光致变色材料的研究及应用进展

合集下载

光致变色材料的研究与应用

光致变色材料的研究与应用

光致变色材料的研究与应用光致变色材料(photochromic materials)是一种能够在光照下发生颜色变化的特殊材料。

这种材料可以通过吸收和释放光能来改变其分子结构,从而改变其颜色。

光致变色材料的研究和应用已经引起了广泛的关注,并在多个领域展现出了巨大的潜力。

光致变色材料最早是在20世纪60年代被发现的,当时科学家们观察到某些有机分子在受到紫外线照射后会发生颜色变化。

随后,人们对这种现象产生了浓厚的兴趣,并开始研究光致变色材料的机制和性能。

光致变色材料的研究主要集中在两个方面:机理研究和性能调控。

机理研究旨在揭示光致变色材料发生颜色变化的原理和机制。

通过深入理解光致变色材料的分子结构和作用过程,科学家们可以设计出更加高效和稳定的光致变色材料。

同时,性能调控研究则致力于探索如何通过改变光致变色材料的结构和组成来调控其颜色变化的速度和强度。

这些研究对于开发出具有特定功能的光致变色材料具有重要意义。

光致变色材料的应用十分广泛。

其中最常见的应用之一是光学器件。

通过控制光致变色材料的颜色变化,可以制造出具有可调光透过率的窗户、眼镜和太阳镜等产品。

这些产品可以根据外界光照强度自动调节透光度,提供更加舒适的视觉体验。

此外,光致变色材料还可以用于光学存储器件和显示器件,为信息存储和显示技术带来了新的可能。

除了光学器件,光致变色材料还在化妆品、纺织品和油墨等领域得到了广泛应用。

在化妆品领域,光致变色材料可以用于制造具有温感效果的唇膏和指甲油,使其在不同的温度下呈现出不同的颜色。

在纺织品领域,光致变色材料可以用于制造具有温感和光感效果的服装和家纺产品,增加其时尚度和趣味性。

在油墨领域,光致变色材料可以用于制造具有防伪功能的印刷品,提高产品的安全性和可信度。

尽管光致变色材料在以上领域都有广泛的应用,但是其商业化进展还面临着一些挑战。

首先,目前市场上的光致变色材料大多存在着颜色变化速度慢、稳定性差等问题,需要进一步改进和优化。

光致变色材料及其应用前景

光致变色材料及其应用前景

光致变色材料及其应用前景首先,光致变色材料在光学领域具有广泛的应用前景。

由于它们具有可控的光学特性,可以用于制造智能窗户、光学存储材料和调色镜片等。

智能窗户可以根据光照强度自动调节透明度,提供良好的遮阳效果和隐私保护。

光学存储材料可以用于高密度数据存储,具有快速写入和读取速度的优势。

调色镜片可以根据不同的光照条件改变颜色,适应不同的环境需求。

其次,光致变色材料在传感器和显示器领域中具有巨大的应用潜力。

传感器是现代科技中不可或缺的组成部分,光致变色材料可以制造高灵敏度的光传感器,并用于测量光强度、波长和光谱分布等。

同时,光致变色材料还可以用于电子显示器,改变显示屏的颜色和亮度,提供更好的视觉效果和视觉体验。

此外,光致变色材料还具有在能源存储和转换领域中的应用前景。

太阳能是一种洁净、可再生的能源,光致变色材料可以用于太阳能电池板,通过改变颜色来增加采集光能的效率。

同时,光致变色材料还可以用于储能设备,如光催化剂、光电池等,将太阳能转化为电能或燃料,为可持续发展提供重要支撑。

在医学领域中,光致变色材料也具有许多应用前景。

它们可以用于制造人工视网膜和人工晶体等医疗器械,帮助恢复视力。

此外,光致变色材料还可以用于药物传递和生物成像等方面,通过控制光照条件来释放药物或观察生物组织的荧光信号,提供更好的治疗和诊断手段。

综上所述,光致变色材料具有广泛的应用前景。

它们在光学、传感器、显示器、能源和医学等方面都具有重要的应用价值。

随着科学技术的不断发展,光致变色材料的性能和应用领域还将不断拓展,为人们的生活带来更多的便利和创新。

光致变色材料的研究与应用

光致变色材料的研究与应用

光致变色材料的研究与应用近年来,光致变色材料在科技领域得到了越来越广泛的应用,它们以其独特的变色能力吸引了众多研究者的关注,并在许多领域中发挥了重要的作用。

本文将从光致变色材料的基本原理、研究进展、应用领域等方面进行探讨。

一、光致变色材料的基本原理光致变色材料又称光致变色剂,是指在外界光照下能实现颜色变化的材料。

其原理是利用材料分子电子在能带之间的跃迁发生吸收和发射光子的现象,实现颜色变化。

在外界光照下,分子电子跃迁至高能态,吸收光子能量,使分子处于激发状态;当激发态的分子从高能激发态向低能激发态跃迁时,会发射出能量等于跃迁能级差的光子,使材料颜色发生变化。

二、光致变色材料的研究进展随着科技的不断发展,光致变色材料的种类也在不断增多。

最初研究的光致变色剂以有机分子为主,例如,芳环并吡嗪衍生物和萘环衍生物等。

然而,有机分子光致变色剂具有颜色不稳定、易氧化、易退色等缺点,难以在实际应用中发挥其效用。

为了克服有机光致变色剂的局限性,研究人员开始将目光投向无机光致变色材料。

目前研究得较为深入的无机光致变色材料主要包括银化合物、氧化物、硅氧烷、硫属化物、氰化物等。

其中,银化合物是最早研究的无机光致变色材料之一,也是目前研究最为深入的一类。

银化合物可以通过光化学反应将银的原子态和离子态相互转化,从而实现颜色的变化。

值得一提的是,某些特殊银化合物甚至可以在红外光区域响应,并实现透明-可见光区间的颜色变化,这种银化合物的材料具有在窗户玻璃表面形成可变透光度的潜力,可以用于控制室内采光。

研究人员还将光致变色材料运用到生物医学领域,例如制作可变颜色的生物标记物、控制药物在患者体内的释放速率等,具有广阔的应用前景。

三、光致变色材料的应用领域由于其独特的颜色变化能力,光致变色材料具有广泛的应用领域。

以下是一些主要应用领域的介绍。

3.1 光电显示领域光致变色材料可以被应用于光电显示的背板,实现窄带滤波、调节灰度等功能,大幅提升了服役电路的性能。

无机-有机杂化光致变色材料的研究

无机-有机杂化光致变色材料的研究

无机-有机杂化光致变色材料的研究下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!无机有机杂化光致变色材料的研究随着科技的进步,材料科学领域不断涌现出新的材料和应用。

