圆锥曲线的极坐标方程

圆锥曲线的极坐标方程
圆锥曲线的极坐标方程

圆锥曲线的极坐标方程

圆锥曲线的统一定义:一动点P 到一定点O 的距离与到一定直线L 的距离之比为一定值常数e ,则点P 的轨迹为圆锥曲线。

今以一定点O 为极点,使极轴垂直于定点的直线L ,交点为H ,L PD ⊥.设p HO =,又

设),(θρP 为轨迹上任意一点,即θρcos +=HO DP ,从而

θ

ρρ

cos +=

=

p DP

OP e ,即θρcos 1e ep -=

椭圆(双曲线)的焦参数c

b p 2

=(极和极线的距离)

椭圆、双曲线、抛物线的统一的极坐标方程为:θ

ρcos 1e ep

-=

(如右图)

其中02

>=c

b p 是定点F 到定直线的距离, 当10<e 时,方程表示双曲线,若0>ρ,方程只表示双曲线右支,若允许0<ρ,方程就表示整个双曲线;(几何画板演示实例,展示交点弦长表示的统一特征)。当1=e 时,方程表示开口向右的抛物线。 引论:(1)若θρcos 1e ep

+=

当10<e 时,方程表示极点在左焦点

的双曲线,若0>ρ,方程只表示双曲线左支,若允许0<ρ,方程就表示整个双曲线;(几何画板演示实例,展示交点弦长表示的统一特征)。当1=e 时,方程表示开口向左的抛物线。 (2)若θρsin 1e ep

-=

10<e 时,方程表示极点在上焦点上的双曲

线,当1=e 时,方程表示开口向上的抛物线。

(3)1sin ep e ρθ=

+

当10<e 时,方程表示极点在下焦点的双曲线,当1=e 时,方程表示开口向下的抛物线。

整体对比:

θ

ρcos 1e ep -=

θ

ρcos 1e ep +=

θ

ρsin 1e ep

-=

θ

ρsin 1e ep +=

例题:

一、二次曲线基本量之间的互求 例1.确定方程θ

ρcos 3510

-=

表示的曲线的离心率,焦距,长短轴长。

(2) 圆锥曲线弦长问题

若圆锥曲线的弦MN 经过交点F ,

α

αααα2

2222

22222222cos 1cos 12cos 12cos sin 2e H e a b e a b b a ab -=-=-=-=

变式练习:等轴双曲线长轴为2,过其右焦点,引倾斜角为6

π

的直线,交双曲线与A ,B 两点,求AB . 解:

ρ=

,

1(,)6A πρ,2(,)6B π

ρπ+124AB ρρ=+=

利用弦长公式求常量问题:

例:过椭圆122

22=+b

y a x ()0>>b a 的左焦点F ,作倾斜角为?60的直线l 交椭圆于A ,B 两点,若FB FA 2=,求离

心率。 解:由题:

,2

1221e ep

e ep +=-解得:32=e 。 解法二:

变式:求过椭圆θρcos 32-=的左焦点,且倾斜角为4

π

的弦长AB 和左焦点到左准线的距离。

解:3

3

8=

?FQ FP 解法一:直角坐标系下弦长公式

346)347(2421++=

+x x 3463

326021++=

x x

解法二:极坐标系下弦长公式

方的部分交于点A(

)32,3,l

AK⊥,垂足为K()32,1-,所以C

.3

4

AKF

=

S

方法二:

例3 中心在原点的椭圆焦点F(3,0),右准线l的方程为12

=

x.

(1)求椭圆的方程;

(2)在椭圆上任取三个不同的点,

,

,

3

2

1

P

P

P使得

1

3

3

2

2

1

FP

P

FP

P

FP

P∠

=

=

∠,

证明:

3

2

1

1

1

1

FP

FP

FP

+

+为定值,并求出此定值。

解:法一:

法二:

从而

)cos 9(21i

i FP α-= ()3,2,1=i ,解得???

??+=i i

FP αcos 211921 因此

)]34cos 32cos (cos 213[92111??

? ?

?

+

+??? ??

+++παπαα 0=

3

2111321=++FP FP FP 为定值 例1 (06湖南文第21题)已知椭圆13

4:221=+y x C ,抛物线2C ()px m y 22

=-,)0(>p ,且21,C C 的公共弦AB 过椭圆1C 的右焦点。

(1)当x AB ⊥轴时,求m p ,的值,并判断抛物线2C 的焦点是否在直线AB 上; (2)若3

4

=

p 且抛物线2C 的焦点在直线AB 上,求m 的值及直线AB 的方程。

因为抛物线2C 的焦点F ),32

(m 在直线)1(tan -?=x y α上,∴αtan 31-=m ,从而3

=m 当36=

m 时,直线AB 的方程为066=-+y x ;当3

6-=m 时,直线AB 的方程为066=--y x 例2(07全国文科22题)已知椭圆12

32

2=+y x 的左、右焦点分别是1F ,2F ,过1F 的直线交椭圆于B,D 两点,过2F 的直线交椭圆于A,C 两点,且AC ⊥BD ,垂足为P.

(1)设P 点的坐标为),(00y x ,证明:12

32

020<+y

x .

(2)求四边形ABCD 的面积的最小值。

解:(1)证明:在12

32

2=+y x 中, 3=a ,2=b ,c=1.∵?=∠9021PF F ,O 是21F F 的中点,∴OP =

12

121==c F F ,得12

020=+y x 。∴点P 在圆12

2

=+y x 上。显然,圆12

2

=+y x 在椭圆12

32

2=+y x 的内部。故1232

02

0<+y x 。

(2)如图,设直线BD 的倾斜角为α,由AC ⊥BD 、可知,直线AC 的倾斜角为2

π

α+

∴]4,2596[∈S 。故四边形ABCD 的面积的最小值为25

96

例3 (08全国理21)双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为21,l l ,经过右焦点F 垂直于1l 的直线BF 与FA 同向.

