北京市西城区2020-2021学年度第一学期期末试卷八年级数学A卷及答案

合集下载

2020-2021学年北京市西城区八年级上学期期末数学试卷(含解析)

2020-2021学年北京市西城区八年级上学期期末数学试卷(含解析)

2020-2021学年北京市西城区八年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列计算正确的是()A. 2−1=−2B. a3⋅a3=2a3C. (−7)0=1D. (−c)4÷(−c)2=−c22.以下四个标志,每个标志都有图案和文字说明,其中的图案是轴对称图形是()A. 节能B. 绿色环保C. 永洁环保D. 绿色食品3.计算结果不为a8的是()A. a10÷a2B. a2×a6C. (a4)2D. a4+a44.画∠AOB的角平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M,N为圆心,大于12MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A. SSSB. SASC. ASAD. AAS5.化简分式a2−abb2−a2的结果是()A. aa+b B. a+baC. a−a−bD. aa−b6.要使(−6x3)(x2+ax−3)的展开式中不含x4项,则a=()A. 1B. 0C. −1D. 167.已知P1(−2,m),P2(1,n)是函数y=−2x+1图象上的两个点,则m与n的大小关系是()A. m>nB. m<nC. m=nD. 无法确定8.下列说法:①角是轴对称图形,对称轴是角的平分线;②等腰三角形至少有1条对称轴,至多有3条对称轴;③关于某直线对称的两个三角形一定是全等三角形;④两图形关于某直线对称,对称点一定在直线的两旁,其中正确的有()A. 4个B. 3个C. 2个D. 1个9.一项工程,甲独做需10天完成,乙独做需6天完成,现由甲先做3天,乙再加入合做,设完成此项工需x天,由题意得方程()A. x10+x6=1 B. x+310+x−36=1C. x10+x−36=1 D. x−310+x6=110.如图,已知Rt△ABC,∠C=90°,CA=3,CB=4,点M从点B出发沿线段BC匀速运动至点C,过点M作MN⊥AB于N,则△BMN面积S与点M的运动时间t之间的函数图象大致是()A. B. C. D.二、填空题(本大题共9小题,共24.0分)11.要使−3√3−a有意义,则a的取值范围是______ .12.如图,已知正方形ABCD,定点A(1,3),B(1,1),C(3,1),AC、BD交于M,M点坐标为(2,2),规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位长度”为一次变换,如此这样,连续经过2017此变换后,正方形ABCD的对角线交点M的坐标变为______ .13.计算:(3ab+2b)÷b=______.14.如果△ABC≌△DEF,且△ABC的周长是90cm,AB=30cm,AC=20cm,那么EF的长等于______cm.15.小重和小庆相约从学校出发沿同一路线到“开心之洲”玩耍.小重出发1分钟后小庆才出发,小重出发6分钟后发现自己钱包没有带,于是立即掉头并将速度提高为原来的两倍跑步回学校,回学校取到钱包后保持跑步的速度立即赶往“开心之洲”,最终比小庆早1分钟到达.小重两次掉头的时间和取钱包的时间忽略不计,小庆全程保持匀速,小重、小庆相距的路程y(米)和小庆出发的时间t(分)之间的函数关系如图所示,则学校到“开心之洲”的路程为______米.16.从边长为a的大正方形纸板中挖去一个边长为b的小正方形后,所得边框等宽.将其裁成四个矩形(如图甲),然后拼成一个大矩形(如图乙).那么通过计算阴影部分的面积可以验证公式.17.如图.在Rt△ABC中,∠BAC=60°,以点A为圆心、任意长为半径作弧分别交AB,AC于点M,N,再分别以点M,N为圆心,大于12MN的长为半径作弧.两弧交于点P.作射线AP交BC于点E.若BE=1,则Rt△ABC的周长等于______ .18.一次函数y=kx+b的图象如图所示,那么k______0,b______0.19.1a+1−aa2−1=______.三、解答题(本大题共10小题,共66.0分)20.(1)因式分解:9a2(x−y)−b2(x−y) (2)解方程:(x+3)(x−5)−(x+1)(x−1)=221.化简或计算:(1)a2−aba2÷a2−b2ab;(2)a+1−a2a−1.22.如图,AB=AC,AC的垂直平分线MN交AB于D,交AC于E.(1)若∠A=40°,求∠BCD的度数;(2)若AE=5,△BCD的周长17,求△ABC的周长.23. 解方程:2xx−2=1+12−x.24. 如右图,已知F是DE的中点,∠D=∠E,∠DFN=∠EFM.求证:DM=EN.25. 甲、乙两台机器共加工一批零件,在加工过程中两台机器均改变了一次工作效率.从工作开始到加工完这批零件两台机器恰好同时工作6小时.甲、乙两台机器各自加工的零件个数y(个)与加工时间x(时)之间的函数图象分别为折线OA−AB与折线OC−CD.如图所示.(1)甲机器改变工作效率前每小时加工零件______ 个.(2)求乙机器改变工作效率后y与x之间的函数关系式,并求出自变量x的取值范围.(3)求这批零件的总个数.(4)直接写出当甲、乙两台机器所加工零件数相差10个时,x的值为______ .x+b+2t−5 26. 如图在平面直角坐标系中,已知直线y=tx+2t交x轴负半轴于点B;直线y=−tb 交x轴正半轴于点C,且这两条直线与y轴交于同一点A.(1)求BC的长.(2)作BC的垂直平分线交线段AC于点F,交x轴于E,连接BF交y轴于点K,若AK的长为d,求d与t的函数关系式.(3)在(2)的条件下,过点F作x轴的平行线FG,连接BG交CF于H,连接CG,若当∠BGC+∠BHC=180°时,BH=3CG,求点H的坐标.27. 如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(−4,0).点B的坐标(2,0),点C的坐标为(0,4),连接BC,AC,过点A作AF⊥BC,垂足为点F,交OC于点E.(1)求证:△AOE≌△COB;(2)求线段AE的长:(3)若点D是AC的中点,点M是y轴负半轴上一动点,连接MD,过点D作DN⊥DM交x轴于点N,设S=S△CDM−S△ADN,在点M的运动过程中,S的值是否发生改变?若改变,直接写出S的范围;若不改变,直接写出S的值.28. 将一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=9,OC=15.(1)如图1,在OA上取一点E,将△EOC沿EC折叠,使O点落至AB边上的D点,求直线EC的解析式;(2)如图2,在OA、OC边上选取适当的点M、F,将△MOF沿MF折叠,使O点落在AB边上的D′点,过D′作D′G⊥CO于点G点,交MF于T点.①求证:TG=AM;②设T(x,y),探求y与x满足的等量关系式,并将y用含x的代数式表示(指出变量x的取值范围);(3)在(2)的条件下,当x=6时,求出四边形MOFD′的面积.29. 在平面直角坐标系中,点A(−3,0),B(0,4).(1)直接写出直线AB的解析式;(2)如图1,过点B的直线y=kx+b交x轴于点C,若∠ABC=45°,求k的值;(3)如图2,点M从A出发以每秒1个单位的速度沿AB方向运动,同时点N从O出发以每秒0.6个单位的速度沿OA方向运动,运动时间为t秒(0<t<5),过点N作ND//AB交y轴于点D,连接MD,是否存在满足条件的t,使四边形AMDN为菱形,判断并说明理由.参考答案及解析1.答案:C,故选项A不合题意;解析:解:2−1=12a3⋅a3=a6,故选项B不合题意;(−7)0=1,正确,故选项C符合题意;(−c)4÷(−c)2=c2,故选项D不合题意.故选:C.分别根据负整数指数幂的运算法则,同底数幂的乘法法则,任何非0数的0次幂等于1以及同底数幂的除法法则计算逐一判断即可.本题主要考查了同底数幂的乘除法以及负整数指数幂,非0数的0次幂,熟记幂的运算法则是解答本题的关键.2.答案:D解析:解:A.不是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项不合题意;C.不是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项符合题意;故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此进行分析即可.此题主要考查了轴对称图形,正确掌握轴对称图形的定义是解题关键.3.答案:D解析:解:A.a10÷a2=a10−2=a8,故本选项不合题意;B.a2×a6=a2+6=a8,故本选项不合题意;C.(a4)2=a4×2=a8,故本选项不合题意;D.a4+a4=2a4,故本选项符合题意;故选:D.分别根据同底数幂的除法法则,同底数幂的乘法法则,幂的乘方运算法则以及合并同类项法则逐一判断即可.本题考查了同底数幂的乘除法,合并同类项以及幂的乘方,掌握相关运算法则是解答本题的关键.4.答案:A解析:先证明三角形全等,再利用全等的性质证明角相等.从画法①可知OA=OB,从画法②可知CM=CN,又OC=OC,由SSS可以判断△OMC≌△ONC,∴∠MOC=∠NOC,即射线OC就是∠AOB的角平分线.故选A.5.答案:C解析:此题考查了约分,找出分子分母的公因式是解本题的关键.原式分子分母提取公因式变形后,约分即可得到结果.解:原式=−a(a−b)(a+b)(a−b)=−a a+b=a−a−b.故选C.6.答案:B解析:解:原式=−6x5−6ax4+18x3,由展开式不含x4项,得到a=0,故选:B.原式利用单项式乘以多项式法则计算,根据结果不含x4项求出a的值即可.此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.7.答案:A解析:解:∵一次函数y=−2x+1中,k=−2<0,∴y随着x的增大而减小.∵P1(−2,m),P2(1,n)是函数y=−2x+1图象上的两个点,−2<1,∴m>n.故选:A.先根据一次函数的解析式判断出函数的增减性,再根据−2<1即可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.答案:C解析:本题考查了轴对称以及对称轴的定义和应用,难度不大,属于基础题.要找出正确的说法,可运用相关基础知识分析找出正确选项,从而得出正确选项.解:①角是轴对称图形,对称轴是角的平分线所在的直线,而非角平分线,故①错误;②等腰三角形至少有1条对称轴,至多有3条对称轴,正三角形有3条对称轴,故②正确;③关于某直线对称的两个三角形一定可以完全重合,所以肯定全等,故③正确;④两图形关于某直线对称,对称点可能重合在直线上,故④错误;综上有②、③两个说法正确.故选C.9.答案:C解析:解:设需x天完成,根据题意得:x10+x−36=1,故选C.设乙还需x天完成,根据甲单独完成一项工程需要10天,乙单独完成一项工程需要6天.这项工程,甲独做3天后乙再加入合做,可列方程求解.本题是个工程问题,根据工作量=工作时间×工作效率,且完成工作,工作量为1,可列方程.10.答案:A解析:试题分析:先根据勾股定理求出AB的长,再根据锐角三角函数的定义得出sinB与cosB的值,设点M的速度为a,则BM=at,再用at表示出MN及BN的长,根据三角形的面积公式即可得出结论.∵Rt△ABC,∠C=90°,CA=3,CB=4,∴AB=√AC2+BC2=√32+42=5,∴sinB=ACAB =35,cosB=BCAB=45,设点M的速度为a,则BM=at,∵MN⊥AB,∴sinB=MNBM =MNat=35,cosB=BNBM=BNat=45,∴MN=3at5,BN=4at5,∴S△BMN=12BN⋅MN=12×4at5×3at5=6a2t225,∴△BMN面积S与点M的运动时间t之间的函数图象是二次函数在第一象限的一部分.故选A.11.答案:a<3解析:本题考查了二次根式的意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义;分式有意义,分母不等于0.根据被开方数大于等于0,分母不等于0列式计算即可得解.解:由题意得,3−a>0,解得a<3.故答案为a<3.12.答案:(−2015,−2)解析:解:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2−1,−2),即(1,−2),第2次变换后的点M的对应点的坐标为:(2−2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2−3,−2),即(−1,−2),第n次变换后的点M的对应点的为:当n为奇数时为(2−n,−2),当n为偶数时为(2−n,2),∴连续经过2017次变换后,正方形ABCD的对角线交点M的坐标变为(−2015,−2).故答案为:(−2015,−2).由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2−n,−2),当n为偶数时为(2−n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.此题考查了翻折变换(折叠问题),点的坐标变化,对称与平移的性质.得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2−n,−2),当n为偶数时为(2−n,2)是解此题的关键.13.答案:3a+2解析:解:(3ab +2b)÷b =3a +2,故答案为3a +2.根据多项式除法的运算法则可计算求解.本题主要考查整式的除法,掌握整式除法的运算法则是解题的关键.14.答案:40解析:解:∵△ABC≌△DEF ,∴BC =EF ,∵△ABC 的周长是90cm ,AB =30cm ,AC =20cm ,∴EF =BC =90−30−20=40cm .故答案为:40.根据全等三角形对应边相等可得BC =EF ,再根据三角形的周长公式列式计算即可得解. 本题考查了全等三角形对应边相等的性质,熟记性质是解题的关键,作出图形更形象直观. 15.答案:2160解析:解:设小庆的速度为a 米/分,小重开始的速度为b 米/分,根据图象可得3分钟时,两人相距为0,5分钟时,两人相距为40米,∴{3a −4b =05a −6b =40,解得:{a =80b =60, 即小庆的速度为80米/分,小重开始的速度为60米/分,∴小重提速后的速度为60×2=120(米/分),设小庆t 分钟到达.则小重用时(t +1−6−3−1)分钟,80t =120(t +1−6−3−1),解得:t =27,∴学校到“开心之洲”的路程为80×27=2160(米).故答案为:2160.设小庆的速度为a 米/分,小重开始的速度为b 米/分,根据图象可得3分钟时,两人相距为0,5分钟时,两人相距为40米,列方程组可得a ,b 的值,可得小重提速后的速度,设小庆t 分钟到达.则小重用时(t +1−6−3−1)分钟,根据路程相等列方程求出t ,小庆的速度×t 即可得学校到“开心之洲”的路程.本题考查了函数的图象,二元一次方程组的应用,解答本题的关键是明确题意,利用函数的性质和数形结合的思想解答.16.答案:解析:本题主要考查平方差公式根据题意可以得出左边图形的面积为:;右边图形的面积为:;所以17.答案:3√3+3解析:解:由作法得AE平分∠BAC,∵∠BAC=60°,∴∠BAE=12∠BAC=12×60°=30°,在Rt△ABE中,AB=√3BE=√3,在Rt△ABC中,AC=2AB=2√3,BC=√3AB=√3×√3=3,∴Rt△ABC的周长=√3+3+2√3=3√3+3.故答案为3√3+3.利用基本作图得到AE平分∠BAC,则∠BAE=30°,利用含30度的直角三角形三边的关系,在Rt△ABE 中计算出AB=√3,在Rt△ABC中计算出AC=2√3,BC=3,然后可得到Rt△ABC的周长.本题考查了作图−基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了角平分线的性质.18.答案:<>解析:解:∵一次函数y=kx+b的图象经过第一、二、四象限,∴k<0,b>0.故答案为:<;>.由一次函数图象经过的象限,利用一次函数图象与系数的关系即可找出k,b的正负.本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.19.答案:11−a2解析:解:原式=a−1(a+1)(a−1)−a(a+1)(a−1)=a−1−a(a+1)(a−1)=11−a2,故答案为:11−a2原式通分并利用同分母分式的减法法则计算即可得到结果.此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出各分母的最简公分母.20.答案:解:(1)9a2(x−y)−b2(x−y)=(x−y)(9a2−b2)=(x−y)(3a+b)(3a−b).(2)(x+3)(x−5)−(x+1)(x−1)=2x2−2x−15−x2+1=2−2x−14=2−2x=16x=−8.解析:(1)先变形,再提取公因式,最后根据平方差公式分解即可.(2)先转化为一元一次方程的形式,然后解方程.考查了多项式乘多项式,单项式乘单项式,以及因式分解,属于基础计算题.21.答案:解:(1)原式=a(a−b)a2⋅ab(a+b)(a−b)=ba+b;(2)原式=(a+1)(a−1)a−1−a2a−1=a2−1a−1−a2a−1=−1a−1.解析:(1)先将分子、分母因式分解,同时将除法转化为乘法,再约分即可得;(2)先通分,再根据法则计算可得.本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.22.答案:解:(1)∵AB=AC∴∠B=∠ACB=180°−∠A2=70°,∵MN垂直平分线AC∴AD=CD,∴∠ACD=∠A=40°,∴∠BCD=∠ACB−∠ACD=70°−40°=30°;(2)∵MN是AC的垂直平分线∴AD=DC,AC=2AE=10,∴AB=AC=10,∵△BCD的周长=BC+CD+BD=AB+BC=17,∴△ABC的周长=AB+BC+AC=17+10=27.解析:(1)先根据等腰角形的性质求出∠B=∠ACB=180°−∠A2=70°,再由MN垂直平分线AC可知AD= CD,所以∠ACD=∠A,再根据∠BCD=∠ACB−∠ACD即可得出结论;(2)由MN是AC的垂直平分线可知,AD=DC,AC=2AE,所以AB=AC,再由△BCD的周长=BC+ CD+BD=AB+BC=17,可求出△ABC的周长.本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.23.答案:解:去分母得:2x=x−2−1,解得:x=−3,经检验x=−3是分式方程的解.解析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.24.答案:证明:∵点F是DE的中点,∴DF=EF,∵∠DFN=∠EFM,∴180°−∠DFN=180°−∠EFM,∴∠DFM=∠EFN,在△DFM和△EFN中,{∠D=∠E DF=EF ∠DFM=∠EFN ,∴△DFM≌△EFN(ASA)∴DM=EN.解析:证出∠DFM=∠EFN,由ASA证明△DFM≌△EFN,即可得出结论DM=EN.本题考查了全等三角形的判定与性质、邻补角定义;证明三角形全等是解决问题的关键.25.答案:(1)20;(2)解:∵图象过C(2,80),D(5,110),∴设解析式为y =kx +b(k ≠0),∴{2k +b =805k +b =110,解得:{k =10b =60,∴y 乙=10x +60(2≤x ≤6);(3)解:∵AB 过(4,80),(5,110),∴设AB 的解析式为y 甲=mx +n(m ≠0),∴{4m +n =805m +n =110,解得:{m =30n =−40,∴y 甲=30x −40(4≤x ≤6),当x =6时,y 甲=30×6−40=140,y 乙=10×6+60=120,∴这批零件的总个数是140+120=260;(4)12,92,112解析:解:(1)80÷4=20(件),故答案为:20;(2)∵图象过C(2,80),D(5,110),∴设解析式为y =kx +b(k ≠0),∴{2k +b =805k +b =110,解得:{k =10b =60, ∴y 乙=10x +60(2≤x ≤6);(3)∵AB 过(4,80),(5,110),∴设AB 的解析式为y 甲=mx +n(m ≠0),∴{4m +n =805m +n =110,解得:{m =30n =−40, ∴y 甲=30x −40(4≤x ≤6),当x =6时,y 甲=30×6−40=140,y 乙=10×6+60=120,∴这批零件的总个数是140+120=260;(4)40x −10=20x ,解得:x =12,10x +60−10=30x −40,解得:x =92,30x −40−10=10x +60,解得:x =112,当甲、乙两台机器所加工零件数相差10个时,x 的值为12,92,112,故答案为:12,92,112.(1)甲改变工作效率前的工作效率为改变前加工的总件数,除以加工的总时间即可;(2)利用待定系数法求一次函数解析式即可;(3)利用函数解析式求出甲、乙两机器6小时加工的总件数,求其和即可;(4)根据题意列方程即可得到结论.此题主要考查了一次函数的应用,根据题意得出函数关系式以及数形结合是解决问题的关键.26.答案:解:(1)由题意得:t>0,当x=0时,y=2t=b+2t−5.∴b=5.∴y=−t5x+2t.若y=tx+2t=0,则x=−2.∴B(−2,0).若y=−t5x+2t=0,则x=10.∴C(10,5).∴BC=10−(−2)=12.(2)∵EF是BC的垂直平分线,∴BE=CE=12BC=12×12=6.又∵C(10,0),B(−2,0),∴OC=10,OB=2.∴OE=OC−EC=10−6=4.∴x F=4.∴y F=−t5x+2t=−45t+2t=65t.∴EF=65t.由题意得:y轴//EF.∴∠KOB=∠BEF,∠BKO=∠BFE.∴△BKO∽△BFE.∴OBBE =OKFE.∴26=OK65t.∴OK=25t.当x=0时,y A=tx+2t=t⋅0+2t=2t.∴OA=2t.∴AK=OA−OK=2t−25t=85t.∴d=85t(t>0).(3)设点H的横坐标为m,∵点H在直线AC上,∴点H的坐标为(m,2t−mt5);∵∠BGC+∠BHC=180°,且BH=3CG时,∴∠BGC=60°,∠BHC=120°,根据三角函数即AC的斜率为k=t5,∴t=2,∴直线AC的解析式为:y=−25+4,∴H(m,4−25m)∵BH=3CG,∴m=6,∴H(6,8 5 ).解析:(1)根据一次函数的解析式与x轴、y轴的交点坐标特征,令y=0,x=0,求出点B、C的坐标,即可求出BC的长度;(2)根据垂直平分线,求出点E的坐标;将点F代入AC的函数解析,求出点F的坐标;再利用相似,求出OK的长度,从而得出d与t的函数关系;(3)利用∠BGC+∠BHC=180°时,BH=3CG,求出t的值,即可求出点H的坐标.本题是一次函数的综合应用题,涉及知识点有:待定系数法,相似,垂直平分线等,体现了数学的转化思想,考查了学生的推理能力、计算能力、直观想象等.27.答案:(1)证明:由题意得,OA=4,OC=4,OB=2,∵∠COB=90°,∠AFB=90°,∴∠BAF=∠BCO,在△AOE和△COB中,{∠AOE=∠COB=90°OA=OC∠OAE=∠OCB,∴AOE≌△COB(ASA);(2)∵AOE≌△COB,∴AE=BC=2√5,(3)S△CDM−S△ADN的值不发生改变,等于4.理由如下:如图:连接OD.∵∠AOC=90°,OA=OC,D为AB的中点,∴OD⊥AC,∠COD=∠AOD=45°,OD=DA=CD ∴∠OAD=45°,∠MOD=90°+45°=135°,∴∠DAN=135°=∠MOD.∵MD⊥ND,即∠MDN=90°,∴∠MDO=∠NDA=90°−∠MDA,在△ODM与△ADN中,{∠MOD=∠NAD ∠ODM=∠ADN OD=ND,∴△ODM≌△ADN(AAS)∴S△ODM=S△ADN,∴S△CDM−S△ADN=S△CDO=12S△CAO=12×12×4×4=4.解析:(1)根据同角的余角相等得到∠BAF=∠BCO,利用ASA定理证明△AOE≌△COB;(2)根据全等三角形的性质求出AE;(3)连接OD.证明△ODM≌△ADN,得到S△ODM=S△ADN,结合图形得到S△CDM−S△ADN=S△CDO,根据三角形的面积公式计算,得到答案.本题考查的是全等三角形的判定和性质、三角形的面积计算、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.28.答案:解:(1)如图1中,∵OA=9,OC=15,∵△DEC是由△OEC翻折得到,∴CD=OC=15,在Rt△DBC中,DB=√DC2−BC2=12,∴AD=3,设OE=ED=x,在Rt△ADE中,x2=(9−x)2+32,解得x=5,∴E(0,5),,设直线EC的解析式为y=kx+5,把(15,0)代入得到k=−13x+5.∴直线EC的解析式为y=−13(2)①如图2中,∵MD′=MO,∠D′MF=∠OMF,∵OM//GD′,∴∠OMT=∠D′TM,∴∠D′MT=∠D′TM,∴D′M=D′T,∴OM=D′T,∵OA =D′G ,∴AM =TG .②如图3中,连接OT ,由(2)可得OT =D′T ,由勾股定理可得x 2+y 2=(9−y)2,得y =−118x 2+92.结合(1)可得AD′=OG =3时,x 最小,从而x ≥3,当MN 恰好平分∠OAB 时,AD′最大即x 最大,此时G 点与N 点重合,四边形AOFD′为正方形,故x 最大为9.从而x ≤9,∴3≤x ≤9.(3)由(2)得,当x =6时,y =−118×62+92=52, ∴AD′=OG =x =6,∴AM =TG =y =52,OM =9−52=132, ∵OM//GD′,∴GF OF =TG OM ,即OF−6OF =52132, 解得:OF =394,∴四边形MOFD′的面积=S 梯形AOFD′−S △AMD′=12×(6+394)×9−12×52×6=5078. 答:四边形MOFD′的面积为5078.解析:(1)在Rt △DBC 中,根据DB =√DC 2−BC 2,设OE =DE =x ,在Rt △ADE 中,利用勾股定理求出x 即可.(2)①只要证明OM =D′T ,DG =OA 即可.②如图3中,连接OT ,在Rt △OTG 中利用勾股定理即可解决问题.(3).本题考查四边形综合题、矩形的性质、翻折变换、勾股定理、面积的计算等知识,解题的关键是运用数形结合的思想方法,灵活应用这些知识解决问题,属于中考压轴题.29.答案:解:(1)设直线AB 解析式为:y =mx +n根据题意可得:{0=−3m +n n =4∴{m =43n =4∴直线AB 解析式为:y =43x +4(2)若点C 在直线AB 右侧,如图1,过点A 作AD ⊥AB ,交BC 的延长线于点D ,过点D 作DE ⊥AC 于E ,∵∠ABC =45°,AD ⊥AB∴∠ADB =∠ABC =45°∴AD =AB ,∵∠BAO +∠DAC =90°,且∠BAO +∠ABO =90°∴∠ABO =∠DAC ,AB =AD ,∠AOB =∠AED =90∴△ABO≌△DAE(AAS)∴AO =DE =3,BO =AE =4,∴OE =1∴点D(1,−3)∵直线y=kx+b过点D(1,−3),B(0,4).∴{−3=k+b4=b∴k=−7若点C在点A右侧时,如图2同理可得k=17综上所述:k=−7或17(3)设直线DN的解析式为:y=43x+n,且过点N(−0.6t,0)∴0=−0.8t+n∴n=0.8t∴点D坐标(0,0.8t),且过点N(−0.6t,0)∴OD=0.8t,ON=0.6t∴DN=√ON2+OD2=1∴DN=AM=1,且DN//AM∴四边形AMDN为平行四边形,当AN=AM时,四边形AMDN为菱形,∵AN=AM∴t=3−0.6t∴t=15 8∴当t=158时,四边形AMDN为菱形.解析:(1)利用待定系数法可求直线AB解析式;(2)分两种情况讨论,利用全等三角形的性质可求解;(3)先求点D坐标,由勾股定理可得DN=AM=t,可证四边形AMDN是平行四边形,即当AM=AN 时,四边形AMDN为菱形,列式可求t的值.本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,菱形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.。

