选修2-1椭圆习题课教学设计
椭圆及其标准方程一优秀教学设计精选全文完整版
可编辑修改精选全文完整版教学设计(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.(二)椭圆标准方程的推导13分钟1.标准方程的推导.教师引导学生得出椭圆方程,由a、b的关系判定焦点在哪一个坐标轴上。
2.教师给出表格和学生一起总结椭圆的方让学生自己去推导椭圆的标准方程,给学生较多的思考问题的时间和空间,变“被动”为“主动”,变“灌输”为“发现”。
教师结合猜想加以引导由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.(1)建系设点以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设|F1F2|=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0).(2)点的集合由定义不难得出椭圆集合为:P={M||MF1|+|MF2|=2a}.(3)代数方程(4)化简方程整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)椭圆的焦点在x轴上,焦点是F1(-c,0)、F2(c,0).这里c2=a2-b2.2.两种标准方程的比较(引导学生归纳)F1(-c,0)、F2(c,0),这里c2=a2-b2;F1(-c,0)、F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到.教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.(三)例题与8分钟,练习12分钟例1求适合下列条件的椭圆的标准方程:1.教师引导学生得学生自己写解题过程 2.学生板演 3.学生讨论4.老师出示练习题(课件)学生做练习题(1)掌握椭圆方程a、b之间的关系 (2)掌握运用椭圆定义法、待定系数法求椭圆的标准方程。
人教版高中选修2-1《椭圆及其标准方程》教学设计
人教版高中选修2-1《椭圆及其标准方程》教学设计《人教版高中选修2-1《椭圆及其标准方程》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教学目标知识与技能:(1)初步掌握椭圆的定义及其标准方程。
(2)能对两个根号的代数式化简。
过程与方法:(1)能动手从圆中做出椭圆和用绳子画出椭圆,能将它转化成数学语言。
(2)能在分组讨论及引导下化简两个根号的代数式。
(3)类比圆的学习过程学习椭圆。
情感与价值观:体会数形结合的思想,方程思想,类比的思想在本节课中的应用。
感悟椭圆及椭圆方程的对称美。
教学重点:掌握椭圆的定义及其标准方程,理解坐标法的基本思想。
教学难点:椭圆标准方程的推导与化简。
教学过程:(一)椭圆概念的形成画一画,椭圆初步印象师:前面我们学习了圆,现在我们在圆中进行一个作图游戏,如图,圆的圆心为,在圆内取异于一定点,在圆上取一点,连接,做出线段的垂直平分线交于,然后在圆上依次取,依次得。
最后用一条光滑的曲线连接,。
为了方便大家画图,我给每个小组设计了一个画板。
请各小组合作完成作图。
(PPT演示一个作图例子)师:大家得到了什么图形呢?学生:椭圆师:为了图形更加的准确,我们用计算机验证一下。
(PPT几何画板演示)师:的确是一个椭圆,生活中还有哪些物品是椭圆形的呢?学生:师:我也准备了几个,请大家看看。
(PPT演示图片)师:椭圆就是我们这节课要研究的对象。
(PPT演示标题)。
通过本节课的学习,将达到以下目标。
(PPT演示三维目标)师:我们对椭圆已经有了一个初步印象,请分析刚才做出椭圆的过程中,哪些内容是确定的,哪些内容是变化的呢?(PPT演示作图例子) 学生:师:在平面内确定两个定点,动点到两个定点的距离之和为定值。
所以我们可以取一条定长的细绳,把它的两端都固定在图板上,套上铅笔,拉紧绳子,移动笔尖,就可以画出椭圆。
请各小组试一试。
议一议,椭圆定义的条件师:大家注意到,板上有3根绳子,大家选的那一根?学生:师:如果用另外两根,能画出什么图形呢?学生:一根画出线段,另外一根画不出任何图形。
选修2-1第二章-椭圆-学案
文档§2.2.1椭圆及其标准方程(1)1.从具体情境中抽象出椭圆的模型;2.掌握椭圆的定义; 3.掌握椭圆的标准方程.3840,找出疑惑之处) 复习1:过两点(0,1),(2,0)的直线方程 .复习2:方程22(3)(1)4x y -++= 表示以 为圆心, 为半径的 .二、新课导学※ 学习探究 取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 .如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线? 思考:移动的笔尖(动点)满足的几何条件是什么? 经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数. 新知1: 我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .反思:若将常数记为2a ,为什么122a F F >?当122a F F =时,其轨迹为 ; 当122a F F <时,其轨迹为 .试试: 已知1(4,0)F -,2(4,0)F ,到1F ,2F 两点的距离之和等于8的点的轨迹是 .小结:应用椭圆的定义注意两点:①分清动点和定点;②看是否满足常数122a F F >. 新知2:焦点在x 轴上的椭圆的标准方程 ()222210x y a b a b +=>> 其中222b a c =-若焦点在y 轴上,两个焦点坐标 ,则椭圆的标准方程是 .※ 典型例题例1 写出适合下列条件的椭圆的标准方程: ⑴4,1ab ==,焦点在x 轴上;⑵4,a c =y 轴上; ⑶10,abc +==.变式:方程214x ym +=表示焦点在x 轴上的椭圆,则实数m 的范围 .小结:椭圆标准方程中:222a b c =+ ;a b > .例2 已知椭圆两个焦点的坐标分别是()2,0-,(2,0),并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程 .变式:椭圆过点 ()2,0-,(2,0),(0,3),求它的标准方程.小结:由椭圆的定义出发,得椭圆标准方程 .※ 动手试试练 1. 已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是( ).A .B .6C .D .12练2 .方程219x ym-=表示焦点在y 轴上的椭圆,求实数m 的范围.三、总结提升※ 学习小结1. 椭圆的定义:2. 椭圆的标准方程:※ 知识拓展1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空 1997年2月至3月间,许多人目睹了这一天文现象出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长.※ 当堂检测(时量:5分钟 满分:10分)计分: 1.平面内一动点M 到两定点1F 、2F 距离之和为常数2a ,则点M 的轨迹为( ). A .椭圆 B .圆C .无轨迹D .椭圆或线段或无轨迹 2.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ). A .(0,)+∞ B .(0,2) C .(1,)+∞ D .(0,1)3.如果椭圆22110036x y +=上一点P 到焦点1F 的距离等于6,那么点P 到另一个焦点2F 的距离是( ). A .4 B .14 C .12 D .84.椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9和15,则椭圆的标准方程 是 .5.如果点(,)Mx y在运动过程中,总满足关系式10=,点M 的轨迹是 ,它的方程是 .1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点(3,P -;⑵焦点坐标分别为()()0,4,0,4-,5a =; ⑶10,4a c a c +=-=.2. 椭圆2214x y n+=的焦距为2,求n 的值.文档§2.2.1 椭圆及其标准方程(2)1.掌握点的轨迹的求法;2.进一步掌握椭圆的定义及标准方程.一、课前准备(预习教材理P 41~ P 42,找出疑惑之处)复习1:椭圆上221259x y +=一点P 到椭圆的左焦点1F 的距离为3,则P 到椭圆右焦点2F 的距离 是 .复习2:在椭圆的标准方程中,6a =,b =则椭圆的标准方程是 .二、新课导学※ 学习探究问题:圆22650x y x +++=的圆心和半径分别是什么?问题:圆上的所有点到 (圆心)的距离都等于 (半径) ;反之,到点(3,0)-的距离等于2的所有点都在 圆 上.※ 典型例题例1在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?变式: 若点M 在DP 的延长线上,且32DM DP =,则点M 的轨迹又是什么?