分别交21,l l 于AB 两点,已知OA ,AB ,OB 成等差数列,且(1)求双曲线的离心率;

(2)设AB 被双曲线所得的线段的长为4,求双曲线的方程。

解:(1)设双曲线的方程为122

22=-b

y a x ()0,0>>b a .

5

1

cos2=

θ。通径H=b

又设直线AB与双曲线的交点为M,N.于是有4

cos

12

2

=

-

=

θ

e

H

MN。

即4

5

1

2

5

1

2

=

?

?

?

?

?

?

?

-

=

b

MN解得:b=2,从而6

=

a∴所求的双曲线方程为1

9

36

2

2

=

-

y

x

练习:1.已知斜率为1的直线l过椭圆1

4

2

2

=

+x

y

的上焦点F交椭圆于A,B两点,则AB= .

2.过双曲线1

3

2

2=

-

y

x的左焦点F作为倾斜角

6

π

的直线l交双曲线A,B两点,则AB= .

3.已知椭圆0

2

22

2=

-

+y

x,过左焦点F作直线l交于A,B两点,O为坐标原点,求△AOB的最大面积。

解:1

2

2

2

=

+y

x

,2

=

a,b=c=1,左焦点F(-1,0),

离心率

2

2

=

e,通径2

=

H。

当直线的斜率不存在时,⊥x轴,2

=

=H

AB,高,

2

0tan tan =+-?ααy x ,原点到直线AB 的距离为

2tan tan d αα

=

α

θ

θ

2

22

2

2sin 12

2cos 2212

cos 1+=

???

?

??-=-=

e H

AB 所以△AOB 的面积α

α2sin 1sin 221+=??=

d AB S ∵πα<<0,∴0sin >α,从而ααsin 2sin 12

>+. 所以2

2

sin sin 1

2≤

+=

αα

S ,当且仅当1sin =α时等号成立。故△AOB 的最大面积为22.

4.已知抛物线px y 42

=(0>p ),弦AB 过焦点F ,设m AB =,△AOB 的面积为S ,求证:m

S 2

为定值。

2

2

y 上,F 为椭圆在y 轴正半轴上的焦点,已知与共

线,MF 和FN 共线,PF 0=?MF ,求四边形PQMN 的面积的最值。

解:在椭圆12

2

2

=+y x 中,2=a ,b=c=1,MN 和PQ 是椭圆的两条弦,相交于焦点F (0,1),且MN ⊥PQ 。如图,设直线PQ 的倾斜角为α,则直线MN 的倾斜角为2

π

α+

通径2=H ,离心率22=

e 。于是有α2cos 222-=MN ,α

2

sin 22

2-=PQ , 四边形PQMN 的面积α

2sin 816

PQ MN 212

+=?=

S ∵),0[πα∈,∴]1,0[2sin 2

∈α,∴]2,9

16[∈S 。

6. (07重庆文22题)如图,倾斜角为α的直线经过抛物线x y 82

=的焦点F ,且与抛物线交于A,B 。 (1)求抛物线的焦点F 的坐标及准线l 的方程;

(2)若α为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证明:α2cos FP FP -为定值,并求此定值。

解:(1)4=p ,∴抛物线的焦点F 的坐标为(2,0),准线l 方程为2-=x 。

8. 已知双曲线的左右焦点21,F F 与椭圆15

22

=+y x 的焦点相同,且以抛物线x y 22-=的准线为其中一条准线。 (1)求双曲线的方程;

(2)若经过焦点2F 且互相垂直的两条直线与双曲线相交于A ,B ;C ,D 。求四边形ABCD 的面积的最小值。

∴所求的双曲线的方程为13

2

2

=-y x

圆锥曲线的极坐标方程及应用

圆锥曲线的极坐标方程及应用圆锥曲线的统一极坐标./. Q SZQZSQ S ,,,,,SD ZZXZZ 方程 ρ= ep 1-e cos θ ,(***) 其中p为焦点到相应准线的距离,称为焦准距. 当0<e<1时,方程ρ=ep 1-e cos θ 表示椭圆; 当e=1时,方程(***)为ρ= p 1-cos θ ,表示抛物线; 当e>1时,方程ρ=ep 1-e cos θ 表示双曲线,其中ρ∈R. 已知A、B为椭圆x2 a2+ y2 b2=1(a>b>0)上两点,OA⊥OB(O为 原点). 求证: 1 OA2+ 1 OB2为定值. [再练一题] 1.本例条件不变,试求△AOB面积的最大值和最小值.

过双曲线x2 4- y2 5=1的右焦点,引倾斜角为 π 3的直线,交双曲 线于A、B两点,求AB. 应用圆锥曲线的极坐标方程求过焦点(极点)的弦长非常方便.椭圆和抛物线中,该弦长都表示为ρ1+ρ2,而双曲线中,弦长的一般形式是|ρ1+ρ2|. 2.已知双曲线的极坐标方程是ρ= 9 4-5cos θ ,求双曲线的实轴长、虚轴长 和准线方程. 已知抛物线y2=4x的焦点为F.

(1)以F为极点,x轴正方向为极轴的正方向,写出此抛物线的极坐标方程; (2)过F作直线l交抛物线于A,B两点,若AB=16,运用抛物线的极坐标方程,求直线l的倾斜角. [再练一题] 3.平面直角坐标系中,有一定点F(2,0)和一条定直线l:x=-2.求与定点F 的距离和定直线l的距离的比等于常数1 2的点的轨迹的极坐标方程. 已知双曲线的极坐标方程为ρ= 3 1-2cos θ ,过极点作直线与它交于A,B 两点,且AB=6,求直线AB的极坐标方程.