北京市西城区第一学期期末试卷八年级数学A卷及答案

北京市西城区第一学期期末试卷八年级数学A卷及答案

北京市西城区第一学期期末试卷(北区)八年级数学(A 卷)一、精心选一选(本题共30分,每小题3分) 1.下列四个汽车标志图中,不是..轴对称图形的是( ).A .B .C .D .2.计算33-的结果是( ).A .9-B .27-C .271 D .271- 3.下列说法中,正确的是( ).A .16的算术平方根是4-B .25的平方根是5C .1的立方根是1±D .27-的立方根是3- 4.下列各式中,正确的是( ).A .2121+=++a b a b B .21422-=--a a aC . 22)2(422--=-+a a a a D .a b a b --=--11 5.下列关于正比例函数5y x =-的说法中,正确的是( ).A .当1x =时,5y =B .它的图象是一条经过原点的直线C .y 随x 的增大而增大D .它的图象经过第一、三象限 6.如右图,在△ABC 中,∠C =90°,AB 的垂直平分线MN 分别交AC ,AB 于点D ,E . 若∠CBD : ∠DBA =3:1, 则∠A 为( ).A.18°B .20°C .22.5°D .30°7.如下图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(b a >),将余下部分剪开后拼成一个梯形,根据两个图形阴影面积的关系,可以得到一个关于a ,b 的恒等式为( ).E D C BANM aA .2222)(b ab a b a +-=-B .2222)(b ab a b a ++=+C .))((22b a b a b a -+=-D .)(2b a a ab a +=+ 8.下列条件中,不能..判定两个直角三角形全等的是( ). A .两锐角对应相等 B .斜边和一条直角边对应相等 C .两直角边对应相等 D .一个锐角和斜边对应相等 9.若一次函数y kx b =+不等式0≥+b kx 的解集为( ). A .0≥x B .1≥x C .2≥x D .2≤x 10.在直线2121+=x y 上,且到坐标轴距离为A .4个 B .3个 C .2个 二、细心填一填(本题共16分,每小题2分)11.在54,11-,∙7.0,π2,38.12.函数1+=x y 中,自变量x 的取值范围是______________. 13.如右图,△ABC 为等边三角形,DC ∥AB ,AD ⊥CD 于D .若△ABC 的周长为12 cm ,则CD =________ cm .14.点(1-,2)关于x 轴对称的点的坐标为___________________.15.如右图,在△ABC 中,AC = BC ,D 是BC 边上一点,且AB =AD =DC ,则∠C =_________°.16.若将直线)0(≠=k kx y 的图象向下平移1个单位长度后经过点(1,5),则平移后直线的解析式为______________________.17.如右图,在△ABC 中,∠C =90°,BD 平分∠CBA交AC 于点D .若AB =a ,CD =b ,则△ADB 的面 积为______________ .18.下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,拼搭第3个图案需18根小木棒,……,依此规律,拼搭第8个图案需__________根小木棒.ABC A DCBC DAB第1个 第2个 第3个 第4个 ……三、耐心算一算(本题共19分,第19题6分,第20题3分,第21、22题各5分) 19.因式分解:(1)2225a b -; (2)2816ax ax a -+. 解: 解:20.计算:23259-+-.解:21.先化简,再求值:21)21441(22++÷++++x x xx x x ,其中x =3.解:22.解分式方程:45251=+-++xx x . 解:四、认真做一做(本题共17分,第23题6分,第24题5分,第25题6分) 23.已知:如图,CB =DE ,∠B =∠E ,∠BAE =∠CAD .求证:∠ACD =∠ADC .证明:E A B CD……24.已知:如图1,长方形ABCD 中,AB =2,动点P 在长方形的边BC ,CD ,DA 上沿AD C B →→→的方向运动,且点P 与点A ,B 都不重合.图2是此运动过程中,△ABP 的面积y 与点P 经过的路程x 之间的函数图象的一部分. 请结合以上信息回答下列问题:(1)长方形ABCD 中,边BC 的长为________;(2)若长方形ABCD 中,M 为CD 边的中点,当点P 运动到与点M 重合时,x =________,y =________;(3)当106<≤x 时,y 与x 之间的函数关系式是___________________; (4)利用第(3)问求得的结论,在图2中将相应的y 与x 的函数图象补充完整. 图125.已知:直线321+-=x y 与x (1)分别求出A ,B (2)过A 点作直线AP 与y 轴交于点P ,且使OP =2OB , 求△ABP 的面积.解:(1)(2)五、仔细想一想(本题共18分,每小题6分)26.已知:如图,在△ABC 中,AB =AC ,∠BAC =30°.点D为△ABC 内一点,且DB =DC ,∠DCB =30°,点E 为BD 延长线上一点,且AE =AB . (1)求∠ADE 的度数;(2)若点M 在DE 上,且DM =DA ,求证:ME =DC . CMBDAE27.有一个装有进水管和出水管的容器,水管的所有阀门都处于关闭状态.初始时,打开容器的进水管,只进水;到5分钟时,打开容器的出水管,此时既进水又出水; 到15分钟时,关闭容器的进水管,只出水; 到t 分钟时,容器内的水全部排空.已知此容器每分钟的进水量与出水量均为常数,容器内的水量y (单位:升)与时间x (单位:分)之间的函数关系如图所示,请根据图象回答下列问题: (1)此容器的进水管每分钟进水______升;(2)求515x ≤≤时,容器内的水量y 与时间x 的函数关系式; (3)此容器的出水管每分钟出水多少升?t 的值为多少? 解:(2)28.已知:△ABC 中,AD 平分∠BAC 交BC 于点D ,且∠ADC =60°.问题1:如图1,若∠ACB =90°,AC =m AB ,BD =nDC , 则m 的值为_________,n 的值为__________.问题2:如图2,若∠ACB 为钝角,且AB >AC ,BD >DC . (1)求证:AC AB DC BD -<-;(2)若点E 在AD 上,且DE =DB ,延长CE 交AB 于点F ,求∠BFC 的度数. 证明:(1) 图1ABCA BCEF北京市西城区第一学期期末试卷(北区)八年级数学(A 卷)参考答案及评分标准一、精心选一选(本题共30分,每小题3分)二、细心填一填(本题共16分,每小题2分)11.11-,π2;(答对1个给1分) 12.x ≥1-; 13.2; 14.(1-,2-); 15.36; 16.16-=x y ; 17.ab 21; 18.88.三、耐心算一算(本题共19分,第19题6分,第20题3分,第21、22题每题5分) 19.(1)解:2225b a -=)5)(5(b a b a -+. -----------------------------------------------------------------2分(2)解:a ax ax 1682+-=)168(2+-x x a ---------------------------------------------------------------------4分 =2)4(-x a . ---------------------------------------------------------------------------6分20.解:23259-+-=23253-+- ----------------------------------------------------------------------1分 =23253-+- -----------------------------------------------------------------------2分 =266-. --------------------------------------------------------------------------------3分21.解:21)21441(22++÷++++x x xx x x=21])2(1)2(1[2++÷+++x x x x x =21)2(222++÷++x x x x x ----------------------------------------------------------------------2分=22(1)2(2)1x x x x x ++⋅++ =222x x+. ---------------------------------------------------------------------------------4分 当3=x 时,原式=22323+⨯=152. --------------------------------------------------5分22.解:方程两边同乘(5)x +,得 20421+=-+x x . --------------------------------2分 解得 7-=x . ---------------------------------------------------------------------------4分 检验:7-=x 时50x +≠,7-=x 是原分式方程的解. ---------------------5分四、认真做一做(本题共17分,第23题6分,第24题5分,第25题6分)23.证明:如图1.∵∠BAE =∠CAD , ∴∠BAE -∠CAE =∠CAD -∠CAE ,即∠BAC =∠EAD . -------------------------------------1分在△ABC 和△AED 中, ∠BAC =∠EAD ,∠B =∠E ,BC =ED ,∴△ABC ≌△AED . ------------------------------------------------------------------4分 ∴AC =AD . -----------------------------------------------------------------------------5分 ∴∠ACD =∠ADC . -------------------------------------------------------------------6分24.解:(1)4; -------------------------------------------1分 (2)5,4;(每空1分) ---------------------3分 (3)10+-=x y ; -----------------------------4分 (4)如图2. --------------------------------------5分25.解:(1)令0=y ,则6=x ;∴点A 的坐标为A (6,0); 令0=x ,则3=y ;∴点B 的坐标为B (0,3). (2)如图3.∵OB =3,且OP =2OB , ∴OP =6.E A C D 图1∴点P 的坐标为(0,6)或(0,6-).(两个坐标各1分) ------4分 若点P 的坐标为(0,6),则OA BP S ABP ⋅=∆21=6)36(21⨯-⨯=9; --------------------------------5分 若点P 的坐标为(0,6-),则OA BP S ABP ⋅=∆21=6)63(21⨯+⨯=27. -------------------------------6分∴△ABP 的面积为9或27.五、仔细想一想(本题共18分,每小题6分) 26.解:(1)如图4.∵△ABC 中,AB =AC ,∠BAC =30°,∴∠ABC =∠ACB =2)30180(÷- =75°.∵DB =DC ,∠DCB =30°, ∴∠DBC =∠DCB =30°. ∴∠1=∠ABC -∠DBC =75°-30°=45°.∵AB =AC ,DB =DC ,∴AD 所在直线垂直平分BC . ∴AD 平分∠BAC .∴∠2=21∠BAC =3021⨯=15°. -----------------------------------------------2分 ∴∠ADE =∠1+∠2 =45°+15°=60°. -----------------------------------------3分证明:(2)证法一:取BE 的中点N ,连接AN .(如图5)∵△ADM 中,DM =DA ,∠ADE =60°, ∴△ADM 为等边三角形. -----------------4分∵△ABE 中,AB =AE ,N 为BE 的中点,∴BN =NE ,且AN ⊥BE . ∴DN =NM . -----------------------------------5分∴BN -DN =NE -NM , 即 BD =ME .∵DB =DC ,∴ME = DC . ---------------------------------------------------------------------6分证法二:如图6.∵△ADM 中,DM =DA ,∠ADE =60°, ∴△ADM 为等边三角形. ------------------4∴∠3=60°. ∵AE =AB , ∴∠E =∠1=45°.∴∠4=∠3-∠E =60°-45°=15°. ∴∠2=∠4. 在△ABD 和△AEM 中,∠1 =∠E , AB =AE , ∠2 =∠4,B BB∵DB = DC ,∴ME = DC . ---------------------------------------------------------------------6分阅卷说明:其他正确解法相应给分.27.解:(1) 8 ; ----------------------------------------------------------------------------------1分(2)设当5≤x ≤15时,函数解析式为(0)y kx b k =+≠.∵点(5,40),(15,60)在此线段上, 则 4056015.k b k b =+⎧⎨=+⎩,-----------------------------------------------------------------2分解得 230.k b =⎧⎨=⎩,∴230y x =+. --------------------------------------------------------------------3分 ∴当5≤x ≤15时,230y x =+.(3)由(1)知容器的进水管每分钟进水8升,则它的出水管每分钟出水量为: 8(6040)(155)--÷-=(升). ------------------------------------------4分15分钟后排空容器内的水所需时间为:60610÷=(分) -------------5分则 151025t =+=(分). -----------------------------------------------------6分 答:此容器的出水管每分钟出水6升,t 的值为25.28.解:问题1:21,2 ;(每空1分) -------------------------------------------------------2分 问题2:(1)在AB 上截取AG ,使AG =AC ,连接GD .(如图7) ∵AD 平分∠BAC ,∴∠1=∠2. 在△AGD 和△ACD 中, AG =AC ,∠1 =∠2, AD =AD ,∴△AGD ≌△ACD .∴DG =DC . -------------------------------------------------------------------------3分 ∵△BGD 中,BD -DG <BG , ∴BD -DC <BG .∵BG = AB -AG = AB -AC ,∴BD -DC <AB -AC . ------------------------------------------------------------4分(2)∵由(1)知△AGD ≌△ACD ,∴GD =CD ,∠4 =∠3=60°. 图7 7654321GF EDC B A在△BGD和△ECD中,DB =DE,∠5 =∠3,DG=DC,∴△BGD≌△ECD.--------------------------------------------------------------5分∴∠B =∠6.∵△BFC中,∠BFC=180°-∠B-∠7 =180°-∠6-∠7 =∠3,∴∠BFC=60°.---------------------------------------------------------------------6分阅卷说明:其他正确解法相应给分.。

北京市西城区度第一学期八年级数学期末试卷(含答案)

北京市西城区度第一学期八年级数学期末试卷(含答案)

北京市西城区2019-2020学年度第一学期期末试卷八年级数学试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.下列图形中,是轴对称图形的是( ).A B C D2.用科学记数法表示0.000 053为( ).A .0.53×10-4B .53×10-6C .5.3×10-4D .5.3×10-53.函数y 中自变量的取值范围是( ).A .≥3B .≤3C .>3D .≠34.如图,△ABC 沿AB 向下翻折得到△ABD ,若∠ABC =30°∠ADB =100°,则∠BAC 的度数是( ).A .30°B .100°C .50°D .80°5.下列二次根式中,最简二次根式是( ).A .21 B .17 C .75 D .35a 6.若将分式2x x y +中的字母x 与y 的值分别扩大为原的10倍,则这个分式的值( ). A .扩大为原的10倍 B .扩大为原的20倍C .不改变D .缩小为原的1107.已知一次函数1y kx =+,y 随的增大而增大,则该函数的图象一定经过( ).A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.下列判断中错误..的是( ). A .有两角和其中一个角的对边对应相等的两个三角形全等B .有一边相等的两个等边三角形全等C .有两边和一角对应相等的两个三角形全等D .有两边和其中一边上的中线对应相等的两个三角形全等效率比原计划提高了20%,结果比原计划提前2天完成任务.若设施工队原计划每天铺设管道x 米,则根据题意所列方程正确的是( ).A .150015002(120%)x x-=- B .150015002(120%)x x =+- C .150015002(120%)x x -=+ D .150015002(120%)x x =++ 10.七个边长为1的正方形按如图所示的方式放置在平面直角坐标系Oy 中,直线l 经过点A (4,4)且将这七个正方形的面积分成相等的两部分,则直线l 与轴的交点B 的横坐标为( ).A .23B .34C .45D .79 二、填空题(本题共25分,第18题4分,其余每小题3分)11.若分式14x +在实数范围内有意义,则x 的取值范围是 . 12.分解因式:22363x xy y -+= .13.已知一次函数23y x =--的图象经过点A (-1,y 1)、点B (-2,y 2),则y 1 y 2.(填“>”、“<”或“=”)14.如图,在△ABC 中,边AB 的垂直平分线分别交BC 于点D ,交AB 于点E .若AE =3,△ADC 的周长为8,则△ABC 的周长为 .15.计算:22224a b ab c c÷= . 16.若点M (a ,3)和点N (2,a +b )关于轴对称,则b 的值为 .17.如图,∠AOB =30°,OP 平分∠AOB ,PD ⊥OB 于点D ,PC ∥OB交OA 于点C .若PC =10,则OC = ,PD = .18.甲、乙两车从A 地出发前往B 地.在整个行程中,汽车离开A 地的距离 y (m )与时间t (h )的对应关系如图所示,则乙车的平均速度为 m/h 图中a 的值为 m ;在乙车行驶的过程中,当t = h 时,两车相距20m .三、解答题(本题共15分,第19题4分,第2019.20.已知:如图,点A ,B ,C ,D 在一条直线上,AB =CD ,AE ∥FD ,且∠E =∠F .求证:EC=FB .证明:21.先化简,再求值:m m m m --⋅--+342)252(,其中34m =. 解:四、解答题(本题共16分,第23题6分,其余每小题5分)22.解分式方程:12422=-+-x x x . 解:23.如图,在平面直角坐标系Oy 中,一次函数=+y kx b 的图象经过点A (2-,4),且与正比例函数23=-y x 的图象交于点B (a ,2).(1)求a 的值及一次函数=+y kx b 的解析式;(2)若一次函数=+y kx b 的图象与轴交于点C ,且正比例函数23=-y x 的图象向下平移m (m >0)个单位长度后经过点C ,求m 的值; (3)直接写出关于的不等式23->+x kx b 的解集. 解:(1)(2)(3)关于的不等式23->+x kx b 的解集为 .24.已知:如图,线段AB 和射线BM 交于点B .(1)利用尺规..完成以下作图,并保留作图痕迹.(不要求写作法) ①在射线BM 上求作一点C ,使AC =AB ;②在线段AB 上求作一点D ,使点D 到BC ,AC 的距离相等;(2)在(1)所作的图形中,若∠ABM =72°,则图中与BC 相等的线段是 .五、解答题(本题共14分,每小题7分)25.如图,在平面直角坐标系Oy 中,直线l 与轴交于点A (4-,0),与y 轴的正半轴交于点B .点C 在直线1=-+y x 上,且CA ⊥轴于点A .(1)求点C 的坐标;(2)若点D 是OA 的中点,点E 是y 轴上一个动点,当EC +ED 最小时,求此时点E 的坐标;(3)若点A 恰好在BC 的垂直平分线上,点F 在轴上,且△ABF 是以AB 为腰的等腰三角形,请直接写出所有满足条件的点F 的坐标.解:(1)(2)(3)点F的坐标为.26.已知:在△ABC中,∠ABC<60°,CD平分∠ACB交AB于点D,点E在线段CD上(点E不与点C,D重合),且∠EAC=2∠EBC.(1)如图1,若∠EBC=27°,且EB=EC,则∠DEB=°,∠AEC=°;(2)如图2.①求证:AE+AC=BC;②若∠ECB=30°,且AC=BE,求∠EBC的度数.图1 图2(2)①证明:②解:。