小结:椭圆与圆的关系:圆上每一点的横(纵)坐标不变,而纵(横)坐标伸长或缩短就可得到椭圆.例2设点,A B 的坐标分别为()()5,0,5,0-,直线,AM BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程 .变式:点,A B 的坐标是()()1,0,1,0-,直线,AM BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的商是2,点M 的轨迹是什么?※ 动手试试 练1.求到定点()2,0A 与到定直线8x =的距离之比的动点的轨迹方程.练2.一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,求动圆圆心的轨迹方程式,并说明它是什么曲线.三、总结提升※ 学习小结1. ①注意求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式;②相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程.※ 知识拓展椭圆的第二定义:到定点F 与到定直线l 的距离的比是常数e (01)e <<的点的轨迹. 定点F 是椭圆的焦点; 定直线l 是椭圆的准线; 常数e 是椭圆的离心率.※ 当堂检测(时量:5分钟 满分:10分)计分:1.若关于,x y 的方程22sin cos 1x y αα-=所表示的曲线是椭圆,则α在( ).A .第一象限B .第二象限C .第三象限D .第四象限 2.若ABC ∆的个顶点坐标(4,0)A -、(4,0)B ,ABC ∆的周长为18,则顶点C 的轨迹方程为( ).A .221259x y +=B .221259y x += (0)y ≠C .221169x y +=(0)y ≠D .221259x y +=(0)y ≠3.设定点1(0,2)F - ,2(0,2)F ,动点P 满足条件124(0)PF PF m m m+=+>,则点P 的轨迹是( ).A .椭圆B .线段C .不存在D .椭圆或线段 4.与y 轴相切且和半圆224(02)x y x +=≤≤内切的动圆圆心的轨迹方程是 . 5. 设12,F F 为定点,|12F F |=6,动点M 满足12||||6MF MF +=,则动点M 的轨迹是 .1.已知三角形ABC V 的一边长为6,周长为16,求顶点A 的轨迹方程. 2.点M 与定点(0,2)F 的距离和它到定直线8y =的距离的比是1:2,求点的轨迹方程式,并说明轨迹是什么图形.§2.2.2 椭圆及其简单几何性质(1)1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图.4346,找出疑惑之处)复习1:椭圆2211612x y+=上一点P到左焦点的距离是2,那么它到右焦点的距离是.复习2:方程2215x ym+=表示焦点在y轴上的椭圆,则m的取值范围是.二、新课导学※学习探究问题1:椭圆的标准方程22221x ya b+=(0)a b>>,它有哪些几何性质呢?图形:范围:x:y:对称性:椭圆关于轴、轴和都对称;顶点:(),(),(),();长轴,其长为;短轴,其长为;离心率:刻画椭圆程度.椭圆的焦距与长轴长的比ca称为离心率,记cea=,且01e<<.试试:椭圆221169y x+=的几何性质呢?图形:范围:x:y:对称性:椭圆关于轴、轴和都对称;顶点:(),(),(),();长轴,其长为;短轴,其长为;离心率:cea== .反思:ba或cb的大小能刻画椭圆的扁平程度吗?※典型例题例1 求椭圆221625400x y+=的长轴和短轴的长、离心率、焦点和顶点的坐标.变式:若椭圆是22981x y+=呢?小结:①先化为标准方程,找出,a b,求出c;②注意焦点所在坐标轴.例 2 点(,)M x y与定点(4,0)F的距离和它到直线25:4l x=的距离的比是常数45,求点M的轨迹.小结:到定点的距离与到定直线的距离的比为常数(小于1)的点的轨迹是椭圆.文档※ 动手试试练1.求适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,6a =,13e =;⑵焦点在y 轴上,3c =,35e =;⑶经过点(3,0)P -,(0,2)Q -;⑷长轴长等到于20,离心率等于35.三、总结提升※ 学习小结1 .椭圆的几何性质:图形、范围、对称性、顶点、长轴、短轴、离心率;2 .理解椭圆的离心率.※ 知识拓展(数学与生活)已知水平地面上有一篮球,在斜平行光线的照射下,其阴影为一椭圆,且篮球与地面※当堂检测(时量:5分钟 满分:10分)计分:1.若椭圆2215x y m+=的离心率e =则m的值是( ).A.3 B .3或253 C D 2.若椭圆经过原点,且焦点分别为1(1,0)F ,2(3,0)F ,则其离心率为( ).A .34 B.23 C .12 D .14 3.短轴长为,离心率23e =的椭圆两焦点为12,F F ,过1F 作直线交椭圆于,A B 两点,则2ABF ∆的周长为( ).A .3B .6C .12D .244.已知点P 是椭圆22154x y +=上的一点,且以点P 及焦点12,F F 为顶点的三角形的面积等于1,则点P 的坐标是 .5.某椭圆中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是 .1.比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?⑴22936x y +=与2211612x y += ;⑵22936x y +=与221610x y +=.2.求适合下列条件的椭圆的标准方程: ⑴经过点(P -,Q ;⑵长轴长是短轴长的3倍,且经过点(3,0)P ;⑶焦距是8,离心率等于0.8.文档§2.2.2 椭圆及其简单几何性质(2)学习目标1.根据椭圆的方程研究曲线的几何性质;2.椭圆与直线的关系.学习过程一、课前准备4648,找出疑惑之处)复习1: 椭圆2211612x y +=的焦点坐标是( )( ) ;长轴长 、短轴长 ;离心率 .复习2:直线与圆的位置关系有哪几种?如何判定?二、新课导学 ※ 学习探究问题1:想想生活中哪些地方会有椭圆的应用呢?问题2:椭圆与直线有几种位置关系?又是如何确定?反思:点与椭圆的位置如何判定?※ 典型例题例 1 一种电影放映灯泡的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上,由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F ,已知12BC F F ⊥,1 2.8F B cm =,12 4.5F F cm =,试建立适当的坐标系,求截口BAC 所在椭圆的方程.变式:若图形的开口向上,则方程是什么?小结:①先化为标准方程,找出,a b ,求出c ; ②注意焦点所在坐标轴.例2 已知椭圆221259x y +=,直线l :45400x y -+=。
人教课标版高中数学选修2-1《椭圆及其标准方程(第1课时)》教学设计
2.2.1 椭圆及其标准方程(第一课时)一、教学目标 (一)学习目标 1.掌握椭圆的定义;2.掌握椭圆标准方程的推导和标准方程. (二)学习重点椭圆的定义及椭圆标准方程. (三)学习难点椭圆标准方程的建立和推导. 二、教学设计 (一)预习任务设计 1.预习任务 写一写:(1)定义:平面内与两个定点12,F F 距离的和 等于常数 c ,大于12||F F 的点的轨迹叫做椭圆,这两个定点叫做椭圆的 焦点 ,两定点间距离叫做 椭圆的焦距 .(2)椭圆的标准方程: 焦点在x 轴上: 2221(0)y a b a b+=>> .焦点在y 轴上: 2221(0)x a b a b+=>> .2.预习自测判断分别满足下列条件的动点M 的轨迹是否为椭圆(1)到点()12,0F -和点()22,0F 的距离之和为6的点的轨迹; (2)到点()12,0F -和点2(2,0)F 的距离之和为4的点的轨迹; (3)到点()12,0F -和点2(2,0)F 的距离之和为3的点的轨迹.【解题过程】当12||||2MF MF a +=,且122||a F F >的常数时M 点的轨迹为椭圆,故(2)(3)不是.【思路点拨】注意把握椭圆的定义. 【答案】(1)是;(2)不是;(3)不是.(4)已知动圆P 过定点(3,0)A -,并且与定圆22:(3)64B x y -+=内切,则动圆的圆心P 的轨迹是( )A.线段B.直线C.圆D.椭圆 【解题过程】设动圆P 与定圆B 内切于M ,由条件知:||||||||||8PA PB PM PB BM +=+==,故P 的轨迹是以,A B 为焦点的椭圆.【思路点拨】利用椭圆的定义解题. 【答案】D (二)课堂设计 1.新知讲解探究一 创设情景,认识椭圆 ●活动① 归纳提炼概念画一画:①将一条绳子的两端固定在同一个定点上,用笔尖勾起绳子的中点使绳子绷紧,围绕定点旋转,笔尖形成的轨迹是什么?②将绳子的两端分别固定在两个定点上,笔尖勾直绳子,移动笔尖,得到的是轨迹是什么? 动画演示作图过程.提出问题:①作图过程中,哪些量没有变?哪些量变了? ②为什么要求作图过程中笔尖要绷紧?③笔尖所对应的动点M 到定点的距离有什么长度之间的关系? 