简单曲线的极坐标方程

极坐标方程 简单曲线的极坐标方程 【教学目标】 1.熟练掌握简单曲线的极坐标方程的求法,提高应用极坐标系的概念和极坐标和直角坐标的互化解决问题的能力. 2.自主学习,合作交流,探究并归纳总结简单曲线的极坐标方程的求法. 3.激情投入,高效学习,体验探究、归纳、总结的过程,增强应用数学的能力. 【教学重难点】 简单曲线的极坐标方程的求法 【教学过程】 一、复习、预习自学: 基础知识梳理问题导引 1.极坐标系的概念(P9) 如图,在平面内取一个定点O,叫做极点;自极点O引一条射线Ox,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及正方向(通常取逆时针方向),这样就建立了一个极坐标系 设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径记为;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为.有序实数对叫做点M 的极坐标记为. 2.极坐标和直角坐标的互化(P11) (1)极坐标化为直角坐标 , (2)直角坐标化为极坐标 , 3.曲线和方程(平面直角坐标系中(P12)) 曲线C上的点的坐标都是方程的解; 以方程的解为坐标的点都在曲线C上. (1)极坐标系和以前所学的平面直角坐标系有什么区别和联系? (2)那些只是是我们应该掌握的? (3)极坐标系中如何用方程表示曲线? 【复习、预习自测】 1.极坐标化为直角坐标:________,________ 2. 直角坐标化为极坐标: ________,________ 二、合作探究 探究点一:圆的极坐标方程(P12-13)

如图,半径为a的圆的圆心坐标为C(a0)(a>0).你能用一个等式表示圆上任意一点的极坐标满 足的条件吗? 探究点1图拓展1图 小结(P13):一般的,在极坐标系中,如果满足下列两个条件,那么方程叫做曲线C的极 坐标方程: (1) (2) 拓展1(P13):已知圆O的半径为r,建立怎样的极坐标系,可以使圆的极坐标方程更简单?并将所得结果与直角坐标方程进行比较. 探究点二:直线的极坐标方程(P13) 如图,直线l经过极点,从极轴到直线l的角是,求直线l的极坐标方程. 探究点2图拓展2图拓展3图 拓展2(P14):求过点A(a0)(a>0)且垂直于极轴的直线l的极坐标方程. 拓展3(P14):设P点的极坐标为直线l过点P且与极轴所成的角为,求直线l的极坐标方程. 【课堂小结】 1.知识方面_____________________________________________________________________ 2.数学思想方面_________________________________________________________________ 探究点三:圆锥曲线的极坐标方程 已知椭圆C的焦距为2c,长轴长为2a,离心率为e(0

简单曲线的极坐标方程优秀教学设计

简单曲线的极坐标方程 内容和内容解析 本节课是普通高中新课程标准实验教科书《数学》(选修4-4)中第一讲《坐标系》第三节“简单曲线的极坐标方程”的第一课时。解析几何是数学一个重要的分支,它沟通了数学中数与形、代数与几何等最基本对象之间的联系。牛顿在他的老师沃利斯的影响下,多次运用坐标系,按曲线的方程来描述曲线,而且提出了建立新的坐标系的创建。牛顿坐标系就是现在的极坐标系。极坐标系的创立为数学研究做出了巨大的贡献。简单曲线的极坐标方程这一节是本讲的重点内容,是选修4-4的重点,也是高考选考内容中的考察内容之一。极坐标方程在实际生活中有着较广的应用,同时也是学生锻炼提高数学能力的良好题材,它蕴含了许多重要的数学思想方法,如:数形结合思想、转化与化归思想等。因此,教学时应重视体现数学的思想方法及价值。 目标和目标解析 1.知识与技能目标: 理解曲线极坐标方程的概念;了解与曲线直角坐标方程的异同;掌握求曲线极坐标方程的步骤;能在极坐标系中给出简单图形(如过极点或圆心在极点的圆)的方程,通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形时选择适当坐标系的意义。掌握圆的直角坐标方程和极坐标方程的互化,能根据圆的极坐标方程画出其对应的图形并进行有关计算 2.过程与方法目标: 通过对预习作业中问题的探究体会类比、从已知推测未知、从特殊到一般的数学思想方法;通过对简单曲线的极坐标方程的求解和其几何意义的探讨,培养观察、分析、比较和归纳的能力;通过不同坐标系的选择感受转化与化归的思想方法;通过极坐标方程与其几何图形的对应,体会数形结合的思想方法

3.情感、态度与价值观目标: 通过不同坐标系的选择与变换理解事物的多样性及其中必然的内在的联系性,可以多角度、多层次地分析问题.;通过练习体验小组探究合作学习,体会团结协作精神;通过阿基米德螺线,四叶玫瑰线,双曲螺线,心脏线,双纽线,星形线,三叶玫瑰线的绘制感受数学与生活的联系,欣赏和感受数学中的美,渗透数学文化,激发学习兴趣 教学重点:圆的极坐标方程的求法 教学问题诊断分析 高二学生,知识经验正逐步成熟,形成了适合自己的一套学习方法,有较强的演绎推理能力和数形结合的能力,具有较好自主探究的能力,能在教师的引导下独立、合作地解决一些问题,学生之前已经学习了极坐标系,现在基本会极坐标和直角坐标的互化,也会求曲线轨迹方程的步骤,具备了数形结合思想。在圆的极坐标方程推导中,要用到三角函数知识,关键是利用直角三角形边角关系建立起坐标变量间的关系,如何合理作图构造恰当的三角形是关键,因此在这部分内容的研究中,鼓励学生小组讨论, 尽多的给学生动手的机会,让学生在实践中体验作图的关键,另外,特殊点极坐标的选择和检验也是理解难点。本节课需要学生小组合作探究学习,因此之前的学习小组分配很关键,小组间的配合也有影响课堂进度,教师分组时引起注意。 教学难点:对不同位置的圆的极坐标方程的理解 教学支持条件分析 课堂上需要学生小组讨论,合作学习。配合班级管理把班上同学分成六个学习小组,围桌而坐,组建原则是:“组间同质、组内异质”, 根据学习能力、兴趣倾向、交往技能、守纪情况、性别比例及座位的安排等合理搭配 根据本节内容的特点,教学过程中可充分发挥信息技术的作用: 利用多媒体播放短片引起兴趣,利用动态作图优势为学生的数学探究与数学思维提供支持;利用实物投影仪,直接投影学生小组讨论的解题思路、解题过程,学生上台分析时也可直接投影自己的答题过程不用板书节约时间

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式 湖北省天门中学 薛德斌 一、圆锥曲线的极坐标方程 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系. 椭圆、双曲线、抛物线统一的极坐标方程为: θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆; 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 二、圆锥曲线的焦半径公式 设F 为椭圆的左焦点(双曲线的右焦点、抛物线的焦点),P 为椭圆(双曲线的右支、抛物线)上任一点,则 ∵PQ e PF =,∴)cos (p PF e PF +=θ,其中FH p =,=θ〈x 轴,FP 〉 ∴焦半径θ cos 1e ep PF -=. 当P 在双曲线的左支上时,θcos 1e ep PF +- =. 推论:若圆锥曲线的弦MN 经过焦点F ,则有 ep NF MF 211=+.

