用样本估计总体(3)
用样本估计总体的三种题型
频 数 分 布 表
频数 ( 人
身 高分组
<1 5 5
频数
5
百分 比
1 O%
1 5 5≤ < 16 0
1 6 O≤ < 16 5
0
1 5
2 0%
3 O%
1 6 5≤ < 1 7 0
≥ 1 7 0
1 4
6
b
1 2%
总 计
1 O O %
图1
( 1 ) 填空 :
—
—
,
—
—
一
;
频数 ( 人
( 2 ) 补全 频数 分 布 直方 图 ;
( 3 ) 该 校九 年级 共有 6 0 0 名学 生 , 估 计 身高不低于1 6 5 e m 的学生大约有多少人?
解: ( 1 ) 总人数为5 ÷1 0 %= 5 0 ,
’ . .
a = 5 0 X 2 0% =1 0.
6 =1 4÷ 5 0 X 1 0 0 % =2 8 %.
( 2 ) 补全的频数分布直方图如图2 .
、
( 3 ) 6 0 0 X( 2 8 %+ 1 2 %) = 2 4 0 ( 人) .
图2
诺
…
… …
责任编辑 : 王 二 喜
的三种题 型
0/ - 7 -  ̄ 王 琦
统计 的基本思想是用样本估计 总体 , 即用部分来 推断整体 , 从 而做 出正确 的决策. 在2 0 1 6 年 的中考试题 中, 用样 本估计 总体有 以下三种题 型. 用样本的分布估计 总I 本的分布
一
用样本估计总体
用样本估计总体一、用样本的频率分布估计总体分布(1)频数、频率将一批数据按要求分为若干个组,各组内数据的个数,叫做该组的频数。
每组数除以全体数据的个数的商叫做该组的频率。
频率反映数据在每组中所占比例的大小。
(2)样本的频率分布根据随机所抽样本的大小,分别计算某一事件出现的频率,这些频率的分布规律(取值状况),就叫做样本的频率分布。
为了能直观地显示样本的频率分布情况,通常我们会将样本的容量、样本中出现该事件的频数以及计算所得的频率列在一张表中,叫做样本频率分布表。
(3)用样本频率分布估计总体的分布从一个总体得到一个包含大量数据的样本时,我们很难从一个个数字中直接看出样本所含的信息。
如果把这些数据形成频数分布或频率分布,就可以比较清楚地看出样本数据的特征,从而估计总体的分布情况。
用样本估计总体,是研究统计问题的一个基本思想方法,而对于总体分布,我们总是用样本的频率分布对它进行估计。
(4)频率分布直方图的特点从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容,所以,把数据表示成直方图后,原有的具体数据信息就被抹掉了。
(5)频率分布折线图把频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,如图所示。
为了方便看图,一般习惯于把频率分布折线图画成与横轴相连,所以横轴上的左右两端点没有实际意义。
(6)总体密度曲线①如果样本容量越大,所分组数越多,频率分布直方图中表示的频率分布就越接近于总体在各个小组内所取值的个数与总数比值的大小。
设想如果样本容量不断增大,分组的组距不断缩小,则频率分布直方图实际上是越来越接近于总体的分布,它可以用一条光滑曲线来描绘,这条光滑曲线就叫做总体密度曲线。
y f x()②总体密度曲线精确地反映了一个总体在各个区域内取值的百分比。
a b内的百分比就是图中带斜线部分的面积。
对本例来说,总体密度曲线呈产品尺寸落在(,)中间高两边低的“钟”形分布,总体的数据大致呈对称分布,并且大部分数据都集中在靠近中间的区间内。
第六章 第3课 用样本估计总体
4. (例 2)为了了解某小区居民的用水情况,随机抽查了该小区 10
户家庭的月用水量,结果如下表:
月用水量/吨 10 13 14 17 18
户数
2
2
3
2
1
(1)这些家庭的平均月用水量为 14 吨;
(2)如果该小区有 500 户家庭,根据上面的计算结果,估计该小 区居民每月共用水 7000 吨.
5. 某甲鱼养殖专业户共养甲鱼 200 只,为了与客户签订购销合同, 对自己所养甲鱼的总质量进行估计,随意捕捞了 5 只,称得质 量分别为 1.5,1.4,1.6,2,1.8(单位:千克). (1)这 5 条甲鱼的平均质量是 1.66 千克; (2)根据样本估计全部甲鱼的总质量约是 332 千克.
9. 某家庭搬进新居后又添置了新的家用电器,为了了解用电量的 大小,该家庭在 6 月份连续几天观察电表的度数,电表显示的 度数情况如下表所示. 日期 1 日 2 日 3 日 4 日 5 日 6 日 7 日 电表显示 33 38 42 47 53 56 60 试估计这个家庭的 6 月份 30 天的总用电量是多少度? (60-33)÷7×30≈115.7(度)
合格品约为( B )
A.1 万件
B.19 万件
C.15 万件
D.20 万件
3. 某校为举办“庆祝建党 90 周年”的活动,从全校 1 400 名学生 中随机调查了 280 名学生,其中有 80 人希望举办文艺演出,据 此估计该学校希望举办文艺演出的学生人数为( B ) A.1120 B.400 C.280 D.80
6. (例 3)学习统计知识后,小兵就本班同学的上学方式进行调查统 计,如图是通过收集数据后绘制的两幅不完整的统计图
请根据图中提供的信息解答下列问题: (1)该班共有 40 名学生; (2)将表示“步行”部分的条形统计图补充完整; (3)在扇形统计图中,“骑车”部分扇形所对的圆心角是108 度; (4)若全年级共有 1000 名学生,估计全年级步行上学的学生有多 少人?
高中数学必修二 9 2 用样本估计总体(精讲)(含答案)
9.2 用样本估计总体(精讲)考法一总体取值规律的估计【例1】(2021·全国高一课时练习)某市2020年4月1日~4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45,(1)完成频率分布表;(2)作出频率分布直方图;(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,空间质量为良;在101~150之间时,空间质量为轻微污染;在151~200之间时,空间质量为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.【答案】(1)频率分布表见解析;(2)频率分布直方图见解析;(3)该市空气质量有待进一步改善.【解析】(1)频率分布表(2)频率分布直方图(3)答对下述两条中的一条即可:①该市一个月中空气污染指数有2天处于优的水平,占当月天数的1 15;有26天处于良的水平,占当月天数的13 15;处于优或良的天数共有28天,占当月天数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115.污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730,超过50%.说明该市空气质量有待进一步改善.【一隅三反】1.(2020·全国高一单元测试)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:用户用水量频数直方图用户用水量扇形统计图(1)此次抽样调查的样本容量是________;(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格.【答案】(1)答案见解析;(2)答案见解析,79.2°;(3)4.08万户.【解析】(1)1010%100÷=;(2)用水15~20吨的户数为100-10-36-24-8=22(户),“15~20吨”部分的圆心角的度数为22 36079.2100︒⨯=︒(3)1022366 4.08100++⨯=(万户)所以该地区6万用户中约有4.08万户的用水全部享受基本价格.2.(2020·全国高一单元测试)对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(1)求出表中M,p及图中a的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)内的人数. 【答案】(1)M =40,0.075p =,0.125a =;(2)90人. 【解析】(1)由[10,15)内的频数是10,频率是0.25知,100.25M=,所以M =40. 因为频数之和为40,所以10+25+m +2=40,m =3.330.07540p M ===. 因为a 是对应分组[15,20)的频率与组距的商,所以250.125405a ==⨯. (2)因为该校高一学生有360人,分组[10,15)内的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为3600.25⨯=90人.3.(2021·北京丰台区)为了解某市家庭用电量的情况,该市统计局调查了100户居民去年一年的月均用电量,发现他们的用电量都在50kW ·h 至350kW ·h 之间,进行适当分组后,画出频率分布直方图如图所示.(I )求a 的值;(Ⅱ)求被调查用户中,用电量大于250kW ·h 的户数;(III )为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯定价,希望使80%的居民缴费在第一档(费用最低),请给出第一档用电标准(单位:kW ·h )的建议,并简要说明理由. 