总结:笔尖对应的动点M 到直线两个端点的长度之和固定不变.【设计意图】学生可通过动手实践的过程去体会“满足什么样的条件下的点的集合为椭圆”,从而对椭圆定义中的条件有直观深刻的认识.提出问题:根据刚才动手实践的过程,能否总结椭圆的定义?(同学自由发言,再由学生进一步补充完善)我们把平面内到两个定点1F ,2F 的距离之和等于常数(大于21F F )的点的集合叫作椭圆.●活动② 辨析概念问题1:定义中的常数等于21F F ,则动点的轨迹是什么?问题2:定义中的常数小于21F F ,则动点的轨迹是什么?椭圆相关概念:两个定点1F ,2F 叫作椭圆的焦点.....,两个焦点1F ,2F 间的距离叫作椭圆的焦距...... 【设计意图】使学生经历椭圆概念的生成和完善过程,提高其归纳概括能力,加深对椭圆本质的认识,并逐渐养成严谨的科学作风. 探究二 推导椭圆的标准方程 ●活动① 利用定义求方程动手演算:让学生动手,求推导焦点在x 轴上的椭圆的标准方程①建系:观察椭圆的几何特征,如何建系能使方程更简洁?(利用椭圆的对称性特征)以直线21F F 为x 轴,以线段21F F 的垂直平分线为y 轴,建立平面直角坐标系.②设点:设焦距为()20c c >,则()()12,0,0F c F c -.设(),M x y 为椭圆上任意一点,点M 与点12F F 、的距离之和为()222a a c >.③列式:动点M 满足的几何约束条件: 122MF MF a += 2a =④化简:()()a y c x y c x 22222=+-+++1F 2F∴()()22222y c x a y c x +--=++∴两边同时平方、整理得:()222y c x acx a +-=-将上式两边平方、整理得:2222222222422y a c a cx a x a x c cx a a ++-=+-()()22222222c a a y a x c a-=+-122222=-+c a y a x 分析22c a -的几何含义,令222b c a =-得到焦点在x 轴上的椭圆的标准方程为()012222>>=+b a b y a x焦点在y 轴上的椭圆的标准方程是什么?(由学生动手列式,()()a c y x c y x 22222=-++++,引导学生观察焦点在x轴上与焦点在y 轴上式子的差异,从而用类比的方法得到焦点在y 轴上椭圆的标准方程)如果椭圆的焦点在y 轴上,其焦点坐标为()c F -,01,()c F ,02,用同样的方法可以推出它的标准方程()012222>>=+b a bx a y ●活动② 归纳梳理、理解提升 椭圆的标准方程及方程特点焦点在x 轴上 焦点在y 轴上标准方程: 12222=+b y a x (0>>b a ) 12222=+b x a y (0>>b a )学生思考:(1)椭圆的标准方程中三个参数b c a ,,的关系怎样?(2)如何从椭圆的标准方程判断椭圆焦点的位置?总结方程特征:(1).0,0222>>>>+=c a b a c b a , (2)哪个变量下的分母大,焦点就在哪个轴上.【设计意图】通过归纳总结让学生对两种方程进行对比分析,强化对椭圆方程的理解.有助于教学目标的实现,培养学生的总结归纳能力,而且使学生体会和学习类比的思想方法.●活动③ 互动交流、初步实践判定下列椭圆的标准方程在哪个轴上,并写出焦点的坐标(1)1162522=+y x (在x 轴上,焦点为()0,3-,()0,3)(2)116914422=+y x (在y 轴上,焦点为()5,0-,()5,0)(3)112222=++m y m x (在y 轴上,焦点为()1,0-,()1,0)●活动④ 巩固基础、检查反馈例1.已知a =c =,则椭圆的标准方程为( )A.2211312x y +=B.2211325x y +=或2212513x y += C.22113x y += D.22113x y +=或22113y x += 【知识点】椭圆的标准方程. 【解题过程】由222a b c =+知21b =. 【思路点拨】通过焦点的位置判断方程. 【答案】D同类训练 已知椭圆的焦点为(1,0)-和(1,0),点(2,0)P 在椭圆上,则椭圆的方程为( )A.22143x y += B.2214x y += C.22143y x += D.2214y x += 【知识点】椭圆的标准方程. 【解题过程】由222a b c =+知23b =. 【思路点拨】通过焦点的位置判断方程. 【答案】A例2 椭圆22125x y +=上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为( )A.5B.6C.7D.8 【知识点】椭圆的定义.【解题过程】由210a =知P 到另一个焦点的距离为8. 【思路点拨】通过定义122PF PF a +=计算. 【答案】D同类训练 已知F 1、F 2是椭圆 192522=+y x 的两个焦点,过F 1的直线交椭圆于M 、N 两点,则三角形MF 2N 的周长为 . 【知识点】椭圆的定义.【解题过程】由221212101020MN MF NF MF MF NF NF ++=+++=+=.【思路点拨】通过定义122PF PF a +=计算. 【答案】20. 3.课堂总结 知识梳理(1)椭圆的定义:平面内到两个定点1F ,2F 的距离之和等于常数(大于21F F )的点的集合叫作椭圆.(2)椭圆的标准方程:焦点在x 轴上:12222=+by a x (0>>b a );焦点在y 轴上:12222=+bx a y (0>>b a ).重难点归纳(1)区分焦点:哪个变量下的分母大,焦点就在哪个轴上;(2)标准方程中,,a b c 的关系:.0,0222>>>>+=c a b a c b a , (三)课后作业 基础型 自主突破1.设F 1,F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则动点M 的轨迹是( )A.椭圆B.直线C.圆D.线段 【知识点】椭圆的几何性质.【解题过程】∵|MF 1|+|MF 2|=6,|F 1F 2|=6, ∴|MF 1|+|MF 2|=|F 1F 2|, ∴点M 的轨迹是线段F 1F 2. 【思路点拨】几何性质判断图形. 【答案】D.2.椭圆x 2m +y 24=1的焦距是2,则m 的值是( ) A.5 B.3或8 C.3或5 D.20 【知识点】椭圆的标准方程.【解题过程】2c =2,c =1,故有m -4=1或4-m =1,∴m =5或m =3,故选C.【思路点拨】确定焦点位置再结合222a b c =+可得m 的值. 【答案】C3.椭圆ax 2+by 2+ab =0(a <b <0)的焦点坐标是( )A.(±a -b ,0)B.(±b -a ,0)C.(0,±a -b )D.(0,±b -a ) 【知识点】椭圆的标准方程.【解题过程】ax 2+by 2+ab =0可化为x 2-b +y 2-a=1,∵a <b <0,∴-a >-b >0,∴焦点在y 轴上,c =-a +b =b -a , ∴焦点坐标为(0,±b -a ).【思路点拨】将方程整理为椭圆的标准形式. 【答案】D4.中心在原点,焦点在x 轴上,长轴长为18,且两个焦点恰好将长轴三等分的椭圆的方程是( )A.x 281+y 245=1B.x 281+y 29=1C.x 281+y 272=1D.x 281+y 236=1 【知识点】椭圆的标准方程.【解题过程】由长轴长为18知a =9,∵两个焦点将长轴长三等分,∴2c =13(2a )=6,∴c =3,∴b 2=a 2-c 2=72,故选C. 【思路点拨】由几何性质即可. 【答案】C5.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为________. 【知识点】椭圆的标准方程.【解题过程】由题意可得⎩⎨⎧ a +c =3,a -c =1.∴⎩⎨⎧a =2,c =1.故b 2=a 2-c 2=3,所以椭圆方程为x 24+y23=1.【思路点拨】由椭圆定义及几何关系可得,,a b c 的值. 【答案】x 24+y 23=16.如图所示,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2=________________.【知识点】椭圆的标准方程.【解题过程】由题意S △POF 2=34c 2=3,∴c =2,∴a 2=b 2+4. ∴点P 坐标为(1,3),把x =1,y =3代入椭圆方程x 2b 2+4+y 2b 2=1中得,1b 2+4+3b2=1,解得b 2=2 3. 【思路点拨】由椭圆几何性质即可. 【答案】2 3 能力型 师生共研1.已知方程x 2|m |-1+y 22-m =1表示焦点在y 轴上的椭圆,则m 的取值范围是( )A.m <2B.1<m <2C.m <-1或1<m <2D.m <-1或1<m <32 【知识点】椭圆的标准方程.【解题过程】由题意得⎩⎨⎧|m |-1>0,2-m >0,2-m >|m |-1.即⎩⎪⎨⎪⎧m >1或m <-1,m <2,m <32.∴1<m <32或m <-1,故选D.【思路点拨】根据焦点的位置可确定椭圆方程形式为22221(0)y x a b a a +=>>.【答案】D2.