光致变色材料的研究及应用进展

光致变色材料的研究及应用进展

光致变色材料的研究及应用进展光致变色材料的研究一直是材料科学领域的热点之一、其中最常见的光致变色材料是所谓的“可逆光致变色材料”,它们可以根据外界光照的强度和波长,发生可逆的颜色变化。

这些材料中最重要的一类是热致变色材料,它们能够通过吸收光能量来改变分子结构,从而实现颜色的调控。

具体来说,当这些材料受到短波光照射时,其分子内部的电子会发生跃迁,从而导致分子结构的改变,进而导致颜色的变化。

近年来,光致变色材料的研究进展迅速。

一方面,研究人员发现了越来越多的新型光致变色材料,并对其性质和机理进行了深入研究。

例如,一种名为“钙钛矿”的材料在光致变色方面表现出了很高的潜力。

由于其特殊的晶体结构,钙钛矿材料可以通过光致变色来实现对太阳能的高效转换。

另一方面,研究人员也致力于改进光致变色材料的性能,以提高其应用的可行性。

其中一个主要的挑战是提高材料的稳定性,以保证其变色性能的持久性。

为此,研究人员通过控制材料的晶体结构、添加稳定剂等方式,有效提高了光致变色材料的稳定性。

除了在材料研究方面的进展,光致变色材料的应用领域也得到了快速发展。

其中一个重要的应用领域是可视化光学器件。

例如,光致变色材料可以用于制造可调光度的镜头。

通过对光致变色材料施加外部光源,镜头的光学参数可以进行调节,从而实现对光的传播和聚焦的控制。

这种能够实现实时调整的光学器件在光学通信、光学成像等领域有着广泛的应用前景。

此外,光致变色材料还可以用于制造可调光罩、可反射屏等光学器件,以及可调光度的眼镜、墙纸等消费品。

另一个重要的应用领域是可穿戴技术。

光致变色材料可以用于制造智能显色眼镜、智能表带等可穿戴设备。

这些设备中的光致变色材料可以根据所处环境的不同,改变自身的颜色和透明度,从而提供更好的使用体验。

例如,智能显色眼镜可以根据光照的强度和波长,调整镜片的光透过率,从而达到护眼和保护视力的效果。

通过光致变色材料的应用,可穿戴技术的功能性和舒适性得到了极大的提升。

光致变色材料的研究及其应用

光致变色材料的研究及其应用

光致变色材料的研究及其应用近年来,随着科技的进步,光致变色材料的研究越来越受到人们的关注。

光致变色材料是一种能够在光的作用下改变颜色的材料,它具有很好的应用前景,例如在生物医学、电子设备、光学器件等领域中均有广泛的应用。

在本文中,将探讨光致变色材料的研究及其应用。

一、光致变色材料的研究现状光致变色材料是一类具有特殊结构的材料,它能够在光的照射下改变颜色。

这一特性使得光致变色材料在很多方面都具有很好的应用前景。

近年来,随着各种新型光致变色材料的研究,在化学、物理等领域中,对其性能和应用的探索也越来越深入。

目前,光致变色材料的研究主要集中在以下几个方面:1.合成新型光致变色材料化学合成新型材料是光致变色材料研究的重要方向之一。

通过改变材料的分子结构,可以获得不同种类的光致变色材料,比如氧化锆、氧化铈、氧化钛等。

2.探究光致变色材料的结构与性能光致变色材料研究的另一个方向是探究其结构与性能之间的关系。

例如,通过研究材料的晶体结构和分子结构,可以探究其光致变色机理。

3.探索光致变色材料的应用领域除了合成新型材料和研究结构与性能关系之外,探究光致变色材料在各个领域的应用也是研究的一个热点。

例如,在环保领域,光致变色材料可用于污染物检测中;在生物医学领域,光致变色材料可用于药物输送;在电子设备领域,光致变色材料可用于制造柔性显示器等。

二、光致变色材料的应用现状光致变色材料的应用范围广泛,以下是几个典型的应用:1.生物医学领域生物医学领域是光致变色材料的一个重要应用领域。

在生物医学领域中,光致变色材料可以用来制备病毒检测器、蛋白质检测器、生物传感器等。

例如,利用光致变色材料作为药物输送载体,能够使药物精确地传递到病变组织中,从而实现精准治疗。

2.电子设备领域在电子设备领域中,光致变色材料的应用非常广泛。

比如,可用于制造柔性显示器、人工晶体、光学存储器等。

其中,光学存储器是光致变色材料的一个重要应用领域。

通过在材料上写入信息,可以实现高容量、高速度、低功耗的数据存储。

光致变色材料的研究及应用进展

光致变色材料的研究及应用进展

光致变色材料的研究及应用进展吕沙东北林业大学材料科学与工程学院,黑龙江哈尔滨摘要:本文通过论述光致变色材料的研究及应用进展这一内容,可以清晰直观地了解到,当前我国的高技术研究领域重点将注意力放到了光致变色材料的研究上,对于光致变色材料来说,光致变色是材料在受到光照射程度下,所产生的一些化学反应,这种在光的照射下,可以呈现五颜六色的变色材料,其已经有150年的历史了,对于光致变色材料的研究具有很重要的意义,其发展还有更为远大的前景。

基于此,本文重点从关注光致变色材料的研究及应用进展进行思考和探索,并提出相应的建议,愿与大家共享。

关键词:变色材料;研究;应用进展一、不同类型光致变色材料的研究(一)有机光致变色材料有机光致变色材料具有修饰高,色泽丰富,光响应快等优点,大多数可以在200~400nm 的紫外光下活化。

对于某些有机物,该范围可以扩展到430nm,但可见光可以激活很少的有机物质。

颜色变化的机制主要包括双键的断裂和组合(键的均裂,键的分裂),异构体形成(质子转移互变异构化,顺反异构化),酸诱导变色,周环反应,氧化还原反应等。

有许多类型的有机光致变色材料,通过引入特定的官能团改性可以实现不同的研究目的。

目前,大多数研究主要是二芳基乙烯,俘精酸酐,螺吡喃,螺恶嗪,偶氮苯,席夫碱。

二芳基乙烯和俘精酸酐衍生物均表现出不可逆的光致变色性质,并且可用于光学存储器,开放式光学开关装置和显示器;通过光照产生的螺吡喃,萘并吡喃,螺恶嗪和偶氮苯的异构体表现出热力学不稳定性。