北京市西城区2020—2021学年初二上期末考试数学试题含答案

北京市西城区2020—2021学年初二上期末考试数学试题含答案

北京市西城区2020—2021学年初二上期末考试数学试题含答案八年级数学 2021.1试卷满分:100分,考试时刻:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.运算22-的结果是( ).A.14B.14- C.4 D.4- 2.下列剪纸作品中,不是..轴对称图形的是( ).3.在下列分解因式的过程中,分解因式正确的是( ). A.()xz yz z x y -+=-+ B. ()223232a b ab ab ab a b -+=- C. 232682(34)xy y y x y -=- D. 234(2)(x 2)3x x x x +-=+-+4.下列分式中,是最简分式的是( ).A .2xy xB .222x y -C .22x y x y +-D .22x x + 5.已知一次函数(2)3y m x =-+的图象通过第一、二、四象限,则m 的取值范畴是( ).A .0m <B .0m >C .2m <D .2m >6.分式11x--可变形为( ). A .11x + B .11x -+ C .11x -- D .11x - 7.若一个等腰三角形的两边长分别为2和4,则那个等腰三角形的周长是为( ).A. 8B. 10C. 8或10D.6或128.如图,B ,D ,E ,C 四点共线,且△ABD ≌△ACE ,若∠AEC =105°,则∠DAE 的度数等于( ).A. 30°B.40°C. 50°D.65°9.如图,在△ABC 中,BD 平分∠ABC ,与AC 交于点D ,DE ⊥AB于点E ,若BC =5,△BCD 的面积为5,则ED 的长为( ).A. 12B. 1C.2D.510.如图,直线y =﹣x +m 与直线y =nx +5n (n ≠0)的交点的横坐标为﹣2,则关于x 的不等式﹣x +m >nx +5n >0的整数解为( ).A.﹣5 ,﹣4,﹣3B. ﹣4,﹣3C.﹣4 ,﹣3,﹣2D. ﹣3,﹣2二、填空题(本题共20分,第11~14题,每小题3分,第15~18题,每小题2分)11.若分式11-x 在实数范畴内有意义,则x 的取值范畴是 . 12.分解因式224x y -= .13.在平面直角坐标系xOy 中,点P (-2,3)关于y 轴的对称点的坐标是 .14.如图,点B 在线段AD 上,∠ABC =∠D , AB ED =.要使△ABC ≌△EDB ,则需要再添加的一个条件是(只需填一个条件即可).15.如图,在△ABC 中,∠ABC =∠ACB , AB 的垂直平分线交AC 于点M ,交AB 于点N .连接MB ,若AB=8,△MBC 的周长是14 ,则BC 的长为 .16.关于一次函数21y x =-+,当-2≤x ≤3时,函数值y 的取值范畴是 .17.如图,要测量一条小河的宽度AB 的长,能够在小河的岸边作AB 的垂线 MN ,然后在MN 上取两点C ,D ,使BC =CD ,再画出MN 的垂线DE ,并使点E 与点A ,C 在一条直线上,这时测得DE 的长确实是AB 的长,其中用到的数学原理是:_ .S (米)412048010a 018.甲、乙两人都从光明学校动身,去距离光明学校1500m 远的篮球馆打球,他们沿同一条道路匀速行走,乙比甲晚动身4min .设甲行走的时刻为t (单位:min),甲、乙两人相距 y (单位:m),表示y 与t 的函数关系的图象如图所示,依照图中提供的信息,下列说法: ①甲行走的速度为30m/min②乙在距光明学校500m 处追上了甲③甲、乙两人的最远距离是480m ④甲从光明学校到篮球馆走了30min正确的是__ _(填写正确结论的序号).练习题改编,识图能力,如何提取信息,数形结合思想三、解答题(本题共50分,第19,20题每小题6分;第21题~25题每小题5分; 第26题6分,第27题7分)19.分解因式:(1)2()3()a b a b -+- (2)221218ax ax a -+解: 解:20.运算:(1)42223248515a b a b c c ÷ (2)24()212x x x x x x -⋅+++ 解: 解:21.已知2a b-=,求222()2ab aaa ba ab b÷---+的值.解:22.解分式方程2242111x x xxx-+=+-解:23.已知:如图,A,O,B三点在同一条直线上,∠A=∠C,∠1=∠2,OD=OB.求证:AD=CB.证明:24.列方程解应用题中国地大物博,过去由于交通不便,一些地区的经济进展受到了制约,自从“高铁网络”在全国连续延伸以后,许多地区的经济和旅行发生了翻天覆地的变化,高铁列车也成为人们外出旅行的重要交通工具.李老师从北京到某地去旅行,从北京到该地普快列车行驶的路程约为1352km,高铁列车比普快列车行驶的路程少52km,高铁列车比普快列车行驶的时刻少8h.已知高铁列车的平均时速是普快列车平均时速的 2.5倍,求高铁列车的平均时速.解:25.在平面直角坐标系xOy 中,将正比例函数2y x =-的图象沿y 轴向上平移4个单位长度后与y 轴交于点B ,与x 轴交于点C . (1)画正比例函数2y x =-的图象,并直截了当写出直线BC 的解析式; (2)假如一条直线通过点C 且与正比例函数2y x =-的图象交于点P (m ,2),求m 的值及直线CP 的解析式.解:(1)直线BC 的解析式: ;(2)26.阅读下列材料:利用完全平方公式,能够将多项式2(0)ax bx c a ++≠变形为2()a x m n ++的形式, 我们把如此的变形方法叫做多项式2ax bx c ++的配方法.运用多项式的配方法及平方差公式能对一些多项式进行分解因式.例如:21124x x ++=222111111()()2422x x ++-+ =21125()24x +- =115115()()2222x x +++- =(8)(3)x x ++ 依照以上材料,解答下列问题:(1)用多项式的配方法将281x x +-化成2()x m n ++的形式;(2)下面是某位同学用配方法及平方差公式把多项式2340x x --进行分解因式的解答过程:老师说,这位同学的解答过程中有错误,请你找出该同学解答中开始显现错误的地点,并用“ ”标画出来,然后写出完整的、正确的解答过程:(3)求证:x ,y 取任何实数时,多项式222416x y x y +--+的值总为正数.(1)解:(2)正确的解答过程是:(3)证明:解: 2340x x -- =22233340x x -+-- =2(3)49x -- =(37)(37)x x -+-- =(4)(10)x x +-27.已知:△ABC是等边三角形.(1)如图1,点D在AB边上,点E在AC边上,BD=CE,BE与CD交于点F.试判定BF与CF的数量关系,并加以证明;(2)点D是AB边上的一个动点,点E是AC边上的一个动点,且BD=CE,BE与CD交于点F.若△BFD是等腰三角形,求∠FBD的度数.图1 备用图(1)BF与CF的数量关系为:.证明:(2)解:北京市西城区2020— 2021学年度第一学期期末试卷八年级数学附加题2021.1试卷满分:20分一、填空题(本题6分)1.(1)已知32a ba+=,则ba= ;(2)已知115a b-=,则3533a ab ba ab b----= .二、解答题(本题共14分,每小题7分)2.观看下列各等式:(8.1)(9)(8.1)(9)---=-÷-,11()(1)()(1)22---=-÷-,4242-=÷,993322-=÷,┅┅依照上面这些等式反映的规律,解答下列问题:(1)上面等式反映的规律用文字语言可描述如下:存在两个实数,使得这两个实数的等于它们的;(2)填空:-4=÷4;(3)请你再写两个实数,使它们具有上述等式的特点:-=÷;(4)假如用y表示等式左边第一个实数,用x表示等式左边第二个实数(x≠0 且x≠1),①x与y之间的关系能够表示为:(用x的式子表示y);②若x>1,当x时,y有最值(填“大”或“小”),那个最值为.3.如图1,在平面直角坐标系xOy中,点A在y轴上,点B是第一象限的点,且AB⊥y轴,且AB=OA,点C是线段OA上任意一点,连接BC,作BD⊥BC,交x轴于点D.(1)依题意补全图1;(2)用等式表示线段OA,AC与OD之间的数量关系,并证明;(3)连接CD,作∠CBD的平分线,交CD边于点H,连接AH,求∠BAH的度数.(1)依题意补全图1;(2)线段OA,AC,OD之间的数量关系为:_____________________________;证明:(3)解:附加题答案1、(1)13(2)522、(1)差商(2)16 3(3)25255544-=÷;36366655-=÷(4)①21xyx=-②2 小43、(1)(2)作BE⊥OD四边形AOEB是正方形△ABC≌△BED∴OA+AC=OD(3)∵△ABC≌△BED ∴BC=BD∵BH⊥CD∴A、C、H、B四点共圆∴∠BAH=∠BCH=45°。

北京市西城区2020—2021学年度第一学期期末试卷+答案+听力材料

北京市西城区2020—2021学年度第一学期期末试卷+答案+听力材料

北京市西城区2020—2021学年度第一学期期末试卷+答案+听力材料北京市西城区2020—2021学年度第一学期期末试卷高一英语2021.1本试卷共13页,共140分。

考试时长120分钟。

考生务必将答案写在答题卡上,在试卷上作答无效。

第Ⅰ卷(共75分)I. 听力理解(共三节,22.5分)第一节: (共4小题; 每小题1.5分,共6分)听下面四段对话,每段对话后有一道小题,从每题所给的A、B、C三个选项中选出最佳选项。

每段对话你将听一遍。

1. What does the man think the weather will be like in the afternoon?A. Cloudy.B. Rainy.C. Sunny.2. Where does the conversation probably take place?A. In a restaurant.B. In a cinema.C. In a supermarket.3. Why did the man leave his previous job?A. To study further.B. To get experience.C. To find a new job.4. Why does the woman make the phone call?A. To book a service.B. To ask about a delivery.C. To arrange a meeting.第二节:(共6小题;每小题1.5分,共9分)听下面三段对话,每段对话后有两道小题,从每题所给的A、B、C三个选项中选出最佳选项。

每段对话你将听两遍。

听第5段材料,回答第5至第6小题。

5. What is the woman?A. A bus driver.B. A college student.C. A shop assistant.6. How much will the woman save with a discount?A. 50 dollars.B. 30 dollars.C. 20 dollars.听第6段材料,回答第7至第8小题。

2020-2021学年北京市西城区八年级上学期期末考试数学试卷

2020-2021学年北京市西城区八年级上学期期末考试数学试卷

2021年北京市西城区八年级上学期期末考试数学试卷 学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,是轴对称图形的是( ).A .B .C .D .2.用科学记数法表示0.000 053为( ).A .0.53×10-4B .53×10-6C .5.3×10-4D .5.3×10-53.函数中自变量x 的取值范围是( ).A .x ≥3B .x ≤3C .x >3D .x ≠34.如图,△ABC 沿AB 向下翻折得到△ABD ,若∠ABC =30°,∠ADB =100°,则∠BAC 的度数是( ).A .30°B .100°C .50°D .80°5.下列二次根式中,最简二次根式是( ).A .21 B .17 C .75 D .35a 6.已知一次函数y=kx+1,y 随x 的增大而增大,则该函数的图象一定经过( ).A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限7.下列判断中错误..的是( ). A .有两角和其中一个角的对边对应相等的两个三角形全等B .有一边相等的两个等边三角形全等C .有两边和一角对应相等的两个三角形全等D .有两边和其中一边上的中线对应相等的两个三角形全等8.某施工队要铺设一条长为1500米的管道,为了减少施工对交通造成的影响,施工队实际的工作效率比原计划提高了20%,结果比原计划提前2天完成任务.若设施工队原计划每天铺设管道x米,则根据题意所列方程正确的是().A.150015002 (120%)x x-= -B.150015002(120%) x x=+-C.150015002 (120%)x x-= +D.150015002(120%) x x=++二、填空题9.若分式14x+在实数范围内有意义,则x的取值范围是.10.分解因式:3x2﹣6xy+3y2=_____.11.已知一次函数23y x=--的图象经过点A(-1,y1)点B(-2,y2),则y1 y2.(填“>”、“<”或“=”)12.如图,在△ABC中,边AB的垂直平分线分别交BC于点D,交AB于点E.若AE=3,△ADC的周长为8,则△ABC的周长为.13.计算:22224a b abc c÷=.14.若点M(a,3)和点N(2,a+b)关于x轴对称,则b的值为.15.如图,∠AOB=30°,OP平分∠AOB,PD⊥OB于点D,PC∥OB交OA于点C.若PC=10,则OC=_______,PD=_______.16.甲、乙两车从A地出发前往B地.在整个行程中,汽车离开A地的距离 y(km)与时间t(h)的对应关系如图所示,则乙车的平均速度为 km/h;图中a的值为km ;在乙车行驶的过程中,当t = h 时,两车相距20km .三、解答题1712768318.已知:如图,点A ,B ,C ,D 在一条直线上,AB=CD ,AE ∥FD ,且∠E=∠F .求证:EC=FB .19.先化简,再求值:m m m m --⋅--+342)252(,其中34m =. 20.解分式方程:22x 1x 4x 2+=--. 21.如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象经过点A (2-,4),且与正比例函数23y x =-的图象交于点B (a ,2).(1)求a 的值及一次函数y kx b =+的解析式;(2)若一次函数y kx b =+的图象与x 轴交于点C ,且正比例函数23y x =-的图象向下平移m (m>0)个单 位长度后经过点C ,求m 的值;(3)直接写出关于x 的不等式23x kx b ->+的解集. 22.已知:如图,线段AB 和射线BM 交于点B .(1)利用尺规..完成以下作图,并保留作图痕迹.(不要求写作法) ①在射线BM 上求作一点C ,使AC=AB ;②在线段AB 上求作一点D ,使点D 到BC ,AC 的距离相等;(2)在(1)所作的图形中,若∠ABM=72°,则图中与BC 相等的线段是 .23.如图,在平面直角坐标系xOy 中,直线l 与x 轴交于点A (4-,0),与y 轴的正半轴交于点B .点C 在直线1=-+y x 上,且CA ⊥x 轴于点A .(1)求点C 的坐标;(2)若点D 是OA 的中点,点E 是y 轴上一个动点,当EC+ED 最小时,求此时点E 的坐标;(3)若点A 恰好在BC 的垂直平分线上,点F 在x 轴上,且△ABF 是以AB 为腰的等腰三角形,请直接写出所有满足条件的点F 的坐标.24.已知:在△ABC 中,∠ABC<60°,CD 平分∠ACB 交AB 于点D ,点E 在线段CD 上(点E 不与点C ,D 重合),且∠EAC=2∠EBC .(1)如图1,若∠EBC=27°,且EB=EC,则∠DEB= °,∠AEC= °;(2)如图2.①求证:AE+AC=BC;②若∠ECB=30°,且AC=BE,求∠EBC的度数.参考答案1.B【解析】试题分析:轴对称图形是指:图形沿对称轴折叠,则对称轴两边的图形能够完全重叠.考点:轴对称图形的性质.2.D【解析】试题分析:科学计数法是指:a×10n,1≤a<10,小数点向右移动多少位,则n的相反数就是多少.考点:科学计数法.3.A【解析】试题分析:二次根式的被开方数必须满足是非负数,即x-3≥0,解得:x≥3.考点:函数自变量的取值范围.4.C【解析】试题分析:根据折叠图形的性质可得:∠ACB=∠ADB=100°,则∠BAC=180°-∠ACB-∠ABC=50°.考点:折叠图形的性质.5.B【解析】;C、原式;D、原试题分析:最简二次根式是指不能化简的二次根式.A、原式=2式.考点:最简二次根式的定义.6.A【解析】试题分析:y随x的增大而增大,则k>0,则函数y=kx+1一定经过一、二、三象限.考点:一次函数的性质.7.C【解析】试题分析:对于三角形全等的判定,已知两边和一角的情况,这个角必须是两边的夹角. 考点:三角形全等的判定.8.D【解析】试题分析:原计划的天数=实际的天数+2.原计划的天数=1500x,实际天数=1500(120%)x . 考点:分式方程的应用.9.x ≠-4.【解析】试题分析:对于分式而言,要使分式有意义,则必须保证分式的分母不为零,即x+4≠0,解得:x ≠-4.考点:分式的性质.10.32()x y【解析】【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【详解】3x 2-6xy+3y 2,=3(x 2-2xy+y 2),=3(x-y )2.故答案为3(x-y )2.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.<【解析】试题分析:这个函数为减函数,则y 值随x 的增大而减小,∵-1>-2,∴1y <2y .考点:一次函数的性质.12.14【解析】试题分析:根据中垂线可得:AB=2AE=6cm ,BD=AD ,然后再进行计算三角形的周长. 考点:中垂线的性质.13.2ac b【解析】试题分析:原式=2222·42a b c ac c ab b. 考点:分式的除法计算.14.-5【解析】试题分析:关于x 轴对称的两点横坐标相等,纵坐标互为相反数.根据题意得:a=2,a+b=-3,解得:a=2,b=-5.考点:点关于x 轴对称的性质.15.10 5【详解】解:根据角平分线的性质可得:∠AOP=∠BOP=15°,根据CP ∥OB 可得∠OPC=∠BOP=15°,∴∠COP=∠CPO ,∴OC=PC=10,∵CP ∥OB ∴∠ACP=∠AOB=30°,过点P 作PE ⊥AO 则PE=12PC=5,根据角平分线的性质可得:PD=PE=5. 故答案为:10;516.100;7003;83或4. 【解析】试题分析:乙车的速度=350÷(4.5-1)=100(km/h),甲车的函数解析式为:y=70x;乙车的函数解析式为:y=100x-100;然后根据函数解析式进行求解.考点:一次函数的实际应用.17.【解析】试题分析:首先将各二次根式进行化简,然后进行求和计算.试题解析:原式=+=.考点:二次根式的计算.18.见解析【解析】试题分析:(1)根据AB=CD得到AC=BD,根据AE∥FD得到∠A=∠D,根据AAS判定三角形全等.试题解析:∵点A,B,C,D在一条直线上,AB=CD,∴AB+BC=CD+BC.即AC=DB.∵AE∥FD,∴∠A=∠D.在△AEC和△DFB中{∠E=∠F,∠A=∠D,AC=DB,∴△AEC≌△DFB.∴EC=FB.考点:三角形全等的判定与性质.19.-2m-6;-15 2【解析】试题分析:首先将括号里面的分式进行通分,然后进行分式的乘法计算,最后将m的值代入化简后的式子进行计算.试题解析:原式=(2)(2)52423m m mm m+---=⋅--mmmm--⋅--=3)2(2292mmmmm--⋅--+=3)2(22)3)(3()3(2+-=m62--=m.当34m=时,原式=3264-⨯-=152-.考点:分式的化简计算.20.x3=-【分析】首先进行去分母,将分式方程转化为整式方程,然后求出方程的解,最后需要对方程的解进行检验,看是否能使原分式的分母为零.【详解】解:去分母得:()22x x 2x 4++=-, 去括号得:222x 2x x 4++=-,解得:x 3=-.经检验得,x 3=-是原分式方程的根,∴原分式方程的解为x 3=-.【点睛】解分式方程21.(1)a=-3;y=2x+8;(2)m=83;(3)x <-3. 【解析】【分析】(1)将点B 坐标代入正比例函数解析式求出a 的值;将A 、B 两点的坐标代入一次函数求出解析式;(2)求出点C 的坐标,然后设出平移后的解析式,将点C 代入进行求解;(3)根据图象进行回答.【详解】解:(1)∵直线23y x =-经过点B (a ,2),∴223a =-. 解得3a =-. ∵直线y kx b =+经过点A (2-,4)和点B (3-,2),∴4223k b k b=-+⎧⎨=-+⎩解得28k b =⎧⎨=⎩ ∴直线y kx b =+的解析式为28y x =+.(2)当0y =时,280x +=,解得4x =-. ∴点C 的坐标为(4-,0). 设平移后的直线的解析式为23y x m =--. ∵平移后的直线经过点C (4-,0), ∴20(4)3m =-⨯--. 解得83m =. (3)3x <-【点睛】本题考查一次函数的图象与性质,利用数形结合思想解题是关键.22.见解析【解析】试题分析:(1)①、以A为圆心,AB长为半径画弧,交BM于点C;②、作∠ACB的平分线交AB于点D;(2)根据等腰三角形的判定定理可得:BC=CD,AD=CD.试题解析:(1)①如图1,点C即为所求;②如图1,点D即为所求;(2)AD,CD .考点:尺规作图.23.(1)(-4,5);(2)(0,53);(3)(4,0)或(1,0)或(-9,0).【解析】试题分析:(1)首先根据题意求出点C的横坐标,然后代入直线解析式求出纵坐标;(2)首先求出点D的坐标,然后作关于y轴的对称点D′,连接CD′于y轴的交点就是点E,利用待定系数法求出直线CD′的解析式;(3)根据等腰三角形的性质进行分类求出点F的坐标. 试题解析:(1)∵CA⊥x轴于点A,且点A的坐标为(-4,0),∴点C的横坐标为4-.∵点C在直线y=-x+1上,∴点C的坐标为(-4,5)(2)∵点D是OA的中点,∴点D的坐标为(-2,0).作点D关于y轴的对称点D′,则D′的坐标为(2,0).连接CD′交y轴于点E,此时EC+ED的值取到最小.设直线CD′的解析式为y=kx+b,则54,02.=-+⎧⎨=+⎩k bk b解得5,65.3⎧=-⎪⎪⎨⎪=⎪⎩kb∴直线CD′的解析式为5563=-+y x.当x=0时,53=y.∴点E的坐标为(0,53).(3)(4,0)或(1,0)或(-9,0).考点:一次函数的性质.24.(1)54;99;(2)①、见解析;②、20°. 【解析】试题分析:(1)根据三角形的内角和定理以及等腰三角形的性质进行求解;(2)利用截取法来证明△ACE和△FCE全等,然后通过角度之间的关系来进行求解.试题解析:(1)54,99;(2)①证明:在CB上截取CF,使CF=CA,连接EF.(如图)∵CD平分∠ACB,∴∠1=∠2.在△ACE和△FCE中,AC=FC,∠1=∠2, EC=EC,∴△ACE≌△FCE.∴∠3=∠4, AE=FE.∵∠4=∠5+∠6,∴∠3=∠5+∠6.∵∠3=2∠6,∴∠5=∠6.∴FB=FE.∴AE=FB.∴AE+AC= FB+FC= BC.②解:连接AF.(如图)∵∠1=∠2=30°,∴∠ACF=∠1+∠2=60°.∵AC=FC,∴△ACF是等边三角形.∴AF=AC,∠FAC=60°.∵AC=BE,∴BE=AF.在△BFE和△AEF中, BF=AE, FE=EF, BE=AF,∴△BFE≌△AEF.∴∠6=∠7.∵∠7+∠3=60°,∴∠6+∠3=60°.∵∠3=2∠6,∴∠6+2∠6=60°.∴∠6=20°.即∠EBC=20°.考点:三角形全等的证明及性质,角度之间的关系.。