【答案】(I )0.006;(Ⅱ)18;(III )245.5 kW ·h.【解析】(1)因为()0.00240.00360.00440.00240.0012501a +++++⨯=,所以0.006a =; (2)根据频率分布直方图可知:“用电量大于250kW ·h ”的频率为()0.00240.0012500.18+⨯=, 所以用电量大于250kW ·h 的户数为:1000.1818⨯=, 故用电量大于250kW ·h 有18户;(3)因为前三组的频率和为:()0.00240.00360.006500.60.8++⨯=<,前四组的频率之和为()0.00240.00360.0060.0044500.820.8+++⨯=>, 所以频率为0.8时对应的数据在第四组, 所以第一档用电标准为:0.80.620050245.50.22-+⨯≈kW ·h.故第一档用电标准为245.5 kW ·h.4.(2021·陕西咸阳市)某微商对某种产品每天的销售量(单位:件)进行为期一个月(按30天计算)的数据统计分析,并得出了这种产品该月销售量的频率分布直方图(如图).假设用直方图中所得的频率来估计相应事件发生的概率.(Ⅰ)求频率分布直方图中a 的值;(Ⅱ)若微商在一天的销售量不低于25件,则上级商企会给微商赠送100元的礼金,估计该微商在一年内获得的礼金数.【答案】(Ⅰ)0.02;(Ⅱ)10800元. 【解析】(Ⅰ)由题意可得1[1(0.010.060.070.04)5]0.025a =-+++⨯=. (Ⅱ)根据频率分布直方图知,日销售量不低于25件的天数为: ()0.040.025309+⨯⨯=(天), 一个月可获得的礼金数为9100900⨯=(元),依此可以估计该微商一年内获得的礼金数为9001210800⨯=元. 【点睛】本题考查频率的求法,考查频率分布直方图的性质等基础知识,考查样本估计总体以及运算求解能力、数形结合思想的应用,是基础题.考法二 总体百分数的估计【例2】(2020·天津和平区)已知一组数据为4,5,67,8,8,,第40百分位数是( ) A .8 B .7C .6D .5【答案】C【解析】因为有6位数,所以640 2.4⨯=%,所以第40百分位数是第三个数6.故选:C 【一隅三反】1.(2020·山东菏泽市·高一期末)数据1,2,3,4,5,6的60%分位数为( ) A .3 B .3.5C .3.6D .4【答案】D【解析】由6⨯60%=3.6,所以数据1,2,3,4,5,6的60%分位数是第四个数,故选:D2.(2021·山东高一期末)已知从某中学高一年级随机抽取20名女生,测量她们的身高(单位:cm ),把这20名同学的身高数据从小到大排序:148.0 149.0 150.0 152.0 154.0 154.0 155.0 155.5 157.0 157.0 158.0 159.0 161.0 162.0 163.0 164.0 165.0 170.0 171.0 172.0 则这组数据的第75百分位数是( ) A .163.0 B .164.0C .163.5D .164.5【答案】A【解析】因为这组数据从小到大已排序,所以这组数据的第75百分位数为第200.7515⨯=个数,即为163.0故选:A3.(2020·山东滨州市·高一期末)“幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[]0,10内的一个数来表示,该数越接近10表示满意程度越高,现随机抽取6位小区居号,他们的幸福感指数分别为5,6,7,8,9,5,则这组数据的第80百分位数是( ) A .7 B .7.5C .8D .9【答案】C【解析】该组数据从小到大排列为:5,5,6,7,8,9,且680% 4.8⨯=,故选:C.考法三 总体集中趋势的估计【例3】(2021·湖北荆州市)因受新冠疫情的影响,某企业的产品销售面临困难.为了改变现状,该企业欲借助电商和“网红”直播带货扩大销售.受网红效应的影响,产品销售取得了较好的效果.现将该企业一段时间内网上销售的日销售额统计整理后绘制成如下图所示的频率分布直方图:请根据图中所给数据,求: (1)实数a 的值;(2)该企业网上销售日销售额的众数和中位数; (3)该企业在统计时间段内网上销售日销售额的平均数. 【答案】(1)0.012;(2)55万元,57万元;(3)57.4万元. 【解析】(1)由频率分布直方图知:(0.0080.0160.0200.0180.0100.0042)101a ++++++⨯=,解得:0.012a =;(2)用频率分布直方图中最高矩形所在区间的中点值作为众数的近似值,得众数为55万元;因为第一个小矩形的面积为0.08,第二个小矩形的面积为0.12, 第三个小矩形的面积为0.16,0.080.120.160.36++=,设第四个小矩形中底边的一部分长为x ,则0.0200.50.36x ⨯=-,解得7x =, 所以中位数为50757+=万元; (3)依题意,日销售额的平均值为:250.08350.12450.16550.20650.18750.12850.10950.0457.4⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=所以该企业在统计时间段内网上销售日销售额的平均数为57.4万元. 【一隅三反】1.(2020·定边县第四中学高一期末)如图,从参加数学竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如图,观察图形,回答下列问题:(Ⅰ)79.5-89.5这一组的频数、频率分别是多少? (Ⅱ)估计这次数学竞赛的平均成绩是多少?(Ⅲ)估计这次数学竞赛的及格率(60分及以上为及格). 【答案】(Ⅰ)15;0.25;(Ⅱ)70.5;(Ⅲ)75%. 【解析】(Ⅰ)79.589.5这一组的频率为0.025100.25⨯=,79.589.5这一组的频数为600.2515⨯=;(Ⅱ)估计这次数学竞赛的平均成绩是:44.50.154.50.1564.50.1574.50.384.50.2594.50.0570.5⨯+⨯+⨯+⨯+⨯+⨯=.故估计这次数学竞赛的平均成绩是70.5.(Ⅲ)估计这次环保知识竞赛的及格率(60分及以上为及格)()10.010.0151075%P =-+⨯=. 2.(2021·河北唐山市·开滦第一中学高一期末)某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段[)[)[]40,50,50,60,,90,100⋯后画出如下频率分布直方图.观察图形的信息,回答下列问题:(1)估计这次考试的众数m 与中位数n (结果保留一位小数); (2)估计这次考试的优秀率(80分及以上为及格)和平均分. 【答案】(1)75m =,73.3n =;(2)优秀率30%,平均分71分. 【解析】(1)众数是最高小矩形中点的横坐标,所以众数为75m =(分)前三个小矩形面积为0.01100.015100.015100.4⨯+⨯+⨯=, ∵中位数要平分直方图的面积, ∴0.50.47073.30.03n -=+=.(2)依题意,80及以上的分数所在的第五、六组, 频率和为 ()0.0250.005100.3+⨯=, 所以,抽样学生成绩的合格率是30%, 利用组中值估算抽样学生的平均分:450.1550.15650.15750.3850.25950.0571⨯+⨯+⨯+⨯+⨯+⨯=,估计这次考试的平均分是71分.3.(2021·吉林市)某城市100户居民的月平均用水量(单位:吨),以[0,2)[2,4)[4,6)[6,8)[8,10)[10,12)[12,14)分组的频率分布直方图如图.(1)求直方图中x 的值;并估计出月平均用水量的众数. (2)求月平均用水量的中位数及平均数;(3)在月平均用水量为[6,8),[8,10),[10,12),[12,14)的四组用户中,用分层抽样的方法抽取22户居民,则应在[10,12)这一组的用户中抽取多少户?(4)在第(3)问抽取的样本中,从[10,12)[12,14)这两组中再随机抽取2户,深入调查,则所抽取的两户不是来自同一个组的概率是多少?【答案】(1) x =0.075,7;(2) 6.4,5.36;(3) 2;(4)23. 【解析】(1)根据频率和为1,得2×(0.02+0.095+0.11+0.125+x +0.05+0.025)=1, 解得x =0.075;由图可知,最高矩形的数据组为[6,8),所以众数为()16872+=; (2) [2,6)内的频率之和为(0.02+0.095+0.11)×2=0.45;设中位数为y ,则0.45+(y −6)×0.125=0.5,解得y =6.4,∴中位数为6.4;平均数为()210.0230.09550.1170.12590.075110.025 5.36⨯+⨯+⨯+⨯+⨯+⨯=(3)月平均用电量为[10,12)的用户在四组用户中所占的比例为0.0520.1250.0750.050.02511=+++, ∴月平均用电量在[10,12)的用户中应抽取11×211=2(户). (4)月平均用电量在[12,14)的用户中应抽取11×111=1(户), 月平均用电量在[10,12)的用户设为A 、B , 月平均用电量在[12,14)的用户设为C ,从[10,12),[12,14)这两组中随机抽取2户共有 ,,AB AC BC ,3种情况,其中,抽取的两户不是来自同一个组的有,,AC BC ,2种情况, 所以,抽取的两户不是来自同一个组的概率为23. 