若△ABC 的两个焦点坐标为A (-4,0)、B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( )A.x 225+y 29=1B.y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D.x 225+y 29=1(y ≠0) 【知识点】椭圆的标准方程.【解题过程】∵|AB |=8,△ABC 的周长为18,∴|AC |+|BC |=10>|AB |,故点C 轨迹为椭圆且两焦点为A 、B ,又因为C 点的纵坐标不能为零,所以选D. 【思路点拨】由椭圆定义即可. 【答案】D 探究型 多维突破1.求满足下列条件的椭圆的标准方程:(1)焦点在y 轴上,焦距是4,且经过点M (3,2);(2)a c =135,且椭圆上一点到两焦点的距离的和为26. 【知识点】椭圆的标准方程.【解题过程】(1)由焦距是4可得c =2,且焦点坐标为(0,-2),(0,2).由椭圆的定义知,28a =+=, 所以a =4,所以b 2=a 2-c 2=16-4=12. 又焦点在y 轴上,所以椭圆的标准方程为y 216+x 212=1. (2)由题意知,2a =26,即a =13,又135a c =,所以c =5, 所以b 2=a 2-c 2=132-52=144, 因为焦点所在的坐标轴不确定,所以椭圆的标准方程为x 2169+y 2144=1或y 2169+x 2144=1. 【思路点拨】由椭圆性质求解即可. 【答案】见解析2.已知F 1、F 2是椭圆x 2100+y 264=1的两个焦点,P 是椭圆上任一点,若∠F 1PF 2=π3,求△F 1PF 2的面积.【知识点】椭圆的标准方程及几何性质. 【解题过程】设|PF 1|=m ,|PF 2|=n . 根据椭圆定义有m +n =20,又c =100-64=6,∴在△F 1PF 2中, 由余弦定理得m 2+n 2-2mn cos π3=122,∴m 2+n 2-mn =144,∴(m +n )2-3mn =144, ∴mn =2563,∴S △F 1PF 2=12|PF 1||PF 2|sin ∠F 1PF 2=12×2563×32=6433. 【思路点拨】由定义可知焦点三角形12PF F 的面积:2tan2S b θ=,其中12F PF θ∠=.【答案】见解析自助餐1.已知中心在原点的椭圆C 的右焦点为F (15,0),直线y =x 与椭圆的一个交点的横坐标为2,则椭圆方程为( )A.x 216+y 2=1B.x 2+y 216=1C.x 220+y 25=1D.x 25+y 220=1【知识点】椭圆的标准方程及几何性质.【解题过程】由椭圆过点(2,2),排除A 、B 、D ,选C.【思路点拨】由椭圆定义即可.【答案】C2.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A.95B.3C.977D.94【知识点】椭圆的标准方程.【解题过程】a 2=16,b 2=9⇒c 2=7⇒c =7.∵△PF 1F 2为直角三角形.且b =3>7=c .∴F 1或F 2为直角三角形的直角顶点,∴点P 的横坐标为±7,设P (±7,|y |),把x =±7代入椭圆方程,知716+y 29=1⇒y 2=8116⇒|y |=94.【思路点拨】由椭圆定义即可.【答案】D3.已知椭圆的两个焦点分别是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.射线D.直线【知识点】椭圆的几何性质.【解题过程】∵|PQ |=|PF 2|且|PF 1|+|PF 2|=2a ,∴|PQ |+|PF 1|=2a ,又∵F 1、P 、Q 三点共线,∴|PF 1|+|PQ |=|F 1Q |,∴|F 1Q |=2a .即Q 在以F 1为圆心,以2a 为半径的圆上.【思路点拨】根据椭圆定义判断.【答案】A4.在平面直角坐标系xOy 中,已知△ABC 的顶点A (0,-2)和C (0,2),顶点B 在椭圆y 212+x 28=1上,则sin A +sin C sin B 的值是( )A. 3B.2C.2 3D.4【知识点】椭圆的定义及几何性质.【解题过程】由椭圆定义得|BA |+|BC |=43,又∵sin A +sin C sin B =|BC |+|BA ||AC |=434=3,故选A.【思路点拨】根据椭圆定义判断..【答案】A5.已知椭圆的焦点是F 1(-1,0),F 2(1,0),P 是椭圆上的一点,若|F 1F 2|是|PF 1|和|PF 2|的等差中项,则该椭圆的方程是________.【知识点】椭圆的标准方程.【解题过程】由题设知1c =. 结合椭圆的定义得:12122||||2||4a PF PF F F =+==,故2,3a b ==,所以椭圆方程为:22143x y +=. 【思路点拨】利用椭圆的定义求,a c ,再利用222a b c =+求b .【答案】22143x y += 6.如图,把椭圆x 225+y 216=1的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于P 1、P 2、…、P 7七个点,F 是椭圆的一个焦点,则|P 1F |+|P 2F |+…+|P 7F |=________.【知识点】椭圆的几何性质.【解题过程】设椭圆右焦点为F′,由椭圆的对称性知,|P1F|=|P7F′|,|P2F|=|P6F′|,|P3F|=|P5F′|,∴原式=(|P7F|+|P7F′|)+(|P6F|+|P6F′|)+(|P5F|+|P5F′|)+12(|P4F|+|P4F′|)=7a=35.【思路点拨】由椭圆定义,转换即可. 【答案】35。
人教版高中数学选修2-1 椭圆习题课 教学设计-word
课题:选修2-1 椭圆习题课厦门二中[三维目标]:(一)知识与技能目标:1、使学生进一步熟悉椭圆的有关知识,如定义、标准方程、基本几何性质等2、使学生较好地掌握椭圆定义,并能恰当运用之于实际解题中;3、通过对焦点三角形以及直线与椭圆位置关系的研究,提高学生综合运用知识解决问题的能力;4、借助知识的广泛联系,培养学生综合的思维水平和正确认识事物之间的普遍联系的能力,通过问题的探究,激发学生的学习热情。
(二)过程与方法:本课时通过题型归类的方法,采取从易到难逐步上升的方式,使学生感知椭圆知识的应用,通过学生们不断的自主探究,培养学生的逻辑推理能力及运算能力,渗透分类转化及数形结合的数学思想。
(三)情感、态度与价值观:椭圆知识的综合运用,内含知识丰富,构思巧妙严谨,处理灵活机变,有较强的趣味性,隐含较强的逻辑推理能力,在应用过程中,使学生体会学习数学的乐趣和特有的数学之美。
[教学重点]:1、椭圆基础知识运用,特别是定义、焦点三角形等问题的处理;2、直线与椭圆位置关系的研究的基本方法。
[教学难点]:1、定义的灵活运用;2、焦点三角形中椭圆定义、正、余弦定理等知识的组合应用;3、解析几何综合问题解题的构思、复杂运算的处理等。
[数学思想方法]:在解决问题的过程中,要注意数形结合,等价转化以及分类讨论等数学思想方法的渗透。
[教学手段]:适当借助现代信息技术手段提高课堂效益。
[教材分析]:按现行高中新课标教材,本节内容是在学生们学习了必修2《直线与圆》的知识,又学习了选修2-1《椭圆》的基础知识后,为提高学生们解决解析几何问题的能力而进行的一节习题课,本课时拟以题型归类的方式展开教学,选择的教学内容有:椭圆的定义问题,椭圆中焦点三角形问题以及直线与椭圆位置关系研究等,这些内容在历年高考中都是重点考察的对象,几乎是年年必考,而学生们学习这些知识并不太容易,尤其是针对本届学生的基础,更是具有较大的难度。
[教学流程图]:●热身运动→●关于椭圆定义的运用→●关于椭圆焦点三角形中有关问题的解决→●题型变式训练→●关于直线与椭圆位置关系研究→●小结→●布置作业[教学情景设计]本节课配备的练习及例题:一、热身运动:例1.方程11222=-+m y m x 表示椭圆,则实数m 的取值范围是 。
高中数学北师大版选修2-1同步配套教学案第三章 3.1 椭圆
§椭圆.椭圆及其标准方程设计游戏时,要考虑游戏的公平性.某电视台少儿节目欲设计如下游戏.规则是:参赛选手站在椭圆的一个焦点处,快速跑到随机出现在椭圆上的某一点处,然后再跑向另一个焦点,用时少者获胜.考验选手的反应能力与速度.问题:参赛选手要从椭圆的一焦点跑向椭圆上随机一点再跑向椭圆的另一焦点,每个参赛选手所跑的路程相同吗?提示:相同.问题:这种游戏设计的原理是什么?提示:椭圆的定义.椭圆上的点到两焦点距离之和为定值.问题:在游戏中,选手所跑的路程能否等于两焦点间的距离?为什么?提示:不能.椭圆上的点到两焦点距离之和一定大于两焦点间的距离.椭圆的定义在平面直角坐标系中,已知(-),(),(),(,-).问题:若动点满足+=,则点的轨迹方程是什么?提示:+=.问题:若动点满足+=,则动点的轨迹方程是什么?提示:+=.椭圆的标准方程.平面内点到两定点,的距离之和为常数,当>时,点的轨迹是椭圆;当=时,点的轨迹是一条线段;当<时,点的轨迹不存在..椭圆的标准方程有两种形式,若含项的分母大于含项的分母,则椭圆的焦点在轴上,反之焦点在轴上.[例]()=,=,焦点在轴上;()+=,=;()经过点(,-)和点(-,).[思路点拨]求椭圆的标准方程时,要先判断焦点位置,确定椭圆标准方程的形式,最后由条件确定和的值.[精解详析]()焦点在轴上,设标准方程为+=(>>),则=,=-=-=.∴椭圆的标准方程为+=.()(\\(+=,-=))⇒(\\(+=,,(+((-(=))⇒(\\(+=,-=))⇒(\\(=,=.))∴椭圆的标准方程为+=或+=.()法一:①当焦点在轴上时,设椭圆的标准方程为。