06西城区八上期末数学答案(202101)

06西城区八上期末数学答案(202101)

北京市西城区2021— 2021学年度第一学期期末试卷八年级数学参考答案及评分标准 2018.1一、选择题(本题共30分,每小题3分)19.解:(1)2510a ab + =5(2)a a b +; …………………………………………………………………3分 (2)21236mx mx m -+=2(1236)m x x -+ ……………………………………………………………4分 =2(6)m x -. …………………………………………………………………6分 20.解:(1)选甲:一,理由合理即可,如:第一个分式的变形不符合分式的基本性质,分子漏乘1x -; …………………………………………………………………2分 选乙:二,理由合理即可,如:与等式性质混淆,丢掉了分母;…………………………………………………………………………………2分(2)22511x x x +++- =2(1)5(1)(1)(1)(1)x x x x x x -+++-+- …………………………………………………3分 =225(1)(1)x x x x -+++- =33(1)(1)x x x ++- …………………………………………………………………4分 =31x -. ………………………………………………………………………5分21.证明:如图.∵AE ∥BC , ∴∠1 =∠C ,∠E =∠2. ……………………………2分 在△AED 和△CFD 中,∠1 =∠C ,∠E =∠2, AD =CD ,∴△AED ≌△CFD . ……………………………………………………………4分 ∴ ED =FD . ……………………………………………………………………5分22.解:方程两边同乘(3)(3)x x +-,得5(3)23x x -+=+. ……………………………2分 整理,得 51523x x -+=+. ……………………………………………………3分解得 4x =. ………………………………………………………………………4分 经检验4x =是原分式方程的解. …………………………………………………5分 所以,原分式方程的解为4x =.23.解:(1)图象如图所示; …………………………1分(2)∵当2x =时y 的值为1,当1x =-时y 的值为-∴ 21,5.k b k b +=⎧⎨-+=-⎩ …………………………3分解得 2,3.k b =⎧⎨=-⎩……………………………4分(3)∵一次函数23y x =-的图象向上平移421y x =+,∴令0y =,12x =-;令0x =,1y =.∴新函数的图象与x 轴,y 轴的交点坐标分别为(12-,0),(0,1).…………………………………………………………………………………6分四、解答题(本题共18分,第24题5分,第25题6分,第26题7分) 24.解:(1)不正确; ………………………………………………………………………1分(2) 相同, …………………………………………………………………………2分理由合理即可,如:因为将图5沿直线翻折后得到的划分方法与图2的划分方法相同;…………………………………………………………………………3分 (3)答案不唯一.如: …………………………………5分25.解:(1)∵点B (1,m )在直线l 1上,∴3114m =⨯+=. ……………………………………………………………1分 ∵直线l 2:y kx b =+与直线y x =-平行,∴1k =-.∵点B (1,4)在直线l 2上, ∴14b -+=,解得5b =.∴直线l 2的表达式为5y x =-+. ……………………………………………2分(2)∵直线l 1:31y x =+与y 轴交于点A ,∴点A 的坐标为(0,1). ∵直线l 2与y 轴交于点C , ∴点C 的坐标为(0,5). ∵P A =PC ,∴点P 在线段AC 的垂直平分线上.∴点P 的纵坐标为51132-+=. ……………………………………………3分 ∵点P 在直线l 2上,∴53x -+=,解得2x =. ∴点P 的坐标为(2,3). ……………………………………………………4分 (3)∵点D 在直线l 1:31y x =+上,且点D 的横坐标为a ,∴点D 的坐标为(a ,31a +).∵点E 在直线l 2:y kx b =+上,且DE ∥y 轴, ∴点E 的坐标为(a ,5a -+). ∵DE =6,∴31(5)6a a +--+=.∴52a =或12-. ………………………………………………………………6分26.解:(1)①△BMF ,边角边,60; ……………………3分 ②证明:如图1.∵由ⅰ)知△BEF ≌△BMF , ∴∠2=∠1.∵由ⅱ)知∠1=60°, ∴∠2=60°,∠3=∠1=60°. ∴∠4=180°-∠1-∠2=60°.∴∠3=∠4. ………………………………4分 ∵CE 是△ABC 的角平分线,∴∠5=∠6.在△CDF 和△CMF 中,∠3=∠4 CF =CF , ∠5=∠6,∴△CDF ≌△CMF . ∴ CD =CM .∴BE +CD = BM +CM =BC . …………………………………………………5分(2)证明:作∠ACE 的角平分线CN 交AB 于点N∵∠A =60°,∠ABC =40°,∴∠ACB =180°-∠A -∠ABC =80°. ∵BD ,CE 分别是△ABC 的角平分线,∴∠1=∠2=12∠ABC =20°,∠3=∠ACE =12∠ACB =40°.图2图1∵CN平分∠ACE,∴∠4=12∠ACE =20°.∴∠1=∠4.∵∠5=∠2+∠3=60°,∴∠5=∠A.∵∠6=∠1+∠5,∠7=∠4+∠A,∴∠6=∠7.∴CE=CN.∵∠EBC=∠3=40°,∴BE=CE.∴BE=CN.在△BEF和△CNA中,∠5=∠A∠1=∠4,BE= CN,∴△BEF≌△CNA.∴BF= CA.…………………………………………………………7分八年级数学附加题参考答案及评分标准2018.1一、解答题(本题共12分,每小题6分)1.解:(1)增大;…………………………………………………………………………2分(2)C;……………………………………………………………………………4分(3)D.……………………………………………………………………………6分2.解:(1)如图所示;………………………………………2分(2)42,(1)n n+;……………………………………4分(3)99.…………………………………………………6分二、解答题(本题8分)3.解:(1)(2b-,0),(0,b);………………………………………………………2分(2)等腰直角三角形;……………………………………………………………3分证明:过点C作CD⊥y轴于点D,如图,则∠BDC=∠AOB=90°.∵点C的坐标为(4,4-),∴点D的坐标为(0,4-),∵当b=4时,点A,B的坐标分别为(-∴AO=8,BO=4,BD=8.∴AO=BD,BO= CD.在△AOB和△BDC中,AO=BD,∠AOB=∠BDC,BO= CD,∴△AOB≌△BDC.∴∠1=∠2,AB=BC.∵∠1+∠3=90°,∴∠2+∠3=90°,即∠ABC=90°.∴△ABC是等腰直角三角形.………………………………………5分(3)12-,83-,8.………………………………………………………………8分八年级数学附加题参考答案及评分标准2018.1一、解答题(本题共12分,每小题6分)1.解:(1)增大;…………………………………………………………………………2分(2)C;……………………………………………………………………………4分(3)D.……………………………………………………………………………6分2.解:(1)如图所示;………………………………………2分(2)42,(1)n n+;……………………………………4分(3)99.…………………………………………………6分二、解答题(本题8分)3.解:(1)(2b-,0),(0,b);………………………………………………………2分(2)等腰直角三角形;……………………………………………………………3分证明:过点C作CD⊥y轴于点D,如图,则∠BDC=∠AOB=90°.∵点C的坐标为(4,4-),∴点D的坐标为(0,4-),∵当b=4时,点A,B的坐标分别为(-∴AO=8,BO=4,BD=8.∴AO=BD,BO= CD.在△AOB和△BDC中,AO=BD,∠AOB=∠BDC,BO= CD,∴△AOB≌△BDC.∴∠1=∠2,AB=BC.∵∠1+∠3=90°,∴∠2+∠3=90°,即∠ABC=90°.∴△ABC是等腰直角三角形.………………………………………5分(3)12-,83-,8.………………………………………………………………8分。

2020-2021八年级数学上期末试卷附答案

2020-2021八年级数学上期末试卷附答案

2020-2021八年级数学上期末试卷附答案一、选择题1.风筝会期间,几名同学租一辆面包车前去观看开幕式,面包车的租价为180元,出发时又增加两名同学,结果每人比原来少摊了3元钱车费,设前去观看开幕式的同学共x人,则所列方程为()A.18018032x x-=+B.18018032x x-=+C.18018032x x-=-D.18018032x x-=-2.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象. 下列图腾中,不是轴对称图形的是()A.B. C.D.3.下列运算中,结果是a6的是( )A.a2•a3B.a12÷a2C.(a3)3D.(﹣a)64.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3B.a=-2,b=-3C.a=-2,b=3D.a=2,b=-35.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,DE平分∠ADB,则∠B=()A.40°B.30°C.25°D.22.5〫6.如果2x+ax+1 是一个完全平方公式,那么a的值是()A.2 B.-2 C.±2 D.±17.如图,若x为正整数,则表示()2221441xx x x+-+++的值的点落在()A.段①B.段②C.段③D.段④8.如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是()A .∠ABC =∠DCBB .∠ABD =∠DCAC .AC =DBD .AB =DC 9.若正多边形的一个内角是150°,则该正多边形的边数是( )A .6B .12C .16D .18 10.如图, BD 是△ABC 的角平分线, AE ⊥ BD ,垂足为F ,若∠ABC =35°,∠ C =50°,则∠CDE 的度数为( )A .35°B .40°C .45°D .50°11.如果一个多边形的每个内角的度数都是108°,那么这个多边形的边数是( ) A .3 B .4 C .5 D .612.如图,AB ∥CD ,BC ∥AD ,AB=CD ,BE=DF ,图中全等的三角形的对数是()A .3B .4C .5D .6二、填空题13.分解因式:3327a a -=___________________.14.如图,已知AB ∥DE ,∠ABC=80°,∠CDE=140°,则∠BCD=_____.15.若分式242x x -+的值为0,则x =_____.16.若a+b=5,ab=3,则a 2+b 2=_____.17.若m 为实数,分式()22x x x m ++不是最简分式,则m =______.18.已知a +b =5,ab =3,baa b +=_____.19.若n 边形内角和为900°,则边数n= .20.若分式的值为零,则x 的值为________.三、解答题21.(1)分解下列因式,将结果直接写在横线上:x 2+4x+4= ,16x 2+24x+9= ,9x 2﹣12x+4=(2)观察以上三个多项式的系数,有42=4×1×4,242=4×16×9,(﹣12)2=4×9×4,于是小明猜测:若多项式ax 2+bx+c(a >0)是完全平方式,则实数系数a 、b 、c 一定存在某种关系.①请你用数学式子表示a 、b 、c 之间的关系;②解决问题:若多项式x 2﹣2(m ﹣3)x+(10﹣6m)是一个完全平方式,求m 的值.22.如图,∠A =∠B ,AE =BE ,点D 在 AC 边上,∠1=∠2,AE 和BD 相交于点O . 求证:△AEC ≌△BED ;23.如图,在Rt ABC ∆中,90BCA ∠=︒,30A ∠=︒.(1)请在图中用尺规作图的方法作出AB 的垂直平分线交AC 于点D ,并标出D 点;(不写作法,保留作图痕迹).(2)在(1)的条件下,连接BD ,求证:BD 平分CBA ∠.24.如图是作一个角的角平分线的方法:以的顶点为圆心,以任意长为半径画弧,分别交于两点,再分别以为圆心,大于长为半径作画弧,两条弧交于点,作射线,过点作交于点.(1)若,求的度数; (2)若,垂足为,求证:.25.先化简,再求值:211()22a a a a -+÷++,其中1a =【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】先用x 表示出增加2名同学前和增加后每人分摊的车费钱,再根据增加后每人比原来少摊了3元钱车费列出方程即可.【详解】解:设前去观看开幕式的同学共x 人,根据题意,得:18018032x x-=-. 故选:D.【点睛】本题考查了分式方程的应用,解题的关键是弄清题意、找准等量关系,易错点是容易弄错增加前后的人数. 2.C解析:C【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、不是轴对称图形,故本选项符合题意;D 、是轴对称图形,故本选项不符合题意.故选C .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.D解析:D【解析】【分析】分别利用幂的乘方运算和合并同类项法则分别化简求出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误;B 、122a a ÷= a 10,故此选项错误;C 、(a 3)3=a 9,故此选项错误;D 、(-a )6=a 6,故此选项正确.故选D .【点睛】此题主要考查了合并同类项法则以及幂的乘方运算等知识,正确运用相关法则是解题关键.4.B解析:B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a 、b 即可.详解:(x+1)(x-3)=x 2-3x+x-3=x 2-2x-3所以a=2,b=-3,故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.5.B解析:B【解析】【分析】利用全等直角三角形的判定定理HL 证得Rt △ACD ≌Rt △AED ,则对应角∠ADC=∠ADE ;然后根据已知条件“DE 平分∠ADB”、平角的定义证得∠ADC=∠ADE=∠EDB=60°;最后由直角三角形的两个锐角互余的性质求得∠B=30°.【详解】∵在△ABC 中,∠C=90°,AD 是角平分线,DE ⊥AB 于E ,∴CD=ED,在Rt △ACD 和Rt △AED 中,{AD AD CD ED== , ∴Rt △ACD ≌Rt △AED (HL ),∴∠ADC=∠ADE (全等三角形的对应角相等).∵∠ADC+∠ADE+∠EDB=180°,DE 平分∠ADB ,∴∠ADC=∠ADE=∠EDB=60°.∴∠B+∠EDB=90°,∴∠B=30°.故选:B .【点睛】本题考查了角平分线的性质.角平分线的性质:角的平分线上的点到角的两边的距离相等.6.C解析:C【解析】【分析】【详解】解:根据完全平方公式可得:a=±2×1=±2. 考点:完全平方公式.7.B解析:B【解析】【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x 为正整数,从所给图中可得正确答案.【详解】 解∵2222(2)1(2)1441(2)1x x x x x x x ++-=-=+++++1111x x x -=++. 又∵x 为正整数,∴121x x ≤+<1,故表示22(2)1441x x x x +-+++的值的点落在②. 故选B .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.8.D解析:D【解析】【分析】根据全等三角形的判定定理 逐个判断即可.【详解】A 、∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;B 、∵∠ABD =∠DCA ,∠DBC =∠ACB ,∴∠ABD +∠DBC =∠ACD +∠ACB ,即∠ABC =∠DCB ,∵在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),故本选项不符合题意;C 、∵在△ABC 和△DCB 中BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCB (SAS ),故本选项不符合题意;D 、根据∠ACB =∠DBC ,BC =BC ,AB =DC 不能推出△ABC ≌△DCB ,故本选项符合题意;故选:D .【点睛】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .9.B解析:B【解析】设多边形的边数为n ,则有(n-2)×180°=n×150°,解得:n=12, 故选B.10.C解析:C【解析】【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°,推出AB=BE ,根据等腰三角形的性质得到AF=EF ,求得AD=ED ,得到∠DAF=∠DEF ,根据三角形的外角的性质即可得到结论.【详解】∵BD 是△ABC 的角平分线,AE ⊥BD ,∴∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°, ∴∠BAF=∠BEF=90°-17.5°,∴AB=BE ,∴AF=EF ,∴AD=ED ,∴∠DAF=∠DEF,∵∠BAC=180°-∠ABC-∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°-50°=45°,故选C.【点睛】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.11.C解析:C【解析】【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选C.【点睛】此题主要考查了多边形的外角与内角,关键是掌握多边形的外角与它相邻的内角互补.12.A解析:A【解析】解:∵AB∥CD,BC∥AD,∴∠ABD=∠CDB,∠ADB=∠CBD.在△ABD和△CDB中,∵,∴△ABD≌△CDB(ASA),∴AD=BC,AB=CD.在△ABE和△CDF中,∵,∴△ABE≌△CDF(SAS),∴AE=CF.∵BE=DF,∴BE+EF=DF+EF,∴BF=DE.在△ADE和△CBF中,∵,∴△ADE≌△CBF(SSS),即3对全等三角形.故选A.二、填空题13.【解析】【分析】先提取公因式然后根据平方差公式进行分解即可【详解】解:故答案为【点睛】本题考查了提取公因式平方差公式法分解因式属于基础题解析:()()333a a a +-【解析】【分析】先提取公因式,然后根据平方差公式进行分解即可.【详解】解:()()()3232739333a a a a a a a -=-=+- 故答案为()()333a a a +-.【点睛】本题考查了提取公因式、平方差公式法分解因式,属于基础题.14.40°【解析】试题分析:延长DE 交BC 于F 点根据两直线平行内错角相等可知ABC==80°由此可得然后根据三角形的外角的性质可得=-=40°故答案为:40°解析:40°【解析】试题分析:延长DE 交BC 于F 点,根据两直线平行,内错角相等,可知∠ABC=BFD ∠=80°,由此可得100DFC ∠=︒,然后根据三角形的外角的性质,可得BCD ∠=EDC ∠-FD C ∠=40°. 故答案为:40°.15.x=2【解析】分析:根据分式值为0的条件:分子为0分母不等于0可得即可解得详解:因为分式的值为0所以解得:所以故答案为:点睛:本题主要考查分式值为0的条件解决本题的关键是要熟练运用分式值为0的条件列解析:x=2【解析】分析:根据分式值为0的条件:分子为0,分母不等于0,可得24020x x ⎧-=⎨+≠⎩,即可解得 2x =.详解:因为分式242x x -+的值为0, 所以24020x x ⎧-=⎨+≠⎩,解得:2,2x x =±≠-,所以2x =.故答案为: 2x =.点睛:本题主要考查分式值为0的条件,解决本题的关键是要熟练运用分式值为0的条件列出方程和不等式进行求解.16.19【解析】试题分析:首先把等式a+b=5的等号两边分别平方即得a2+2ab+b 2=25然后根据题意即可得解解:∵a+b=5∴a2+2ab+b2=25∵ab=3∴a2+b2=19故答案为19考点:完解析:19【解析】试题分析:首先把等式a+b=5的等号两边分别平方,即得a 2+2ab+b 2=25,然后根据题意即可得解.解:∵a+b=5,∴a 2+2ab+b 2=25,∵ab=3,∴a 2+b 2=19.故答案为19.考点:完全平方公式.17.0或-4【解析】【分析】由分式不是最简分式可得x 或x+2是x2+m 的一个因式分含x 和x+2两种情况根据多项式乘以多项式的运算法则求出m 的值即可【详解】∵分式不是最简分式∴x 或x+2是x2+m 的一个因解析:0或-4【解析】【分析】由分式()22x x x m ++不是最简分式可得x 或x+2是x 2+m 的一个因式,分含x 和x+2两种情况,根据多项式乘以多项式的运算法则求出m 的值即可.【详解】∵分式()22x x x m ++不是最简分式,∴x 或x+2是x 2+m 的一个因式,当x 是x 2+m 的一个因式x 时,设另一个因式为x+a ,则有x (x+a )=x 2+ax=x 2+m ,∴m=0,当x 或x+2是x 2+m 的一个因式时,设另一个因式为x+a ,则有(x+2)(x+a)=x 2+(a+2)x+2a=x 2+m ,∴202a m a +=⎧⎨=⎩,解得:24 am=-⎧⎨=-⎩,故答案为:0或-4.【点睛】本题考查最简分式的定义及多项式乘以多项式,根据题意得出x或x+2是x2+m的一个因式是解题关键.18.【解析】【分析】将a+b=5ab=3代入原式=计算可得【详解】当a+b=5ab=3时原式====故答案为【点睛】本题主要考查分式的加减法解题的关键是熟练掌握分式的加减运算法则和完全平方公式解析:193.【解析】【分析】将a+b=5、ab=3代入原式=()2222a b abb aab ab+-+=,计算可得.【详解】当a+b=5、ab=3时,原式=22 b a ab+=()22 a b abab+-=25233-⨯=19 3.故答案为193.【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算法则和完全平方公式.19.【解析】【分析】利用多边形内角和公式建立方程求解【详解】根据题意得:180(n﹣2)=900解得:n=7故答案为7【点睛】本题考查多边形内角和公式熟记公式是解题的关键解析:【解析】【分析】利用多边形内角和公式建立方程求解.【详解】根据题意得:180(n﹣2)=900,解得:n=7.故答案为7.【点睛】本题考查多边形内角和公式,熟记公式是解题的关键.20.1【解析】试题分析:根据题意得|x|-1=0且x-1≠0解得x=-1考点:分式的值为零的条件解析:1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.考点:分式的值为零的条件.三、解答题21.(1)(x+2)2,(4x+3)2,(3x﹣2)2;(2)①b2=4ac,②m=±1【解析】【分析】(1)根据完全平方公式分解即可;(2)①根据已知等式得出b2=4ac,即可得出答案;②利用①的规律解题.【详解】(1)x2+4x+4=(x+2)2,16x2+24x+9=(4x+3)2,9x2-12x+4=(3x-2)2,故答案为(x+2)2,(4x+3)2,(3x-2)2;(2)①b2=4ac,故答案为b2=4ac;②∵多项式x2-2(m-3)x+(10-6m)是一个完全平方式,∴[-2(m-3)]2=4×1×(10-6m),m2-6m+9=10-6mm2=1m=±1.【点睛】本题考查了对完全平方公式的理解和应用,能根据完全平方公式得出b2=4ac是解此题的关键.22.见解析【解析】【分析】根据全等三角形的判定即可判断△AEC≌△BED;【详解】∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC=∠BED .在△AEC 和△BED 中,A B AE BEAEC BED ∠∠⎧⎪⎨⎪∠∠⎩===∴△AEC ≌△BED (ASA ).23.(1)详见解析;(2)详见解析.【解析】【分析】(1)作线段AB 的垂直平分线即可;(2)根据线段垂直平分线的性质可得DA=DB ,根据等边对等角可得30DBA A ︒∴∠=∠=,进而可得∠CBA =60°,然后可得答案. 【详解】(1)解:如图所示,点D 就是所求.(2)证明:由(1)可知:AB 的垂直平分线交AC 于点DAD BD ∴=30DBA A ︒∴∠=∠=90BCA ︒∠=且30A ∠=︒90CBA A ︒∴∠+∠=90903060CBA A ︒︒︒︒∴∠=-∠=-=30CBD DBA ︒∴∠=∠=BD ∴平分CBA ∠【点睛】本题考查了基本作图,以及线段垂直平分线的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.24.(1)35°;(2)见解析.【解析】【分析】(1)首先根据OB ∥FD ,可得∠OFD +∠AOB =18O °,进而得到∠AOB 的度数,再根据作图可知OP 平分∠AOB ,进而算出∠DOB 的度数即可;(2)首先证明∴∠AOD =∠ODF ,再由FM ⊥OD 可得∠OMF =∠DMF ,再加上公共边FM =FM ,可利用AAS 证明△FMO ≌△FMD .【详解】(1)解:∵OB ∥FD ,∴∠OFD +∠AOB =18O °,又∵∠OFD =110°,∴∠AOB =180°−∠OFD =180°−110°=70°,由作法知,OP 是∠AOB 的平分线,∴∠DOB =∠ABO =;(2)证明:∵OP 平分∠AOB ,∴∠AOD =∠DOB ,∵OB ∥FD ,∴∠DOB =∠ODF ,∴∠AOD =∠ODF ,又∵FM ⊥OD ,∴∠OMF =∠DMF ,在△MFO 和△MFD 中∴△MFO ≌△MFD (AAS ).【点睛】此题主要考查了全等三角形的判定,以及角的计算,关键是正确理解题意,掌握角平分线的作法,以及全等三角形的判定定理. 25.11a a +- 12+ 【解析】【分析】 先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.【详解】211()22a a a a -+÷++ =2221221a a a a a ++++- =11a a +-当1a=时原式1【点睛】本题考查了分式的化简求值,熟练掌握分式的混合运算是解题的关键.。