考点四 总体离散程度的估计【例4】(2021·山东威海市·高一期末)如图所示的四组数据,标准差最小的是( )A .B .C .D .【答案】A【解析】对A ,()12106206302402516x =⨯+⨯+⨯+⨯=,s == 对B ,()16102202306402516x =⨯+⨯+⨯+⨯=,s == 对C ,()13105205303402516x =⨯+⨯+⨯+⨯=,10s ==, 对D ,()15103203305402516x =⨯+⨯+⨯+⨯=,s == 所以标准差最小的是A.故选:A.【一隅三反】1.(2020·全国高一)已知数据12,,,n x x x 的平均数为x ,方差为2s ,则123x +,223x +,…,23n x +的平均数和方差分别为( )A .x 和2sB .23x +和24sC .23x +和2sD .23x +和24129s s ++ 【答案】B【解析】因为数据12,,,n x x x 的平均数为x ,方差为2s ,所以123x +,223x +,…,23n x +的平均数和方差分别为23x +和24s故选:B2.(2020·安徽蚌埠市·蚌埠二中高一月考)一组数据中的每一个数据都乘以3,再减去50,得到一组新数据,若求得新的数据的平均数是1.6,方差是3.6,则原来数据的平均数和方差分别是( )A .17.2,3.6B .54.8,3.6C .17.2,0.4D .54.8,0.4 【答案】C【解析】设一组数据为i x (1,2,3,,)i n =,平均数为x ,方差为21s ,所得一组新数据为i y (1,2,3,,)i n =,平均数为y ,方差为22s ,则350i i y x =-(1,2,3,,)i n =,12 1.6n y y y y n +++==, 所以123503503501.6n x x x n -+-++-=, 所以350 1.6x -=,所以51.617.23x ==, 由题意得22222121()()() 3.6n s y y y y y y n ⎡⎤=-+-++-=⎣⎦, 所以222121(350 1.6)(350 1.6)(350 1.6) 3.6n x x x n⎡⎤--+--++--=⎣⎦, 所以2221219(17.2)(17.2)(17.2) 3.6n x x x n ⎡⎤⨯-+-++-=⎣⎦ 所以2221219()()() 3.6n x x x x x x n⎡⎤⨯-+-++-=⎣⎦, 所以219 3.6s =,所以210.4s =.故选:C.3.(2020·唐山市第十一中学)已知样本数据由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且样本的中位数为10.5,若使该样本的方差最小,则a ,b 的值分别为( ).A .10,11B .10.5,9.5C .10.4,10.6D .10.5,10.5 【答案】D【解析】由于样本共有10个值,且中间两个数为a ,b ,依题意,得10.52a b +=,即21b a =-. 因为平均数为23371213.718.320101()0a b +++++++++÷=,所以要使该样本的方差最小,只需()()221010a b -+-最小.又()()()()222221010102110242221a b a a a a -+-=-+--=-+, 所以当4210.522a -=-=⨯时,()()221010a b -+-最小,此时10.5b =. 故选:D4.(2021·合肥市第六中学=)为了测试小班教学的实践效果,刘老师对A 、B 两班的学生进行了阶段测试,并将所得成绩统计如图所示;记本次测试中,A 、B 两班学生的平均成绩分别为A x ,B x ,A 、B 两班学生成绩的方差分别为2A s ,2B s ,则观察茎叶图可知( )A .AB x x <,22A B s s < B .A B x x >,22A B s s <C .A B x x <,22A B s s >D .A B x x >,22A B s s >【答案】B【解析】根据茎叶图中数据的分布可得,A 班学生的分数多集中在[]70,80之间, B 班学生的分数集中在[]50,70 之间,所以A B x x >.相对两个班级的成绩分布来说,A 班学生的分数更加集中,B 班学生的分数更加离散,所以22A B s s <.故选:B。
高中数学第一章统计5用样本估计总体ppt课件北师大版必修3
果如下:
对某电个数 100~200 20 200~300 30 300~400 80 400~500 40 500~600 30
(1)列出频率分布表; (2)作出频率分布直方图; (3)作出频率折线图.
解:(1)频率分布表如下: 分组 频数 频率
100~200 20 0.10 200~300 30 0.15 300~400 80 0.40 400~500 40 0.20 500~600 30 0.15
第一章 统 计
§5 用样本估计总体 5.1 估计总体的分布 5.2 估计总体的数字特征
课前基础梳理
自主学习 梳理知识
|学 习 目 标| 1.会作频率分布直方图、频率折线图,会用样本的频率分 布估计总体的分布. 2.会用样本的数字特征估计总体的数字特征.
1.用样本估计总体的两种情况 (1)用样本的__频__率__分__布__估计总体的分布. (2)用样本的_数__字__特__征___估计总体的数字特征. 2.频率分布直方图 在频率分布直方图中,纵轴表示__频__率__/_组__距___,数据落在各 小组内的频率用_面__积___来表示,各小长方形的面积的总和等于 _1__.
(2)已知样本中分数小于 40 的学生有 5 人,试估计总体中分 数在区间[40,50)内的人数;
(3)已知样本中有一半男生的分数不小于 70,且样本中分数 不小于 70 的男女生人数相等.试估计总体中男生和女生人数的 比例.
【解】 (1)根据频率分布直方图可知,样本中分数不小于 70 的频率为(0.02+0.04)×10=0.6,
(1)列出样本的频率分布表; (2)画出频率分布直方图和频率分布折线图; (3)根据频率分布直方图,估计总体出现在 23~28 内的频率 是多少?
必修三2.2.用样本估计总体(教案)
必修三2.2.用样本估计总体(教案)必修三2.2.用样本估计总体(教案)导语:本文为必修三2.2.用样本估计总体(教案)的教学指南,旨在引导学生了解和应用样本估计总体的方法。
通过学习本课,学生将能够理解抽样和样本的基本概念,并能够运用点估计和区间估计的方法进行总体参数的估计。
为了达到良好的教学效果,本教案采用了多样的教学方法,例如引导讨论、示例演示和小组合作等。
一、教学目标:1. 理解样本与总体的概念和关系;2. 掌握点估计的方法;3. 了解区间估计的原理和应用;4. 能够进行样本估计总体的实际问题分析。
二、教学过程:1. 导入(5分钟)引导学生思考以下问题:什么是样本?什么是总体?样本和总体之间有什么关系?为什么需要用样本来估计总体?2. 点估计的方法(15分钟)a. 讲解点估计的基本原理,即通过样本数据来估计总体参数的值。
b. 示例演示:设计一个问题,如某班级数学考试成绩的平均分。
用班级中的五位同学的成绩作为样本,通过计算样本的平均分来估计全班的平均分。
c. 引导学生讨论点估计的优点和缺点。
3. 区间估计的方法(15分钟)a. 讲解区间估计的概念和原理,即通过样本数据构造一个置信区间来估计总体参数的范围。
b. 示例演示:使用同样的例子,构造一个置信水平为95%的置信区间,来估计全班的平均分。
c. 引导学生讨论区间估计的优点和缺点。
4. 实际问题分析(25分钟)a. 设计一个实际问题,例如某个城市的人均收入。
要求学生提出估计该城市人均收入的方法和步骤,并结合点估计和区间估计的方法进行分析。
b. 小组合作:分组讨论,每个小组根据实际问题设计一个解决方案,并准备向全班汇报。
c. 汇报与讨论:每个小组轮流汇报他们的解决方案,并进行讨论。
5. 总结与延伸(10分钟)a. 概括本课内容,强调样本估计总体的方法和应用。
b. 提出延伸问题,鼓励学生进一步探索样本估计总体的其他应用领域。
三、教学反思:本节课通过引导讨论、示例演示和小组合作等多种教学方法,促使学生自主思考和应用样本估计总体的方法。
《用样本估计总体》典型例题
