二次函数在给定区间上的最值问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数在给定区间上的最值问题

【学前思考】

二次函数在闭区间上取得最值时的x ,只能是其图像的顶点的横坐标或给定区间的端点. 因此,影响二次函数在闭区间上的最值主要有三个因素:抛物线的开口方向、对称轴以及给定区间的位置. 在这三大因素中,最容易确定的是抛物线的开口方向(与二次项系数的正负有关),而关于对称轴与给定区间的位置关系的讨论是解决二次函数在给定区间上的最值问题的关键. 本节,我们将以若干实例说明解决此类问题的具体方法.

【知识要点&例题精讲】

二次函数在给定区间上的最值问题,常见的有以下三种类型,分别是: Case Ⅰ、给定区间确定,对称轴位置也确定

说明:此种类型是较为简单的一种,只要找到二次函数的对称轴,画出其函数图像,再将给定区间标出,那么二次函数的最值一目了然.

解法:若二次函数的给定区间是确定的,其对称轴的位置也确定,则要求二次函数在给定区间上的最值,只需先考察其对称轴的横坐标是否在给定区间内. (i )当其对称轴的横坐标在给定区间内时,二次函数在给定区间上不具有单调性,此时其一个最值在顶点处取得,另一个最值在离对称轴的横坐标较远的端点处取得;

(ii )当其对称轴的横坐标不在给定区间内时,二次函数在给定区间上具有单调性,此时可利用二次函数的单调性确定其最值.

例1、二次函数223y x x =-+在闭区间[]1,2-上的最大值是_______.

例2、函数2()42f x x x =-+-在区间[]0,3上的最大值是_______,最小值是_______.

例3、已知223x x ≤,则函数2()1f x x x =++的最大值是_______,最小值是______.

Case Ⅱ、给定区间确定,对称轴位置变化

说明:此种类型是非常重要的,是考试必考点,主要是讨论二次函数的对称轴与给定区间的位置关系,一般需要分对称轴在给定区间的左侧、内部以及右侧三种情况进行分类讨论,然后根据不同情况求出相应的最值.

解法:若二次函数的给定区间是确定的,而其对称轴的位置是变化的,则要求二次函数2y ax bx c =++(0a ≠)在给定区间[],p q 上的最值,需对其对称轴与给定区间的位置关系进行分类讨论. 这里我们以0a >的情形进行分析: (ⅰ)若2b p a

-<,即对称轴在给定区间[],p q 的左侧,则函数()f x 在给定区间[],p q 上单调递增,此时max [()]()f x f q =

,min [()]()f x f p =; (ⅱ)若2b p q a ≤-≤,即对称轴在给定区间[],p q 的内部,则函数()f x 在[,]2b p a

-上单调递减,在[,]2b q a -上单调递增,此时min [()]()2b f x f a =-,max [()]()f x f p =或()f q ,至于最大值究竟是()f p 还是()f q ,还需通过考察对称轴与给定区间的中点的位置关系作进一步讨论:若22

b p q p a +≤-<,则max [()]()f x f q =;若22p q b q a

+≤-≤,则max [()]()f x f p =; (ⅲ)若2b q a

->,即对称轴在给定区间[],p q 的右侧,则函数()f x 在给定区间[],p q 上单调递减,此时max [()]()f x f p =

,min [()]()f x f q =. 综上可知,当0a >时,

max (),22[()](),22b p q f q a f x b p q f p a +⎧-<⎪⎪=⎨+⎪-≥⎪⎩

若若;

min (),2[()](),22(),2b f p p a b b f x f p q a a b f q q a ⎧-<⎪⎪⎪=-≤-≤⎨⎪⎪->⎪⎩

若若若.

通过同样的分析可得到:当0a <时,

max

(),2[()](),22(),2b f p p a b b f x f p q a a b f q q a ⎧-<⎪⎪⎪=-≤-≤⎨⎪⎪->⎪⎩若若若; min (),22[()](),22b p q f q a f x b p q f p a +⎧-<⎪⎪=⎨+⎪-≥⎪⎩

若若.

例4、已知21x ≤且2a ≥,求函数2()3f x x ax =++的最值.

例5、求函数()()f x x x a =--在区间[]1,1-上的最大值.

例6、求函数2()21f x x ax =--在区间[]0,2上的最大值和最小值.

例7、设函数2()f x x ax b =++(,a b R ∈),当214

a b =+时,求函数()f x 在区

间[]1,1-上的最小值()g a 的解析式.

222222

22

()1()1422

122

()[1,1]()(1)11244

122

()[1,1]()(1)11244

a a a f x x ax

b x ax x x a a f x a a g a f a a a a f x a a g a f a a =++=++

+=++=--<->-=-=-++=-+-><--==+++=++函数的图像是开口向上,对称轴为直线的抛物线(i )若,即此时函数在上单调递增于是(ii )若,即此时函数在上单调递减

于是(iii )[解析] 2

211222

()[1,][,1]22

()()12

22

4()1,22

224a a a a f x a g a f a a a g a a a a a -≤-≤-≤≤---=-=⎧-+>⎪⎪⎪=-≤≤⎨⎪⎪++<-⎪⎩若,即此时函数在上单调递减,在上单调递增于是,综上可知,,

例8、已知函数2()1f x x mx =+-,若对于任意的[,1]x m m ∈+,都有()0f x <成立,则实数m 的取值范围是_______.

Case Ⅲ、给定区间变化,对称轴位置确定

说明:此种类型,考试中出现的较少,一般是给定区间里含有参数. 解决此类问题,亦可根据对称轴与给定区间的位置关系,分对称轴在给定区间的左侧、内部以及右侧三种情况进行分类讨论,然后根据不同情况求出相应的最值. 解法:若二次函数的给定区间是变化的,而其对称轴的位置是确定的,则要求二次函数在给定区间上的最值,需对变化区间是否包含其对称轴的横坐标进行分类讨论,分类标准为:变化区间包含其对称轴的横坐标,变化区间不包含其对称轴的横坐标. 解决方法与知识点2类似,这里不再赘述.

例9、已知函数2()(1)1f x x =-+定义在区间[],1t t +(t R ∈)上,求()f x 的最小值.

例10、已知函数2()23f x x x =-+,当[],1x t t ∈+(t R ∈)时,求()f x 的最大值.

相关文档
最新文档