2.1《椭圆》教案(新人教选修2-1)
教学目标:(1)掌握椭圆定义和椭圆标准方程的概念;能根据椭圆标准方程求焦距和焦点,初步掌握求椭圆标准方程的方法。
(2)在进一步培养学生类比、数形结合、分类讨论和化归的数学思想方法的过程中,提高学生学习能力。
(3)培养学生科学探索精神、审美观和理论联系实际思想。
教学重点:椭圆的定义和椭圆的标准方程。
教学难点:椭圆定义和椭圆标准方程的联系。
教学方法:探究、讨论。
教学手段:运用多媒体技术(有Authorware课件)和实物投影仪。
教学过程:引言:曲线是一种空间图形,方程是一种数量关系。
探索和研究直线方程与圆方程的过程告诉我们:当曲线上的点所成的集合与方程的解所成的集合建立一一对应后,形与数就密切联系起来了。
于是关于曲线性质的几何问题与关于曲线方程的代数问题就可以相互转化了。
通过对圆的形成过程和圆方程的建立过程的回忆,从一个动点以类比的方法探索平面上有规律的动点运动轨迹,引入研究课题:椭圆与它的标准方程。
根据椭圆的形成过程,请学生给出椭圆定义。
利用求轨迹方程的思想方法,根据椭圆定义探索椭圆的轨迹方程。
概念辨析:抓住形(椭圆)与数(椭圆的标准方程)的内在联系。
例1已知椭圆的焦距是6,椭圆上的点到两个焦点的距离的和等于10,写出椭圆的标准方程。
解题思考:无法确定焦点位置时,应分情况进行讨论。
挑战:同桌俩人能否围绕椭圆定义和椭圆的标准方程,商量后出一道练习题?(学生商量出题,教师巡视指导)选择有代表性的练习题,进行全班交流,教师点评。
例2太平洋上有A、B两个岛屿,B岛在A岛正东40海里处。
经多年观察研究发现,某种鱼群洄游的路线象一个椭圆,其焦点恰好是A、B两岛。
曾有渔船在距A岛正西20海里处发现过鱼群。
某日,研究人员在A、B两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),A、B两岛收到鱼群反射信号的时间比为5:3,你能否判断鱼群此时的位置?(请学生议论后发言,教师点评。
)课堂小结:(1) 数学知识;(2) 数学思想;(3) 研究动点运动规律、探索曲线方程、解决实际问题过程给我们的启示。
人教版高中数学选修2-1《椭圆与其标准方程》教案
人教版高中数学选修2-1 《椭圆及其标准方程》教案一、课型新授课二、教学内容1、椭圆的定义;2、椭圆的两类标准方程;3、根据椭圆的定义及标准方程的知识解决一些简单的问题。
三、教学目标1、知识与技能:理解并掌握椭圆的定义;明确焦点、焦距的概念;掌握椭圆标准方程的两种形式及其推导过程;掌握 a、b、c 三个量的几何意义及它们之间的关系。
能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;2、过程与方法:通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力。
让学生感知数学知识与实际生活的普遍联系;3、情感态度与价值观:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识。
培养学生的探索能力和进取精神,提高学生的数学思维的情趣,给学生以成功的体验,形成学习数学知识的积极态度。
通过椭圆的形成过程培养学生的数学美感,同时培养团队协作的能力。
四、教学重点、难点重点:椭圆的定义及椭圆的标准方程;难点:椭圆标准方程的推导过程。
五、教学方法教师引导为主、学生自主探究为辅。
六、教学媒体幻灯片、黑板。
七、教学过程(一)创设情境,导入新课用多媒体演示神舟飞船绕地球旋转的模型,它运行的轨迹又是什么图形呢?可以看出,它的运行轨迹是椭圆。
此时老师指出:在实际生活中,椭圆随处可见,很多学科也涉及到椭圆的应用,所以学习椭圆的相关知识是十分必要的。
这就是我们这节课所要学习的内容——椭圆及其标准方程。
(二)问题探究老师提问:我们从直观上认识了椭圆,那么椭圆它是如何形成的呢?椭圆满足什么样的条件呢?它的定义又是如何?1、椭圆的形成下面请各小组拿出老师之前让大家准备的工具:一段固定长的细绳、两颗钉子、一块长 3 分米,宽 3 分米的硬纸板。
然后将钉子系在细绳的两头,将钉子固定在图板上,使得两个钉子之间的距离小于细绳的长度(请同学们考虑一下,为什么两顶子之间的距离要小于细绳的长度?),我们用笔尖将细绳拉紧,让笔尖在图板上慢慢移动,请同学们观察笔尖运动的轨迹是什么图形呢?如果我们将两个钉子之间的距离变大,使得两个钉子之间的距离恰好等于细绳的长度,同样用笔尖将细绳拉紧,让笔尖在图板上慢慢移动。
高中数学人教B版选修2-1教案:2.2椭圆性质一习题课8+
20XX—20XX学年度第二学期高二数学教案主备人:使用人:时间:20XX年XX月的一个焦点和一个随堂小测1.如果一个椭圆的长轴长是短轴长的2倍,那么这个椭圆的离心率为()A C2.已知焦点在x轴上的椭圆的离心率A C3.已知过椭∠F1PF2=60°,则椭圆的离心率为()A C4.若方A.a<0B.-1<a<0C.a<1D.a>1★5.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是()A C6.若椭7.椭△FAB的周长最大时,△FAB的面积是.8.已知直线x+2y-2=0经过椭9.已知椭★10.已知椭精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
人教版高中数学选修2-1 椭圆习题课 教学设计
人教版高中数学选修2-1 椭圆习题课教学设计课题:选修2-1 椭圆习题课厦门二中[三维目标]:(一)知识与技能目标:1、使学生进一步熟悉椭圆的有关知识,如定义、标准方程、基本几何性质等2、使学生较好地掌握椭圆定义,并能恰当运用之于实际解题中;3、通过对焦点三角形以及直线与椭圆位置关系的研究,提高学生综合运用知识解决问题的能力;4、借助知识的广泛联系,培养学生综合的思维水平和正确认识事物之间的普遍联系的能力,通过问题的探究,激发学生的学习热情。
(二)过程与方法:本课时通过题型归类的方法,采取从易到难逐步上升的方式,使学生感知椭圆知识的应用,通过学生们不断的自主探究,培养学生的逻辑推理能力及运算能力,渗透分类转化及数形结合的数学思想。
(三)情感、态度与价值观:了选修2-1《椭圆》的基础知识后,为提高学生们解决解析几何问题的能力而进行的一节习题课,本课时拟以题型归类的方式展开教学,选择的教学内容有:椭圆的定义问题,椭圆中焦点三角形问题以及直线与椭圆位置关系研究等,这些内容在历年高考中都是重点考察的对象,几乎是年年必考,而学生们学习这些知识并不太容易,尤其是针对本届学生的基础,更是具有较大的难度。
[教学流程图]:●热身运动→●关于椭圆定义的运用→●关于椭圆焦点三角形中有关问题的解决→●题型变式训练→●关于直线与椭圆位置关系研究→●小结→●布置作业[教学情景设计]问题设计意图师生活动热身运动:通过两道极其简单的椭圆习题,引导学生回顾椭圆的基础知识。
让学生从具体的问题切入,引导学生回忆起所学过的椭圆的基础知识。
教师提出问题,让学生思考讨论并作答。
学生活动的时间要适当加以控制。
教师提出两道利用椭圆定义就能解决的基本问题,培养学生能正确认识并良好使用定义。
例3旨在使学生正确认识椭圆定义;例4可使学生初步感受到定义运用的魅力有的学生可能会在知识的全面性上犯错误,可让学生相互讨论,得出结论。
关于例5、例6的教学,则是椭圆定义题的较高层次的运用,有一定的难度,教师要发挥引导的作用。
高中数学新人教A版选修2-1课件:习题课——椭圆的综合问题及应用
探究二
探究三
当堂检测
(2)由(1)知a=2,|F1F2|=2c=2.
在△PF1F2中,由勾股定理,得|PF2|2=|PF1|2+|F1F2|2,
即|PF2|2=|PF1|2+4.
又由椭圆定义知|PF1|+|PF2|=2×2=4,
所以|PF2|=4-|PF1|.
从而有(4-|PF1|)2=|PF1|2+4.
答案有三种位置关系,分别为相交、相切、相离.
课前篇自主预习
2.直线与椭圆的位置关系
(1)直线与椭圆有三种位置关系:相交、相切、相离.
(2)判断直线与椭圆位置关系的方法:将直线方程ax+by+c=0
2
与椭圆方程 2
+
2
2 =1(a>b>0)联立,消去
y(或 x),得到关于 x(或 y)的
一元二次方程,记该方程的判别式为 Δ.若 Δ>0,则直线与椭圆相交;
3
解得|PF1|=2.
1
2
1
2
3
2
3
2
所以△ PF1F2 的面积 S= ·|PF1|·|F1F2|= × ×2= ,即△ PF1F2
3
2
的面积是 .
课堂篇探究学习
探究一
探究二
探究三
当堂检测
探究二与椭圆有关的轨迹问题
例2 已知两圆C1:(x+4)2+y2=9,C2:(x-4)2+y2=169,动圆P与C1外切,
8
4
又因为|AF1|=2|AF2|,所以|AF1|=3,|AF2|=3.