《用样本估计总体》典型例题【考情分析】用样本的频率分布估计总体分布的有关问题在高考中的常考题型有两个:(1)根据频率分布表和频率分布直方图进行频数或频率的计算,这种考查形式出现的频率很高;(2)频率分布直方图的绘制,这种考查形式常出现在解答题中,用样本的数字特征估计总体的数字特征也是高考中的常考题型,从近几年高考命题的趋势可以看出,对本节概念的考查开始逐步朝着对数据分析能力考查的方向发展,题目往往需结合相关数字特征的统计意义进行求解.题型1统计图表的信息读取(逻辑推理)典例1、[推测解释能力](2018·全国卷I)某地区经过1年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列结论中不正确的是( )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半思路本题以实际生活为背景考查了统计图表信息提取的知识,图表命题涉及广泛,解决本题时要注意题目条件中的“农村的经济收入增加了一倍,实现翻番”,否则计算出错,导致判断失误.解析方法一(通解)设建设前经济收入为a,则建设后经济收入为2a,则由图可得建设前种植收入为0.6a,其他收入为0.04a,养殖收入为0.3a.建设后种植收入为0.74a,其他收入为0.1a,养殖收入为0.6a,养殖收入与第三产业收入的总和为1.16a,所以只有A是错误的.方法二(优解)因为0.6<0.37×2,所以新农村建设后,种植收入增加,而不是减少,所以A是错误的.答案A题型2与统计图表有关的计算(数据分析)典例2、[分析计算能力(2020-天津卷)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),⋯,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A.10B.18C.20D.36×组距,进行求解思路本题通过分析、读取频率分布直方图中数据的信息,利用公式频率=频率组距运算.解析根据题意,在被抽取的零件中,直径落在区间[5.43,5.47)内的频率为(6.25+5.00)×0.02= 0.225,则个数为80×0.225=18.答案 B题型3数字特征的含义与计算(数据分析)典例3-1[概括理解能力](全国II卷)为了评估一种农作物的种植效果,选了n块地作试验田.这n 块地的亩产量(单位:kg)分别为x1,x2,x3,⋯,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,x3,⋯,x n的平均数B.x1,x2,x3,⋯,x n的标准差C.x1,x2,x3,⋯,x n的最大值D.x1,x2,x3,⋯,x n的中位数思路 本题依据数据的数字特征的意义,分析判断数据运用数字特征进行评价时,应从平均数、众数、中位数、方差、极差等多个角度对这组数据进行分析,全面考虑各数字特征的优缺点. 解析 平均数和中位数都能反映一组数据的集中趋势,而且平均数能反映一组数据的平均水平;标准差和方差都能反映一组数据的稳定程度.答案 B典例3-2、(2019-江苏卷)已知一组数据6,7,8,9,10,则该组数据的方差是_________.思路 本题考查了平均数和方差的计算公式,解决本题的关键是熟记平均数和方差的计算公式,本题考查了学生的分析计算能力和数学运算核心素养.解析 由平均数公式可得这组数据的平均数为8,则方差为(−2)2+(−1)2+0+0+12+226=53. 答案 53题型4用样本数字特征估计总体数字特征的简单计算典例4、[简单问题解决能力]某学校高一年级共有三个班,按优秀率进行评选.1班30人,优秀率30%,2班35人,优秀率60%,三班35人,优秀率40%,则全年级优秀率为_________.解析 本题通过优秀率、加权平均数来考查样本估计总体的数字特征,分析题意,根据班级优秀率求解全年级优秀率.由于某学校高一年级共有三个班,按优秀率进行评选:1班30人,优秀率30%,2班35人,优秀率60%,三班35人,优秀率40%,则全年级优秀率为:30×30%+35×60%+35×40%30+35+35=44%.答案 44%题型5用样本数字特征估计总体数字特征的综合计算(数学建模)典例5、[综合问题解决能力](2019·全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲,乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).思路本题属于样本平均值估计总体的综合应用,根据频率分布直方图的特征,通过数据分析,在频率分布直方距计算a的值.解析(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1−0.05−0.15−0.70=0.10. (2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.。
高中数学第六章统计3用样本估计总体分布频率分布直方图课后习题北师大版必修第一册
§3 用样本估计总体分布3.1 从频数到频率 3.2 频率分布直方图A 级必备知识基础练1.一个频数分布表(样本容量为30)不小心被损坏了一部分,若样本中数据在区间[20,60)上的频率为0.8,则估计样本在区间[40,50),[50,60)内的数据个数共为( )A.15B.16C.17D.192.(多选题)为弘扬中华民族传统文化,某中学学生会对本校高一年级1 000名学生课余时间参加传统文化活动的情况,随机抽取50名学生进行调查,将数据分组整理后,列表如下参加场数01234567参加人数占调查人数的百分比8%10%20%26%18%12%4%2%估计该校高一学生参加传统文化活动情况不正确的是( )A.参加活动次数是3场的学生约为360人B.参加活动次数是2场或4场的学生约为480人C.参加活动次数不高于2场的学生约为280人D.参加活动次数不低于4场的学生约为360人3.去年,相关部门对某城市“五朵金花”之一的某景区在“十一”黄金周中每天的游客人数作了统计,其频率分布如下表所示:时间10月1日10月2日10月3日10月4日10月5日10月6日10月7日频率0.050.080.090.130.300.150.20已知10月1日这天该景区的营业额约为8万元,假定这七天每天游客人均消费相同,则这个黄金周该景区游客人数最多的那一天的营业额约为 万元.4.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图所示).由图中数据可知a= .若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层随机抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.5.为了解某校高一1 000名学生的物理成绩,随机抽查了部分学生的期中考试成绩,将数据整理后绘制成如图所示的频率分布直方图.(1)估计该校高一学生物理成绩不低于80分的人数;(2)若在本次考试规定物理成绩在m分以上(包括m分)的为优秀,该校学生物理成绩的优秀率大约为18%,求m的值.B级关键能力提升练6.为了丰富教职工业余生活,某校计划在假期组织全体老师外出旅游,并给出了两个方案(方案一和方案二),每位老师均选择且只选择一种方案,其中有50%的男老师选择方案一,有75%的女老师选择方案二,且选择方案一的老师中女老师占40%,那么该校全体老师中女老师的比例为( )A.1 2B.47C.58D.347.(多选题)某市教体局对全市高三年级的学生身高进行抽样调查,随机抽取了100名学生,他们的身高都处在A,B,C,D,E五个层次内,根据抽样结果得到统计图表如图,则下面叙述正确的是( )女生身高情况直方图男生身高情况扇形图A.样本中女生人数多于男生人数B.样本中B层人数最多C.样本中E层男生人数为6人D.样本中D层男生人数多于女生人数8.某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80), [80,100].(1)图中的x= ;(2)若上学所需时间不少于1小时的学生可申请在学校住宿,则该校600名新生中估计有 名学生可以申请住宿.9.某样本频率分布直方图如图所示,且在区间[15,18)内频数为8.求:(1)求样本容量;(2)若在区间[12,15)内的小矩形面积为0.06,求在区间[12,15)内的频数和样本在区间[18,33)内的频率.C级学科素养创新练10.为了解某市家庭用电量的情况,该市统计局调查了100户居民去年一年的月均用电量,发现他们的用电量都在50 kW·h至350 kW·h之间,进行适当分组后,画出频率分布直方图如图所示.(1)求a的值;(2)求被调查用户中,用电量大于250 kW·h的户数;(3)为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯定价,希望使80%的居民缴费在第一档(费用最低),请给出第一档用电标准(单位:kW·h)的建议.3.1 从频数到频率3.2 频率分布直方图=0.5.故样本在区间[40,50),1.A 由题易得在区间[40,50),[50,60)内的频率为0.8-4+530[50,60)内的数据个数共为30×0.5=15.故选A.2.ABC 参加活动场数为3场的学生约有1000×26%=260(人),A错误;参加活动场数为2场或4场的学生约有1000×(20%+18%)=380(人),B错误;参加活动场数不高于2场的学生约有1000×(8%+10%+20%)=380(人),C错误;参加活动场数不低于4场的学生约有1000×(18% +12%+4%+2%)=360(人),D正确.故选ABC.3.48 根据表格可知,10月1日这天的频率为0.05,营业额为8万;频率最高的为10月5日,频率为0.30.