北京市西城区度第一学期八年级数学期末试卷(含答案)

北京市西城区度第一学期八年级数学期末试卷(含答案)

北京市西城区2019-2020学年度第一学期期末试卷八年级数学试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.下列图形中,是轴对称图形的是( ).A B C D2.用科学记数法表示0.000 053为( ).A .0.53×10-4B .53×10-6C .5.3×10-4D .5.3×10-53.函数y 中自变量的取值范围是( ).A .≥3B .≤3C .>3D .≠34.如图,△ABC 沿AB 向下翻折得到△ABD ,若∠ABC =30°,∠ADB =100°,则∠BAC 的度数是( ).A .30°B .100°C .50°D .80°5.下列二次根式中,最简二次根式是( ).A .21 B .17 C .75 D .35a 6.若将分式2x x y +中的字母x 与y 的值分别扩大为原的10倍,则这个分式的值( ). A .扩大为原的10倍 B .扩大为原的20倍C .不改变D .缩小为原的1107.已知一次函数1y kx =+,y 随的增大而增大,则该函数的图象一定经过( ).A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.下列判断中错误..的是( ). A .有两角和其中一个角的对边对应相等的两个三角形全等B .有一边相等的两个等边三角形全等C .有两边和一角对应相等的两个三角形全等D .有两边和其中一边上的中线对应相等的两个三角形全等效率比原计划提高了20%,结果比原计划提前2天完成任务.若设施工队原计划每天铺设管道x 米,则根据题意所列方程正确的是( ).A .150015002(120%)x x-=- B .150015002(120%)x x =+- C .150015002(120%)x x -=+ D .150015002(120%)x x =++ 10.七个边长为1的正方形按如图所示的方式放置在平面直角坐标系Oy 中,直线l 经过点A (4,4)且将这七个正方形的面积分成相等的两部分,则直线l 与轴的交点B 的横坐标为( ).A .23B .34C .45D .79 二、填空题(本题共25分,第18题4分,其余每小题3分)11.若分式14x +在实数范围内有意义,则x 的取值范围是 . 12.分解因式:22363x xy y -+= .13.已知一次函数23y x =--的图象经过点A (-1,y 1)、点B (-2,y 2),则y 1 y 2.(填“>”、“<”或“=”)14.如图,在△ABC 中,边AB 的垂直平分线分别交BC 于点D ,交AB 于点E .若AE =3,△ADC 的周长为8,则△ABC 的周长为 .15.计算:22224a b ab c c÷= . 16.若点M (a ,3)和点N (2,a +b )关于轴对称,则b 的值为 .17.如图,∠AOB =30°,OP 平分∠AOB ,PD ⊥OB 于点D ,PC ∥OB交OA 于点C .若PC =10,则OC = ,PD = .18.甲、乙两车从A 地出发前往B 地.在整个行程中,汽车离开A 地的距离 y (m )与时间t (h )的对应关系如图所示,则乙车的平均速度为 m/h 图中a 的值为 m ;在乙车行驶的过程中,当t = h 时,两车相距20m .三、解答题(本题共15分,第19题4分,第201920.已知:如图,点A ,B ,C ,D 在一条直线上,AB =CD ,AE ∥FD ,且∠E =∠F .求证:EC=FB .证明:21.先化简,再求值:m m m m --⋅--+342)252(,其中34m =. 解:四、解答题(本题共16分,第23题6分,其余每小题5分)22.解分式方程:12422=-+-x x x . 解:23.如图,在平面直角坐标系Oy 中,一次函数=+y kx b 的图象经过点A (2-,4),且与正比例函数23=-y x 的图象交于点B (a ,2).(1)求a 的值及一次函数=+y kx b 的解析式;(2)若一次函数=+y kx b 的图象与轴交于点C ,且正比例函数23=-y x 的图象向下平移m (m >0)个单位长度后经过点C ,求m 的值; (3)直接写出关于的不等式23->+x kx b 的解集. 解:(1)(2)(3)关于的不等式23->+x kx b 的解集为 .24.已知:如图,线段AB 和射线BM 交于点B .(1)利用尺规..完成以下作图,并保留作图痕迹.(不要求写作法) ①在射线BM 上求作一点C ,使AC =AB ;②在线段AB 上求作一点D ,使点D 到BC ,AC 的距离相等;(2)在(1)所作的图形中,若∠ABM =72°,则图中与BC 相等的线段是 .五、解答题(本题共14分,每小题7分)25.如图,在平面直角坐标系Oy 中,直线l 与轴交于点A (4-,0),与y 轴的正半轴交于点B .点C 在直线1=-+y x 上,且CA ⊥轴于点A .(1)求点C 的坐标;(2)若点D 是OA 的中点,点E 是y 轴上一个动点,当EC +ED 最小时,求此时点E 的坐标;(3)若点A 恰好在BC 的垂直平分线上,点F 在轴上,且△ABF 是以AB 为腰的等腰三角形,请直接写出所有满足条件的点F 的坐标.解:(1)(2)(3)点F的坐标为.26.已知:在△ABC中,∠ABC<60°,CD平分∠ACB交AB于点D,点E在线段CD上(点E不与点C,D重合),且∠EAC=2∠EBC.(1)如图1,若∠EBC=27°,且EB=EC,则∠DEB=°,∠AEC=°;(2)如图2.①求证:AE+AC=BC;②若∠ECB=30°,且AC=BE,求∠EBC的度数.图1 图2(2)①证明:②解:。

2020-2021北京市初二数学上期末试题(附答案)

2020-2021北京市初二数学上期末试题(附答案)

2020-2021北京市初二数学上期末试题(附答案)一、选择题1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学 记数法表示为() A. 5.6x10 1B. 5.6x10 2C. 5.6x10 3D. 0.56x10 12.如图,R3ABC 中,AD 是NBAC 的平分线,DE±AB,垂足为E,若AB=10cm, AC=6cm,则BE 的长度为()( 4/n + 4那么代数式〃? +I mA. -2B. -1C. 2D. 34 .计算:Ex ,-2x ) + ( _ 2x )的结果是( )A. 2x 2- 1B. -2x2-1 c. -2x2+l D , - 2x 25.2019年7月30 口阳朔至鹿寨高速公路建成通车,已知从阳朔至鹿寨国道的路程为150E1,现在高速路程缩短了 20k 〃,若走高速的平均车速是走国道的2.5倍,所花时间 比走国道少用L5小时,设走国道的平均车速为双〃/〃,则根据题意可列方程为()7 .已知关于x 的分式方程匕"-1 =?一的解是正数,则/〃的取值范围是() X-l 1-XA. 〃?V4且〃?彳3B. m<4C.加9 且阳#3D.加>5且加r6nrm + 2的值是(♦寺) 150-20 150 f _ A. -------------- ——= 1.5 x 2.5x 150 150-20 ♦ . B. -------- - ----- = 1.52.5% x150 150-20 C. --- - -------- 二 1.3150-20 150 D. ------- - --- =1.2)6.如图,在^ABC 中,ZACB=90°,分别以点A 和B 为圆心,为半径作弧,两弧相交于点M 和N,作直线MN 交AB 于点D,以相同的长(大于?AB ) 2交BC 于点E,连接CD,C. ZA=ZBEDD. ZECD=ZEDC3.如果,/ +2m —2 = 0轴于点N,再分别以点M 、N 为圆心,大于L MN 的长为半径画弧,两弧在第二象限交于2 点P.若点P 的坐标为(2a, b+1),则a 与b 的数量关系为()A. a=bB. 2a+b= - 1C. 2a - b=l 9 .如图,在△ABC 中,以点8为圆心,以84长为半径画弧交边8c 于点。

北京市西城区2020—2021学年度第一学期期末试卷(含答案)

北京市西城区2020—2021学年度第一学期期末试卷(含答案)

北京市西城区2020—2021学年度第一学期期末试卷高三语文2021.1本试卷共10页,共150分。

考试时长150分钟。

考生务必将答案写在答题卡上,在试卷上作答无效。

一、本大题共5小题,共18分。

阅读下面的材料,完成1-5题。

材料一建国七十年来,我国粮食产量稳步提升,其中科技的贡献有目共睹。

科技选种育种对粮食增产作用巨大。

比如作物全息定域选种,是在作物具有强遗传势的部位选种的方法。

实验证明,玉米的强遗传势区在果穗中下部,选用这一部位的籽粒做种,比用顶部的籽粒做种增产35.4%;高粱果穗上部的籽粒充实饱满,生活力强,在结实丰产方面有较强的遗传性,选用上部籽粒做种比用中部籽粒做种增产6.4%~10.8%。

任何作物随着本身遗传性状的改良,生产性能会不断提高。

我国水稻种植从20世纪50年代中后期开始,由高秆品种改为新培育出的矮秆品种,该品种耐肥抗倒,单位面积产量比高秆品种增加30%以上。

1986年袁隆平提出杂交水稻的育种战略,历经九年艰苦攻关,中国独创的两系法杂交水稻取得成功,又使单产比常规品种增产15%~20%。

专家预测目前正在培育的超高产品种,将比现有品种在单产上提高近一倍。

科学技术可以改善耕地条件,进而扩大某些粮食作物种植区域,还可以提高粮食生产过程中有限资源的利用率。

例如在实施塑料薄膜覆盖后,土壤一般可增温2~5℃,覆盖期内地表积温增加200~300℃,从而使作物适宜耕作区的纬度向北推移2~4°,海拔提高1000~2000m。