对于使用类型,给出了二芳基乙烯和螺吡喃有机光致变色材料的以下描述。

(二)二芳基乙烯类二芳基乙烯通过循环反应产生两种不同形式的开环和闭环。

原理图如图1所示。

这两种形式可以在不同波长的光的作用下相互转换。

吸收光谱的物理和化学性质,折射率,介电常数,氧化还原等也在转化过程中发生变化。

与其他光致变色材料相比,具有热稳定性好,抗疲劳,化学反应谱大,光敏性高,化学反应速度快等特点。

光致变色材料的研究及应用进展

光致变色材料的研究及应用进展

Journal of Advances in Physical Chemistry 物理化学进展, 2018, 7(3), 139-146Published Online August 2018 in Hans. /journal/japchttps:///10.12677/japc.2018.73017Research and Application Progress ofPhotochromic MaterialsYue SunCollege of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu SichuanReceived: Aug. 5th, 2018; accepted: Aug. 18th, 2018; published: Aug. 27th, 2018AbstractPhotochromic materials, as an important subject in the field of high technology, have wide appli-cation value and development prospect. According to different types, this paper summarizes the research progress and related applications of organic photochromic materials, inorganic pho-tochromic materials and inorganic-organic hybrid photochromic materials, and briefly discusses the future development trend.KeywordsPhotochromatism, Research Progress, Application, Development Trend光致变色材料的研究及应用进展孙悦西南石油大学化学化工学院,四川成都收稿日期:2018年8月5日;录用日期:2018年8月18日;发布日期:2018年8月27日摘要光致变色材料作为当前高科技领域研究的重要课题,具有广阔的应用价值和发展前景。

光致变色材料制备用途以及进展

光致变色材料制备用途以及进展

光致变色材料制备用途以及进展光致变色材料还可以应用于传感器领域。

通过对光致变色材料进行材料表面改性和结构设计,可以实现对温度、湿度、压力和化学物质等环境参数的灵敏检测。

这些传感器可以应用于生活中的智能家居、医疗健康和环境监测等领域。

除了光学和传感器领域,光致变色材料还有其他一些用途。

例如,在纺织品和陶瓷领域,光致变色材料可以应用于制造颜色随温度变化的智能纤维和智能陶瓷;在建筑领域,光致变色材料可以应用于制造可调节透光率和热学性能的玻璃和可变反射涂层,用于调节建筑物的室内光照和能量消耗。