三、圆锥曲线的焦点弦长 若圆锥曲线的弦MN 经过焦点F , 1、椭圆中,c b c c a p 2 2=-=,θ θπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=. 2、双曲线中, 若M 、N 在双曲线同一支上,θ θπθ2222 cos 2)cos(1cos 1c a ab e ep e ep MN -=--+-=; 若M 、N 在双曲线不同支上,2 222 cos 2cos 1cos 1a c ab e ep e ep MN -=--+-=θθθ. 3、抛物线中,θ θπθ2sin 2)cos(1cos 1p p p MN =--+-=. 四、直角坐标系中的焦半径公式 设P (x,y )是圆锥曲线上的点, 1、若1F 、2F 分别是椭圆的左、右焦点,则ex a PF +=1,ex a PF -=2; 2、若1F 、2F 分别是双曲线的左、右焦点, 当点P 在双曲线右支上时,a ex PF +=1,a ex PF -=2; 当点P 在双曲线左支上时,ex a PF --=1,ex a PF -=2; 3、若F 是抛物线的焦点,2p x PF + =.

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式 湖北省天门中学薛德斌 一、圆锥曲线的极坐标方程 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F作相应准线的垂线,垂足为K,以FK的反向延长线为极轴建立极坐标系. ep 椭圆、双曲线、抛物线统一的极坐标方程为:. 1ecos 其中p是定点F到定直线的距离,p>0. 当0<e<1时,方程表示椭圆; 当e>1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 二、圆锥曲线的焦半径公式 设F为椭圆的左焦点(双曲线的右焦点、抛物线的焦点),P为椭圆(双曲线的右支、抛物线)上任一点,则 ∵PF e PQ,∴PF e(PF cos p),其中p FH,〈x轴,FP〉∴焦半径PF ep . 1ecos 当P在双曲线的左支上时,PF ep 1ecos . 推论:若圆锥曲线的弦MN经过焦点F,则有 112 . MF NF ep

2 cos 2 . c 2 2 2 三、圆锥曲线的焦点弦长 若圆锥曲线的弦 MN 经过焦点 F , a 2 b 2 ep ep 2ab 2 1、椭圆中, p , MN c c 1 ecos 1 ecos( ) a 2 c 2、双曲线中, ep ep 2ab 2 若 M 、N 在双曲线同一支上, MN ; 1 ecos 1 ecos( ) a 2 c 2 cos ep ep 2ab 2 若 M 、N 在双曲线不同支上, MN . 1 ecos 1 ecos c 2 cos a 2 3、抛物线中, MN p p 2p . 1 cos 1 cos( ) sin 四、直角坐标系中的焦半径公式 设 P (x,y )是圆锥曲线上的点, 1、若 F 、F 分别是椭圆的左、右焦点,则 PF 1 2 1 a ex ,PF 2 a ex ; 2、若 F 、 F 分别是双曲线的左、右焦点, 1 2 当点 P 在双曲线右支上时, PF 1 ex a , PF 2 ex a ; 当点 P 在双曲线左支上时, PF 1 a ex , PF 2 a ex ; 3、若 F 是抛物线的焦点, PF x p . 2

高中数学选修4--4简单曲线的极坐标方程教案

三 简单曲线的极坐标方程 课 题: 1、圆的极坐标方程 教学目标: 1、掌握极坐标方程的意义 2、能在极坐标中给出简单图形的极坐标方程 教学重点、极坐标方程的意义 教学难点:极坐标方程的意义 教学方法:启发诱导,讲练结合。 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 问题情境 1、直角坐标系建立可以描述点的位置极坐标也有同样作用? 2、直角坐标系的建立可以求曲线的方程 极坐标系的建立是否可以求曲线方程? 学生回顾 1、直角坐标系和极坐标系中怎样描述点的位置? 2、曲线的方程和方程的曲线(直角坐标系中)定义 3、求曲线方程的步骤 4、极坐标与直角坐标的互化关系式: 二、讲解新课: 1、引例.如图,在极坐标系下半径为a 的圆的圆心坐标为 (a ,0)(a >0),你能用一个等式表示圆上任意一点, 的极坐标(ρ,θ)满足的条件? 解:设M (ρ,θ)是圆上O 、A 以外的任意一点,连接AM , 则有:OM=OAcos θ,即:ρ=2acos θ ①, 2、提问:曲线上的点的坐标都满足这个方程吗? 可以验证点O(0,π/2)、A(2a ,0)满足①式. 等式①就是圆上任意一点的极坐标满足的条件. 反之,适合等式①的点都在这个圆上. 3、定义:一般地,如果一条曲线上任意一点都有一个极坐标适合方程 0),(=θρf 的点在曲线上,那么这个方程称为这条曲线的极坐标方程,这条曲线称为这个极坐标方程的曲线。 例1、已知圆O 的半径为r ,建立怎样的坐标系, 可以使圆的极坐标方程更简单? ①建系; ②设点;M (ρ,θ) ③列式;OM =r , 即:ρ=r