由于该技术可应用的作物范围广,一般增产幅度可达30%~50%。

同时,地膜覆盖能使耕层土壤含水量提高2.77%~4.55%,每亩土壤蒸发量减少100~150m3。

单位农产品的平均耗水量减少一半,就相当于灌溉面积扩大了一倍。

农机装备技术的进步也至关重要。

21世纪以来我国农机装备技术发展极为快速。

机械设备如深松机、无人驾驶联合耕播作业机等逐渐被推广使用的同时,很多新技术也在其中得到应用。

2021-2022学年北京市西城区八年级(上)期末数学试题及答案解析

2021-2022学年北京市西城区八年级(上)期末数学试题及答案解析

2021-2022学年北京市西城区八年级(上)期末数学试卷1.下列图案中,可以看成轴对称图形的是( )A. B. C. D.2.下列运算中,结果正确的是( )A. (a2)3=a5B. (3a)2=6a2C. a6÷a2=a3D. a2⋅a3=a53.在△ABC中,作出AC边上的高,正确的是( )A. B.C. D.4.如图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在一个角的顶点,AB和AD沿着这个角的两边放下,利用全等三角形的性质就能说明射线AC是这个角的平分线,这里判定△ABC和△ADC是全等三角形的依据是( )A. SSSB. ASAC. SASD. AAS5.下列分式中,从左到右变形错误的是( )A. c4c =14B. 1a+1b=1a+bC. 1a−b =−1b−aD. a2−4a2+4a+4=a−2a+26.已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )A. 10B. 8C. 7D. 47.某校八年级一班计划安排一次以“迎冬奥”为主题的知识竞赛,班主任王老师打算到某文具店购买一些笔记本作为竞赛用的奖品.目前该文具店正在搞优惠酬宾活动:购买同样的笔记本,当花费超过20元时,每本便宜1元.已知王老师花费24元比花费20元多买了2本笔记本,求他花费24元买了多少本笔记本.设他花费24元买了x本笔记本,根据题意可列方程( )A. 24x −20x−2=1 B. 24x−2−20x=1 C. 20x−2−24x=1 D. 20x+2−24x=18.在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)(n>0).若△ABC是等腰直角三角形,且AB=BC,当0<a<1时,点C的横坐标m的取值范围是( )A. 0<m<2B. 2<m<3C. m<3D. m>39.计算:(1)2−1=;(2)(π−1)0=.10.若分式1x−2有意义,则x的取值范围为.11.若一个多边形的内角和是540°,则这个多边形是边形.12.计算:2ab(3a2−5b)=.13.若a2+ka+9是一个完全平方式,则常数k=.14.如图1,将一个长为2a,宽为2b的长方形沿图中虚线剪开分成四个完全相同的小长方形,然后将这四个完全相同的小长方形拼成一个正方形(如图2).设图2中的大正方形面积为S1,小正方形面积为S2,则S1−S2的结果是(用含a,b的式子表示).15.如图,在平面直角坐标系xOy中,点A(2,0),B(4,2),若点P在x轴下方,且以O,A,P为顶点的三角形与△OAB全等,则满足条件的P点的坐标是.16. 如图,Rt △ABC 中,∠ACB =90°,∠B =30°,AC =2.D 为BC 上一动点,连接AD ,AD 的垂直平分线分别交AC ,AB 于点E ,F ,则线段BF 长的最大值是 .17. 分解因式:(1)3a 2−6ab +3b 2;(2)x 2(m −2)+y 2(2−m).18. (1)计算:(x −8y)(x +y);(2)先化简,再求值:(a +1−3a−1)÷a 2−4a 2−2a+1,其中a =−3. 19. 解方程:x−1x+1−2x 2−1=1.20. 如图,点A ,B ,C ,D 在一条直线上,AE//DF ,AE =DF ,AB =CD .(1)求证:△AEC≌△DFB .(2)若∠A =40°,∠ECD =145°,求∠F 的度数.21.如图,8×12的长方形网格中,网格线的交点叫做格点,点A,B,C都是格点.请按要求解答下列问题:平面直角坐标系xOy中,点A,B的坐标分别是(−3,1),(−1,4),(1)①请在图中画出平面直角坐标系xOy;②点C的坐标是______,点C关于x轴的对称点C1的坐标是______.(2)设l是过点C且平行于y轴的直线,①点A关于直线l的对称点A1的坐标是______;②在直线l上找一点P,使PA+PB最小,在图中标出此时点P的位置;③若Q(m,n)为网格中任一格点,直接写出点Q关于直线l的对称点Q1的坐标(用含m,n的式子表示).22.已知:如图1,线段a,b(a>b).(1)求作:等腰△ABC,使得它的底边长为b,底边上的高的长为a.作法:①作线段AB=b.②作线段AB的垂直平分线MN,与AB相交于点D.③在MN上取一点C,使DC=a.④连接AC,BC,则△ABC就是所求作的等腰三角形.用直尺和圆规在图2中补全图形(要求:保留作图痕迹);(2)求作:等腰△PEF,使得它的腰长为线段a,b中一条线段的长,底边上的高的长为线段a,b中另一条线段的长.作法:①作直线l,在直线l上取一点G.②过点G作直线l的垂线GH.③在GH上取一点P,使PG=______.④以P为圆心,以______的长为半径画弧,与直线l分别相交于点E,F.⑤连接PE,PF,则△PEF就是所求作的等腰三角形.请补全作法,并用直尺和圆规在图3中补全图形(要求:保留作图痕迹).23.(1)如果(x−3)(x+2)=x2+mx+n,那么m的值是______,n的值是______;(2)如果(x+a)(x+b)=x2−2x+1,2①求(a−2)(b−2)的值;+1的值.②求1a2+1b224.在△ABC中,∠BAC=120°,AB=AC,AD为△ABC的中线,点E是射线AD上一动点,连接CE,作∠CEM=60°,射线EM与射线BA交于点F.(1)如图1,当点E与点D重合时,求证:AB=2AF;(2)如图2,当点E在线段AD上,且与点A,D不重合时,①依题意,补全图形;②用等式表示线段AB,AF,AE之间的数量关系,并证明.(3)当点E在线段AD的延长线上,且ED≠AD时,直接写出用等式表示的线段AB,AF,AE之间的数量关系.25.观察下列等式:①1−1−12=−11×2;②12−13−14=−13×4;③13−15−16=−15×6;④14−17−18=−17×8;…根据上述规律回答下列问题:(1)第⑤个等式是______;(2)第n个等式是______(用含n的式子表示,n为正整数).26.对于面积为S的三角形和直线l,将该三角形沿直线l折叠,重合部分的图形面积记为S0,定义S0S−S0为该三角形关于直线l的对称度.如图,将面积为S的△ABC沿直线l折叠,重合部分的图形为△C′DE,将△C′DE的面积记为S0,则称S0S−S0为△ABC关于直线l的对称度.在平面直角坐标系xOy中,点A(0,3),B(−3,0),C(3,0).(1)过点M(m,0)作垂直于x轴的直线l1,①当m=1时,△ABC关于直线l1的对称度的值是______;②若△ABC关于直线l1的对称度为1,则m的值是______.(2)过点N(0,n)作垂直于y轴的直线l2,求△ABC关于直线l2的对称度的最大值.(3)点P(−4,0)满足AP=5,点Q的坐标为(t,0),若存在直线,使得△APQ关于该直线的对称度为1,写出所有满足题意的整数t的值.答案和解析1.【答案】B【解析】解:选项B的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够完全重合,所以是轴对称图形,选项A、C、D的图形均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够完全重合,所以不是轴对称图形,故选:B.如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这个图形叫做轴对称图形,这条直线叫做对称轴.此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可完全重合.2.【答案】D【解析】解:A.(a2)3=a6,不等于右边,故此选项不合题意;B.(3a)2=9a2,不等于右边,故此选项不合题意;C.a6÷a2=a4,不等于右边,故此选项不合题意;D.a2⋅a3=a5,等于右边,故此选项符合题意;故选:D.直接利用积的乘方运算法则、幂的乘方运算法则、同底数幂的乘除运算法则分别判断得出答案.此题主要考查了积的乘方运算、幂的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.【答案】D【解析】解:A中BD与AC不垂直,故A不正确;B中AD未过顶点B,故B不正确;C中BD与AC的延长线不垂直,故C不正确;D中BD与AC的延长线垂直,点D为垂足,所以BD是AC边上的高,故D正确;故选:D.根据三角形的高的定义对各个图形观察后解答即可.本题主要考查了三角形的高线的定义:从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高,熟练掌握概念是解题的关键.4.【答案】A【解析】解:在△ADC和△ABC中,{AD=AB DC=BC AC=AC,所以△ADC≌△ABC(SSS),所以∠DAC=∠BAC,所以AC就是∠DAB的平分线.所以这里判定△ABC和△ADC是全等三角形的依据是SSS.故选:A.根据题目所给条件可利用SSS定理判定△ADC≌△ABC,进而得到∠DAC=∠BAC.本题考查了三角形全等的判定与性质,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等.5.【答案】B【解析】解:A.c4c =14,等于右边,所以选项变形正确,故此选项不合题意;B.1 a +1b=bab+aab=a+bab,不等于右边,所以选项变形错误,故此选项符合题意;C.1 a−b =−1b−a,等于右边,所以选项变形正确,故此选项不合题意;D.a2−4a2+4a+4=(a+2)(a−2)(a+2)2=a−2a+2,等于右边,所以选项变形正确,故此选项不合题意.故选:B.直接利用分式的加减运算法则以及分式的性质分别化简,进而判断得出答案.此题主要考查了分式的加减运算以及分式的性质,正确化简分式是解题关键.6.【答案】C【解析】解:根据三角形的三边关系,得4−4<m<4+4,即0<m<8,因为m是整数,则m的最大值为7,故选:C.根据三角形的三边关系确定第三边的取值范围,进而解答即可.本题考查了三角形的三边关系.三角形的三边关系:第三边大于两边之差而小于两边之和.7.【答案】C【解析】解:设他花费24元买了x本笔记本,根据题意可列方程为20x−2−24x=1,故选:C.设他花费24元买了x本笔记本,根据购买同样的笔记本,当花费超过20元时,每本便宜1元列方程即可得到结论.此题考查了由实际问题抽象出分式方程.注意准确找到等量关系是关键.8.【答案】B【解析】解:如图,过点C作CD⊥x轴于D,∵点A(0,2),∴AO=2,∵△ABC是等腰直角三角形,且AB=BC,∴∠ABC=90°=∠AOB=∠BDC,∴∠ABO+∠CBD=90°,∠ABO+∠BAO=90°,∴∠BAO=∠CBD,在△AOB和△BDC中,{∠AOB=∠BDC ∠BAO=∠CBD AB=BC,∴△AOB≌△BDC(AAS),∴AO=BD=2,∵0<a<1,∴2<a+2<3,∵OD=OB+BD=a+2=m,∴2<m<3,故选:B.过点C作CD⊥x轴于D,由“AAS”可证△AOB≌△BDC,可得AO=BD=2,即可求解.本题考查了坐标与图形性质,全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.9.【答案】12;1【解析】【分析】此题主要考查了零指数幂以及负整数指数幂的运算,正确化简各数是解题关键.(1)直接利用负整数指数幂的运算公式(a−p=1a p,其中a≠0,p是负整数)计算得出答案;(2)直接利用零指数幂的运算公式(a0=1,其中a≠0)计算得出答案.【解答】解:(1)2−1=12;故答案为12;(2)(π−1)0=1.故答案为1.10.【答案】x≠2【解析】本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.根据分母不为零,分式有意义,可得答案.【解答】解:由题意,得x−2≠0.解得x≠2,故答案为:x≠2.11.【答案】五【解析】解:设多边形的边数是n,则(n−2)⋅180°=540°,解得n=5,故答案为:五.根据多边形的内角和公式求出边数即可.本题考查了多边形的内角和定理,熟记公式是解题的关键.12.【答案】6a3b−10ab2【解析】解:2ab(3a2−5b)=6a3b−10ab2.故答案为:6a3b−10ab2.根据单项式乘多项式法则求出即可.本题主要考查单项式乘多项式,解题的关键是掌握单项式乘多项式法则.13.【答案】±6【解析】【分析】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.此题解题的关键是利用平方项求出这两个数.先根据平方项确定出这两个数是a和3,再根据完全平方公式:(a±b)2=a2±2ab+b2的乘积二倍项列式求解即可.解:因为a2+ka+9是一个完全平方式,所以ka=±2×3⋅a,解得k=±6;故答案是:±6.14.【答案】4ab【解析】解:由题意可得S1−S2的结果就是图2中4个长方形的面积,即图1长方形的面积:2a×2b=4ab,故答案为:4ab.由题意可得S1−S2的结果就是图1长方形的面积,据此解答即可.此题考查了完全平方公式几何背景的应用能力,关键是能根据图形准确列式.15.【答案】(4,−2)或(−2,−2)【解析】解:如图所示:有两种情况,因为A(2,0),B(4,2),以O,A,P为顶点的三角形与△OAB全等,点P在x轴下方,所以P1的坐标是(4,−2),P2的坐标是(−2,−2),故答案为:(4,−2)或(−2,−2).先根据题意和全等三角形的判定画出符合的图形,再求出P点的坐标即可.本题考查了全等三角形的判定定理和点的坐标,能画出符合条件的点P的位置是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.16.【答案】83【解析】解:过点F 作FH ⊥BC 于H ,连接DF ,Rt △ABC 中,∠ACB =90°,∠B =30°,AC =2,∴AB =2AC =4,设AF =x ,则BF =4−x ,∵∠B =30°,∴FH =12BF =2−12x ,∵EF 垂直平分AD∴AF =FD =x∵FD ≥FH(当D ,H 重合时,相等)∴x ≥2−12x ,解得x ≥43,∴AF 最小值为43,BF 的最大值为4−43=83. 故答案为:83.过点F 作FH ⊥BC 于H ,连接DF ,设AF =x ,则BF =4−x ,结合含30°角的直角三角形的性质可得关于x 的不等式,计算可求解AF 的最小值,进而可求得BF 的最大值.本题主要考查了线段垂直平分线的性质、30°角所对直角边是斜边的一半,将BF 的最大值转化为AF最小是解决本题的关键,属于压轴题.17.【答案】解:(1)3a 2−6ab +3b 2=3(a 2−2ab +b 2)=3(a −b)2;(2)x 2(m −2)+y 2(2−m)=x 2(m −2)−y 2(m −2)=(m−2)(x2−y2)=(m−2)(x+y)(x−y).【解析】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.(1)先提公因式,然后再利用完全平方公式继续分解即可;(2)先提公因式,然后再利用平方差公式继续分解即可.18.【答案】解:(1)(x−8y)(x+y)=x2+xy−8xy−8y2=x2−7xy−8y2;(2)(a+1−3a−1)÷a2−4a2−2a+1=(a2−1a−1−3a−1)÷(a+2)(a−2)(a−1)2=a2−4a−1÷a2−4(a−1)2=a2−4a−1⋅(a−1)2a2−4=a−1,当a=−3时,原式=−3−1=−4.【解析】本题主要考查多项式乘以多项式的法则,分式的混合运算与化简求值,解题的关键是掌握分式混合运算顺序和运算法则.(1)根据多项式乘多项式法则展开,再合并同类项即可;(2)先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算即可.19.【答案】解:x−1x+1−2x2−1=1,x−1 x+1−2(x−1)(x+1)=1,方程两边同时乘(x+1)(x−1),得整式方程(x−1)2−2=x2−1,即x2−2x+1−2=x2−1,所以−2x=0,解得:x=0,检验:当x=0时,(x+1)(x−1)≠0.所以原分式方程的解为x=0.【解析】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.20.【答案】(1)证明:因为AE//DF,所以∠A=∠D,因为AB=CD,所以AC=DB,在△AEC和△DFB中,{AE=DF ∠A=∠D AC=DB,所以△AEC≌△DFB(SAS),(2)解:因为∠ECD=145°,∠A=40°,所以∠E=∠ECD−∠A=105°,因为△AEC≌△DFB,所以∠F=∠E=105°.则∠F的度数为105°.【解析】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键.(1)由“SAS”可证△AEC≌△DFB;(2)由全等三角形的性质和三角形内角和定理可求解.21.【答案】解:(1)①建立的直角坐标系xOy如图所示;②(1,2),(1,−2);(2)①(5,1);②如上图,点P即为所求;③设Q1(x,y),则有1−x+1−m=0,y=n,所以x=2−m,所以Q1(2−m,n).【解析】【分析】本题考查平面直角坐标系、轴对称的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.(1)①根据A,B两点坐标作出平面直角坐标系即可;①根据轴对称的性质解决问题即可;(2)①利用轴对称的性质解决问题;②连接BA1交直线l于点P,连接AP,点P即为所求;③根据轴对称的性质即可解答.【解答】解:(1)①建立的直角坐标系xOy见答案;②由图可知C(1,2),点C关于x轴的对称点C1的坐标为C1(1,−2).故答案为:(1,2),(1,−2);(2)①因为C(1,2),l是过点C且平行于y轴的直线,所以直线l上所有点的横坐标均为1,因为点A的坐标是(−3,1),所以设A1的横坐标是a,则1−(−3)=a−1,解得a=5,所以点A关于直线l的对称点A1的坐标是A1(5,1);故答案为:(5,1);②见答案;③见答案.22.【答案】解:(1)如图2中,△ABC即为所求;(2)如图3中,△PEF即为所求.③b;④a.【解析】【分析】本题考查已知底边及底边上的高作等腰三角形,解题的关键是理解题意,熟练掌握五种基本作图,属于中考常考题型.(1)根据要求作出图形即可;(2)根据要求作出图形即可.【解答】解:(1)见答案;(2)补全△PEF图见答案;解:作法:①作直线l,在直线l上取一点G.②过点G作直线l的垂线GH.③在GH上取一点P,使PG=b.④以P为圆心,以a的长为半径画弧,与直线l分别相交于点E,F.⑤连接PE,PF,则△PEF就是所求作的等腰三角形.故答案为:③b;④a.23.【答案】解:(1)−1,−6;(2)解:因为(x+a)(x+b)=x2−2x+12,所以x2+(a+b)x+ab=x2−2x+12所以a+b=−2,ab=12,①(a−2)(b−2)=ab−2(a+b)+4=12−2×(−2)+4=12+4+4=172,②1a2+1b2+1=b2+a2a2b2+1=(a +b)2−2ab(ab)2+1=(−2)2−2×12(12)2+1 =4−114+1 =12+1=13.【解析】【分析】本题考查了多项式乘以多项式和代数式求值,掌握多项式乘以多项式法则,等式的恒等性、整体性、配方是解题的关键.(1)先去括号,合并同类项,根据等式的恒等性列等式求解即可;(2)先去括号,合并同类项,根据等式的恒等性,求出(a +b)、ab 的值.①利用多项式乘以多项式法则得到ab −2(a +b)+4,然后把(a +b)、ab 的值代入计算即可; ②通分,配方得到(a+b)2−2ab (ab)2+1,再把(a +b)、ab 的值代入后计算即可.【解答】解:(1)因为(x −3)(x +2)=x 2+mx +n ,所以x 2−x −6=x 2+mx +n ,所以m =−1,n =−6,故答案为:−1,−6;(2)见答案. 24.【答案】(1)证明:∵AB =AC ,AD 为△ABC 的中线,∴AD ⊥BC ,∠BAD =∠CAD =12∠BAC ,∠B =∠C , ∴∠ADB =∠ADC =90°.∵∠BAC =120°,∴∠B =180°−120°2=30°,∠BAD =∠CAD =12∠BAC =60°,∠CAF =180°−∠BAC =60°, ∴∠CAF =∠BAD =∠CAD =60°.在直角三角形ABD中,∠B=30°,∴AB=2AD.∵∠CDF=60°,∠ADC=90°,∴∠ADF=∠ADC−∠CDF=30°∵∠DAF=∠CAF+∠CAD=120°,∴∠AFD=180°−∠ADF−∠DAF=30°=∠ADF.∴AD=AF.∴AB=2AF.(2)解:①补全图形如图;②AB=AF+AE.证明:在AC上截取AG=AE,连接EG.∵∠BAC=120°,AB=AC,AD为△ABC中线,∴∠DAB=∠DAC=60°.∴△AEG是等边三角形,∠EAF=120°.∴EG=AE,∠AGE=∠AEG=60°.∴∠EGC=120°.∴∠EAF=∠EGC.∵∠AEG=∠CEF=60°,∴∠AEF=∠GEC.在△AEF和△GEC中,{∠AEF=∠GEC AE=EG∠EAF=∠EGC,∴△AEF≌△GEC(ASA).∴AF=GC.∵AC=AG+GC,∴AB=AE+AF.(3)当ED<AD时,AB=AE+AF;当AD<ED≤3AD时,AB=AE−AF.【解析】本题是三角形综合题,主要考查了等边三角形的判定与性质,全等三角形的判定和性质,等腰三角形的性质,构造全等三角形和直角三角形是解本题的关键.(1)由等腰三角形的性质得出AD⊥BC,∠B=∠C.证出AD=AF.则可得出结论;(2)①由题意画出图形即可;②在AC上截取AG=AE,连接EG.证明△AEF≌△GEC(ASA).由全等三角形的性质得出AF=GC.则可得出结论;(3)分情况讨论即可.【解答】解:(1)(2)见答案;(3)如图,当ED<AD时,AB=AE+AF;.证明:在AC上截取AG=AE,连接EG.由(2)知△AEG是等边三角形,∠EAF=120°.∴EG=AE,∠AGE=∠AEG=60°.∴∠EGC=120°.∴∠EAF=∠EGC.∵∠AEG=∠CEF=60°,即∠AEF+∠FEG=∠CEG+∠FEG,∴∠AEF=∠GEC.在△AEF和△GEC中,{∠AEF=∠GEC AE=EG∠EAF=∠EGC,∴△AEF≌△GEC(ASA).∴AF=GC.∵AC=AG+GC,∴AB=AE+AF;当AD<ED<3AD时,AB=AE−AF.如图,证明:在AC上截取AG=AE,交AC的延长线于点G,连接EG.由(2)知△AEG是等边三角形,∴EG=AE,∠AGE=∠AEG=60°,即∠CGE=60°.∵∠BAD=60°,即∠FAE=60°,∴∠FAE=∠CGE.∵∠CEM=∠AEG=60°,即∠AEF+∠AEC=∠CEG+∠AEC,∴∠AEF=∠GEC.在△AEF和△GEC中,{∠AEF=∠GEC AE=EG∠EAF=∠EGC,∴△AEF≌△GEC(ASA).∴AF=GC.∵AG=AC+GC,∴AE=AB+AF;∴AB=AE−AF;当ED=3AD,如图,射线EM过点B,点F与点B重合,此时∠CEM=60°;当ED⩾3AD时,射线EM 与射线BA 无交点,不符合题意.综上所述,当ED <AD 时,AB =AE +AF ;当AD <ED ≤3AD 时,AB =AE −AF .25.【答案】解:(1)观察规律可知左边每个式子中第一个数分别为1,12,13,14,则第五个式子中左边第一个数为15;左边每个式子中第二个数分别为−1,−13,−15,−17, 则第五个式子中左边第二个数为−19;左边每个式子中第三个数分别为−12,−14,−16,−18, 则第五个式子中左边第三个数为−110;观察右边每个式子前面为负号,分母分别为左边第二个数和第三个数分母的乘积,分子为1, 所以第⑤个等式为:15−19−110=−19×10,故答案为:15−19−110=−19×10; (2)由(1)分析可知第n 个等式为:1n −12n−1−12n =−12n(2n−1). 故答案为:1n −12n−1−12n =−12n(2n−1). 【解析】(1)根据规律求解即可; (2)根据规律求解即可.本题主要考查数式的规律,解答的关键是由所给的等式分析清楚所存在的规律.26.【答案】解:(1)①27;②0;(2)如图2,设过点N的直线交AB,AC于点E,F,点A关于直线EF的对称点为A′,由题可知△AEN和ΔANF均为等腰直角三角形,且AN=EN=NF,∵N(0,n),点A(0,3),∴AN=EN=NF=3−n,如图2,当点N在点A和AO中点之间时,点A′落在OA上,折叠后重合的面积为SΔA′EF,SΔA′EF=SΔAEF,由折叠性质知A′N=AN=3−n,∴S0=12⋅EF⋅NA′=12×2(3−n)×(3−n)=(3−n)2(32<n⩽3)(由点A到AO中点的过程中,AN越来越大,重合的面积越来越大,到中点时面积最大);当点N恰好在AO中点时,重合部分的面积为SΔA′EF=SΔAEF,此时AN=EN=NF=32,S0=12×2×32×32=94;如图3,当点N在AO中点和O之间时,折叠后重合的面积为梯形KMEF的面积,其面积为S0=1 2(EF+KM)·NO=12×(6−2n+6−4n)×n=−3(n−1)2+3∵(n−1)2⩾0,∴−3(n−1)2⩽0,∴−3(n−1)2+3⩽3,即n=1时,S0有最大值3;当点N在点O及点O下面和点A及点A上面时,即n⩽0或n⩾3时,沿着垂直于y轴的直线l2折叠时,没有重合的部分,即重合面积S0=0,综上所述当点n=1时,S0的值最大,最大值为3,此时对称度为39−3=12;(3)如图4中,∵△APQ关于该直线的对称度为1,∴△APQ是等腰三角形,又∵Q(t,0),t是整数,∴当PA=PQ=5时,Q1(−9,0),Q2(1,0),满足条件,当AP=AQ时,Q3(4,0),∴满足条件的t的值为−9或1或4.【解析】【分析】本题属于几何变换综合题,考查了轴对称变换的性质,等腰直角三角形、三角形的面积,四边形的面积,对称度的定义等知识,解题的关键是理解题意,学会用转化的思想思考问题.(1)①根据对称度的定义,求出S0,S的值即可;②当△ABC关于直线l1的对称度为1时,S0=92,此时m=0;(2)分情况求出S0的值,比较即可得结论;(3)由题意△APQ关于该直线的对称度为1,推出△APQ是等腰三角形,求出整数t的值即可.【解答】解:(1)①如图1中,∵点A(0,3),B(−3,0),C(3,0).∴OA=OB=OC=3,又∵x轴⊥y轴,∴△AOB、△AOC均为等腰直角三角形,∴∠ACB=∠ABC=45°,∴过点M(m,0)作垂直于x轴的直线l1,折叠重合部分的三角形也为等腰直角三角形,当m=1时,重合部分的三角形是边长为3−1=2的等腰直角三角形,其面积S0=12×2×2=2,三角形ABC的面积为S=12×6×3=9,∴△ABC关于直线l1的对称度的值=29−2=27.故答案为:27.②当△ABC关于直线l1的对称度为1时,S09−S0=1,解得S0=92,过点M(m,0)作垂直于x轴的直线l1,折叠重合部分的三角形是边长为|3−m|的等腰直角三角形∴S0=12|3−m|×|3−m|,即12|3−m|×|3−m|=92,解得m=0或m=6(不符合题意)故m的值为0,故答案为:0;(2)(3)见答案.。

北京市西城区度第一学期八年级数学期末试卷(含答案)

北京市西城区度第一学期八年级数学期末试卷(含答案)

北京市西城区2019-2020学年度第一学期期末试卷八年级数学试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.下列图形中,是轴对称图形的是( ).A B C D2.用科学记数法表示0.000 053为( ).A .0.53×10-4B .53×10-6C .5.3×10-4D .5.3×10-53.函数y 中自变量的取值范围是( ).A .≥3B .≤3C .>3D .≠34.如图,△ABC 沿AB 向下翻折得到△ABD ,若∠ABC =30°,∠ADB =100°,则∠BAC 的度数是( ).A .30°B .100°C .50°D .80°5.下列二次根式中,最简二次根式是( ).A .21 B .17 C .75 D .35a 6.若将分式2x x y +中的字母x 与y 的值分别扩大为原的10倍,则这个分式的值( ). A .扩大为原的10倍 B .扩大为原的20倍C .不改变D .缩小为原的1107.已知一次函数1y kx =+,y 随的增大而增大,则该函数的图象一定经过( ).A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.下列判断中错误..的是( ). A .有两角和其中一个角的对边对应相等的两个三角形全等B .有一边相等的两个等边三角形全等C .有两边和一角对应相等的两个三角形全等D .有两边和其中一边上的中线对应相等的两个三角形全等效率比原计划提高了20%,结果比原计划提前2天完成任务.若设施工队原计划每天铺设管道x 米,则根据题意所列方程正确的是( ).A .150015002(120%)x x-=- B .150015002(120%)x x =+- C .150015002(120%)x x -=+ D .150015002(120%)x x =++ 10.七个边长为1的正方形按如图所示的方式放置在平面直角坐标系Oy 中,直线l 经过点A (4,4)且将这七个正方形的面积分成相等的两部分,则直线l 与轴的交点B 的横坐标为( ).A .23B .34C .45D .79 二、填空题(本题共25分,第18题4分,其余每小题3分)11.若分式14x +在实数范围内有意义,则x 的取值范围是 . 12.分解因式:22363x xy y -+= .13.已知一次函数23y x =--的图象经过点A (-1,y 1)、点B (-2,y 2),则y 1 y 2.(填“>”、“<”或“=”)14.如图,在△ABC 中,边AB 的垂直平分线分别交BC 于点D ,交AB 于点E .若AE =3,△ADC 的周长为8,则△ABC 的周长为 .15.计算:22224a b ab c c÷= . 16.若点M (a ,3)和点N (2,a +b )关于轴对称,则b 的值为 .17.如图,∠AOB =30°,OP 平分∠AOB ,PD ⊥OB 于点D ,PC ∥OB交OA 于点C .若PC =10,则OC = ,PD = .18.甲、乙两车从A 地出发前往B 地.在整个行程中,汽车离开A 地的距离 y (m )与时间t (h )的对应关系如图所示,则乙车的平均速度为 m/h 图中a 的值为 m ;在乙车行驶的过程中,当t = h 时,两车相距20m .三、解答题(本题共15分,第19题4分,第201920.已知:如图,点A ,B ,C ,D 在一条直线上,AB =CD ,AE ∥FD ,且∠E =∠F .求证:EC=FB .证明:21.先化简,再求值:m m m m --⋅--+342)252(,其中34m =. 解:四、解答题(本题共16分,第23题6分,其余每小题5分)22.解分式方程:12422=-+-x x x . 解:23.如图,在平面直角坐标系Oy 中,一次函数=+y kx b 的图象经过点A (2-,4),且与正比例函数23=-y x 的图象交于点B (a ,2).(1)求a 的值及一次函数=+y kx b 的解析式;(2)若一次函数=+y kx b 的图象与轴交于点C ,且正比例函数23=-y x 的图象向下平移m (m >0)个单位长度后经过点C ,求m 的值; (3)直接写出关于的不等式23->+x kx b 的解集. 解:(1)(2)(3)关于的不等式23->+x kx b 的解集为 .24.已知:如图,线段AB 和射线BM 交于点B .(1)利用尺规..完成以下作图,并保留作图痕迹.(不要求写作法) ①在射线BM 上求作一点C ,使AC =AB ;②在线段AB 上求作一点D ,使点D 到BC ,AC 的距离相等;(2)在(1)所作的图形中,若∠ABM =72°,则图中与BC 相等的线段是 .五、解答题(本题共14分,每小题7分)25.如图,在平面直角坐标系Oy 中,直线l 与轴交于点A (4-,0),与y 轴的正半轴交于点B .点C 在直线1=-+y x 上,且CA ⊥轴于点A .(1)求点C 的坐标;(2)若点D 是OA 的中点,点E 是y 轴上一个动点,当EC +ED 最小时,求此时点E 的坐标;(3)若点A 恰好在BC 的垂直平分线上,点F 在轴上,且△ABF 是以AB 为腰的等腰三角形,请直接写出所有满足条件的点F 的坐标.解:(1)(2)(3)点F的坐标为.26.已知:在△ABC中,∠ABC<60°,CD平分∠ACB交AB于点D,点E在线段CD上(点E不与点C,D重合),且∠EAC=2∠EBC.(1)如图1,若∠EBC=27°,且EB=EC,则∠DEB=°,∠AEC=°;(2)如图2.①求证:AE+AC=BC;②若∠ECB=30°,且AC=BE,求∠EBC的度数.图1 图2(2)①证明:②解:。