设这个黄金周10月5日的营业额约为x万元,由8 0.05=x0.30,得x=48,则游客人数最多的那一天的营业额约为48万元.4.0.030 3 因为频率分布直方图中各小长方形的面积之和为1,所以10×(0.005+0.035+a+0.020+0.010)=1,解得a=0.030.由图可知身高在[120,150]内的学生人数为100×10×(0.030+0.020+0.010)=60,其中身高在[140,150]内的学生人数为10,所以从身高在[140,150]内的学生中选取的人数为1860×10=3.5.解(1)由频率分布直方图得,该校高一学生物理成绩不低于80分的频率为(0.03+0.024)×10=0.54,∴该校高一学生物理成绩不低于80分的人数为1000×0.54=540.(2)∵0.24>0.18,∴90<m<100,∴0.24-0.180.24=m-9010,解得m=92.5.6.B 设该校男老师的人数为x,女老师的人数为y,则可得如下表格:性别方案一方案二男老师0.5x0.5x女老师0.25y0.75y由题意,0.25y0.5x+0.25y =0.4,可得yx=43,所以yx+y =4 7.故选B.7.ABC 样本中女生人数为9+24+15+9+3=60,男生人数为100-60=40,A正确;样本中A层人数为9+40×10%=13,B层人数为24+40×30%=36,C层人数为15+40×25%=25,D层人数为9+40×20%=17,E层人数为3+40×15%=9,故B正确;样本中E层男生人数为40×15%=6,C正确;样本中D层男生人数为40×20%=8,女生人数为9,D错误.故选ABC.8.(1)0.0125 (2)72 (1)由频率分布直方图知20x=1-20×(0.025+0.0065+0.003+0.003),解得x=0.0125.(2)上学时间不少于1小时的学生的频率为0.003×2×20=0.12,因此估计有0.12×600=72(人)可以申请住宿.9.解(1)由频率分布直方图可知区间[15,18)对应y轴的数字为475,且组距为3,所以区间[15,18)对应频率为475×3=425,又已知在区间[15,18)内频数为8,所以样本容量为n=8425=50.(2)因为[12,15)内的小矩形面积为0.06,所以在区间[12,15)内频率为0.06,且样本容量为50,所以在区间[12,15)内的频数为50×0.06=3,又因为在区间[15,18)内的频数为8,所以在区间[18,33)内的频数为50-3-8=39.所以在区间[18,33)内的频率为3950=0.78.10.解(1)因为(0.0024+0.0036+a+0.0044+0.0024+0.0012)×50=1,所以a=0.0060.(2)根据频率分布直方图可知,“用电量大于250kW·h”的频率为(0.0024+0.0012)×50=0.18,所以用电量大于250kW·h的户数为100×0.18=18.(3)因为前三组的频率之和为(0.0024+0.0036+0.0060)×50=0.6<0.8,前四组的频率之和为(0.0024+0.0036+0.0060+0.0044)×50=0.82>0.8,所以频率为0.8时对应的数据在第四组,所以第一档用电标准为200+0.8-0.60.22×50≈245.5(kW·h).故第一档用电标准为245.5kW·h.。
用样本数字特征估计总体数字特征3
知识探究
x甲 7, x乙 7
在一次射击选拔赛中,甲、乙两 名运动员各射击10次,每次命中的环数 如下: 甲:7 8 7 9 5 4 9 10 7 4 乙:9 5 7 8 7 6 8 6 7 7 甲、乙两人本次射击的平均成绩分 别为多少环?哪一个运动员成绩比较稳 定?
x甲 7,
x乙 7
知识探究
甲、乙两人射击的平均成绩相等,画出两人 成绩的频率分布条形图如下:
频率 0.4 0.3 0.2 0.1 O
(甲)
0.4 0.3 0.2 0.1 O
频率
(乙)
环数
4 5 6 7 8 9 10
4 5 6 7 8 9 10 环数
甲的成绩比较分散,极差较大,乙的 成绩相对集中,比较稳定.
谁的稳定性好用什么数来衡量? 甲成绩与平均成绩的偏差的和: (7-7)+(8-7)+(7-7)+(9-7)+(5-7)+(4-7)+(97)+(10-7)+(7-7)+(4-7)=0 乙成绩与平均成绩的偏差的和: (9-7)+(5-7)+(7-7)+(8-7)+(7-7)+(6-7)+(87)+(6-7)+(7-7)+(7-7)=0
1.0 0.8 0.6 0.4 0.2
s = 1.49
s = 2.83
O
1 2 3 4 5 6 7 8
(3)
O
1 2 3 4 5 6 7 8
(4)
例2 甲、乙两人同时生产内径为25.40mm的一种
零件,为了对两人的生产质量进行评比,从他们 生产的零件中各随机抽取20件,量得其内径尺寸 如下(单位:mm):
9.2用样本估计总体
授课主题用样本估计总体教学目标1.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释.3.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.4.会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题.教学内容1.频率分布直方图(1)列出样本数据的频率分布表和频率分布直方图的步骤:①计算极差:找出数据的最大值与最小值,计算它们的差;②决定组距与组数:当样本容量不超过100时,按照数据的多少分成5~12组,且=极差组距组数;③将数据分组:通常对组内数值所在区间区左闭右开区间,最后一组取闭区间;也可以将样本数据多取一位小数分组.④列频率分布表:对落入各小组的数据累计,算出各小数的频数,除以样本容量,得到各小组的频率.⑤绘制频率分布直方图:以数据的值为横坐标,以频率组距的值为纵坐标绘制直方图。
(2)频率分布直方图的特点:①==⨯频率小长方形的面积组距频率组距,②个小长方形的面积等于1,③1==频率小长方形的高,所有小长方形的高的和组距组距.(3)频率分布折线图:将频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,一般把折线图画成与横轴相连,所以横轴左右两端点没有实际意义.(4)总体密度曲线:样本容量不断增大时,所分组数不断增加,分组的组距不断缩小,频率分布直方图可以用一条光滑曲线()y f x=来描绘,这条光滑曲线就叫做总体密度曲线.总体密度曲线精确地n;n①众数、中位数、平均数都是描述一组数据集中趋势的量,平均数是最重要的量;x的平均数为x,则一组数,,n的平均数为用样本的标准差估计总体的标准差)数据的离散程度可以用极差、方差或标准差来描述;定义样本方差为222212()()()n x x x x x x s n-+-++-=;简化公式:22222121[()]n s x x x nx n=+++-=2222121()n x x x x n+++-(方差等于原数据平方的平均数减去平均数的平方)(4)样本的标准差是方差的算术平方根.样本标准差22212()()()0n x x x x x x s s n-+-++-=≥,.标准差越大数据离散程度越大,数据家分散;标准差越小,数据集中在平均数周围. (5)方差相关结论:①如果一组数12,,,n x x x 的方差为2s ,则一组数12,,,n x a x a x a +++的方差为2s ;②如果一组数12,,,n x x x 的方差为2s ,则一组数12,,,n kx kx kx 的方差为22k s 。
23.4 用样本估计总体课件(共19张PPT)
1
2
3
4
5
6
7
8
9
10
质量/千克
14
21
27
17
18
20
19
23
19
22
根据调查,市场上今年樱桃的批发价格为15元/千克,用所学的统计知识估计今年此果园樱桃按批发价格销售所得的总收入为 元.
30 000
王强几年前承包了甲、乙两座荒山,各载500棵杨梅树,成活率为98%,现已挂果,经济效益初步显现.为了分析收成情况,他分别从两山上随机采摘了4棵树上的杨梅,每棵树的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并用样本平均数估计甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪座山上的杨梅产量较稳定.
C
2.有甲、乙两种水稻,测得每种水稻各10穴的分孽数后,计算出样本方差分别为S2甲=11,S2乙=3.4,由此可以估计( )A.甲比乙种水稻分蘖整齐 B.乙种水稻分蘖比甲种水稻整齐C.分蘖整齐程度相同 D.甲、乙两种水稻分孽整齐程度不能比
B
3.李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:
例1
例题解读
知识点2 用样本方差估计总体方差
例2
一个苹果园,共有2 000棵树龄相同的苹果树.为了估计今年苹果的总产量,任意选择了6棵苹果树,数出它们挂果的数量(单位:个)分别为: 260,340,280,420,360,380根据往年的经验,平均每个苹果的质量约为250 g.试估计今年苹果园苹果的总产量.