④证明或说明. 变式练习:求下列圆的极坐标方程 (1)中心在C(a ,0),半径为a ; (2)中心在(a,π/2),半径为a ; (3)中心在C(a ,θ0),半径为a 答案:(1)ρ=2acos θ (2) ρ=2asin θ (3)0cos()a ρθθ-=2 例2.(1)化在直角坐标方程0822=-+y y x 为极坐标方程, (2)化极坐标方程)3cos(6π θρ-= 为直角坐标方程。 三、课堂练习: 1.以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是 (C) ()() .2cos .2sin 44.2cos 1.2sin 1A B C D ππρθρθρθρθ????=-=- ? ?? ?? ?=-=- 2.极坐标方程分别是ρ=cos θ和ρ=sin θ的两个圆的圆心距是多少? 2 sin (4)π πρθρθρθρ3.说明下列极坐标方程表示什么曲线 (1)=2cos(-) (2)=cos(-)4 3 (3)=3 =6 2222423020x y x y x y x y x +-+==+==.填空:  (1)直角坐标方程的 极坐标方程为_______ (2)直角坐标方程-+1的极坐标方程为_______ (3)直角坐标方程9的极坐标方程为_____ (4)直角坐标方程3的极坐标方程为_______ 四、课堂小结: 1.曲线的极坐标方程的概念. 2.求曲线的极坐标方程的一般步骤. 五、课外作业:教材28P 1,2 1.在极坐标系中,已知圆C 的圆心)6 ,3(π C ,半径3=r , (1)求圆C 的极坐标方程。 (2)若Q 点在圆C 上运动,P 在OQ 的延长线上,且2:3:=OP OQ ,求动点P 的轨迹方程。

圆锥曲线的极坐标方程焦半径公式焦点弦公式

圆锥曲线的极坐标方程 极坐标处理二次曲线问题教案 知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系. 椭圆、双曲线、抛物线统一的极坐标方程为: θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆; 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 引论(1)若 1+cos ep e ρθ = 则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线 (2 )若1-sin ep e ρθ = 当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线

当 e >1时!方程表示极点在上焦点的双曲线 (3)1+sin ep e ρθ = 当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线 当 e >1时!方程表示极点在下焦点的双曲线 例题选编 (1)二次曲线基本量之间的互求 例1.确定方程10 53cos ρθ = -表示曲线的离心率、焦距、长短轴长。 解法一:31025333 1cos 1cos 55 ρθθ? ==-- 31053 e P ∴==, 2332555851015103383c a c a a b a c c c ???===??????∴????????-===?????? 2225155( )()882 b ∴=-= 31554e ∴=方程表示椭圆的离心率,焦距,25 54 长轴长,短轴长 解法二:根据极坐标的定义,对右顶点对应点的极角为0,因此只需 令0θ=,右顶点的极径,同理可得左顶点的的极径。根据左右顶点极径之和等于长轴长,便可以求出长轴。 点睛,解法一采用待定系数法比较常规,解法二利用极坐标的定义, 简洁而有力,充分体现了极坐标处理问题的优势。下面的弦长问

圆锥曲线的极坐标方程及应用

圆锥曲线的极坐标方程及应用 圆锥曲线的统一极坐标?/? Q SZQZSQ S ,,,,,SD ZZXZZ 方程 ep 尸 1—eoR ( 其中P 为焦点到相应准线的距离,称为焦准距. 当Ov ev 1时,方程尸1—COSI 表示椭圆; 当e = 1时,方程(***)为p= —P —-,表示抛物线; 1 — cos 0 当e > 1时,方程P 「竟表示双曲线,其中p€ R . I — ecos 0 2 2 已知A 、B 为椭圆予+ *= 1(a > b > 0)上两点, OA 丄OB(O 为 原点). [再练一题] 1. 本例条件不变,试求△ AOB 面积的最大值和最小值. ?例 1 1 求证:OA 2+OB 2为定值. ■2 +

2 2 过双曲线J-¥ = 1的右焦点,引倾斜角为扌的直线,交双曲线于A、B两点,求AB. 应用圆锥曲线的极坐标方程求过焦点(极点)的弦长非常方便.椭圆和抛物线中,该弦长都表示为p+ P,而双曲线中,弦长的一般形式是|p+ p|.

(1) 以F 为极点,x 轴正方向为极轴的正方向,写出此抛物线的极坐标方程; (2) 过F 作直线I 交抛物线于A , B 两点,若AB = 16,运用抛物线的极坐标 方程,求直线I 的倾斜角. 3 p= 1—2C0SV 过极点作直线与它交于A ,B 两点,且AB = 6,求直线AB 的极坐标方程. [再练一题] 3.平面直角坐标系中,有一定点 F(2,0)和一条定直线I : x = — 2.求与定点F 的距离和定直线I 的距离的比等于常数 1 2的点的轨迹的极坐标方程. 已知双曲线的极坐标方程为

常见曲线的极坐标方程3

常见曲线的极坐标方程(3) 学习目标: 1、进一步体会求简单曲线的极坐标方程的基本方法; 2、了解圆锥曲线的方程; 3、通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面 图形时选择适当坐标系的意义。 活动过程: 活动一:知识回顾 1、若圆心的坐标为),(00θρM ,圆的半径为r ,则圆的极坐标方程为 ; 2、(1)当圆心位于)0,(r M 时,圆的极坐标方程是: ; (2)当圆心位于),(2π r M 时,圆的极坐标方程是: 。 3、圆锥曲线统一定义: 活动二:圆锥曲线的极坐标方程 探究:设定点F 到定直线l 的距离为p ,求到定点F 和定直线l 的距离之比为常数e 的点的 轨迹的极坐标方程。

活动三:圆锥曲线的极坐标方程的简单应用 例1:2003年10月15—17日,我国自主研制的神舟五号载人航天飞船成功发射并按预定方 案安全、准确的返回地球,它的运行轨道先是以地球中心为一个焦点的椭圆,椭圆的近地点(离地面最近的点)和远地点(离地面最远的点)距离地面分别为200km 和350km ,然后进入距地面约343km 的圆形轨道。若地球半径取6378km ,试写出神舟五号航天飞船运行的椭圆轨道的极坐标方程。 例2:求证:过抛物线的焦点的弦被焦点分成的两部分的倒数和为常数。 例3:已知抛物线的极坐标方程为θρcos 14-= ,求此抛物线的准线的极坐标方程。

