系的可视化描述。

熟悉指数函数的图像有助于学生更好地使用它们来解决日常问题,比如财务问题等。

对数函数也是一种常用的数学函数,它由三角函数和日志函数组成,表达式为 y=alogbx。

它的图形表示为一条由点组成的折线,参数由a和logb决定图形的形状。

学习对数函数的图像有助于帮助学生理解数学关系,并从中推导出更多的结果。

幂函数既是数学函数,也是物理函数,表达式为 y=axb。

它的图形表示为一条由点组成的抛物线,参数由a和b决定图形的形状。

幂函数图形经常用于描述各种自然现象,如质量、衰减等。

学习幂函数的图形有助于学生更好地理解它们的用途以及它们在解决实际问题时的作用。

一些常用函数的曲线图及应用简说

一些常用函数的曲线图及应用简说

一、正弦余弦曲线: 正弦曲线公式为:A 为波幅(纵轴),ω为(相位矢量)角频率=2PI/T ,T 为周期,t 为时间(横轴), θ为相位(横轴左右)。

周期函数:正余弦函数可用来表达周期函数。

例如,正弦和余弦函数被用来描述简谐运动,还可描述很多自然现象,比如附着在弹簧上的物体的振动,挂在绳子上物体的小角度摆动。

正弦和余弦函数是圆周运动一维投影。

三角函数在一般周期函数的研究中极为有用。

这些函数有作为图像的特征波模式,在描述循环现象比如声波或光波的时候很有用。

每一个信号都可以记为不同频率的正弦和。

1、函数y=sinx 的图象:叫做正弦曲线。

第一步:在直角坐标系的x 轴上任取一点1O ,以1O 为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成n (这里n=12)等份。

把x 轴上从0到2π这一段分成n (这里n=12)等份。

(预备:取自变量x 值—弧度制下角与实数的对应)。

第二步:在单位圆中画出对应于角6,0π,3π,2π,…,2π的正弦线正弦线(等价于“列表” ).把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点” )。

第三步:连线。

用光滑曲线把正弦线的终点连结起来,就得到正弦函数y=sinx ,x ∈[0,2π]的图象。

根据终边相同的同名三角函数值相等,把上述图象沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 的图象.把角x (x ∈R )的正弦线平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点的轨迹就是正弦函数y=sinx 的图象。

2、余弦函数y=cosx 的图象:叫做余弦曲线。

根据诱导公式,可以把正弦函数y=sinx的图象向左平移2π单位即得余弦函数y=cosx的图象。

3、用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx,x∈[0,2π]的图象中,五个关键点是:(0,0)、(2π,1)、(π,0)、(23π,-1)、(2π,0)。

正弦函数、余弦函数的图像终结版

正弦函数、余弦函数的图像终结版

如何利用”五点法”作出函数画出函数 如何利用”五点法”作出函数画出函数 π π 7π y = cos( x − ) + 1, x ∈ [ , ] 的简图 的简图.
3 3 3
总结!!!! 总结!!!!
用“五点法”作形如y = A sin(ωx + ϕ ) + k ( y = A cos(ωx + ϕ ) + k )的图像,关键是五点的 3π 选取,即令ωx + ϕ = 0, ,π, ,2π,求出相应 2 2 的值和值为坐标,描出相应的五点,用光滑的曲线 连接!
1.4.1 正弦函数 余弦函数的图象 正弦函数.余弦函数的图象
练习2: 练习 :作出函数 y = sin x 与 y
= sin x
的图像
y = sin x
1
−4π − 7π −3π 2

5π−2π 3π − 2 2
−π

π 2
-1
π 2
π
3π 2π 5π 2 23π7π 4π Nhomakorabeaπ 2 2
5πx
y = sin x
1.4.1 正弦函数 余弦函数的图象 正弦函数.余弦函数的图象
y
1-
y = sin x
π
6
x ∈ [0, 2π ]
4π 3 3π 2 5π 3 11 π 6
-1
o
-1 -
π
3
π
2
2π 3
5π 6
π
7π 6

x
的图象上,起关键作用的点有: 在函数 y = sin x, x ∈ [0, 2π ] 的图象上,起关键作用的点有:
描点 ( π , 0 . 8660 ) 3

(完整版)高中各种函数图像画法与函数性质

(完整版)高中各种函数图像画法与函数性质

一次函数(一)函数1、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

一次kkx b k函数k ,bkk符号b 0b 0b 0b 0b 0yyyyy图象OxOxOxOxOxb 0yOx性质 y 随 x 的增大而增大 y 随 x 的增大而减小二次函数f xax 2 bx c aa 0a 0图像xbb2ax2a定义域, 对称轴xb2a顶点坐标b , 4ac b 22a 4a值域4ac b 2,, 4ac b 24a4a, b递减,b递增2a 2a单调区间b递增b递减, ,2a 2a二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1.关于 x 轴对称y ax2 bx c关于 x 轴对称后,得到的解析式是y ax2 bx c ;y a x h 2y a x h2 k 关于 x 轴对称后,得到的解析式是k2.关于 y 轴对称y ax2 bx c关于y轴对称后,得到的解析式是y ax2 bx c;y a x h 2y a x h2;k 关于y轴对称后,得到的解析式是k3.关于原点对称y ax2 bx c关于原点对称后,得到的解析式是y ax2 bx c ;y a x h 2y a x h2k k 关于原点对称后,得到的解析式是4. 关于顶点对称(即:抛物线绕顶点旋转 180°)y ax2 bx c关于顶点对称后,得到的解析式是y ax2 bx c b2 ;2ay a x2k 关于顶点对称后,得到的解析式是y a x h2k .h5.关于点 m,n 对称2k 关于点m,n 对称后,得到的解析式是y a x hy a x h 2m 2k2n反比例函数1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线反比例函数图像中每一象限的每一支曲线会无限接近X轴 Y轴但不会与坐标轴相交( K≠0)。