在光致变色材料的制备和研究方面,近年来取得了一些进展。

一方面,研究人员通过合成不同结构的有机分子和纳米材料,实现了对光致变色材料性能的调控。

例如,设计合成了新型的有机分子,使其在受到光照后能够发生颜色变化;还利用金属纳米颗粒和量子点等纳米材料,制备了具备特定光学性能的光致变色材料。

另一方面,研究人员也使用了一些新的制备技术来制备光致变色材料。

例如,通过溶液旋转涂覆、电沉积和溶胶-凝胶法等方法,可以制备出具有特定微纳结构和化学组成的光致变色材料。

这些新的制备技术可以提高制备效率,改善材料性能,并为进一步的应用提供了可能。

虽然在光致变色材料的制备和应用方面取得了一些进展,但仍然存在一些挑战。

例如,一些光致变色材料的响应速度较慢,不适用于高速光学器件和传感器;另外,一些材料在经历多次颜色变化后会失去响应性能。

因此,今后的研究需要进一步改进材料的性能,提高制备工艺,并探索新的应用领域。

总之,光致变色材料具有广泛的应用前景和进展。

它们可以应用于光学器件、传感器、纺织品、建筑材料等领域,并通过进一步的研究和发展,可以实现更多新的应用。

光致变色材料

光致变色材料

光致变色材料光致变色材料是一种特殊的材料,它能够在受到光照的作用下发生颜色的变化。

这种材料通常被应用在光学器件、显示屏、传感器等领域,具有广泛的应用前景。

光致变色材料的研究和开发已经取得了一定的进展,但仍然面临着一些挑战和难题。

本文将对光致变色材料的基本原理、应用领域以及未来发展方向进行介绍和探讨。

光致变色材料的基本原理是通过吸收光能量,从而改变材料的电子结构,进而引起颜色的变化。

这种材料通常包括有机化合物、无机化合物以及复合材料等。

在受到光照后,这些材料的分子或者晶格结构会发生变化,从而导致颜色的改变。

这种变色的过程是可逆的,即当光源消失时,材料的颜色会恢复到原来的状态。

光致变色材料的基本原理为其在光学器件和显示屏等领域的应用提供了可能。

在光学器件方面,光致变色材料可以用于制备可调节光学滤波器和光学镜片。

通过控制材料的光致变色特性,可以实现对光的波长和强度进行调节,从而实现滤波和调焦的功能。

这种材料在激光器、相机镜头等光学器件中有着广泛的应用前景。

同时,光致变色材料还可以用于制备光学存储介质,通过控制材料的变色状态,可以实现信息的存储和读取。

在显示屏方面,光致变色材料可以用于制备可变色显示屏和全彩显示屏。

通过控制材料的光致变色特性,可以实现显示屏的颜色和亮度的调节,从而实现高分辨率和高对比度的显示效果。

这种材料在电子产品、智能手机、平板电脑等显示设备中有着广泛的应用前景。

同时,光致变色材料还可以用于制备光电调制器件,通过控制材料的变色状态,可以实现光信号的调制和解调。

在传感器方面,光致变色材料可以用于制备光学传感器和光电探测器。

通过控制材料的光致变色特性,可以实现对光信号的探测和转换,从而实现光信号的测量和检测。

这种材料在光通信、光电子、光生物学等领域有着广泛的应用前景。

同时,光致变色材料还可以用于制备光敏材料,通过控制材料的变色状态,可以实现光照强度和光谱的测量和检测。

未来,光致变色材料的研究和开发将会朝着多功能、高性能、低成本的方向发展。

光致变色和光致发光材料的制备及应用

光致变色和光致发光材料的制备及应用

光致变色和光致发光材料的制备及应用光致变色和光致发光材料是一类具有特殊光学性质的材料,在现代科技领域中具有广泛应用。

它们可以通过在一定条件下被激发而产生一系列光学效应。

本文将介绍光致变色和光致发光材料的制备和应用,以及现有研究进展和未来发展趋势。

一、光致变色材料的制备及应用光致变色材料是指在外部光线刺激下发生颜色变化的材料。

通常,这种发生变色的过程是由于光敏分子在光激发后发生共轭结构改变而引起的。

光敏分子是指能够吸收光,并且通过光化学反应改变其电子离域结构的化合物。

目前,已经成功制备出了许多具备光致变色性能的高分子材料和有机小分子材料。

其中,具有代表性的有噻吩类、芳香族化合物和二苯乙烯类。

在应用方面,光致变色材料有许多广泛的应用领域。

例如,这些材料可以用于制造传感器、防伪标签、智能玻璃等。

此外,在生物医学领域,还可以将其应用于制备激光治疗器械、酶检测器等。

二、光致发光材料的制备及应用光致发光材料是指在外部光线刺激下能够发出光的材料。

通常,这种发光的过程是由于材料内激发态分子的跃迁引起的。

在跃迁过程中,光能转化为发射光子,即发生荧光或者磷光现象。

与光致变色材料不同,光致发光材料通常包括具有荧光基团的高分子材料和无机离子晶体。

在应用方面,光致发光材料同样有很多广泛的应用领域。

例如,这些材料可以用于制造LED发光材料、荧光探针、生物标记等。

此外,在生物医学领域,光致发光材料还可以用于荧光显微镜、荧光染剂等。

三、目前研究进展及未来发展趋势目前,光致变色和光致发光材料的研究方向主要集中在以下几个方面:1. 合成高效的光敏分子。

目前,化学家正在研究如何合成更高效的光敏分子,并探索其在制备高性能材料中的应用。

2. 建立新的制备方法。

近年来,许多制备新型光致变色和光致发光材料的方法得到了广泛开展,如冷凝法、扩散法、共沉淀法等。

3. 理论研究。

通过理论计算和模拟,研究人员正在尝试进一步理解光致变色和光致发光材料的物理机制,并以此来发现更多新材料。

光致变色材料的研究与应用

光致变色材料的研究与应用

光致变色材料的研究与应用
光致变色材料是一种能够在光照下发生颜色变化的材料,其研究和应
用已经得到了广泛的关注。

这种材料的研究不仅有助于深入了解物质
的光学性质,还可以为制造新型的光学器件和传感器提供基础材料。

光致变色材料的研究主要涉及到材料的结构、光学性质和应用等方面。

其中,材料的结构是影响其光学性质和应用的关键因素。

目前,研究
人员已经开发出了多种不同类型的光致变色材料,包括有机分子、无
机晶体、高分子材料等。

这些材料的结构和性质各不相同,因此在应
用上也有所不同。

光致变色材料的应用非常广泛,主要包括光学器件、传感器、光学存
储器等领域。

其中,光学器件是应用最为广泛的领域之一。

例如,光
学滤波器、光学调制器、光学开关等都可以采用光致变色材料作为基
础材料。

此外,光致变色材料还可以用于制造光学传感器,例如温度
传感器、压力传感器等。

这些传感器可以通过测量光致变色材料的颜
色变化来实现对温度、压力等物理量的测量。

在光学存储器方面,光致变色材料也有着广泛的应用。

例如,光盘、DVD等光学存储介质就是采用光致变色材料作为记录介质的。

这些材料可以通过激光的照射来实现信息的记录和读取。

此外,光致变色材
料还可以用于制造光学存储器的读写头,以及光学存储器的控制电路等。

总之,光致变色材料的研究和应用已经得到了广泛的关注。

随着科学技术的不断发展,相信这种材料的应用领域还会不断扩大,为人类的生活和工作带来更多的便利和创新。

光致变色材料在光学应用中的研究

光致变色材料在光学应用中的研究

光致变色材料在光学应用中的研究随着科技的不断发展,人们对光学材料的要求也越来越高。