活动四:课堂小结与自主检测 1、按些列条件写出椭圆的极坐标方程: (1)离心率为0.5,焦点到准线的距离为6; (2)长轴为10,短轴为8。 2、圆心在极轴上,半径为a 的圆经过极点,求此圆过极点的弦的三等分点的轨迹方程。 3、自极点O 作射线与直线4cos =θρ相交于点M ,在OM 上取一点P ,使得12=?OP OM ,求点P 的轨迹方程。

圆锥曲线的极坐标方程焦半径公式焦点弦公式

圆锥曲线的极坐标方程焦半径公式焦点弦公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

圆锥曲线的极坐标方程 极坐标处理二次曲线问题教案 知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹.? 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系.? 椭圆、双曲线、抛物线统一的极坐标方程为:θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0. 当0<e <1时,方程表示椭圆;? 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 引论(1)若 1+cos ep e ρθ = 则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线

(2 )若1-sin ep e ρθ = 当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线 当 e >1时!方程表示极点在上焦点的双曲线 (3)1+sin ep e ρθ = 当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线 当 e >1时!方程表示极点在下焦点的双曲线 例题选编 (1)二次曲线基本量之间的互求 例1.确定方程10 53cos ρθ = -表示曲线的离心率、焦距、长短轴长。 解法一:31025333 1cos 1cos 55 ρθθ? ==-- 解法二:根据极坐标的定义,对右顶点对应点的极角为0,因此只需令0θ=, 右顶点的极径,同理可得左顶点的的极径。根据左右顶点极径之和等于长轴长,便可以求出长轴。 点睛,解法一采用待定系数法比较常规,解法二利用极坐标的定义,简洁而有 力,充分体现了极坐标处理问题的优势。下面的弦长问题的解决使极坐标处理的优势显的淋漓尽致。 (2)圆锥曲线弦长问题 若圆锥曲线的弦MN 经过焦点F ,

4常见曲线的极坐标方程

第4课时:常见曲线极坐标方程 教学目标 (1)了解曲线的极坐标方程的求法, (2)了解简单图形(过极点的直线、过极点的圆、圆心在极点的圆)的极坐标方程。 教学重难点:曲线的极坐标方程的求法 教学过程: 一、新课讲解 1、直线的极坐标方程 若直线l 经过点00(,)M ρθ,且极轴到此直线的角为α,则直线l 的极坐标方程为00sin()sin()ρθαρθα-=- 2、圆心是A (0ρ,0θ),半径r 的圆的极坐标方程为2220002cos()-0r ρρρθθρ--+= 二、例题选讲: 例1、按下列条件写出直线的极坐标方程: (1)经过极点,且倾斜角是π6的直线; (2)经过点 A(2, π4 ),且垂直于极轴的直线; (3)经过点 B(3, - π3),且平行于极轴的直线; (4)经过点C(4,0),且倾斜角是3π4 的直线. 例2、按下列条件写出圆的极坐标方程. (1)以(2,0)为圆心,2为半径的圆; (2)以(4,π2 )为圆心,4为半径的圆;

(3)以(5,π)为圆心,且过极点的圆; (4)以(2,π4 )为圆心,1为半径的圆。 例3、在圆心的极坐标为点A (4,0),半径为4的圆中,求过极点的O 的弦的中点的轨迹方 程。 例4. 已知曲线:C 3cos 2sin x y θθ =??=?,直线:l (cos 2sin )12ρθθ-=. ⑴.将直线l 的极坐标方程化为直角坐标方程; ⑵.设点P 在曲线C 上,求P 点到直线l 距离的最小值. 例5在极坐标系中,已知圆C 的圆心)6, 3(πC ,半径1=r ,Q 点在圆C 上运动. (1)求圆C 的极坐标方程; (2)若P 在直线OQ 上运动,且3:2:=QP OQ ,求动点P 的轨迹方程. 课堂反馈: 1.两圆θρcos 2=和θρsin 4=的圆心距是 . 2.极坐标方程cos()4π ρθ=-所表示的曲线是 . 3.极坐标方程分别是θρcos =和θρsin =的两个圆的圆心距是 . 4、 直线αθ=和直线1)sin(=-αθρ的位置关系是 . 三、课堂小结:

圆锥曲线知识点全归纳完整精华版图文稿

圆锥曲线知识点全归纳 完整精华版 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

圆锥曲线知识点全归纳(精华版) 圆锥曲线包括椭圆,双曲线,抛物线。其统一定义:到定点的距离与到 定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。 一、圆锥曲线的方程和性质: 1)椭圆 文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是 一个小于1的正常数e。定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。 标准方程: 1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1?其中a>b>0,c>0,c^2=a^2-b^ 2. 2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2. 参数方程: X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的 考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r) 2)双曲线 文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是 一个大于1的常数e。定点是双曲线的焦点,定直线是双曲线的准线,常 数e是双曲线的离心率。 标准方程:

1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)- (y^2/b^2)=1? 其中a>0,b>0,c^2=a^2+b^2. 2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)- (x^2/b^2)=1. 其中a>0,b>0,c^2=a^2+b^2. 参数方程: x=asecθy=btanθ(θ为参数) 3)抛物线 标准方程: 1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px其中p>0 2.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px其中p>0 3.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py其中p>0 4.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py其中p>0 参数方程? x=2pt^2?y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0 直角坐标?