北京市西城区三年(2020-2022)八年级上学期期末数学试题汇编-03解答题(提升题)知识点分类

北京市西城区三年(2020-2022)八年级上学期期末数学试题汇编-03解答题(提升题)知识点分类

北京市西城区三年(2020-2022)八年级上学期期末数学试题汇编-03解答题(提升题)知识点分类一.多项式乘多项式(共1小题)1.(2021秋•西城区期末)(1)如果(x﹣3)(x+2)=x2+mx+n,那么m的值是 ,n的值是 ;(2)如果(x+a)(x+b)=x2﹣2x+,①求(a﹣2)(b﹣2)的值;②求++1的值.二.分式的化简求值(共1小题)2.(2022秋•西城区期末)已知a=﹣,求代数式的值.三.一次函数综合题(共3小题)3.(2020秋•西城区期末)给出如下定义:在平面直角坐标系xOy中,已知点P1(a,b),P2(c,b),P3(c,d),这三个点中任意两点间的距离的最小值称为点P1,P2,P3的“最佳间距”.例如:如图,点P1,(﹣1,2),P2(1,2),P3(1,3)的“最佳间距”是1.(1)点Q1(2,1),Q2(4,1),Q3(4,4)的“最佳间距”是 ;(2)已知点O(0,0),A(﹣3,0),B(﹣3,y).①若点O,A,B的“最佳间距”是1,则y的值为 ;②点O,A,B的“最佳间距”的最大值为 ;(3)已知直线l与坐标轴分别交于点C(0,3)和D(4,0),点P(m,n)是线段CD 上的一个动点.当点O(0,0),E(m,0),P(m,n)的“最佳间距”取到最大值时,求此时点P的坐标.4.(2020秋•西城区期末)如图,在平面直角坐标系xOy中,直线y=kx+3与x轴的负半轴交于点A,与y轴交于点B.点C在第四象限,BC⊥BA,且BC=BA.(1)点B的坐标为 ,点C的横坐标为 ;(2)设BC与x轴交于点D,连接AC,过点C作CE⊥x轴于点E.若射线AO平分∠BAC,用等式表示线段AD与CE的数量关系,并证明.5.(2020秋•西城区期末)在平面直角坐标系xOy中,对于任意两点M(x1,y1),N(x2,y2),定义如下:点M与点N的“直角距离”为|x1﹣x2|+|y1﹣y2|,记作d MN.例如:点M(1,5)与N(7,2)的“直角距离”d MN=|1﹣7|+|5﹣2|=9.(1)已知点P1(﹣1,0),P2(﹣,),P3(﹣,﹣),P4(﹣,﹣),则在这四个点中,与原点O的“直角距离”等于1的点是 ;(2)如图,已知点A(1,0),B(0,1),根据定义可知线段AB上的任意一点与原点O 的“直角距离”都等于1.若点P与原点O的“直角距离”d OP=1.请在图中将所有满足条件的点P组成的图形补全;(3)已知直线y=kx+2,点C(t,0)是x轴上的一个动点.①当t=3时,若直线y=kx+2上存在点D,满足d CD=1,求k的取值范围;②当k=﹣2时,直线y=kx+2与x轴,y轴分别交于点E,F.若线段EF上任意一点H都满足1≤d CH≤4,直接写出t的取值范围.四.三角形综合题(共2小题)6.(2020秋•西城区期末)课堂上,老师提出了这样一个问题:如图1,在△ABC中,AD平分∠BAC交BC于点D,且AB+BD=AC.求证:∠ABC=2∠ACB.小明的方法是:如图2,在AC上截取AE,使AE=AB,连接DE,构造全等三角形来证明结论.(1)小天提出,如果把小明的方法叫做“截长法”,那么还可以用“补短法”通过延长线段AB构造全等三角形进行证明.辅助线的画法是:延长AB至F,使BF= ,连接DF.请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;(2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:如图3,点D在△ABC的内部,AD,BD,CD分别平分∠BAC,∠ABC,∠ACB,且AB+BD =AC.求证:∠ABC=2∠ACB.请你解答小芸提出的这个问题;(3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:如果在△ABC中,∠ABC=2∠ACB,点D在边BC上,AB+BD=AC,那么AD平分∠BAC.小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.7.(2021秋•西城区期末)在△ABC中,∠BAC=120°,AB=AC,AD为△ABC的中线,点E是射线AD上一动点,连接CE,作∠CEM=60°,射线EM与射线BA交于点F.(1)如图1,当点E与点D重合时,求证:AB=2AF;(2)如图2,当点E在线段AD上,且与点A,D不重合时,①依题意,补全图形;②用等式表示线段AB,AF,AE之间的数量关系,并证明.(3)当点E在线段AD的延长线上,且ED≠AD时,直接写出用等式表示的线段AB,AF,AE之间的数量关系.五.多边形(共1小题)8.(2022秋•西城区期末)在单位长度为1的正方形网格中,如果一个凸多边形的顶点都是网格线交点,我们称其为格点凸多边形,并记该格点多边形的面积为S,多边形内部的格点数为N,多边形边上的格点数为L.(1)对于图中的五个凸多边形,补全以下表格:多边形面积S内部格点数N边上格点数L N+ⅠⅡ7488ⅢⅣ951010Ⅴ15.5111116.5(2)借助以上表格猜想格点凸多边形的面积公式:S与N+的数量关系可用等式表示为 ;(3)已知格点长方形ABCD,设其边长AB=m,BC=n,其中m,n为正整数.请以格点长方形ABCD为例,尝试证明(2)中的格点凸多边形的面积公式.六.作图—复杂作图(共3小题)9.(2021秋•西城区期末)如图,8×12的长方形网格中,网格线的交点叫做格点,点A,B,C都是格点.请按要求解答下列问题:平面直角坐标系xOy中,点A,B的坐标分别是(﹣3,1),(﹣1,4),(1)①请在图中画出平面直角坐标系xOy;②点C的坐标是 ,点C关于x轴的对称点C1的坐标(2)设l是过点C且平行于y轴的直线,①点A关于直线l的对称点A1的坐标是 ;②在直线l上找一点P,使PA+PB最小,在图中标出此时点P的位置;③若Q(m,n)为网格中任一格点,直接写出点Q关于直线l的对称点Q1的坐标(用含m,n的式子表示).10.(2022秋•西城区期末)如图,在平面直角坐标系xOy中,△ABC,A(﹣2,6),B(﹣5,1),C(3,1).点B与点C关于直线l对称,直线l与BC,AC的交点分别为点D,E.(1)求点A到BC的距离;(2)连接BE,补全图形并求△ABE的面积;(3)若位于x轴上方的点P在直线l上,∠BPC=90°,直接写出点P的坐标.11.(2022秋•西城区期末)在△ABC中,AB=AC(AB<BC),在BC上截取BD=AB,连接AD.在△ABC的外部作∠ABE=∠DAC,且BE交DA的延长线于点E.(1)作图与探究:①小明画出图1并猜想AE=AC.同学小亮说“要让你这个结论成立,需要增加条件:∠请写出小亮所说的条件;②小明重新画出图2并猜想△ABE≌△DAC.他证明的简要过程如下:小明的证明:在△ABE与△DAC中,,可得△ABE≌△DAC.(ASA)请你判断小明的证明是否正确并说明理由;(2)证明与拓展:①借助小明画出的图2证明BE=DE;②延长AD到F,使DF=AE,连结BF,CF.补全图形,猜想∠BFE与∠AFC的数量关系并加以证明.七.作图—应用与设计作图(共2小题)12.(2020秋•西城区期末)小红发现,任意一个直角三角形都可以分割成两个等腰三角形.已知:在△ABC中,∠ACB=90°.求作:直线CD,使得直线CD将△ABC分割成两个等腰三角形.下面是小红设计的尺规作图过程.作法:如图,①作直角边CB的垂直平分线MN,与斜边AB相交于点D;②作直线CD.所以直线CD就是所求作的直线.根据小红设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵直线MN是线段CB的垂直平分线,点D在直线MN上,∴DC=DB.( )(填推理的依据)∴∠ =∠ .∵∠ACB=90°,∴∠ACD=90°﹣∠DCB,∠A=90°﹣∠ .∴∠ACD=∠A.∴DC=DA.( )(填推理的依据)∴△DCB和△DCA都是等腰三角形.13.(2022秋•西城区期末)(1)设计作平行线的尺规作图方案:已知:直线AB及直线AB外一点P.求作:经过点P的直线CD,使得CD∥AB.分析:如图2所示,之前我们学过“推”三角尺画平行线,这种画法的实物操作图可以启发我们预设目标示意图,分析尺规作图思路.作图思路分析:利用平行线的判定可将作平行线转化为作一个角等于已知角.为简化作图,我们让截线EF经过点P,即过点P任意作一条直线EF交直线AB于点G,目标:作∠EGB的同位角∠EPD.现已有该角的顶点P,角的一边PE,再作出角的另一边PD,即可得到∠EPD 从而得到平行线.①请参考以上内容完成尺规作图,保留作图痕迹,不必写作法;②在①中用到的判定CD∥AB的依据是 .(2)已知:如图4,在△ABD中,∠BAD=90°,AB=AD.求作:凸四边形ABCD,使得BC=AB,且△ACD为等腰三角形.请完成尺规作图并写出所求作的四边形,保留作图痕迹,不必写作法.北京市西城区三年(2020-2022)八年级上学期期末数学试题汇编-03解答题(提升题)知识点分类参考答案与试题解析一.多项式乘多项式(共1小题)1.(2021秋•西城区期末)(1)如果(x﹣3)(x+2)=x2+mx+n,那么m的值是 ﹣1 ,n 的值是 ﹣6 ;(2)如果(x+a)(x+b)=x2﹣2x+,①求(a﹣2)(b﹣2)的值;②求++1的值.【答案】(1)﹣1,﹣6;(2)①;②13.【解答】解:(1)∵(x﹣3)(x+2)=x2+mx+n,∴x2﹣x﹣6=x2+mx+n,∴m=﹣1,n=﹣6,故答案为:﹣1,﹣6;(2)∵,∴a+b=﹣2,,①(a﹣2)(b﹣2)=ab﹣2(a+b)+4==,②====13.二.分式的化简求值(共1小题)2.(2022秋•西城区期末)已知a=﹣,求代数式的值.【答案】a2+a,﹣.【解答】解:=•=•=a(a+1)=a2+a,当a=﹣时,原式=(﹣)2+(﹣)=﹣=﹣,三.一次函数综合题(共3小题)3.(2020秋•西城区期末)给出如下定义:在平面直角坐标系xOy中,已知点P1(a,b),P2(c,b),P3(c,d),这三个点中任意两点间的距离的最小值称为点P1,P2,P3的“最佳间距”.例如:如图,点P1,(﹣1,2),P2(1,2),P3(1,3)的“最佳间距”是1.(1)点Q1(2,1),Q2(4,1),Q3(4,4)的“最佳间距”是 2 ;(2)已知点O(0,0),A(﹣3,0),B(﹣3,y).①若点O,A,B的“最佳间距”是1,则y的值为 ±1 ;②点O,A,B的“最佳间距”的最大值为 3 ;(3)已知直线l与坐标轴分别交于点C(0,3)和D(4,0),点P(m,n)是线段CD 上的一个动点.当点O(0,0),E(m,0),P(m,n)的“最佳间距”取到最大值时,求此时点P的坐标.【答案】(1)2;(2)①±1;②3;(3)P().【解答】解:∵Q1(2,1),Q2(4,1),∴Q1Q2∥x轴,∴Q1Q2=2,同理,Q2Q3=3,在Rt△Q1Q2Q3中,Q1Q3==,∵,“最佳距离”为2,故答案为:2;(2)①∵O(0,0),A(﹣3,0),∴OA=3,同理,AB=|y|,在直角△ABO中,OB>OA,OB>AB,又∵点O,A,B的“最佳间距”是1,且3>1,∴|y|=1,∴y=±1,故答案为:±1;②由①可得,OB>OA,OB>AB,如图1,∴“最佳间距”的值为OA或者是AB的长,∵OA=3,AB=|y|,当AB≥OA时,“最佳间距”为3,当AB<OA时,“最佳间距”为|y|<3,∴点O,A,B的“最佳间距”的最大值为3,故答案为:3;(3)设直线CD为y=kx+3,代入点D得,如图2,4k+3=0∴k=﹣,∴直线CD的解析式为:y=﹣,∵P(m,0),E(m,n),且P是线段CD上的一个动点,∴PE∥y轴,∴OE=m,PE=n=,①当m≥时,即OE≥PE时,m,“最佳间距”为,此时,②当m<时,即OE<PE时,m,“最佳间距“为m,此时m,∴点O(0,0),E(m,0),P(m,n)的“最佳间距”取到最大值时,,∴m=,∴=,∴P().4.(2020秋•西城区期末)如图,在平面直角坐标系xOy中,直线y=kx+3与x轴的负半轴交于点A,与y轴交于点B.点C在第四象限,BC⊥BA,且BC=BA.(1)点B的坐标为 (0,3) ,点C的横坐标为 3 ;(2)设BC与x轴交于点D,连接AC,过点C作CE⊥x轴于点E.若射线AO平分∠BAC,用等式表示线段AD与CE的数量关系,并证明.【答案】(1)(0,3),3;(2)AD=2CE,理由见解析.【解答】解:(1)令x=0,则y=kx+3=3,∴B(0,3),过C作CM⊥y轴于M,如图1,∴∠AOB=∠CMB=90°,∵AB⊥BC,∴∠ABC=90°,∴∠ABO+∠MBC=90°,∵∠ABO+∠BAO=90°,∴∠BAO=∠MBC,在△ABO与△BCM中,,∴△ABO≌△BCM(AAS),∴CM=BO=3,∴C的横坐标为3,故答案为:(0,3),3;(2)AD=2CE,理由如下:延长CE,AB交于点G,设AC交y轴于点H,如图2,∵AO平分∠BAC,∴∠BAO=∠HAO,∵CE⊥AE,∴∠CEA=∠GEA=90°,∴∠G=90°﹣∠BAO,∠ACG=90°﹣∠HAO,∴∠G=∠ACG,∴AG=AC,∵AO平分∠GAC,∴CG=2CE,∵∠BCG+∠BGC=∠BAD+∠BGC=90°,∴∠BCG=∠BAD,在△BCG与△BAD中,,∴△BCG≌△BAD(AAS),∴AD=CG,∵CG=2CE,∴AD=2CE.5.(2020秋•西城区期末)在平面直角坐标系xOy中,对于任意两点M(x1,y1),N(x2,y2),定义如下:点M与点N的“直角距离”为|x1﹣x2|+|y1﹣y2|,记作d MN.例如:点M(1,5)与N(7,2)的“直角距离”d MN=|1﹣7|+|5﹣2|=9.(1)已知点P1(﹣1,0),P2(﹣,),P3(﹣,﹣),P4(﹣,﹣),则在这四个点中,与原点O的“直角距离”等于1的点是 P1,P4 ;(2)如图,已知点A(1,0),B(0,1),根据定义可知线段AB上的任意一点与原点O 的“直角距离”都等于1.若点P与原点O的“直角距离”d OP=1.请在图中将所有满足条件的点P组成的图形补全;(3)已知直线y=kx+2,点C(t,0)是x轴上的一个动点.①当t=3时,若直线y=kx+2上存在点D,满足d CD=1,求k的取值范围;②当k=﹣2时,直线y=kx+2与x轴,y轴分别交于点E,F.若线段EF上任意一点H都满足1≤d CH≤4,直接写出t的取值范围.【答案】(1)P1,P4;(2)如图1所示;(3)①故k的取值范围是:﹣1≤k≤﹣;②t的取值范围为:﹣2≤t≤0或t=2.【解答】解:(1)∵点P1(﹣1,0),P2(﹣,),P3(﹣,﹣),P4(﹣,﹣),∴=|﹣1|+0=1,=|﹣|+||=2,=|﹣|+|﹣|=,=|﹣|+|﹣|=1,∴与原点O的“直角距离”等于1的点是P1,P4;故答案为:P1,P4;(2)设P(x,y),∵点P与原点O的“直角距离”d OP=1,∴|x|+|y|=1,当x>0,y>0时,x+y=1,即y=﹣x+1,当x>0,y<0时,x﹣y=1,即y=x﹣1,当x<0,y>0时,﹣x+y=1,即y=x+1,当x<0,y<0时,﹣x﹣y=1,即y=﹣x﹣1,如图1所示,(3)①当t=3时,点C的坐标为(3,0),由(2)可得:d CD=1,则点D在正方形EFMN边上,如图2,∴F(2,0),E(3,1),M(3,﹣1),N(4,0),又∵点D在直线y=kx+2,又直线y=kx+2过点(0,2),由图2可知:当直线y=kx+b过点E时,通过观察图2可得:k的最大值是过点E的直线,k的最小值是过F,M的直线,把点E的坐标(3,1)代入y=kx+2中,3k+2=1,k=﹣,把点F的坐标(2,0)代入y=kx+2中,2k+2=0,k=﹣1,故k的取值范围是:﹣1≤k≤﹣;②当k=﹣2时,直线的解析式为:y=﹣2x+2,当x=0时,y=2,当y=0时,x=1,∴E(1,0),F(0,2),设H(m,﹣2m+2)(0≤m≤1),d CH=|t﹣m|+|﹣2m+2|=|t﹣m|﹣2m+2,∵1≤d CH≤4,即1≤|t﹣m|﹣2m+2≤4,又0≤﹣2m+2≤2,即0≤|m﹣t|≤4,当t≤m时,有0≤m﹣t≤4,∵0≤m≤1,∴﹣4≤t≤0,当t>m时,有0≤t﹣m≤4,∵0≤m≤1,∴0≤t≤5,又t>m,∴1≤t≤5,当﹣4≤t<﹣2时,d CH>4,不符合题意,当0<t<2时,d CH<1,不符合题意,当2<t≤5时,d CH>4,不符合题意,综上,t的取值范围为:﹣2≤t≤0或t=2.四.三角形综合题(共2小题)6.(2020秋•西城区期末)课堂上,老师提出了这样一个问题:如图1,在△ABC中,AD平分∠BAC交BC于点D,且AB+BD=AC.求证:∠ABC=2∠ACB.小明的方法是:如图2,在AC上截取AE,使AE=AB,连接DE,构造全等三角形来证明结论.(1)小天提出,如果把小明的方法叫做“截长法”,那么还可以用“补短法”通过延长线段AB构造全等三角形进行证明.辅助线的画法是:延长AB至F,使BF= BD ,连接DF.请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;(2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:如图3,点D在△ABC的内部,AD,BD,CD分别平分∠BAC,∠ABC,∠ACB,且AB+BD =AC.求证:∠ABC=2∠ACB.请你解答小芸提出的这个问题;(3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:如果在△ABC中,∠ABC=2∠ACB,点D在边BC上,AB+BD=AC,那么AD平分∠BAC.小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.【答案】(1)(2)(3)证明见解答过程.【解答】证明:(1)延长AB至F,使BF=BD,连接DF,则∠BDF=∠F,∴∠ABC=∠BDF+∠F=2∠F,∵AD平分∠BAC∴∠BAD=∠CAD,∵AB+BD=AC,BF=BD,∴AF=AC,在△ADF和△ADC中,,∴△ADF≌△ADC(SAS),∴∠ACB=∠F,∴∠ABC=2∠ACB;(2)如图3,在AC上截取AE,使AE=AB,连接DE,∵AD,BD,CD分别平分∠BAC,∠ABC,∠ACB,∴∠DAB=∠DAE,∠DBA=∠DBC,∠DCA=∠DCB,∵AB+BD=AC,AE=AB,∴DB=CE,在△ADB和△ADE中,,∴△ADB≌△ADE(SAS),∴BD=DE,∠ABD=∠AED,∴DE=CE,∴∠EDC=∠ECD,∴∠AED=2∠ECD,∴∠ABD=2∠ECD,∴∠ABC=2∠ACB;(3)如图4,延长AB至G,使BG=BD,连接DG,则∠BDG=∠AGD,∴∠ABC=∠BDG+∠G=2∠AGD,∵∠ABC=2∠ACB,∴∠AGD=∠ACB,∵AB+BD=AC,BG=BD,∴AG=AC,∴∠AGC=∠ACG,∴∠DGC=∠DCG,∴DG=DC,在△ADG和△ADC中,,∴△ADG≌△ADC(SSS),∴∠DAG=∠DAC,即AD平分∠BAC.7.(2021秋•西城区期末)在△ABC中,∠BAC=120°,AB=AC,AD为△ABC的中线,点E是射线AD上一动点,连接CE,作∠CEM=60°,射线EM与射线BA交于点F.(1)如图1,当点E与点D重合时,求证:AB=2AF;(2)如图2,当点E在线段AD上,且与点A,D不重合时,①依题意,补全图形;②用等式表示线段AB,AF,AE之间的数量关系,并证明.(3)当点E在线段AD的延长线上,且ED≠AD时,直接写出用等式表示的线段AB,AF,AE之间的数量关系.【答案】(1)证明过程见解析;(2)①图形见解析;②AB=AF+AE.(3)当ED<AD时,AB=AE+AF;当AD<ED≤3AD时,AB=AE−AF.【解答】(1)证明:∵AB=AC,AD为△ABC的中线,∴AD⊥BC,∠B=∠C.∴∠ADB=∠ADC=90°.∵∠BAC=120°,∴∠B=30°,∠CAF=∠BAD=∠CAD=60°.∴AB=2AD.∵∠CDF=60°,∠DAF=120°,∴∠AFD=∠ADF=30°.∴AD=AF.∴AB=2AF.(2)解:①补全图形如图;②AB=AF+AE.证明:在AC上截取AG=AE,连接EG.∵∠BAC=120°,AB=AC,AD为△ABC中线,∴∠DAB=∠DAC=60°.∴△AEG是等边三角形,∠EAF=120°.∴EG=AE,∠AGE=∠AEG=60°.∴∠EGC=120°.∴∠EAF=∠EGC.∵∠AEG=∠CEF=60°,∴∠AEF=∠GEC.在△AEF和△GEC中,,∴△AEF≌△GEC(ASA).∴AF=GC.∵AC=AG+GC,∴AB=AE+AF.(3)方法同(2),当ED<AD时,AB=AE+AF;当AD<ED≤3AD时,AB=AE−AF.五.多边形(共1小题)8.(2022秋•西城区期末)在单位长度为1的正方形网格中,如果一个凸多边形的顶点都是网格线交点,我们称其为格点凸多边形,并记该格点多边形的面积为S,多边形内部的格点数为N,多边形边上的格点数为L.(1)对于图中的五个凸多边形,补全以下表格:多边形面积S内部格点数N边上格点数L N+Ⅰ 6 3 8 7 Ⅱ7488Ⅲ 5.5 2 9 6.5 Ⅳ951010Ⅴ15.5111116.5(2)借助以上表格猜想格点凸多边形的面积公式:S与N+的数量关系可用等式表示为 S=N+﹣1 ;(3)已知格点长方形ABCD,设其边长AB=m,BC=n,其中m,n为正整数.请以格点长方形ABCD为例,尝试证明(2)中的格点凸多边形的面积公式.【答案】(1):6,3,8,7;5.5,2,9,6.5.(2)S=N+﹣1;(3)证明见解析.【解答】解:(1)Ⅰ的面积是×3×4=6,内部格点数是N=3,边上的格点数是L=8,N+=7,Ⅲ的面积是×2×4+(1+2)×1×=5.5,内部格点数是N=2,边上的格点数是L=9,N+=6.5.故答案为:6,3,8,7;5.5,2,9,6.5.(2)由(1)可以总结出结论:S=N+﹣1,故答案为:S=N+﹣1.(3)长方形的面积=mn,内部格点数是N=(m﹣1)(n﹣1)=mn﹣(n+n)+1,边上的格点数是L=2(m+1)+2(n+1)﹣4=2(m+n),∴N+=mn﹣(m+n)+1+m+n=mn+1,∴S=N+﹣1.六.作图—复杂作图(共3小题)9.(2021秋•西城区期末)如图,8×12的长方形网格中,网格线的交点叫做格点,点A,B,C都是格点.请按要求解答下列问题:平面直角坐标系xOy中,点A,B的坐标分别是(﹣3,1),(﹣1,4),(1)①请在图中画出平面直角坐标系xOy;②点C的坐标是 (1,2) ,点C关于x轴的对称点C1的坐标是 (1,﹣2) .(2)设l是过点C且平行于y轴的直线,①点A关于直线l的对称点A1的坐标是 (5,1) ;②在直线l上找一点P,使PA+PB最小,在图中标出此时点P的位置;③若Q(m,n)为网格中任一格点,直接写出点Q关于直线l的对称点Q1的坐标(用含m,n的式子表示).【答案】(1)①作图见解析部分;②(1,2),(1,﹣2);(2)①(5,1);②作图见解析部分;③(2﹣m,n).【解答】解:(1)①建立的直角坐标系xOy如图所示;②C(1,2),C1(1,﹣2).故答案为:(1,2),(1,﹣2);(2)①A1(5,1);故答案为:(5,1);②如图,点P即为所求;③设Q(x,y),则有=1,y+n,∴x=2﹣m,∴Q1(2﹣m,n).10.(2022秋•西城区期末)如图,在平面直角坐标系xOy中,△ABC,A(﹣2,6),B(﹣5,1),C(3,1).点B与点C关于直线l对称,直线l与BC,AC的交点分别为点D,E.(1)求点A到BC的距离;(2)连接BE,补全图形并求△ABE的面积;(3)若位于x轴上方的点P在直线l上,∠BPC=90°,直接写出点P的坐标.【答案】(1)5;(2)图形见解答,4;(3)点P的坐标为(﹣1,5).【解答】解:(1)∵A(﹣2,6),B(﹣5,1),C(3,1).∴点A到BC的距离为5;(2)如图即为补全的图形,∵△ABE的面积=△ABC的面积﹣△BEC的面积=8×5﹣8×4=4;(3)由(2)可知:位于x轴上方的点P与点E重合,因为DE=DC=DB=4,所以△BDE和△CDE是等腰直角三角形,所以此时∠BEC=∠BPC=90°,所以点P的坐标为(﹣1,5).11.(2022秋•西城区期末)在△ABC中,AB=AC(AB<BC),在BC上截取BD=AB,连接AD.在△ABC的外部作∠ABE=∠DAC,且BE交DA的延长线于点E.(1)作图与探究:①小明画出图1并猜想AE=AC.同学小亮说“要让你这个结论成立,需要增加条件:∠ABC= 36 °.”请写出小亮所说的条件;②小明重新画出图2并猜想△ABE≌△DAC.他证明的简要过程如下:小明的证明:在△ABE与△DAC中,,可得△ABE≌△DAC.(ASA)请你判断小明的证明是否正确并说明理由;(2)证明与拓展:①借助小明画出的图2证明BE=DE;②延长AD到F,使DF=AE,连结BF,CF.补全图形,猜想∠BFE与∠AFC的数量关系并加以证明.【答案】(1)①36;②小明的证明不正确,理由见解答;(2)①证明过程见解答;②图形见解答;∠BFE=∠AFC,理由见解答.【解答】(1)解:①增加∠ABC=36°,∵AB=AC,∴∠ABC=∠C=36°,∵BD=AB,∴∠BAD=∠BDA=(180°﹣36°)=72°,∴∠DAC=72°﹣36°=36°,∴∠ABE=∠DAC=36°,∴∠ABE=∠ABC=36°,∵∠BAC=∠BAE=180°﹣2×36°=108°,∵AB=AB,∴△ABC≌△ABE(ASA),∴AC=AE.∴增加∠ABC=36°时,AE=AC成立.故答案为:36;②小明的证明不正确,他证明时所使用的△DAC中的三个条件“∠DAC,AC,∠ADC”不是“两角和它们的夹边”的关系,所以不能使用“ASA”来证明.(2)①证明:如图2,∵AB=AC,∴∠3=∠C,∵∠DBE=∠1+∠3,∠4=∠2+∠C,∠1=∠2,∴∠DBE=∠4.∴BE=DE;②解:补全的图形如图3,猜想∠BFE=∠AFC,证明:过点B作BG⊥EF于点G,如图4,∵DF=AE,∴AE+AD=DF+AD,∴DE=AF,∵BE=DE,∴BE=AF.在△ABE与△CAF中,,∴△ABE≌△CAF(SAS),∴∠E=∠AFC,∵BA=BD,BG⊥EF,∴DG=AG,∵DF=AE,∴DG+DF=AG+AE,∴FG=EG,∵BG⊥EF于点G,∴BE=BF,∴∠BFE=∠E,∴∠BFE=∠AFC.七.作图—应用与设计作图(共2小题)12.(2020秋•西城区期末)小红发现,任意一个直角三角形都可以分割成两个等腰三角形.已知:在△ABC中,∠ACB=90°.求作:直线CD,使得直线CD将△ABC分割成两个等腰三角形.下面是小红设计的尺规作图过程.作法:如图,①作直角边CB的垂直平分线MN,与斜边AB相交于点D;②作直线CD.所以直线CD就是所求作的直线.根据小红设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵直线MN是线段CB的垂直平分线,点D在直线MN上,∴DC=DB.( 垂直平分线上的点到线段两个端点距离相等 )(填推理的依据)∴∠ DCB =∠ DBC .∵∠ACB=90°,∴∠ACD=90°﹣∠DCB,∠A=90°﹣∠ DBC .∴∠ACD=∠A.∴DC=DA.( 等角对等边 )(填推理的依据)∴△DCB和△DCA都是等腰三角形.【答案】(1)答案请看解析过程;(2)垂直平分线上的点到线段两个端点距离相等;DCB,DBC;DBC;等角对等边.【解答】解:(1)补全的图形如下:(2)证明:∵直线MN是线段CB的垂直平分线,点D在直线MN上,∴DC=DB.(垂直平分线上的点到线段两个端点距离相等)∴∠DCB=∠DBC.∵∠ACB=90°,∴∠ACD=90°﹣∠DCB,∠A=90°﹣∠DBC.∴∠ACD=∠A.∴DC=DA.(等角对等边)(填推理的依据)∴△DCB和△DCA都是等腰三角形.故答案为:垂直平分线上的点到线段两个端点距离相等;DCB,DBC;DBC;等角对等边.13.(2022秋•西城区期末)(1)设计作平行线的尺规作图方案:已知:直线AB及直线AB外一点P.求作:经过点P的直线CD,使得CD∥AB.分析:如图2所示,之前我们学过“推”三角尺画平行线,这种画法的实物操作图可以启发我们预设目标示意图,分析尺规作图思路.作图思路分析:利用平行线的判定可将作平行线转化为作一个角等于已知角.为简化作图,我们让截线EF经过点P,即过点P任意作一条直线EF交直线AB于点G,目标:作∠EGB的同位角∠EPD.现已有该角的顶点P,角的一边PE,再作出角的另一边PD,即可得到∠EPD 从而得到平行线.①请参考以上内容完成尺规作图,保留作图痕迹,不必写作法;②在①中用到的判定CD∥AB的依据是 同位角相等,两直线平行 .(2)已知:如图4,在△ABD中,∠BAD=90°,AB=AD.求作:凸四边形ABCD,使得BC=AB,且△ACD为等腰三角形.请完成尺规作图并写出所求作的四边形,保留作图痕迹,不必写作法.【答案】(1)①作图见解析部分;②同位角相等,两直线平行;(2)作图见解析部分.【解答】解:(1)①直线CD即为所求.②CD∥AB的依据是:同位角相等,两直线平行.故答案为:同位角相等,两直线平行;(2)如图,四边形ABCD即为所求(答案不唯一).。