160.0
160.9
160.4
159.0
159.5
学科核心素养下高中数学教学设计——以“用样本估计总体”为例
学科核心素养下高中数学教学设计———以“用样本估计总体”为例文|傅焕铭一、教材分析我们收集的原始数据往往多而杂,需要对原始数据进行分析、处理,找到数据背后蕴藏的信息。
对总体统计特征的刻画包括两个层面:一是总体统计特征的全面刻画,即刻画出总体中所有个体的取值规律,这个规律可以用总体的频率分布表和频率分布直方图描述或近似描述;二是总体部分统计特征的刻画,如平均数、众数、方差、标准差等数字特征。
二、教学目标(一)核心素养学生初步习得科学处理数据的能力。
(二)教学目标(1)学生用频率分布直方图估计样本的众数、中位数、平均数等数据特征。
(2)学生能自行独立计算样本数据的标准差、方差,并知道分别刻画统计的什么特征。
(3)学生会用样本的频率分布估计总体分布,会用样本特征估计总体特征,理解用样本估计总体的思想,并能利用所学知识解决生活中的一些现实问题。
三、教学重难点教学重点:学生能从频率分布直方图上估计出样本数据特征。
教学难点:学生理解总体分布的概念,形成统计思维。
四、教学过程师:同学们,前面我们已经研究过通过抽样调查来研究数据的方法,了解了提高样本代表性的一些具体方法,收集数据后,我们要从中找到数据背后包含的信息,方可达到用样本估计总体的目的。
今天我们就一起研究“用样本估计总体”。
(一)课前导学师:同学们,根据自学任务,思考下列问题并完成检测。
任务1:样本数字特征有哪些?如何求?这些特征在频率分布直方图上如何估计?任务2:样本数字特征是如何反映样本数据的集中趋势和离散程度的?(设计意图:通过出示自学任务,引导学生自学,相机进行自学效果检测。
学生根据自学情况,检测新知中还有哪些内容没有理解和掌握,从而有针对性地学习本节内容,实现高效学习。
同时也旨在培养学生良好的学习习惯,指导学生学会学习数学的方法。
)(二)课堂设计探究一:样本的数字特征11.探究:众数、中位数、平均数的概念。
师:请同学们根据概念解释,完成概念名词的填空,并揣摩这些概念的含义。
用样本估计总体
月收入(元)
1000 1500 2000 2500 3000 3500 4000
练习1、如图是150辆汽车通过某路段 时速度的频率分布直方图,则速度在[60, 60 辆. 70)的汽车大约有______
在频率分布直方图中,依次连接各小长 方形上端的中点,就得到一条折线,这条 折线称为频率分布折线图.
练习3、以往招生Biblioteka 计显示,某所大学录 取的新生高考总分的中位数基本稳定在550 分,若某同学今年高考得了520分,他想报 考这所大学还需收集哪些信息?
要点: (1)查往年录取的新生的平均分数.若平均数 小于中位数很多,说明最低录取线较低,可以 报考; (2)查往年录取的新生高考总分的标准差.若 标准差较大,说明新生的录取分数较分散,最 低录取线可能较低,可以考虑报考.
标准差的取值范围是什么?标准差为0 的样本数据有何特点? s≥0,标准差为0的样本数据都相等. 方差的意义: 方差(或标准差)越大离散程度越大,数 据较分散; 方差(或标准差)越小离散程度越小,数 据较集中在平均数周围.
例 2 、有两个班级,每班各自按学号随 机选出 5 名学生,测验铅球成绩,以考察 体育达标程度,测验成绩如下:单位(米) 甲 9.1 7.8 8.5 6.9 5.2 乙 8.8 7.2 7.3 7.5 6.7 两个班相比较,哪个班整体实力强一些 ?
制作频率分布直方图的方法: (1)求极差(即一组数据中最大值与最小 值的差); (2)决定组距与组数;(样本容量不超过
100时,组数常分成5~12组)
(3)将数据分组; (4)列频率分布表; (5)画频率分布直方图.
注:频率分布直方图中
第五章《用样本推断总体》复习讲义(解析版)
第五章 用样本推断总体(考点讲义)1.样本容量:样本中个体的数目叫做样本容量。
2.在用样本特性估计总体特性时,要注意一是样本要有代表性,二是样本容量要足够大。
3.求平均数的公式:123nx x x x x n++++=L【类型一】利用样本平均数估算总体数量【例1】为了创设全新的校园文化氛围,进一步组织学生开展课外阅读,让学生在丰富多彩的书海中,扩大知识源,亲近母语,提高文学素养.某校准备开展“与经典为友、与名著为伴”的阅读活动,活动前对本校学生进行了“你最喜欢的图书类型(只写一项)”的随机抽样调查,相关数据统计如下:请根据以上信息解答下列问题:(1)该校对_____名学生进行了抽样调查,m = _____n =_____(2)请将图1和图2补充完整,并求出扇形统计图中小说所对应的圆心角度数;(3)已知该校共有学生800人,利用样本数据估计全校学生中最喜欢科幻人数约为多少人?【解析】(1)用其它初一它的百分比即可;(2)用360∘乘以所占得百分比;(3)用样本估计总体.解:(1)20÷10%=200(名).由图1,得n=40,m=100-20-10-40=30答:该校对200名学生进行了抽样调查;m=30,n=40(2)如图:小说对应的圆心角度数为360∘×20%=72∘;(3)800×30%=240.答:全校学生中最喜欢小说的人数约为240名.【对应训练1】为了估计湖里有多少条鱼,小刚先从湖里捞出了100条鱼做上标记,然后放回湖里去.经过一段时间,带有标记的鱼完全混合于鱼群后,小刚又从湖里捞出200条鱼,如果其中15条有标记,那么估计湖里有鱼()A.1333条B.3000条C.300条D.1500条【答案】A【解析】在样本中“捕捞200条鱼,发现其中15条有标记”,即可求得有标记的所占比例,而这一比例也适用于整体,据此即可解答.【对应训练2】我国古代数学名著《九章算术》有“米谷粒分”.粮仓开仓收粮,有人送来谷米1608石,验得其中夹有谷粒.现从中抽取谷米一把,共数得256粒,其中夹有谷粒32粒,则这批谷米内夹有谷粒约是________石.【答案】201【解析】根据256粒内夹谷32粒,可得比例,再乘以1608石,即可得出答案.【解答】解:根据题意,得1608×32=201(石),256∴这批谷米内夹有谷粒约201石.【对应训练3】某山区中学280名学生参加植树节活动,要求每人植3至6棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:3棵;B:4棵;C:5棵;D:6棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)这次调查一共抽查了________名学生的植树量;请将条形图补充完整;(2)被调查学生每人植树量的众数是________棵、中位数是________棵;(3)求被调查学生每人植树量的平均数,并估计这280名学生共植树多少棵?【解析】(1)由B类型的人数及其所占百分比可得总人数,总人数乘以D类型的对应的百分比即可求出其人数,据此可补全图形;(2)根据众数和中位数的概念可得答案;(3)先求出样本的平均数,再乘以总人数即可.【解答】(1)这次调查一共抽查植树的学生人数为8÷40%=20(人),D类人数=20×10%=2(人);条形图补充如图:(2)植树4棵的人数最多,则众数是4,共有20人植树,其中位数是第10、11人植树数量的平均数,则中位数是4,(3)x=4×48×562×7=5.3(棵),205.3×280=148(棵).答:估计这3280名学生共植树1484棵.【类型二】用样本估计总体【例2】为了提高学生的综合素养,某校开设了五门第二课堂活动课,按照类别分为:A“剪纸”、B“绘画”、C“雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如下两幅不完整的统计图.根据信息,回答下列问题:(1)本次调查的样本容量为________,统计图中的a=________,b=________;(2)通过计算补全条形统计图;(3)该校共有3000名学生,请你估计全校喜爱“雕刻”的学生人数.解:(1)样本容量为1815%=120,a=120×10%=12,b=120×30%=36.故答案为:120;12;36.(2)组频数:120―18―12―30―36=24(人),补全条形统计图如图所示:(3)3000×30120=750(人),答:该校喜爱“雕刻”约有750人.【跟踪训练1】在一个不透明的盒子中装有20个黄、白两种颜色的乒乓球,除颜色外其它都相同,小明进行了多次摸球试验,发现摸到白色乒乓球的频率稳定在0.2左右,由此可知盒子中黄色乒乓球约有…()A.2个B.4个C.18个D.16个【答案】D【跟踪训练2】质检部门从1000件电子元件中随机抽取100件进行检测,其中有2件是次品.试据此估计这批电子元件中大约有________件次品.【答案】20【解析】根据随机抽取100件进行检测,其中有2件是次品,可以计算出这批电子元件中大约有多少件次品.【跟踪训练3】书籍是人类进步的阶梯.为了解学生的课外阅读情况,某校随机抽查了部分学生本学期阅读课外书的册数,并绘制出如下统计图.(1)共抽查了多少名学生?(2)请补全条形统计图,并写出被抽查学生本学期阅读课外书册数的众数、中位数;(3)根据抽查结果,请估计该校1200名学生中本学期课外阅读5册书的学生人数.