圆锥曲线的极坐标方程

圆锥曲线的极坐标方程 圆锥曲线的统一定义:一动点P 到一定点O 的距离与到一定直线L 的距离之比为一定值常数e ,则点P 的轨迹为圆锥曲线。 今以一定点O 为极点,使极轴垂直于定点的直线L ,交点为H ,L PD ⊥.设p HO =,又 设),(θρP 为轨迹上任意一点,即θρcos +=HO DP ,从而 θ ρρ cos += = p DP OP e ,即θρcos 1e ep -= 椭圆(双曲线)的焦参数c b p 2 =(极和极线的距离) 椭圆、双曲线、抛物线的统一的极坐标方程为:θ ρcos 1e ep -= (如右图) 其中02 >=c b p 是定点F 到定直线的距离, 当10<e 时,方程表示双曲线,若0>ρ,方程只表示双曲线右支,若允许0<ρ,方程就表示整个双曲线;(几何画板演示实例,展示交点弦长表示的统一特征)。当1=e 时,方程表示开口向右的抛物线。 引论:(1)若θρcos 1e ep += 当10<e 时,方程表示极点在左焦点 的双曲线,若0>ρ,方程只表示双曲线左支,若允许0<ρ,方程就表示整个双曲线;(几何画板演示实例,展示交点弦长表示的统一特征)。当1=e 时,方程表示开口向左的抛物线。 (2)若θρsin 1e ep -= 10<e 时,方程表示极点在上焦点上的双曲 线,当1=e 时,方程表示开口向上的抛物线。 (3)1sin ep e ρθ= + 当10<e 时,方程表示极点在下焦点的双曲线,当1=e 时,方程表示开口向下的抛物线。 整体对比: θ ρcos 1e ep -= θ ρcos 1e ep += θ ρsin 1e ep -= θ ρsin 1e ep +=

简单曲线的极坐标方程教案

简单曲线的极坐标方程 【教学目标】 1.熟练掌握简单曲线的极坐标方程的求法,提高应用极坐标系的概念和极坐标和直角坐标的互化解决问题的能力. 2.自主学习,合作交流,探究并归纳总结简单曲线的极坐标方程的求法. 3.激情投入,高效学习,体验探究、归纳、总结的过程,增强应用数学的能力. 【教学重难点】 简单曲线的极坐标方程的求法 【教学过程】 一、复习、预习自学:

2.极坐标和直角坐标的互化(P11) (1)极坐标化为直角坐标 θ ρcos = x,θ ρsin = y (2)直角坐标化为极坐标 2 2 2y x+ = ρ,)0 ( tan≠ =x x y θ 3.曲线和方程(平面直角坐标系中(P12)) 曲线C上的点的坐标都是方程0 ) , (= y x f 的解; 以方程0 ) , (= y x f的解为坐标的点都在 曲线C上. (3)极坐标系中如何用方 程表示曲线 【复习、预习自测】 1.极坐标化为直角坐标:→ ) 4 ,3( π________,→ ) 3 2 ,2( π________ 2. 直角坐标化为极坐标:→ )3 ,3( ________,→ -) 3 5 ,0(________ 二、合作探究 探究点一:圆的极坐标方程(P12-13) 如图,半径为a的圆的圆心坐标为C(a,0)(a>0).你能用一个等式表示圆上任意一点的极坐标) , (θ ρ满足的条件吗 探究点1图拓展1图小结(P13):一般的,在极坐标系中,如果满足下列两个条件,那么方程

0),(=θρf 叫做曲线C 的极坐标方程: (1) (2) 拓展1(P13):已知圆O 的半径为r ,建立怎样的极坐标系,可以使圆的 极坐标方程更简单并将所得结果与直角坐标方程进行比较. 探究点二:直线的极坐标方程(P13) 如图,直线l 经过极点,从极轴到直线l 的角是4 π ,求直线l 的极坐标方 程. 探究点2图 拓展2图 拓展3图 拓展2(P14):求过点A(a,0)(a>0),且垂直于极轴的直线l 的极坐标方程. 拓展3(P14):设P 点的极坐标为),(11θρ,直线l 过点P 且与极轴所成的角为α,求直线l 的极坐标方程. 【课堂小结】 1. 知 识 方 面 _____________________________________________________________________ 2. 数 学 思 想 方 面 _______________________________________________________________

极坐标的几种常见题型p

极坐标的几种常见题型 一、极坐标方程与直角坐标方程的互化 互化条件:极点与原点重合,极轴与x 轴正半轴重合,长度单位相同. 互化公式:???==θρθρsin cos y x 或 ? ? ? ??≠=+=)0(tan 2 22x x y y x θρ θ的象限由点(x,y)所在的象限确定. 例1(2007海南宁夏)⊙O 1和⊙O 2的极坐标方程分别为θρcos 4=,θρsin 4-=. (I)把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程; (II)求经过⊙O 1,⊙O 2交点的直线的直角坐标方程. 解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位. (I)θρcos =x ,θρsin =y ,由θρcos 4=得θρρcos 42=.所以x y x 42 2=+. 即042 2 =-+x y x 为⊙O 1的直角坐标方程. 同理042 2 =++y y x 为⊙O 2的直角坐标方程. (II)解法一:由? ??=++=-+04042 222y y x x y x 解得???==0011y x ,???-==22 22y x 即⊙O 1,⊙O 2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y=-x . 解法二: 由???=++=-+0 40 42 222y y x x y x ,两式相减得-4x-4y=0,即过交点的直线的直角坐标方程为y=-x . 评述:本题主要考查曲线的极坐标方程化为直角坐标方程的方法及两圆公共弦所在直线方程的求法. 例2(2003全国)圆锥曲线θ θ ρ2cos sin 8= 的准线方程是 (A)2cos -=θρ (B)2cos =θρ (C) 2sin -=θρ (D) 2sin =θρ 解: 由θ θρ2 cos sin 8= 去分母后两边同时乘以ρ得:θρθρsin 8cos 22=,所以x 2 =8y ,其准线方程为y=2-,在极坐标系中方程为2sin -=θρ,故选C. 例3(1998年上海)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,若椭圆两焦点的极坐标分别是(1, 2 π),(1,23π),长轴长是4,则此椭圆的直角坐标方程是_______________. 解:由已知条件知椭圆两焦点的直角坐标为(0,1),(0,-1).c=1,a=2,b 2=a 2-c 2=3, 故所求椭圆的直角坐标方程为4 32 2y x +=1 类题:1(1995年上海)把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并且在两种坐标系中取相同的长度单位.若曲线的极坐标方程是1 cos 4122 -= θρ,则它的直角坐标方程是___________. (答案:3x 2-y 2=1) 2(1998年全国)曲线的极坐标方程ρ=4sin θ化成直角坐标方程为 (A) x 2+(y+2)2=4 (B) x 2+(y-2)2=4