光致变色材料作为一种新型的光学材料,近年来备受研究者的关注。

本文将介绍光致变色材料的性质、特点以及在光学应用中的研究进展。

一、光致变色材料的性质和特点光致变色材料是一种可被激发发生颜色变化的材料。

它们在外界激发下,会发生表观颜色的改变,从而达到我们需要的效果。

具体来讲,光致变色材料主要是通过吸收外界光的能量,使其分子结构发生改变,从而导致颜色的变化。

这种变化可以是从一个颜色到另一个颜色,也可以是从有颜色变成无色或者透明。

光致变色材料的特点主要表现在以下两个方面:一是对激发光线的响应特别敏感,激发就会发生明显的相应;二是在颜色变化中以非常小的分子体积变化换得明显的色度变化。

这些特点使得光致变色材料在光学应用中得到了广泛的研究和应用。

二、光致变色材料在光学应用中的研究进展1. 光学存储光致变色材料在光学存储中的应用主要表现在其记忆能力上。

根据不同的分子结构和形态,光致变色材料可以分为有机和无机两大类。

在这两类光致变色材料中,有机材料更适合在光学存储中使用。

目前,利用有机光致变色材料制成的光学存储设备已经应用到许多领域中,例如光盘、DVD、蓝光光盘等。

2. 光电显示器件光电显示器件是指利用光、电和材料的相互作用来完成能量和信息交换的器件。

目前,利用光致变色材料制成的光电显示器件也已经被广泛应用。

这些器件的特点在于能够根据光的照射,改变材料的颜色或者亮度,从而形成一个更加清晰、鲜明、亮度均衡且省电的显示效果。

3. 光学传感器光学传感器是通过光的传播、反射、干涉、散射、吸收等现象来传递和检测信息的传感器。

利用光致变色材料制成的光学传感器,其工作原理也是通过光敏变色效应来实现,能够应用到许多领域中,如化学传感、光学测量、生命科学、加速度等。

4. 光子晶体光子晶体是指利用周期性光学结构来制备的材料,这种结构能够调控光学性质并具有人工的能带结构,是一种具有非常高的应用潜力的新型光学材料。

新型光致变色材料的制备及应用研究

新型光致变色材料的制备及应用研究

新型光致变色材料的制备及应用研究近年来,新型光致变色材料的研究备受关注。

这种材料具有优异的光学特性和广泛的应用前景。

本文将介绍新型光致变色材料的制备方法,以及其在光学调制、传感器等领域的应用。

一、光致变色材料的制备方法1. 化学合成法化学合成法是制备光致变色材料的主要方法之一。

一般来说,这种方法的步骤包括合成化合物、制备材料、表征并测量光学性质。

其中,合成化合物通常采用有机合成方法,如氧化、还原、酯化、硝化等。

但这种方法的缺点是回收氨对环境产生不利影响。

2. 生物法近年来,生物法成为制备光致变色材料的一种新兴方法。

该方法以天然植物、动物或细胞等有机材料为原料,通过生物反应合成材料。

这种方法具有环境友好、制备过程中不需要有机溶剂等优点,对环境的影响相对较小。

3. 物理法物理法是一种无机材料制备方法,利用物理性质如热、光或电磁相互作用等促进化学反应的进行。

这种方法的优点是可以实现快速制备,但它们所制备的材料的稳定性可能不如化学法合成的材料。

二、光致变色材料的应用1. 光学调制光学调制是一种利用光子学原理控制光传输的方法。

光致变色材料可以通过外部光刺激而使其吸收谱向长波方向进行突移,从而增加其吸收度,达到调制光信号的目的。

这种技术的应用领域广泛,例如光通信、光存储、光计算、巨量数据传输等。

2. 传感器光致变色材料可以作为光学传感器的关键组成部分,可实现对环境参数的精确检测。

例如,在化学传感器中,光致变色材料可以通过不同的化学反应获得不同的颜色变化,从而对特定的化学物质进行检测。

在环境传感器中,光致变色材料可以测量环境的温度、湿度、气体浓度等参数,从而实现环境监测。

3. 对显影技术光致变色材料还可以在对显影技术中发挥重要作用。

对显影技术是一种将图像信息转化为化学显影物的技术,是现代摄影和印刷技术的基础。

光致变色材料能够实现从光学信号到化学信号的转化,因此可以作为对显影技术的革新和改进的重要工具。

结论总之,新型光致变色材料具有广泛的应用前景,包括光学调制、传感器、对显影技术等领域。

有机光电材料的光致变色机制研究

有机光电材料的光致变色机制研究

有机光电材料的光致变色机制研究在材料科学领域,有机光电材料是近年来备受关注的研究课题之一。

它们具有可调控的光电性能以及广泛的应用潜力,尤其在光致变色方面有着独特的优势。

本文将介绍有机光电材料的光致变色机制的研究进展。

一、有机光电材料的基本概念和特性有机光电材料是由有机分子构成的一类材料,具有一系列独特的光电性能。

与传统的无机光电材料相比,有机光电材料具有分子结构可调性、柔性和低成本的优势。

同时,它们还具有较高的光吸收效率、光学非线性效应和宽光谱响应等特点。

二、光致变色机制的研究方法和技术研究有机光电材料的光致变色机制需要借助一系列的实验方法和技术。

其中,最常用的方法是吸收光谱、荧光光谱、紫外可见光谱和电子自旋共振等。

此外,还可以利用扫描电子显微镜、透射电子显微镜和原子力显微镜来观察材料的形貌和结构。

这些实验方法和技术的综合应用,可以为研究人员提供丰富的实验数据和图谱,有助于揭示有机光电材料的光致变色机制。

三、有机光电材料的光致变色机制的研究进展在过去的几十年里,研究人员在有机光电材料的光致变色机制方面取得了很多重要的进展。

其中,较为重要的研究成果有以下几点:1. 分子结构调控:通过调整有机光电材料的分子结构,可以实现材料的光致变色效应。

例如,改变共轭体系的长度和结构,可以影响材料的吸收光谱和荧光光谱。

同时,通过在分子结构中引入各种官能团,也可以调控材料的光电性能。

2. 光热效应:在有机光电材料中,光热效应是一种常见的光致变色机制。

当材料吸收光能时,光能被转化为热能,导致材料的温度升高,从而引发颜色的变化。

这一机制在红外感应、温度传感和热红外成像等领域有着广泛的应用。

3. 分子激发态变化:有机光电材料在光致变色过程中,分子的激发态也会发生变化。

光子的吸收和释放使得分子的轨道结构发生变化,从而引发材料颜色的变化。

这种机制在有机太阳能电池和有机发光材料中有着重要的应用。

四、有机光电材料的应用前景和挑战由于其独特的光电性能和可调控的性质,有机光电材料在多个领域具有广泛的应用前景。

光致变色材料的发展现状及其在建筑上的应用前景

光致变色材料的发展现状及其在建筑上的应用前景

光致变色材料的发展现状及其在建筑上的应用前景
光致变色材料是一种能够在受到光照或热能刺激后发生颜色变化的材料。

随着科技的不断发展,光致变色材料的应用范围也越来越广泛,特别是在建筑领域中,其应用前景更是不可限量。

目前,光致变色材料的发展已经进入了一个新的阶段。

传统的光致变色材料主要是基于有机染料或者无机颜料的,但是这种材料存在着耐久性差、颜色变化范围有限等问题。

而新型的光致变色材料则采用了纳米技术,通过控制材料的微观结构来实现颜色变化,具有更好的稳定性和更广泛的颜色变化范围。

在建筑领域中,光致变色材料的应用前景非常广阔。