解:(1)12÷30%=40(名).(2)如图所示,由图知,众数为5,中位数为5.(3)∵抽查的样本中,课外阅读5册书的学生人数占14×100%=35%,40∴估计该校学生课外阅读5册书的学生人数约占35%,∴该校1200名学生中课外阅读5册书的学生人数约为1200×35%=420(人).【类型三】用样本频率估计总体频率【例3】中长跑(男生1000m,女生800m)是河南省某市中招体育考试的必考项目.甲、乙两校为了解本校九年级学生的训练情况,各随机抽取了20名九年级学生的中长跑模拟测试成绩(满分:30分),将成绩进行统计、整理与分析,过程如下:【收集数据】【整理数据】整理以上数据,得到模拟测试成绩x(分)的频数分布表.【分析数据】根据以上数据,得到以下统计量.根据以上信息,回答下列问题:(1)填空:a= ________,b=_________, m=________, n=________;(2)综合上表中的统计量,推断________校学生中长跑成绩更好,理由为________(写出一条即可)(3)若甲、乙两校各有800名学生,请估计两校中长跑模拟测试成绩不低于25分的学生一共有多少名?解:(1)由数据可得,a=7,b=8,m=24.75,n=23.4. 故答案为:7;8;24.75;23.4.(2)甲校学生成绩的平均数比乙校学生成绩的平均数高,且甲校学生成绩的方差比乙校学生成绩的方差小,成绩较稳定.(答案不唯一,合理即可)故答案为:甲.=720(名),(3)(800+800)×1082020答:估计两校中长跑模拟测试成绩不低于25分的学生一共有720名.【跟踪训练】今年是建党100周年,为了让全校学生牢固树立爱国爱党的崇高信念,某校开展了形式多样的党史学习教育活动,八、九年级(各有500名学生)举行了一次党史知识竞答(满分为100分),然后随机各抽取20名同学的成绩进行了收集、统计与分析,过程如下:【收集数据】两个年级抽取的20名同学的成绩如下表:八年级:7968878985598997898998938586899077898379九年级:8688979194625194877194789255979294948598【整理数据】将两个年级的抽样成绩进行分组整理:成绩x(分)50≤x<6060≤x<7070≤x<8080≤x<9090≤x<100八年级113114九年级2a b411【分析数据】抽样的平均数、众数、中位数、方差和优秀率(90分及以上为优秀)如下表:年级统计量平均数众数中位数方差优秀率八年级8589c80.420%九年级859491.5192d请根据以下信息,回答下列问题:(1)填空:a=________,b= ________,c=________,d=________;(2)请估计此次知识竞答中,八年级成绩优秀的学生人数;(3)小李同学认为九年级的整体成绩更好,请从至少两个方面分析其合理性.解:(1)由表中数据可知,九年级落在60≤x<70内的只有62,故a=1;九年级落在70≤x<80内的有71,78,故b=2;八年级成绩按照从小到大的顺序排列后,落在第10,11的数为87,89,∴中位数为88,故c=88;九年级90分及以上的学生有11人,∴九年级的优秀率为1120×100%=55%.故答案为:1;2;88;55%.(2)∵500×20%=100,∴估计此次知识竞答中,八年级成绩优秀的学生人数为100人.(3)九年级抽样成绩的众数,中位数和优秀率均高于八年级,说明九年级平均成绩更高,高分更多,因此九年级整体成绩更好.【类型四】用样本推断总体的实际应用【例4】某运动鞋经销商随机调查某校40名女生的运动鞋号码,结果如下表:鞋的号码35.53636.53737.5人数4616122现在该经销商要进200双上述五种运动鞋,你认为应该怎样进货比较合理?解析:先求出各鞋码所占比例,再乘200,即可得到所需进货数.解:由表中数据可知各鞋码的女生的比例,根据比例进货.需要进35.5码运动鞋:200×440=20(双),需要进36码运动鞋:200×640=30(双)需要进36.5码运动鞋:200×1640=80(双),需要进37码运动鞋:200×1240=60(双)需要进37.5码运动鞋:200×240=10(双)。
用样本估计总体教研记录(3篇)
第1篇一、背景在教育研究领域,对总体进行精确的研究往往受到时间和资源的限制。
因此,通过样本估计总体成为了一种常用的研究方法。
本文将结合具体案例,探讨如何运用样本估计总体,并记录相关教研过程。
二、案例介绍某中学为了了解全校学生的阅读兴趣,随机抽取了100名学生作为样本,对他们的阅读兴趣进行问卷调查。
通过分析样本数据,学校试图估计全校学生的阅读兴趣分布情况。
三、教研过程1. 确定研究问题本案例的研究问题是:通过样本估计,了解全校学生的阅读兴趣分布情况。
2. 设计样本(1)确定样本类型:采用随机抽样方法,确保样本具有代表性。
(2)确定样本量:根据统计学原理,样本量越大,估计结果的准确性越高。
在本案例中,我们抽取了100名学生作为样本。
(3)确定抽样方法:采用简单随机抽样,确保每个学生被抽中的概率相等。
3. 数据收集(1)设计问卷:针对阅读兴趣这一主题,设计了一份包含20个问题的问卷。
(2)发放问卷:将问卷发放给100名学生,要求他们在规定时间内完成。
(3)回收问卷:回收100份问卷,并检查问卷的完整性。
4. 数据分析(1)整理数据:将回收的问卷数据进行整理,剔除无效问卷。
(2)描述性统计:对有效问卷进行描述性统计分析,包括频数、百分比等。
(3)推断性统计:运用统计学方法,对样本数据进行分析,估计全校学生的阅读兴趣分布情况。
5. 结果解释根据样本数据,得出以下结论:(1)全校学生的阅读兴趣总体呈正态分布。
(2)多数学生喜欢阅读小说、散文等文学作品。
(3)部分学生对阅读兴趣不明确,需要进一步引导。
6. 教研总结通过本次教研活动,我们掌握了以下方法:(1)如何运用样本估计总体。
(2)如何设计问卷,确保样本的代表性。
(3)如何进行数据分析,得出有意义的结论。
四、反思与展望1. 反思(1)样本估计总体的方法在实际应用中具有一定的局限性,如样本量不足、抽样方法不科学等。
(2)在数据收集过程中,可能会存在问卷设计不合理、回收率低等问题。
初中数学用样本估计总体优秀教案
初中数学用样本估计总体优秀教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、发言致辞、自我鉴定、合同协议、条据文书、规章制度、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts for everyone, such as work plans, work summaries, speeches, self-evaluation, contract agreements, documents, rules and regulations, experiences, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!初中数学用样本估计总体优秀教案初中数学用样本估计总体优秀教案(通用5篇)在教学工作者开展教学活动前,常常要写一份优秀的教案,教案有助于学生理解并掌握系统的知识。
用样本估计总体
基础知识
题型分类
思想方法
练出高分
由直方图可知众数为:100
中位数:设x为中位数,则有:
0.00610 0.02610 0.038x 95 0.5 得x 99.74
基础知识
题型分类
思想方法
练出高分
基础知识
度剖析
作茎叶图时, 将高位(十位与百位) 作为茎,低位 (个位)作为叶,逐 个统计;根据茎叶图分析两组数 据的特点,可以得出结论.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型二 茎叶图的应用
解析 探究提高 思维启迪 【例 2】 某良种培育基地正在培育一种小麦 新品种 A.将其与原有的一个优良品种 B 进 行对照试验.两种小麦各种植了 25 亩,所 解 (1)如下图 得亩产数据(单位:千克)如下: 品种 A: 357,359,367,368,375,388,392,399,400,405,41 2,414,415,421,423,423,427,430,430,434,443, 445,445,451,454 品种 B: 363,371,374,383,385,386,391,392,394,394,39 (2) 由于每个品种的数据都只有 25 个,样本不大,画茎叶图很方 5,397,397,400,401,401,403,406,407,410,412, 便;此时茎叶图不仅清晰明了地展示了数据的分布情况,便于比 415,416,422,430 (1)作出数据的茎叶图; 较,没有任何信息损失,而且还可以随时记录新的数据. (2)用茎叶图处理现有的数据,有什么优点? (3) 通过观察茎叶图可以看出:①品种 A 的亩产平均数(或均值) (3)通过观察茎叶图,对品种 A 与 B 的亩产 比品种 B 高; ②品种 A 的亩产标准差(或方差)比品种 B 大, 故品 量及其稳定性进行比较,写出统计结论.