在△ AF1F2 中,由余弦定理,得
高中数学 2.2《椭圆》教案 新人教A版选修2-1
椭圆【课题】椭圆【课型】高三复习课【授课教师】【教材分析】圆锥曲线是解析几何的主体内容,也是高中数学的重点内容,而椭圆是圆锥曲线的起始部分,通过本节课的学习,不但让学生对椭圆的知识结构有一个较清晰的认识,而且在处理问题时,让学生学会灵活运用定义,正确选用标准方程,恰当利用几何性质,合理的分析,准确的计算。
并且为复习双曲线和抛物线奠定了基础。
【学情分析】根据“诱思探究教学论”,教学过程中遵循“探索——研究——运用”的三个层次要素,侧重学生的“思”、“探”、“究”的自主学习。
通过教师的“诱”,学生的动脑“思”,使学生的学习达到“探索得资料,研究获本质”。
【教学目标】1、知识目标:掌握椭圆的定义,标准方程和椭圆的几何性质。
2、能力目标:培养学生的解析几何观念,培养学生观察、概括能力,以及类比的学习方法,培养学生分析问题、解决问题的能力。
3、思想目标:⑴培养学生对待知识的科学态度和主动探索精神,激发学生学习激情,提高数学素养。
⑵通过圆锥曲线的学习,可以对学生进行对立、统一的唯物主义思想教育。
【教学重点】1、椭圆的定义,标准方程和几何性质。
2、利用性质解决一些问题。
【教学难点】椭圆定义和几何性质的灵活应用。
【教学方法】诱思探究教学法【教具准备】多媒体电脑课件 【教学过程】一、知识梳理 构建网络问题1:平面内与两个定点F 1、F 2的距离之和为常数的点的轨迹是什么?常数大于|F 1F 2|的点的轨迹是椭圆 常数等于|F 1F 2|的点的轨迹是线段F 1F 2 常数小于|F 1F 2|的点的轨迹不存在问题2:平面内到定点F 与到定直线l 的距离之比为常数的点的轨迹是椭圆吗?常数e(0<e<1)点的轨迹是椭圆问题3:椭圆的标准方程的两种形式是什么?12222=+b y a x , 12222=+ay b x ,(a >b >0) 分别表示中心在原点,焦点在 x 轴和y 轴上的椭圆问题4:椭圆的几何性质有哪些?2F 1F M二、要点训练 知识再现例1.已知椭圆 )0,(12222>=+b a by a x 长半轴的长等于焦距,且 4=x 为它的右准线,椭圆的标准方程为:例2.椭圆上一点P 到左准线的距离为10,F 1是左焦点,O 是坐标原点,点M 满足,则21162522=+y x )(211OF OP OM +=.,0,,,)0(1)06.(321212222的范围求椭圆离心率使若椭圆上存在一点的两焦点为设椭圆模拟例e PF PF P F F b a by a x =⋅>>=+2212221212121020100||||||,0||,||,||),,(解法一F F PF PF PF PF PF PF F F ex a PF ex a PF y x P =+⊥∴=⋅-=+= 则:设)1,22[200,024)()(22222022202220222020∈∴<-≤∴<≤∴<≤∴-==-++e c a c c x e a x x p a c x e c ex a ex a 轴上在椭圆上但不在即1222,.,02222222212121<≤⇒≤∴≤-∴≤⇒≤∴⊥∴=⋅e c a c c a c b c b P F F P PF PF PF PF ,椭圆有又在椭圆上,所以圆与而为直径的圆上,在以所以解法二:公共点探究:以c 为半径的圆与椭圆的位置关系?三、学以致用 直通高考357||||||||||||||||||||||||||||||||||||||41525162617277161514131211132512261127252627==++++++=++++++∴===a P F P F P F P F P F P F P P F P F P F P F P F P F P F P F P F P F P F P F P F P F P F P ,,,,由题意知,,,解法二:连接___||||||811625)06.(4171211172122=+⋯⋯++⋯⋯=+F P F P F P F P P P x y x 则七个点,,,于的垂线交椭圆上半部分轴等分,过每个分点作的长轴分成把椭圆四川例四、知识迁移 提升能力.?|F P ||F P ||,F P ||,F P |, P ,P ,8116251812111080172122差说明理由,若是求出公,是否为判断长轴与椭圆交于是椭圆的左焦点七个点,,,半部分于轴的垂线交椭圆上等分,过每个分点作的长轴分成把椭圆等差数列:变式练习 F P P P x y x ⋯⋯=+五、课后小结 谈谈收获通过本节课的学习,同学们应明确以下几点:357)(7||||||||||7321171613121176543217654321==+++++=+++++a x x x x e a F P F P F P F P F P x x x x x x x P P P P P P P ,,,,,,的横坐标分别为,,,,,,解法一:设43'||||||||||||8045810}{x :1810101111n 810810==∴⋯⋯∴=-+=∈≤≤==⋯⋯⋯⋯+ed d F P F P F P ed F P F P ex a F P N n n d x x x P P P n n n n ,,)。
高中数学选修2-1教学设计-椭圆的简单几何性质
§2.2.2 椭圆及其简单几何性质(2)【使用说明及学法指导】1.先自学课本,理解概念,完成导学提纲;2.小组合作,动手实践。
【学习目标】1.根据椭圆的方程研究曲线的几何性质;2.椭圆与直线的关系.【重点】理解曲线的方程、方程的曲线【难点】求曲线的方程一、自主学习1.预习教材P46~ P48, 找出疑惑之处复习1:椭圆2211612x y+=的焦点坐标是()();长轴长、短轴长;离心率.复习2:直线与圆的位置关系有哪几种?如何判定?2.导学提纲问题1:想想生活中哪些地方会有椭圆的应用呢?问题2:椭圆与直线有几种位置关系?又是如何确定?反思:点与椭圆的位置如何判定?二、典型例题例1 。
教材46页例5变式:若图形的开口向上,则方程是什么?例2 教材47页例7变式:最大距离是多少?例3.教材50页2题三、拓展探究1.已知地球运行的轨道是长半轴长81.5010a km =⨯,离心率0.0192e =的椭圆, 且太阳在这个椭圆的一个焦点上,求地球到太阳的最大和最小距离.2.经过椭圆2212x y +=的左焦点1F 作倾斜角为60的直线l ,直线l 与椭圆相交于,A B 两点,求AB 的长. 变式:已知椭圆2212x y +=,直线l :y=kx-3,直线l 与椭圆有公共点,有一个公共点,有二不同的公共点,无公共点,分别讨论对应的k 的取值范围。
.四、课堂小结1.知识:2.数学思想、方法:五、课后巩固1.设P 是椭圆 2211612x y +=上一点,P 到两焦点的距离之差为2,则12PF F ∆是( ). A .锐角三角形 B .直角三角形C .钝角三角形D .等腰直角三角形2.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ).C. 21 3.已知椭圆221169x y +=的左、右焦点分别为12,F F ,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( ).A. 95B. 3C. 94 4.椭圆的焦距、短轴长、长轴长组成一个等到比数列,则其离心率为 .5.椭圆2214520x y +=的焦点分别是1F 和2F ,过原点O 作直线与椭圆相交于,A B 两点,若2ABF ∆的面积是20,则直线AB 的方程式是 .6.教材49页8题7.教材50页1题。
河北省邢台一中高二人教A版数学选修2-1 椭圆习题课 学案
邢台一中高二数学学案——椭圆习题课(一)(10月5日)只有一条路不能选择——那就是放弃的路;只有一条路不能拒绝——那就是成长的路。
——与高二全体同学共勉 一.基本学问概要1 椭圆的两种定义:①平面内与两定点F 1,F 2的距离的和等于定长()212F F a >的点的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。
其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。
②平面内一动点到一个定点和肯定直线的距离的比是小于1的正常数的点的轨迹,即点集M={P| e dPF =,0<e <1的常数}。
(1=e 为抛物线;1>e 为双曲线)2 标准方程:(1)焦点在x 轴上,中心在原点:12222=+by a x (a >b >0);焦点F 1(-c ,0), F 2(c ,0)。
其中22b a c -=(一个∆Rt )(2)焦点在y 轴上,中心在原点:12222=+bx a y (a >b >0);焦点F 1(0,-c ),F 2(0,c )。
其中22b a c -=留意:①在两种标准方程中,总有a >b >0,22b a c -=并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。
3.性质:对于焦点在x 轴上,中心在原点:12222=+b y a x (a >b >0)有以下性质:坐标系下的性质:① 范围:|x|≤a ,|y|≤b ;② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0); ③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ;(a 半长轴长,b 半短轴长);④ 准线方程:ca x 2±=;或ca y 2±=⑤ 焦半径公式:P (x 0,y 0)为椭圆上任一点。
人教版高中数学选修2-1 椭圆习题课 教学设计
课题:选修2-1 椭圆习题课厦门二中[三维目标]:(一)知识与技能目标:1、使学生进一步熟悉椭圆的有关知识,如定义、标准方程、基本几何性质等2、使学生较好地掌握椭圆定义,并能恰当运用之于实际解题中;3、通过对焦点三角形以及直线与椭圆位置关系的研究,提高学生综合运用知识解决问题的能力;4、借助知识的广泛联系,培养学生综合的思维水平和正确认识事物之间的普遍联系的能力,通过问题的探究,激发学生的学习热情。