首先,光致变色材料可以用于建筑外墙的装饰,通过控制光照或者温度的变化,使外墙颜色发生变化,从而实现建筑外观的变化。

其次,光致变色材料还可以用于建筑内部的装饰,比如说墙面、天花板等,通过控制光照或者温度的变化,使室内环境的颜色发生变化,从而实现室内环境的变化。

此外,光致变色材料还可以用于建筑的隔热材料,通过控制材料的颜色变化来实现隔热效果,从而提高建筑的能源利用效率。

当然,光致变色材料在建筑领域中的应用还存在一些挑战。

首先,光致变色材料的成本较高,需要进一步降低成本才能推广应用。

其次,
光致变色材料的稳定性和耐久性还需要进一步提高,以满足建筑领域
的长期使用需求。

此外,光致变色材料的颜色变化范围还需要进一步
扩大,以满足建筑领域的不同需求。

总的来说,光致变色材料的发展前景非常广阔,特别是在建筑领域中,其应用前景更是不可限量。

随着科技的不断发展,相信光致变色材料
的应用范围还会不断扩大,为建筑领域的发展带来更多的可能性。

我国光致变色材料研究

我国光致变色材料研究

我国光致变色材料研究光致变色材料是一种能够在外界光照下改变自身颜色的材料。

这种材料具有许多潜在的应用领域,包括显示技术、光电子学、数据存储、智能窗帘和光遥控开关等。

近年来,我国在光致变色材料研究方面取得了显著的进展。

首先,我国在光致变色材料的合成和制备方面做出了大量的研究。

通过改变材料的化学成分和结构,研究人员成功合成出了许多性能优良的光致变色材料。

例如,一些溴代苯胺类化合物能够通过光诱导反应来改变其颜色。

此外,还有一些具有类似于光敏颜料的有机分子,它们可以通过光激发来改变吸收光谱。

这些研究结果为开发更高效、更稳定的光致变色材料打下了基础。

其次,我国在光致变色机理的研究方面也取得了一定的成果。

光致变色材料的变色机理包括光物理过程和化学反应过程两个方面。

通过对光致变色材料的光物理行为和机理的深入研究,研究人员可以进一步了解光致变色材料的工作原理,从而改进其性能。

近年来,我国的研究人员对一些典型的光致变色材料进行了系统的研究,揭示了它们的变色机理,并提出了一些新的理论模型。

此外,我国在光致变色材料的应用方面也有了一定的突破。

光致变色材料具有广阔的应用前景,例如用于显示技术的光敏染料和光敏聚合物、用于智能窗帘的粉末电致变色材料等。

我国的研究人员积极探索光致变色材料的应用领域,并取得了一系列突破性的成果。

例如,在高性能光敏聚合物方面,我国的研究人员成功合成了一种新型的光致变色聚合物,具有较高的光敏性和稳定性。

这一成果为光致变色材料在显示技术上的应用提供了新的方向。

总体而言,我国的光致变色材料研究取得了显著的进展,但与发达国家相比,仍存在一定的差距。

未来,我们应加强光致变色材料的基础研究,提高研究水平和创新能力。

同时,与相关学科和行业进行更广泛的合作,加强跨学科研究和技术转化,推动光致变色材料的工业化应用。

只有这样,我们才能更好地将光致变色材料相关技术转化为现实应用,促进我国光致变色材料产业发展,以及推动我国相关行业的创新与进步。

光致变色材料的应用研究及商业化前景

光致变色材料的应用研究及商业化前景

光致变色材料的应用研究及商业化前景随着科技的不断发展,新型材料的不断涌现,其中光致变色材料引起了极大的关注。

光致变色材料是指在受到光照射后,其颜色发生可逆性改变的材料。

这种材料的应用范围非常广泛,涉及到环境、能源、生命科学等领域。

本文从光致变色材料的基本原理,应用现状和商业化前景等方面进行探讨。

一、光致变色材料的基本原理光致变色材料的基本原理是利用特定的材料在光照射下发生特定的物理和化学变化,达到改变颜色的效果。

这种材料主要包括发光材料、发色材料、发射材料三类。

发光材料主要是利用荧光或其他光致发光机制,使材料在受到光线激发后发出特定的颜色,例如发光材料用于照明、电视背光等领域。

发色材料则是利用光致吸收、荧光共振能量转移、自聚集等机制实现颜色的调控和变化。

例如,在电子纸、柔性显示屏幕等领域应用广泛。

发射材料也是利用特定机制实现颜色变化,不同的是其色变是由材料发射或吸收电荷和电子带的变化造成的。

例如,应用于温度、pH值、药物诊断等领域。

由于光致变色材料具有良好的性能和广泛的应用领域,目前已经成为了热点研究领域之一。

二、光致变色材料的应用现状目前,光致变色材料的应用已经广泛涉及到环保、能源、医疗、生物等领域。

以下是光致变色材料主要的应用现状介绍:1.环境领域在环保领域,光致变色材料主要用于空气、水等环境监测和污染物检测。

例如,利用光致变色材料制成的光电传感器能够实现PM2.5、甲醛、苯等有害气体的测定。

2.能源领域在能源领域,光致变色材料主要应用于太阳能电池、智能建筑等领域。

例如,将光致变色材料用作太阳能电池表面涂层,能够实现增加吸光比、提高电流密度等效果。

3.医疗领域在医疗领域,光致变色材料主要用于药物控释、病理诊断等方面。

例如,将光致变色材料与药物结合,可以实现定向的药物输送等效果,并且可以实现定量和定时控制。

4.生物领域在生物领域,光致变色材料主要应用于细胞成像、蛋白质分离等方面。

例如,光致变色材料可以用于离子通道成像,能够实现对细胞电压和电位的检测。

光致变色聚合物的研究及其在光学显示器上的应用

光致变色聚合物的研究及其在光学显示器上的应用

光致变色聚合物的研究及其在光学显示器上的应用在现代科技领域,光学显示器已经成为人们日常生活中不可或缺的重要组成部分。

而光致变色聚合物的研究则是光学显示器技术的重要支撑之一。

在本文中,我们将深入探讨光致变色聚合物的研究与其在光学显示器上的应用。

一、光致变色聚合物的研究光致变色聚合物是一种可以通过光的作用引起颜色变化的聚合物材料,具有独特的机械和光学性质。

常见的光致变色聚合物有烷基杯[5]芘(BCP)、杯形菁(TPA)、聚合物反转模拟显影(PIMA)等。

研究表明,光致变色聚合物的颜色变化是由于电子在聚合物分子中转移和激发过程中的光学变化引起的。

在合适的光波长下,电子可以被激发到高能级状态,导致化学键的断裂和重组,从而引起材料的颜色变化。

此外,光致变色聚合物还可以通过控制材料的分子结构,来调控其光学性质和颜色变化效果。

在光致变色聚合物的研究中,除了理论模拟和实验研究外,大量的工程应用也得到了广泛的重视。

例如,在红外线探测、分光仪、激光器等领域中,光致变色聚合物都有着广泛的应用价值。

二、光致变色聚合物在光学显示器上的应用光学显示器是一种利用光学原理将信号转换为图像的显示设备。

而光致变色聚合物的特殊性质使其成为一种优秀的光学显示器材料。

具体应用包括以下几个方面。

1. 电子墨水光致变色聚合物可以作为电子墨水的重要组成部分,将其应用于电子阅读器、平板电脑等电子设备中。

在这些应用场合中,光致变色聚合物可以通过光的作用来实现文字和图案的显示。

当电子设备切换到黑白模式时,光致变色聚合物会通过光的作用变为白色,而在彩色模式下则会变为不同的颜色,从而实现高清晰度的显示效果。

2. 液晶显示屏光致变色聚合物还可以应用于液晶显示器领域。