30.2 .3.用样本估计总体
4、总结反思: 在实际问题中,平均数是最常用的指标,但不能一味的使用平均数来确定数据的特征,根 据不同的实际需要,确定用平均数、中位数还是众数反映数据的特征。平均数、中位数、 和众数各有所长,也各有其短。 1、用平均数作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关 系,对这组数据所包含的信息的反映最为充分,因而其应用也最为广泛,特别是在进行统 计推断时有最要的作用,但计算时比较繁琐,并且容易受到极端数据的影响。 2、用众数作为一组数据的代表,着眼于对数据出现的频数的考察,其大小只与这组数据 中的部分数据有关,可靠性比较差,但众数不受极端数据的影响。当一组数据中有不少数 据多次重复出现时,其众数往往是我们关心的一种统计量。 3、用中位数作为一组数据的代表,可靠性也比较差,但中位数也不受极端数据的影响, 当一组数据中的个别数据变动较大时,可用他来描述其集中趋势。 5、什么样的指标可以反映一组数据变化范围的大小? 我们可以用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围.用 这种方法得到的差称为极差(range). 极差=最大值-最小值.
(可能不一致,因为还应考虑影响种子发芽的其他因素,温度等。)
为了一般地研究“香烟浸出液浓度对于种子萌芽的影响”, 是否需要选取一些其他的种子做类似的实验? (对此问题,你们可以课后查阅有关生物资料,并亲自动手实验获 得更为感性的认识。) 如果有兴趣,请动手做一做,再与同学们一起讨论各自获得的 数据和结论。
评注:1.数学家已经证明,随机抽样方法是科学而且可靠的。
2.基于不同的样本,可能会对总体作出不同的估计值, 但随着样本容量的增加,有样本得出的特性会接近总体的特性。
例2.某养鱼专业户为了估计湖里有多少条鱼,先捕上
100条做上标记,然后放回到湖里,过一段时间待带标 记的鱼完全混合于鱼群后,再捕上200条鱼,发现其中 带标记的鱼有20条,湖里大约有多少条鱼?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可编辑ppt
1
一、作频率分布直方图的步骤 1.求极差(即一组数据中 最大值 与 2.决定组距 与 组数. 3.将数据 分组 . 4.列 频率分布表 . 5.画 频率分布直方图 .
最小的值差).
可编辑ppt
2
二、频率分布折线图和总体密度曲线 1.频率分布折线图:连接频率分布直方图中各小长方形上
A.0.12
B.0.24
C.0.275
D.0.32
解析:x=200-(45+55+64+12)=24,
∴频率= =0.12.
答案:A
可编辑ppt
8
3. 甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均
每场进球数为3.2,全年比赛进球个数的标准差为3;乙队
平均每场进球数为1.8,全年比赛进球个数的标准差为0.3.
解析: [(5-7)2+(6-7)2+(9-7)2+(10-7)2+(5-7)2]=×
1
(4+5 1+4+9+4)=4.4.
∴乙稳定.
答案:乙
可编辑ppt
12
频率分布直方图反映样本的频率分布:
(1)频率分布直方图中横坐标表示组距,纵坐标表示
,
频率=组距×
(2)频率分布直方图中各小长方形的面积之和为1,因此在频率分
下列说法正确的个数为 ( )
①甲队的技术比乙队好; ②乙队发挥比甲队稳定; ③
乙队几乎每场都进球; ④甲队的表现时好时坏.
A.1
B.2
C.3
D.4
可编辑ppt
9
解析:四种说法都正确,甲队的平均进球数多于乙队,故
第一句正确;乙队标准差较小,说明技术水平稳定;甲队
平均进球数是3.2,但其标准差却是3,离散程度较大,由此 可判断甲队表现不稳定;平均进球数是1.8,标准差只有0.3, 每场的进球数相差不多,可见乙队的确很少不进球.
答案:D
可编辑ppt
10
4.如图是某兴趣小组学生在一次数学测验中 的得分茎叶图,则该组男生的平均得分与 女生的平均得分之差是________.
解析:男生的平均得分为78.7, 女生的平均得分为77.2得分之 差为1.5. 答案:1.5
可编辑ppt
11
5.甲、乙两人比赛射击,两人所得的平均环数相同,其 中甲所得环数的方差为5,乙所得环数如下:5,6,9,10,5, 那么这两人中成绩较稳定的是________.
端的 中点 ,就得频率分布折线图.
2.总体密度曲线:随着 样本容量的增加,作图时 所分组数 增加, 组距 减小,相应的频率折线图会越来越接近于一
条光滑曲线,即总体密度曲线.
可编辑ppt
3
三、样本的数字特征
数字 定义
众数 在一组数据中,出现次数 最多 的数据叫做这组数据的
众数.
将一组数据按大小依次排列,把处在 最中间 位置的一
1.一个容量为32的样本,已知某组样本的频率为0.375,
则该组样本的频数为 ( )
A.4
B.8
C.12
D.16
解析:频数=32×0.375=12.
答案:C
可编辑ppt
7
2.一个容量为200的样本,数据的分组与几个组的频数如
下表: 组号
1
2
3
4
5
频数
45
55
64
x
12
则样本的第4组的频率为 ( )
个数据(或最中间两个数据的平均数)叫做这组数据
中位数 的 中位数 .在频率分布直方图中,中位数左边和右边 的直方图的面积应该 相等 .可编辑ppt4 Nhomakorabea数字
平均数
定义
样本数据的算术平均数,即
方差
其中s为标准差.
四、茎叶图 茎叶图的优点是可以保留原始数据,而且可以随时记录.
可编辑ppt
6
五、课前热身
=0.14,即x=50(人). (3)由图可知,第4、5、6小组成绩在8.0米以上,其频率之和为 0.28+0.30+0.14=0.72.故合格率为72%. (4)能确定中位数落在第4小组,而众数落在第5小组.
可编辑ppt
18
1.本例条件不变,现欲从参加铅球测试的学生中抽取10 人,调查他们铅球状况,则成绩在[8.85,9.75]的学生 应抽取几人?
可编辑ppt
15
(1)请将频率分布直方图补充完整;
可编辑ppt
16
(2)该校参加这次铅球测试的男生有多少人? (3)若成绩在8.0米以上(含8.0米)的为合格,试求这次铅球 测试的成绩的合格率; (4)在这次测试中,你能确定该校参加测试的男生铅球成 绩的众数和中位数各落在哪个小组内吗?
可编辑ppt
解:由于参加铅球测试的学生的成绩存在较大差异, 故可用分层抽样进行,成绩在[8.85,9.75]的学生应抽 取0.30×50× =3人.
可编辑ppt
19
由于茎叶图较好地保留了原始数据,所以可以帮助我 们分析样本数据的大致概率分布.在利用茎叶图分析数据特 点时,要注意区别茎与叶.
可编辑ppt
20
(2009·安徽高考)某良种培育基地正在培育一种小 麦新品种A.将其与原有的一个优良品种B进行对照试验.两 种小麦各种植了25亩,所得亩产数据(单位:千克)如下: 品种A: 357,359,367,368,375,388,392,399,400,405,412,414,415,421,42 3,423,427,430,430,434,443,445,445,451,454 品种B: 363,371,374,383,385,386,391,392,394,394,395,397,397,400,40 1,401,403,406,407,410,412,415,416,422,430
布直方图中组距是一个固定值,所以各小长方形高的比也就是频
率比.
可编辑ppt
13
(3)频率分布表和频率分布直方图是一组数据频率分布的两 种形式,前者准确,后者直观.
(4)众数为最高矩形中点的横坐标. (5)中位数为平分频率分布直方图面积且垂直于横轴的直线
与横轴交点的横坐标.
可编辑ppt
14
为了了解某校初中毕业男生的体能状况,从该校 初中毕业班学生中抽取若干名男生进行铅球测试,把所得数 据(精确到0.1米)进行整理后,分成6组画出频率分布直方图 的一部分(如下图),已知从左到右前5个小组的频率分别为 0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.
17
【解】 (1)由频率分布直方图的意义知,各小组频率之和为1, 故第6小组的频率为 1-(0.04+0.10+0.14+0.28+0.30)=0.14. 易知第6小组与第3小组的频率相等,故两个小长方形等高,图 略. (2)由(1)知,第6小组的频率是0.14,又因为第6小组的频数是7, 现设参加这次测试的男生有x人,根据频率定义,得