2020-2021北京市初二数学上期末模拟试卷(带答案)

2020-2021北京市初二数学上期末模拟试卷(带答案)

2020-2021北京市初二数学上期末模拟试卷(带答案)一、选择题1.如图,Rt △ABC 中,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E ,若AB=10cm ,AC=6cm ,则BE 的长度为( )A .10cmB .6cmC .4cmD .2cm2.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为( )A .5×107B .5×10﹣7C .0.5×10﹣6D .5×10﹣63.如图,已知每个小方格的边长为1,A ,B 两点都在小方格的顶点上,请在图中找一个顶点C ,使△ABC 为等腰三角形,则这样的顶点C 有( )A .8个B .7个C .6个D .5个 4.计算:(4x 3﹣2x )÷(﹣2x )的结果是( ) A .2x 2﹣1B .﹣2x 2﹣1C .﹣2x 2+1D .﹣2x 2 5.如果一个多边形的每个内角的度数都是108°,那么这个多边形的边数是( )A .3B .4C .5D .6 6.在平面直角坐标系内,点 O 为坐标原点, (4,0)A -, (0,3)B ,若在该坐标平面内有以 点 P (不与点 A B O 、、重合)为一个顶点的直角三角形与 Rt ABO ∆全等,且这个以点 P 为顶点的直角三角形 Rt ABO ∆有一条公共边,则所有符合的三角形个数为( )。

A .9B .7C .5D .3 7.如图,在△ABC 中,∠C=90°,AD 平分∠CAB,DE⊥AB 于E ,DE 平分∠ADB,则∠B=( )A .40°B .30°C .25°D .22.5〫8.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④9.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=110.如图,在△ABC 中,∠ABC =90°,∠C =20°,DE 是边AC 的垂直平分线,连结AE ,则∠BAE 等于( )A .20°B .40°C .50°D .70°11.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2) 12.若关于x 的方程244x a x x =+--有增根,则a 的值为( ) A .-4 B .2 C .0 D .4二、填空题13.如图,已知△ABC 中,BC=4,AB 的垂直平分线交AC 于点D ,若AC=6,则△BCD 的周长=_________14.已知2m =a ,32n =b ,则23m +10n =________.15.-12019+22020×(12)2021=_____________ 16.若一个多边形的边数为 8,则这个多边形的外角和为__________.17.若x 2+kx+25是一个完全平方式,则k 的值是____________.18.已知x m =6,x n =3,则x 2m ﹣n 的值为_____.19.连接多边形的一个顶点与其它各顶点,可将多边形分成11个三角形,则这个多边形是______边形.20.分式293x x --当x __________时,分式的值为零. 三、解答题21.计算: 22142a a a ---. 22.共有1500kg 化工原料,由A ,B 两种机器人同时搬运,其中,A 型机器人比B 型机器每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等,问需要多长时间才能运完?23.为推进垃圾分类,推动绿色发展,某工厂购进甲、乙两种型号的机器人用来进行垃圾分类,甲型机器人比乙型机器人每小时多分20kg ,甲型机器人分类800kg 垃圾所用的时间与乙型机器人分类600kg 垃圾所用的时间相等。

2020-2021学年度北京市各区八年级上学期数学期末试卷及答案(9套)

2020-2021学年度北京市各区八年级上学期数学期末试卷及答案(9套)
经检验: x 1是原方程的解. ………………………………………………………………… 5 分
初二数学答案 第 1 页 (共 5 页)
C
20.证明:∵AD=EB, ∴AD-BD=EB-BD. 即 AB=ED.……………………… 1 分 ∵AC∥EF, ∴∠A=∠E.
A
D B
E
F
……………………………2 分
+,-$./01"2 345/!1678$9:&
!&!' DEFGHIJ
(&#
)& *#
+&,
-& *,
#&KL# !"#M# ".//$# %J "#N,O;PQ# R!#%.!0$$# S!DT
!J
(&/$1
)&'/1
+&2/1
-&"/1
0&! U" VW % ,XY& Z[ % \M]& ^' ( _`abc# defgh&) fgij
L!
!#" Q -# .8OÙ "#; ! ÚlQ "# #ÛÜ" # !-.!.# Q . jQ /# ÑÝ !/# -/' ¤91L # UDÉystOÙ "-# !-# -#¥}D!¦# ÷e'
éO !#D
L#
!"#$% 2 &!' " &"
#"'¹Ø' Q -J!"#ïfDPQ# ë§âQ -O!"#MDP/QDéO !"#G ) Ó ¨ ¸ B Ð y D L # S j Q - J !"# ø/QDA)Q'K©LM# Q -J!"# /Q !DA)Q'

北京市西城区2020-2021学年八年级上学期期末数学试题及参考答案

北京市西城区2020-2021学年八年级上学期期末数学试题及参考答案
(2)已知点 , , .
①若点O,A,B的“最佳间距”是1,则y的值为__________;
②点O,A,B的“最佳间距”的最大值为________;
(3)已知直线l与坐标轴分别交于点 和 ,点 是线段 上的一个动点.当点 , , 的“最佳间距”取到最大值时,求此时点P的坐标.
27.课堂上,老师提出了这样一个问题:如图1,在 中, 平分 交 于点D,且 .求证: .小明的方法是:如图2,在 上截取 ,使 ,连接 ,构造全等三角形来证明结论.
(1)点B的坐标为_________,点C的横坐标为________;
(2)设 与x轴交于点D,连接 ,过点C作 轴于点E.若射线 平分 ,用等式表示线段 与 的数量关系,并证明.
29.在平面直角坐标系 中,对于任意两点 ,定义如下:点M与点N的“直角距离”为 ,记作 .例如:点 与 的“直角距离” .
【详解】
设甲组的攀登速度为x m/min,则乙组的攀登速度为1.2m/min,
依题意得:
故选:B.
【点睛】
本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.
10.D
【分析】
根据图像,以及点的运动变化情况,前两段是y关于x的一次函数图像,判断y随x的增减变化趋势,第一段的最高值与第二段的最高值不相等,即可排除A,B,C选项.
【详解】
根据图像,前端段是y关于x的一次函数图像,
∴应在AC,BD两段活动,故A,B错误,
第一段y随x的增大而减小,第二段y随x增大而增大,第一段的最高值与第二段的最高值不相等,
∵AE=EC
∴C错误
故选:D
【点睛】
本题考查函数的图像,比较抽象,解题的关键是根据图像判断函数值随自变量的值的增减变化情况,以及理解分段函数的最值是解题的关键.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求△ABP 的面积.
y
解:(1)
(2)
1
O1
x
五、仔细想一想(本题共 18 分,每小题 6 分)
A
26.已知:如图,在△ABC 中,AB=AC,∠BAC=30°.点 D 为
△ABC 内一点,且 DB=DC,∠DCB=30°,点 E 为 BD 延长线
上一点,且 AE=AB. (1)求∠ADE 的度数; (2)若点 M 在 DE 上,且 DM=DA,
北京市西城区 2020-2021 学年度第一学期期末试卷(北区)
题号 一 得分
八年级数学(A 卷)
(时间 100 分钟,满分 100 分)




总分
2012.1
一、精心选一选(本题共 30 分,每小题 3 分) 1.下列四个汽车标志图中,不是轴对称图形的是( ).
A.
B.
C.
D.
2.计算 33 的结果是( ).
D. 1 b 1 b
a
a
5.下列关于正比例函数 y 5x 的说法中,正确的是( ).
A.当 x 1 时, y 5
B.它的图象是一条经过原点的直线
C. y 随 x 的增大而增大
D.它的图象经过第一、三象限
6.如右图,在△ABC 中,∠C=90°,AB 的垂直平分线 MN
分别交 AC,AB 于点 D,E. 若∠CBD : ∠DBA =3:1,
(4)利D用第(3)问C 求得的结论,在图y2 中将相应的 y 与 x 的函数图象补充完整.
P
A
B
4
1
O 1 4 6 8 10 x
图1
图2
25.已知:直线 y 1 x 3 与 x 轴交于点 A,与 y 轴交于点 B. 2
(1)分别求出 A,B 两点的坐标;
(2)过 A 点作直线 AP 与 y 轴交于点 P,且使 OP=2OB,
若△ABC 的周长为 12 cm,则 CD =________ cm.
A
B
14.点( 1, 2 )关于 x 轴对称的点的坐标为___________________. A
15.如右图,在△ABC 中,AC = BC,D 是 BC 边上一点,
且 AB=AD=DC,则∠C=_________°.
16.若将直线 y kx(k 0) 的图象向下平移 1 个单位长度后经B过点(D1,5),则平C移后直线的解析
D.一个锐角和斜边对应相等
9.若一次函数 y kx b 的图象如右图所示,则关于 x 的 y
不等式 kx b 0 的解集为( ).
A. x 0
B. x 1
C. x 2
D. x 2
1
O
2
x
10.在直线 y 1 x 1 上,且到坐标轴距离为 1 的点有( ). 22
A.4 个
B.3 个
A. 9
B. 27
1
C.
27
D. 1 27
3.下列说法中,正确的是( ).
A.16 的算术平方根是 4
B.25 的平方根是 5
C.1 的立方根是 1
D. 27 的立方根是 3
4.下列各式中,正确的是( ).
A. 1 b 1 a 2b a 2
B.
a2 a2 4
a
1
2
C.
a 2 a2 4 a 2 (a 2)2
则∠A 为( ).
A
A.18° B.20° C.22.5° D.30°
MC D
B E
N
7.如下图,在边长为 a 的正方形中,剪去一个边长为 b 的小正方形( a b ),将余下部分剪开后拼 成一个梯形,根据两个图形阴影面积的关系,可以得到一个关于 a , b 的恒等式为( ).a Biblioteka ba bba
a
式为______________________. 17.如右图,在△ABC 中,∠C=90°,BD 平分∠CBA
交 AC 于点 D.若 AB= a ,CD= b ,则△ADB 的面
积为______________ .
C D
A
B
18.下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第 1 个图案需 4 根小木棒,拼
搭第 2 个图案需 10 根小木棒,拼搭第 3 个图案需 18 根小木棒,……,依此规律,拼搭第 8 个
图案需__________根小木棒.
2
……
第1个
第2个
第3个
第4个
……
三、耐心算一算(本题共 19 分,第 19 题 6 分,第 20 题 3 分,第 21、22 题各 5 分) 19.因式分解:
C.2 个
D.1 个
二、细心填一填(本题共 16 分,每小题 2 分)
11.在 4 ,
11 , 0.7 , 2 , 3 8 这五个实数中,无理数是_________________.
5
12.函数 y x 1 中,自变量 x 的取值范围是______________.D
C
13.如右图,△ABC 为等边三角形,DC∥AB,AD⊥CD 于 D.
23.已知:如图,CB=DE,∠B=∠E,∠BAE=∠CAD.
求证:∠ACD=∠ADC.
A
证明:
D
C
B
E
3
24.已知:如图 1,长方形 ABCD 中,AB=2,动点 P 在长方形的边 BC,CD,DA 上沿 B C D A 的方向运动,且点 P 与点 A,B 都不重合.图 2 是此运动过程中,△ABP 的面积 y 与点 P 经过的 路程 x 之间的函数图象的一部分.
1
A. (a b)2 a 2 2ab b2
B. (a b)2 a 2 2ab b2
C. a 2 b2 (a b)(a b)
D. a 2 ab a(a b)
8.下列条件中,不能判定两个直角三角形全等的是( ).
A.两锐角对应相等
B.斜边和一条直角边对应相等
C.两直角边对应相等
请结合以上信息回答下列问题: (1)长方形 ABCD 中,边 BC 的长为________;
(2)若长方形 ABCD 中,M 为 CD 边的中点,当点 P 运动到与点 M 重合时, x =________, y
=________;
(3)当 6 x 10 时, y 与 x 之间的函数关系式是___________________;
(1) 25a2 b2 ;
(2) ax2 8ax 16a .
解:
解:
20.计算: 9 5 2 3 2 .
解:
21.先化简,再求值: ( x 2
1 4x
4
x2
1
) 2x
x 1 x2
,其中
x
=3.
解:
22.解分式方程:
x 1 x5
5
2
x
4

解:
四、认真做一做(本题共 17 分,第 23 题 6 分,第 24 题 5 分,第 25 题 6 分)
相关文档
最新文档