正弦函数、余弦函数的图象

正弦函数、余弦函数的图象

3.正弦、余弦曲线形状相同,位置不同,均向左右无限延伸,与 x 轴有无数个交 点,正弦曲线关于原点对称,而余弦曲线关于 y 轴对称.
为什么把正弦、余弦曲线向左、右平移 2π 的整数倍个单位长度后图象形状不 变? 提示:由诱导公式一知 sin (x+2kπ)=sin x,cos (x+2kπ)=cos x,k∈Z 可得.
零点问题
【典例】函数 f(x)=sin x+2|sin x|-k,x∈[0,2π],有且仅有两个不同的零点,则 k
的取值范围是________.
【解析】本题可转化为函数 g(x)=sin x+2|sin x|,x∈[0,2π]的图象与直线 y=k 有且
3sin x,0≤x≤π,
仅有两个不同的交点问题.g(x)=
图象( )
A.重合
B.形状相同,位置不同
C.关于 y 轴对称
D.形状不同,位置不同
【解析】选 B.根据正弦曲线的作法可知函数 y=sin x,x∈[0,2π]与 y=sin x,x∈[2π,
4π]的图象只是位置不同,形状相同.
4.函数 y=sin x,x∈[0,2π]的图象与直线 y=-21 的交点有________个. 【解析】在[0,2π]内使 sin x=-21 的角 x 为76π 和116π , 所以 y=sin x,x∈[0,2π]的图象与直线 y=-21 有 2 个交点. 答案:2
2.用“五点法”画函数 y=1+12 sin x 的图象时,首先应描出五点的横坐标是( )
A.0,π4 ,π2 ,34π ,π
B.0,π2 ,π,32π ,2π
C.0,π,2π,3π,4π
D.0,π6 ,π3 ,π2 ,23π
【解析】选 B.所描出的五点的横坐标与函数 y=sin x 的五点的横坐标相同,即 0,

【高中数学】正弦函数、余弦函数的图像

【高中数学】正弦函数、余弦函数的图像
终点连结起来
y
1
A
O
-1

3
2
3

4
3
5
3
2
x
概念解析
根据函数 = , ∈[0,2π]的图象,你能想象函数 = , ∈R 的图象吗?
由诱导公式一可知,函数 = , ∈ [2kπ,2(k+1)π ] ,k∈Z且k≠
0的图象与 = , ∈[0,2π]的图象形状完全一致.因此将函数 = ,
2
1
0
1
在直角坐标系中描出五点,然后用光滑曲线顺次连接起来,就得到 y=1+sin
x,x∈[0,2π]的图象.
(2)列表:
x
0
π
2
cos x
1
0
-1
0
1
-cos x
-1
0
1
0
-1
π
3


描点连线,如图
你能利用函数y=sin x,x∈[0,2π]的图象,通过图象变换得到y=1+sin x,x∈[0,2π]

(___,1)
典例解析
例 1、用“五点法”作出下列函数的简图.
(1)y=1+sin x,x∈[0,2π];
(2)y=-cos x,x∈[0,2π].
【精彩点拨】
在[0,2π]上找出五个关键点,用光滑的曲线连接即可.
【解析】
(1)列表:
x
0
π
2
π

2

sin x
0
1
0
-1
0
1+sin x
1
∈[0,2π]的图象不断向左、向右平移(每次移动2π个单位长度),就可以得

曲线图形与函数分析

曲线图形与函数分析

曲线图形与函数分析曲线图形和函数是数学中常见且重要的概念,它们在各个领域中都有广泛的应用。

本文将围绕曲线图形和函数展开分析,并探讨它们之间的关系以及如何应用它们解决实际问题。

一、曲线图形的基本概念曲线图形是由一系列点按照一定规律连接而成的连续曲线。

常见的曲线图形包括折线图、曲线图、柱状图等。

其中,折线图是由一系列点按顺序连接而成的线段,在表示一段时间内的变化趋势时尤其常见;曲线图则是由光滑的曲线连接而成,适用于表示连续变量间的关系;柱状图以长方形的高度表示数据大小,适用于比较不同变量的数量或大小。

二、函数的基本概念函数是数学中的一个重要概念,它描述了一个变量与另一个变量之间的关系。

函数常用符号表示为f(x),其中x是自变量,f(x)是对应的因变量。

函数有定义域和值域两个重要概念,定义域是指自变量的取值范围,值域是函数对应的因变量的取值范围。

函数可以用公式、图表或曲线来表示。

三、曲线图形与函数的关系曲线图形与函数有着密切的关联。

在曲线图形中,自变量和因变量之间的关系可以通过函数来描述。

例如,在折线图表示时间和温度的关系时,时间可以作为自变量,温度可以作为因变量,可以用函数y=f(x)来表示,其中x表示时间,y表示温度。

同样,在曲线图表示销售额与广告投入的关系时,广告投入可以作为自变量,销售额可以作为因变量,也可以用函数来描述两者之间的关系。

四、如何分析曲线图形和函数1. 确定自变量和因变量:首先要明确曲线图形中自变量和因变量的含义,并将其用合适的符号表示出来。

2. 观察数据变化趋势:通过观察曲线图形的变化趋势,得出一些直观的结论,比如是否存在上升、下降、波动等趋势。

3. 建立函数模型:根据观察到的数据变化趋势,可以尝试建立一个函数模型来描述曲线图形中自变量和因变量的关系。

4. 利用函数模型进行预测和分析:通过已建立的函数模型,可以对未来或其他未知情况进行预测和分析,得出一些有价值的结论。

五、曲线图形与函数的应用曲线图形和函数在各个领域中都有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档