(二)过程与方法:本课时通过题型归类的方法,采取从易到难逐步上升的方式,使学生感知椭圆知识的应用,通过学生们不断的自主探究,培养学生的逻辑推理能力及运算能力,渗透分类转化及数形结合的数学思想。
(三)情感、态度与价值观:椭圆知识的综合运用,内含知识丰富,构思巧妙严谨,处理灵活机变,有较强的趣味性,隐含较强的逻辑推理能力,在应用过程中,使学生体会学习数学的乐趣和特有的数学之美。
[教学重点]:1、椭圆基础知识运用,特别是定义、焦点三角形等问题的处理;2、直线与椭圆位置关系的研究的基本方法。
[教学难点]:1、定义的灵活运用;2、焦点三角形中椭圆定义、正、余弦定理等知识的组合应用;3、解析几何综合问题解题的构思、复杂运算的处理等。
[数学思想方法]:在解决问题的过程中,要注意数形结合,等价转化以及分类讨论等数学思想方法的渗透。
[教学手段]:适当借助现代信息技术手段提高课堂效益。
[教材分析]:按现行高中新课标教材,本节内容是在学生们学习了必修2《直线与圆》的知识,又学习了选修2-1《椭圆》的基础知识后,为提高学生们解决解析几何问题的能力而进行的一节习题课,本课时拟以题型归类的方式展开教学,选择的教学内容有:椭圆的定义问题,椭圆中焦点三角形问题以及直线与椭圆位置关系研究等,这些内容在历年高考中都是重点考察的对象,几乎是年年必考,而学生们学习这些知识并不太容易,尤其是针对本届学生的基础,更是具有较大的难度。
[教学流程图]:●热身运动→●关于椭圆定义的运用→●关于椭圆焦点三角形中有关问题的解决→●题型变式训练→●关于直线与椭圆位置关系研究→●小结→●布置作业[教学情景设计]本节课配备的练习及例题:一、热身运动:例1.方程11222=-+m y m x 表示椭圆,则实数m 的取值范围是 。
新人教A版(选修2-1)《椭圆及其标准方程》word教案
学校:临清一中学科:数学编写人:周晨昌审稿人:张林椭圆及其标准方程【教学目标】1使学生理解并掌握椭圆的定义、标准方程及其推导过程,并能进行简单应用.2•通过数形结合,教学生猜想,培养学生的探索发现能力.3•帮助学生树立运动变化的观点,培养学生的探索能力和进取精神.【教学重难点】教学重点:对椭圆的定义的理解及其标准方程记忆,教学难点:椭圆标准方程的推导.【教学过程】一、复习并引入新课师:在解析几何中,我们通常把动点按照某种规律运动形成的轨迹叫做曲线•曲线和方程的关系是什么?生:如果曲线上任意一点的坐标都是方程f(x , y)=0的解,同时以方程f(x , y)=0的解为坐标的点又都在曲线上,那么方程就是曲线的方程,曲线就是方程的曲线.师:圆的定义是:在平面上,至U定点的距离等于定长的点的轨迹;那么当动点满足哪些条件时轨迹仍然是圆?生:①平面上到两个定点 (距离为2d)距离的平方和等于定值 a(a >2d2)的点的轨迹是圆;②平面上,与两个定点连线的斜率乘积为-1的点的轨迹是圆.(以上结论在本节课之前书上习题中,请学生自己总结. )师:由此可见,平面上到两个定点距离或与两个定点连线满足某种条件的点的轨迹比较特殊,下面就从这点出发研究.二、讲授新课1 •请学生观察计算机演示如图2-23,并思考两个问题.图 2-24(1) 动点是在怎样的条件下运动的? (2) 动点运动出的轨迹是什么? 观察后请学生回答.生:动点是在“到两个定点距离之和等于定值”这一条件下 运动的,轨迹是椭圆.师:椭圆这种曲线你在哪些地方见过? 生:立体几何中圆的直观图是椭圆. 生:人造卫星的运行轨道.师:好,这种曲线在实际生活中是很常见的,很多物体的横截面的轮廓线也是椭圆, 可见学习这种曲线的有关知识是十分必要的.(联系实际生活进行教学可以使教学内容亲切,激发学生的学习热情. )师:是否到两个定点距离之和等于定值的点的轨迹就一定是椭圆呢? (学生可能一时答不出,教师可请学生观察计算机演示如图2-24并思考.)师:当两个定点位置变化时,轨迹发生了怎样的变化?生:当两个定点重合时,轨迹变化为圆;当定值等于两个定点间的距离时,轨迹是一条线段.师:可见圆是椭圆的特例•据此你能得到什么结论?生:平面上不存在到两个定点距离之和小于定值的点.说明:观察计算机演示“通过两焦点位置的改变而引起椭圆形状变化的课件”,首先从一个点分裂为两个点,曲线从圆变成椭圆;随着两点间距离的增大,椭圆越来越扁,直到动点到此两点距离之和恰好等于两点间距离时,动点的运动曲线变成了线段,然后随着两点间距离的缩小,曲线再变成椭圆;当两点重合时,曲线又变成了圆,如此反复”如图2-24 .从而启发学生发现椭圆定义中的条件,然后师生共同小结完成下表,教师可用投影进行完整的总结.在平面上到两个定点 F i, F2距离之和等于定值 2a的点的轨迹为椭圆(加〉厲巧|);弋线段(為=|F]Fj)1不存在(2枝<|耳兔).最后由学生口述教师板书:把平面内与两个定点F i, F2距离之和等于定值 2a的点的轨迹叫做椭圆,其中2a> IF1F2I .顺便可以指出两个定点叫做焦点,两个焦点之间的距离叫做焦距,用2c(c > 0)表示.2.推导椭圆的标准方程.师:下面我们一起来推导椭圆的方程.教师提出问题:求到两个定点F i, F2距离之和等于定值 2a(2a >|F1F2|)的点的轨迹.师:求曲线方程的步骤是什么?生:求曲线方程的步骤是:①建立坐标系设动点坐标:②寻找动点满足的几何条件;③把几何条件坐标化;④化简得方程;⑤检验其完备性.师:那么此题应如何建立坐标系呢?建立直角坐标系一般应符合简单和谐化的原则,如使关键点的坐标、关键几何量(距离、直线的斜率等)的表达式简单化,注意要充分利用图形的特殊性.(让学生思考后回答)教师归纳大体上有如下三个方案:①取一个定点为原点,以 F i , F 2所在直线为x 轴建立直角坐标系,如图 2-25 ;②,如图2-27,推导出方程.解析:i)建系:以F i , 并设椭圆上任意一点的坐标为F 2所在直线为x 轴,线段F i F 2的中点为原点建立直角坐标系, M(x, y),设两定点坐标为:F i (-c , 0) , F 2(C , 0), 2) 则 M 满足:|MF i |+|MF 2|=2a ,3) 坐标化即:J (x 二)行戸+J (x-5仃沪二2乳4) 化简.师:我们要化简方程就是要化去方程中的根式,你学过什么办法?②以F i ,F 2所在直线为 ③以F i ,F 2所在直线为 y 轴,线段F 1F 2的中点为原点建立直角坐标系,如图 2-26 ;x 轴,线段F i F 2的中点为原点建立直角坐标系,最后选定方案團 2-25生:化去方程中的根式应该用移项平方、再移项再平方的办法.师:好,下面我们就一起来完成这部分计算. (师生共同完成)十 C)? =2a- +y ;两边平方得:(x + c)2 + y 2 - 4a 2 -4a^(x - c)a + y 2 + (K - c)2 +『, 即f w J(n)2 + J ・两边再平方得:422 2 2 2 2 2 2 2 2a -2a cx+c x =a x -2a cx+a c +a y ,整理得:22 222 22 2(a -c )x +a y =a (a -c ).师:还有其它化简的方法吗? 一般遇到化简根式的问题你应该想到什么?生:共轭根式.师:好,下面我们就通过构造共轭根式、解方程组的办法化方程中的根式.(师生共同完成•此部分内容可根据学生情况选讲)2 2 2 2(x+c) +y -[(x-c) +y ]=4cx』(注+沪+寸=—+ a ©两边平方得 1 x 3 + 2cac + c 3 + y 3 = a a + 2cx + ——化简得: / 2 2、 2 2 2 2/ 2 2、 (a -c )x+a y =a (a -c ).师:到此我们已经推导出了椭圆的方程,但此形式还不够简洁,且x, y 的系数形式不一致,为了使方程形式和谐且便于记忆和使用,我们应该如何将方程进行变形呢? (这里,数学审美成为研究发现的动力. )学生此时可能还不理解,教师可启发学生观察图形如图 2-28,看看a 与c 的关系如何?②,由②十①得:③.①+③得:师:请结合图形找出方程中 a、c的关系.生:根据椭圆定义知道 a2> c2,且如图所示,a与c可以看成Rt△ MOF的斜边和直角边.师:很好!那我们不妨令 b2=a2-c2,则方程就变形为 b2x2+a2y2=a2b2,如果再化简,你会得到什么形式的方程呢?生方程变册扌+春1・⑴师:其中a与b的关系如何?为什么?生:a> b>0,因为a与b分别是Rt△ MOF的斜边、直角边.教师指出(*)式就是焦点在x轴上的椭圆的标准方程,最后说明:1)方程中条件a>b>0不可缺少(结合图形),当a=b>0时,就化成圆心在原点的圆的方程,从而进一步说明圆是椭圆的特例;(这实际上是一种极限情况.)2)b的选取虽然是为了方程形式简洁与和谐,但也有实际的几何意义,即:b2=a2-c2;3)请学生猜想:若用方案③ (即焦点在y轴上),得到的方程形式又如何呢?(启发学生根据对称性进行猜想)生t方程形式为^ + ― = 1- a y师:请同学们课后进行推导验证.师:此时方程中a与b的关系又如何?(结合图形请学生将条件 a>b>0补上.)三、例题例1. 平面内两个定点间的距离为 8,写出到这两个定点距离之和为 10的点的轨迹方程.解析:所求轨迹是椭圆,两个定点为焦点,用R, F2表示,不妨以R, F2所在直线为x轴,线段F1F2的中垂线为y轴,建立直角坐标系,则 2a=10, 2c = 8,因为b2=a2-c2=9, 故所求轨迹方程为寻+ ¥“•(另一种情况壬+ ^T也可以,但只有一解)点评:很多学生不建立坐标系就写出了方程•强调建立不同的坐标系会得到不同的方程,因此当题目中没有给定坐标系时,首先应选择合适的坐标系.变式训练1。
四川省宜宾市一中2015-2016学年度高中数学椭圆习题课教学设计新人教A版选修2-1
椭圆习题课第1课时课题:椭圆知识要点归纳及椭圆定义的应用.目标:使学生进一步掌握椭圆的定义、标准方程、几何性质、以及一些与椭圆相关的结论,掌握椭圆定义的应用.重点:椭圆的知识要点及定义的应用. 难点:相关结论的推导. 过程:一、椭圆知识要点: 1.椭圆的定义: 第一定义:平面内到两个定点12,F F 的距离之和等于定长2a (2a 12F F >)的点的轨迹。