在液晶显示器中,通过将光致变色聚合物纳入液晶分子中,在电场作用下,液晶分子的排列方向可以改变,从而实现颜色和图像的变化。

此种方法不仅能够提高液晶显示器的显示效果,还可以降低电压的要求,减少能耗。

光致变色材料的合成及应用研究

光致变色材料的合成及应用研究

光致变色材料的合成及应用研究随着科技的发展,人们对于物质的性质和特征也有了更深入的了解,其实光致变色材料就是其中的一种。

光致变色材料具有很多应用,下面我们来详细了解一下光致变色材料的合成及应用研究。

一、光致变色材料的定义光致变色材料就是当它处于不同的环境中,或者是受到外界条件的变化时,材料会发生颜色的变化。

这种材料在工业、医学、军事等领域都有很多的应用。

二、光致变色材料的合成现代化学诞生之后,人们对于材料的研究更深入、更精确,也更具有针对性。

对于光致变色材料的合成,有一些常见的方法,比如说:溶胶-凝胶法、封闭法、水溶胶法等。

1、溶胶-凝胶法溶胶-凝胶法是一种将无机盐溶胶转化为胶体状态,再通过凝胶的过程来获得一种类似膜的物质,这个物质会呈现出一定的吸附和凝聚作用。

例如,将四甲基二硅氧烷(TMOS)和氯化铁(III)混合在一起,然后往里加入一些酸性催化剂。

这样处理之后的物质,可以获得一种微孔的、类似膜的材料,并且这个材料的颜色会随着光的强度变化而变化。

这样的材料广泛用于热敏墨水和其他应用领域。

2、封闭法封闭法是在固态基准材料(如双氧水过硫酸钾)中添加一种缺陷结构较大的材料(如硫化物、染料等),然后加热封闭,形成一种包含了物料的形态。

这种封闭性更强,反应也更快,而且不会因为如实的光照受损。

例如,可以将氧化锌微粒混合于双氧化硅中,然后进行加热处理。

这样处理之后的材料,可以获得一种类似于膜的混合物,并且这个材料的颜色也会根据光线的强度而发生变化。

此类材料的应用领域非常广泛,能广泛应用于玻璃、挡风玻璃、隔热绿色房顶等。

3、水溶胶法水溶胶法是将特定的材料以定量的方法溶于纯净水中,通过物理和/或化学的方法将其分离。

利用溶液的自由度,可以通过改变实验条件(如pH、温度、添加剂等)来调整材料的性能和结构。

例如,将氧化锌溶于硝酸水中,将后配制的溶液薄膜拓展到硅化物基板上,然后用紫外线线光照射其表面。

这样处理之后的材料,可以获得颜色会随着紫外线线光源的强度而变化、且继续时间强耗能及反应较好的材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Journal of Advances in Physical Chemistry 物理化学进展, 2018, 7(3), 139-146Published Online August 2018 in Hans. /journal/japchttps:///10.12677/japc.2018.73017Research and Application Progress ofPhotochromic MaterialsYue SunCollege of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu SichuanReceived: Aug. 5th, 2018; accepted: Aug. 18th, 2018; published: Aug. 27th, 2018AbstractPhotochromic materials, as an important subject in the field of high technology, have wide appli-cation value and development prospect. According to different types, this paper summarizes the research progress and related applications of organic photochromic materials, inorganic pho-tochromic materials and inorganic-organic hybrid photochromic materials, and briefly discusses the future development trend.KeywordsPhotochromatism, Research Progress, Application, Development Trend光致变色材料的研究及应用进展孙悦西南石油大学化学化工学院,四川成都收稿日期:2018年8月5日;录用日期:2018年8月18日;发布日期:2018年8月27日摘要光致变色材料作为当前高科技领域研究的重要课题,具有广阔的应用价值和发展前景。

根据类型不同,本文分别综述了有机光致变色材料、无机光致变色材料以及无机–有机杂化光致变色材料的研究进展及相关应用,并对光致变色材料未来的发展趋势作了简要探讨。

关键词光致变色,研究进展,应用,发展趋势孙悦Copyright © 2018 by author and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License (CC BY)./licenses/by/4.0/1. 引言光致变色现象,即材料在受到一定波长和强度的光照射时,可发生特定的化学反应而从状态1变为状态2,此时由于结构发生变化使材料的颜色或对光的吸收峰值改变,但在热或另一波长光的作用下又可从状态2恢复到原来的分子结构和表观颜色。

整个过程呈现可逆性质。

这种在光的作用下能发生可逆颜色变化的材料称为光致变色材料,自十九世纪六十年代发展至今,已有一百五十多年的历史。

光致变色材料处于不同状态时通常有着不同物理和化学性能,通过光对两种状态进行调节,就可以实现对材料性能的调控,具有广阔的发展和应用前景。

2. 光致变色材料的发展史1867~1881年间,Fritsche、Meer [1]、Phipson先后分别观察到黄色并四苯、二硝基甲烷的钾盐及一种锌颜料在光作用下的变色和褪色现象。

然而这期间光致变色并未受到人们的重视,直到二十世纪四十年代,人们才对光致变色机理、中间体的形成、产生降解原因以及产物结构等问题进行了大量研究。

1952年,螺吡喃类化合物的光致变色现象被发现。

1956年,Hirshberg首次提出了光致变色的科学意义,并指出光漂白和光成色循环可以构成化学记忆模型,使得光致变色材料有应用于光学信息存储的可能[2]。

同年,National Cash Register Company就研发出了一种用光致变色材料作为记录元件的计算机模型。

此后,光致变色材料因其较好的应用前景而引起了人们的广泛关注。

1978年,Heller等说明了热稳定性和耐疲劳性较好的光致变色材料的光学信息存储应用价值[3]。

1988年,日本科学家Irie设计合成了新型光致变色分子二芳基乙烯[4]。

1989年,Rentzepis等在Science杂志上报道了题为“三维光学记忆存储”的文章,指出光致变色分子可以用来制备三维光学记忆存储器件,这引起了科学家们的广泛关注[5]。