极坐标与参数方程复习教案

精锐教育学科教师辅导教案 学员编号:年级:高三课时数:3 学员姓名:辅导科目:数学学科教师:刘欢 C-极坐标与参数方程C–极坐标与参数方程C-极坐标与参数方程授课类型 授课日期及时段 教学内容 知识点概括 一、坐标系1.平面直角坐标系的建立:在平面上,当取定两条互相垂直的直线的交点为原点,并确定 了度量单位和这两条直线的方向,就建立了平面直角坐标系。 2.空间直角坐标系的建立:在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交 点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。 3.极坐标系的建立:在平面上取一个定点O,自点O引一条射线OX,同时确定一个单位长度和计算 角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。 (其中O称为极点,射线OX称为极轴。) ①设M是平面上的任一点,ρ表示OM的长度,θ表示以射线OX ρθ称为点M的极坐 为始边,射线OM为终边所成的角。那么有序数对(,) 标。其中ρ称为极径,θ称为极角。

约定:极点的极坐标是ρ=0,θ可以取任意角。 4.直角坐标与极坐标的互化 以直角坐标系的O 为极点,x 轴正半轴为极轴,且在两坐标系中取相同的单位长度平面内的任一点P 的直角坐标极坐标分别为(x ,y )和(,)ρθ,则 二、曲线的极坐标方程 1.直线的极坐标方程:若直线过点00(,)M ρθ,且极轴到此直线的角为α,则它的方程为: 00sin()sin()ρθ-α=ρθ-α 几个特殊位置的直线的极坐标方程 (1)直线过极点 (2)直线过点M(a,0)且垂直于极轴 (3)直线过(,)2M b π 且平行于极轴 2.圆的极坐标方程: 若圆心为00(,)M ρθ,半径为r 的圆方程为: 几个特殊位置的圆的极坐标方程 (1)当圆心位于极点 (2)当圆心位于(,0)M r (3)当圆心位于(,)2M r π 3.直线、圆的直角坐标方程与极坐标方程的互化 利用: x = 2ρ= 三、参数方程

简单曲线的极坐标方程

第 周 第 课时教案 时间: 教学主题 简单曲线的极坐标方程 一、教学目标 1、掌握极坐标方程的意义,掌握直线的极坐标方程 2、能在极坐标中给出简单图形的极坐标方程,会求直线的极坐标方程及与直角坐标之间的互化 3、过观察、探索、发现的创造性过程,培养创新意识。 二、教学重点、极坐标方程的意义,理解直线的极坐标方程,直角坐标方程与极坐标方程 的互化 教学难点:极坐标方程的意义 ,直线的极坐标方程的掌握 三、教学方法 讲练结合 四、教学工具 无 五、教学流程设计 教学 环节 教师活动 学生活动 圆的极坐标方程 一、复习引入: 问题情境 1、直角坐标系建立可以描述点的位置极坐标也有同样作用? 2、直角坐标系的建立可以求曲线的方程 极坐标系的建立是否可以求曲线方程? 学生回顾 1、直角坐标系和极坐标系中怎样描述点的位置? 2、曲线的方程和方程的曲线(直角坐标系中)定义 3、求曲线方程的步骤 4、极坐标与直角坐标的互化关系式: 二、讲解新课: 1、引例.如图,在极坐标系下半径为a 的圆的圆心坐标为 (a ,0)(a >0),你能用一个等式表示圆上任意一点, 的极坐标(ρ,θ)满足的条件? 解:设M (ρ,θ)是圆上O 、A 以外的任意一点,连接AM , 则有:OM=OAcos θ,即:ρ=2acos θ ①, 2、提问:曲线上的点的坐标都满足这个方程吗? 可以验证点O(0,π/2)、A(2a ,0)满足①式. 等式①就是圆上任意一点的极坐标满足的条件. 反之,适合等式①的点都在这个圆上. 3、定义:一般地,如果一条曲线上任意一点都有一个极坐 标适合方程0),(=θρf 的点在曲线上,那么这个

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

圆锥曲线的极坐标方程 知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹. 以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K ,以FK 的反向延长线为极轴建立极坐标系. 椭圆、双曲线、抛物线统一的极坐标方程为: θ ρcos 1e ep -=. 其中p 是定点F 到定直线的距离,p >0 . 当0<e <1时,方程表示椭圆; 当e >1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线; 当e=1时,方程表示开口向右的抛物线. 引论(1)若 1+cos ep e ρθ = 则0<e <1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e >1方程表示极点在左焦点上的双曲线 (2 )若1-sin ep e ρθ = 当 0<e <1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线 当 e >1时!方程表示极点在上焦点的双曲线

(3)1+sin ep e ρθ = 当 0<e <1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口向下的抛物线 当 e >1时!方程表示极点在下焦点的双曲线 例题选编 (1)二次曲线基本量之间的互求 例1.确定方程10 53cos ρθ = -表示曲线的离心率、焦距、长短轴长。 解法一:31025333 1cos 1cos 55 ρθθ? ==-- 31053 e P ∴==, 2332555851015103383c a c a a b a c c c ???===??????∴????????-===?????? 2225155( )()882 b ∴=-= 31554e ∴=方程表示椭圆的离心率,焦距,25 54 长轴长,短轴长 解法二:根据极坐标的定义,对右顶点对应点的极角为0,因此只需 令0θ=,右顶点的极径,同理可得左顶点的的极径。根据左右顶点极径之和等于长轴长,便可以求出长轴。 点睛,解法一采用待定系数法比较常规,解法二利用极坐标的定义, 简洁而有力,充分体现了极坐标处理问题的优势。下面的弦长问题的解决使极坐标处理的优势显的淋漓尽致。 (2)圆锥曲线弦长问题

相关文档
最新文档