①椭圆上任意一点M ,满足12122MF MF a F F +=>.②当点M 满足||2||||2121F F a MF MF ==+时表示的图形为线段12FF . ③当点M 满足||2||||2121F F a MF MF <=+时不表示任何图形.第二定义:平面内到定点F 与到定直线l 的距离之比等于常数e (e ()0,1∈)的点的轨迹.椭圆上任意一点M ,满足(01)MF e e d=<<。
2椭圆的方程及简单性质:3焦准距:椭圆的焦点到相应的准线的距离,2b p c=。
4 通径:过椭圆的焦点且垂直于长轴的弦叫椭圆的通径,2122b H H a=。
5 结论:如果21PF F α∠=,12PF F β∠=,由定义和正弦定理可以推出离心率cos 2cos2e αβαβ+=-(如图) 6点000(,)P x y 与椭圆22221x y a b +=(0a b >>)的关系(1)点000(,)P x y 在椭圆22221x y a b +=内部,则2200221x y a b +<(2)点000(,)P x y 在椭圆22221x y a b +=上,则2200221x y a b +=(3)点000(,)P x y 在椭圆22221x y a b +=外部,则2200221x y a b+>7 椭圆的切线问题(1)椭圆22221x y a b +=(0a b >>)上一点000(,)P x y 出的切线方程为00221xx yya b+=(2)直线0Ax By C ++=与椭圆22221x y a b +=(0a b >>)相切的条件为22222A aB bC +=(3)过椭圆22221x y a b+=(0a b >>)外一点000(,)P x y 引椭圆的两条切线,切点分别为1P 与2P ,则直线12PP (切点弦所在直线)的方程为00221xx yy a b+= (4)过切点与此点处切线垂直的直线称为椭圆的法线,经过椭圆上一点的法线平分过这一点的两条焦半径的夹角。
高中数学人教A版选修2-1教案-2.2 椭圆_教学设计_教案_1
教学准备1. 教学目标1.知识与技能(1)理解椭圆的定义,掌握椭圆的标准方程;(2)能根据已知条件求椭圆的标准方程;2.过程与方法(1)让学生经历椭圆概念的形成过程,培养学生动手能力和合作学习能力,锻炼学生观察分析和归纳概括能力;(2)通过椭圆标准方程的推导过程,使学生进一步理解曲线与方程的概念,体会用建立曲线方程的基本方法——坐标法,渗透数形结合思想,培养计算能力。
(3)在求解椭圆的标准方程的过程,使学生掌握待定系数法,并渗透分类讨论思想。
3.情感、态度和价值观(1)亲身经历椭圆标准方程的获得过程,感受数学美(对称美、简洁美)的熏陶;(2)通过主动探索,合作交流,体会数学的理性和严谨;(3)通过经历椭圆方程的化简,增强学生战胜困难的意志品质和锲而不舍的钻研精神,养成扎实严谨的科学态度。
2. 教学重点/难点教学重点:椭圆的定义及其标准方程教学难点:椭圆的标准方程的推导与化简3. 教学用具4. 标签教学过程教学过程:一、创设情境,引入课题几何画板演示一些天体运行的轨迹图,并提出问题——这些天体运行的轨迹是什么?学生经过观察,很直观地看出是椭圆。
问:你能不能列举生活中椭圆的例子?从而引出课题[设计意图]激发学习兴趣,了解生活中有椭圆,说明研究椭圆的必要性。
二、实验探究,形成概念1、取一条定长的细绳,把它的两端都固定在图版的同一点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖(动点)画出的轨迹是什么?(回顾圆定义)2、如果把细绳的两端拉开一段距离,将圆心分开变成两个,绳子两端固定在这两个定点上,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线。
学生活动:拿出事先准备的学具,动手合作操作,画出椭圆。
教师活动:用教具画椭圆。
3、在这一过程中,移动的笔尖(动点)满足的几何条件是什么?4、你能自己归纳椭圆的定义吗?活动:学生观察分析、归纳定义,老师补充概括,给出椭圆定义,并引导学生注意对关键条件。
5、为什么常数要大于呢?(教师操作,学生观察分析三种情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修2-1椭圆习题课教学设计
[教材分析]:
按现行高中新课标教材,本节内容是在学生们学习了必修
学习了选修2-1《椭圆》的基础知识后,为提高学生们解决解析几何问题的能力而进行的一 节习题课,本课时拟以题型归类的方式展开教学,
选择的教学内容有: 椭圆的定义问题,椭
的对象,几乎是年年必考,而学生们学习这些知识并不太容易, 尤其是针对本届学生的基础, 更是具有
较大的难度。
[学情分析]:
椭圆是圆锥曲线中最重要的一种曲线,学生通过前几节课的学习,对椭圆的代数和几 何性质有了初步的了解,
但还不能达到融汇贯通的地步,本节通过对具体问题的分析与讨论,
使学生对综合问题有一个清楚的认识, 并通过综合问题的解答,渗透数形结合思想、分类与 整合思想、化归与转化思想,提高学生的逻辑推理能力、运算求解能力和探索能力。
[教学目标]:
(一) 知识与技能目标:
1、使学生进一步熟悉椭圆的有关知识
,如定义、标准方程、基本几何性质等 2、使学生较好地掌握
椭圆定义,并能恰当运用之于实际解题中;
3、通过对焦点三角形以及直线与椭圆位置关系的研究,提高学生综合运用知识解决 问题的能力;
4、借助知识的广泛联系,培养学生综合的思维水平和正确认识事物之间的普遍联系 的能力,通过问题的探
究,激发学生的学习热情。
(二) 过程与方法:
本课时通过题型归类的方法,采取从易到难逐步上升的方式,使学生感知椭圆知识 的应用,通过学生们不断的自主探究,培养学生的逻辑推理能力及运算能力,渗透 分类转化及数形结合的数学思想。
(三) 情感、态度与价值观:
椭圆知识的综合运用,内含知识丰富,构思巧妙严谨,处理灵活机变,有较强的趣 味性,隐含较强的逻辑推理能力,在应用过程中,使学生体会学习数学的乐趣和特 有的数学之美。
[教学重点]:1、椭圆基础知识运用,特别是定义、焦点三角形等问题的处理;
2、直线与椭圆位置关系的研究的基本方法。
[教学难点]:1、定义的灵活运用;
2、焦点三角形中椭圆定义、正、余弦定理等知识的组合应用;
3、解析几何综合问题解题的构思、复杂运算的处理等。
2《直线与圆》的知识,又
圆中焦点三角形问题以及直线与椭圆位置关系研究等,
这些内容在历年高考中都是重点考察
[数学思想方法]:在解决问题的过程中,要注意数形结合,等价转化以及分类讨论等数学思
想方法的渗透。
[教学手段]:适当借助现代信息技术手段提高课堂效益。
[教学流程图]:
•热身运动7•关于椭圆定义的运用7•关于椭圆焦点三角形中有关问题的解决
7•题型变式训练7•关于直线与椭圆位置关系研究7•小结7•布置作业
本节课配备的练习及例题:
、热身运动:
2 2
例1.方程 ・+ — =1表示椭圆,则实数 m
的取值范围是
m 2m —1
(若将上题改为:方程表示焦点在 y 轴上的椭圆,贝y m € ___________________________ 。
)
16x2
+ 25y 2
= 400的长轴、短轴的长,离心率、焦点坐标、顶点坐标及准线方
程。
轨迹是(
△ AB F I 的周长为(
2 例6•已知点A (1 , 2)在椭圆 匚=1
内,点F 的坐标为(2, 0),在椭圆上求一点 P , 16 12
使I PAI +2 I PFI 最小,则所求 P 点的坐标是
三、题型2:椭圆中焦点三角形的相关知识
2 2
例7•已知椭圆 筈+与=1上一点P , F 1、F 2是椭圆的两个焦点,若/ F 1PF 2=0 ,
a b
求^ F i P F 2的面积。
“综合迁移创新”
1--10
识。
例2.求椭圆
二、题型1:
椭圆定义的应用
3.已知:
F 1、 F 2为两定点,且I F I F 2 I =4,动点
M 满足I MF I + I MF I =4,则动点M 的
A 椭圆
B 直线 D 线段
2
4.椭圆一+
16 25
=1的两个焦点分别为
F i 、 F 2 ,过F 2的直线交椭圆于A 、B 两点,则
A 10
B 12 20 D 16
5•已知椭圆
2 2
0+1_=1 上一点 25 16
P 到左焦点的距离为 4,则它到右准线的距离
2
x_+/
2 2
例&已知椭圆 —=1的左右两个焦点分别为 F 1、F 2,点P 在椭圆上,若 P 、F 1、F 2
16 4
是一个直角三角形的三个顶点,则点
P 到x 轴的距离为
2
+ — =1上的一点,F 1、F 2是椭圆的两个焦点,贝y cos / F 1 P F 2的最小
4
值是
将例8改为:
2
+ — =1的左右两个焦点分别为 F 1、F 2,点P 在椭圆上,若P 、F 1、F 2
9
四、题型3:对椭圆知识的综合考查一一直线与椭圆的位置关系研究 例11.已知椭圆4x 2
+y 2
=1及直线y=x+m (1)
当直线和椭圆有公共点时,求实数 m 的取值范围;
(2) 求被椭圆截得的最长弦所在直线方程。
X 2
例9•设P 是椭圆—
9
X 2
例10.已知椭圆— 16 是一个直角三角形的三个顶点,则点
P 到x 轴的距离为
例12•已知椭圆的中心为坐标原点O, 焦点在x轴上,斜率为1且过椭圆右焦点F的直线、T T
交椭圆于A、B两点,OA+OB
与a=( 3,-1)共线,求椭圆的离心率。
补充练习:
1.
2
X
已知A(4,0)、B( 2,2)是椭圆——+
25 9
2
厶=1内的两个点,M是椭圆上的动点,求|MA|+|MB| 的最大值和最小值。
2. 已知椭圆
2 2
—=1,过点P (2, 1)作一弦,使弦被该点平分,求此弦所在直线的16 4
方程。
3.
2
X
椭圆—
16
+ L =1上有两点P、Q, O是原点,若OP、OQ斜率之积为
4 4
求证:1 OPI 2+ I OQI 2为定值。