十九世纪后期,出版了一些光致变色相关书籍。

比如,美国科学家Brown编著的《Photochromism》,McArdle编著的《Applied Photochromic Polymer Systems》,Guglielmetti和Crano合著的《Organic Photochromic and Thermochromic Compounds》,以及法国科学家Bouas-Laurent和德国科学家Dürr合著的《Photochromism: Moleculars and Systems》。

通过这些书籍,总结了光致变色物质的发展历程、理论研究和相关应用研究等。

1993年,首届有机光致变色和材料科学国际学术会议在法国召开,会上宣告了新学科“光致变色和材料科学”的诞生[6]。

此后,在美国、日本、中国等国家均召开了光致变色材料学术研讨会。

现如今,光致变色材料因其优异的物理和化学性能,已经成为人们的研究热点并处于蓬勃发展的时代。

3. 不同类型光致变色材料的研究3.1. 有机光致变色材料有机光致变色材料具有可修饰性高、颜色丰富、光响应速度快等优点,大多数能被200~400 nm范围内的紫外光激活,对于某些有机物范围可延长至430 nm,但很少的有机物能被可见光激活。

其变色机理主要有双键的断裂和组合(键的均裂、键的异裂)、异构体生成(质子转移互变异构、顺反异构)、酸致变色、周环反应和氧化还原反应等。

有机光致变色材料种类繁多,并且可通过引入特定功能官能团修饰来实现不同的研究目的。

目前,人们研究较多的主要是二芳基乙烯类、俘精酸酐类、螺吡喃类、螺噁嗪类、偶氮苯类、席夫碱类。

二芳基乙烯和俘精酸酐衍生物都呈现热不可逆光致变色性质,可用于光学存储器、孙悦光学开关设备及显示器[7];而由光照产生的螺吡喃、萘并吡喃、螺噁嗪以及偶氮苯的异构体则呈现热力学不稳定性质。

针对不用类型,下面选择二芳基乙烯类和螺吡喃类有机光致变色材料做具体介绍。

3.1.1. 二芳基乙烯类二芳基乙烯(1,1-二芳基取代的乙烯衍生物)通过周环反应产生开环和闭环两种不同形态,其原理图如图1所示,这两种形态可在不同波长的光作用下相互转化,转化期间其吸收频谱、折射率、介电常数、氧化还原等物理和化学性质也同时发生变化。

对比其他光致色变材料,其具有热稳定性好,抗疲劳,化学反应谱段大,光敏感性高,化学反应速率快等特点。

关于二芳基乙烯的研究起始于1988年,日本科学家M. Irie在光致变色化合物二苯乙烯的基础上,首次设计合成了二芳基乙烯化合物分子,此后其因自身优异的性能而被人们广泛研究。

其中,关于二芳基乙烯分子荧光开关实现分子水平的光信息存储的研究较多。

比如,刘学东等合成了用于多阶光存储的二芳基乙烯化合物,利用此存储膜片,可以实现八阶光信息存储[8]。

齐国生等研究了二芳基乙烯材料多波长的存储,利用三波长光致变色存储实验装置,进行了三波长光致变色存储的实验[9]。

徐海兵等较为系统地介绍了二芳基乙烯作为分子开关的相关研究[10]。

3.1.2. 螺吡喃类螺吡喃是最早被人们深入、广泛研究的一类有机光致变色材料,其可逆光致变色现象于1952年被Fischer和Hirshberg发现,它通过“开环生色,闭环失色”来实现变色。

如图2所示,无色螺吡喃结构中的C-O键在紫外光照射下发生断裂开环,分子局部旋转并与吲哚形成一个共平面的部花青结构而显色,另在可见光或热的作用下,开环体又能恢复到原来的螺环结构。

螺吡喃具有较好的光致变色特性,但抗疲劳性较差。

近来,人们开展了一些将螺吡喃与大分子结合,进而制备含螺吡喃的单元响应性聚合物的研究。

Keum 等通过开环易位聚合,合成出基于吲哚啉苯并螺吡喃的新型光响应性均聚物,经过性能研究发现,该聚合物保留了与其单体一致的光致变色性能[11]。

Marquez等通过酯化反应将含有氨基的聚N-异丙基丙烯酰胺和含有羟基的螺吡喃连接起来制成了末端含有螺吡喃的光敏性微凝胶,光敏性微凝胶在智能药物的输运和可控释放领域具有极好的应用前景[12]。

Figure 1. Photochromic mechanism of diarylethene图1. 二芳基乙烯的光致变色机理Figure 2. Photochromic mechanism of spiropyran图2. 螺吡喃的光致变色机理孙悦3.2. 无机光致变色材料无机光致变色材料主要包括稀土配合物、过渡金属氧化物、多金属氧酸盐类和金属卤化物等。

相比有机光致变色材料,无机光致变色材料的数量较少且发展较为缓慢,但其具有许多优于有机光致变色材料的特点,比如变色速率快、变色持续时间长、热稳定性高、耐疲劳性好、机械强度高、宏观可控易成型等,可应用于信息存储、智能窗、太阳镜、传感器、智能开关、国防等诸多领域。

无机材料的光致变色现象主要是通过离子和电子的双注入提取、电子跃迁、晶格中电子转移而实现,大多数能被紫外光诱导,某些无机光致变色材料也可被其他波长的光激活(红外到X-射线或γ-射线)。

关于无机光致变色材料的研究,主要集中在无机光致变色玻璃材料和无机光致变色晶体材料这两类。

到后来,为增强材料的光致变色敏感性,一些无机复合光致变色薄膜材料逐渐成为研究热点。

无机光致变色玻璃材料是通过在玻璃基质中添加感光材料,再经过熔制和热处理制成。

David L Morse制备了掺杂CuCl的光致变色硅酸盐玻璃材料,其变色机理是Cu+的价态变化[13]。

S L Kraevskii研究了添加AgCl、AgBr、CuCl的硅玻璃及硅–硼玻璃材料,发现玻璃体存在的色心和表面存在的卤族点缺陷引起了材料的光致变色[14]。

Gael Poirier [15]及N I Fernandes [16]别制备了NaPO3-BaF2-WO3及Na2O-WO3-SbPO4三元玻璃材料,并对变色条件进行了研究。

相关文档
最新文档