单因素方差分析报告

合集下载

单因素方差分析报告

单因素方差分析报告

单因素方差分析报告一、引言单因素方差分析是一种常用的统计方法,用于比较两个或多个组之间的差异。

通过对多个组的数值数据进行分析,可以帮助我们了解不同组之间是否存在显著差异,并进一步研究造成这些差异的原因。

本报告旨在通过单因素方差分析,探究不同品牌汽车的平均价格是否存在差异。

二、方法在本研究中,我们选取了A、B、C、D四个品牌的汽车作为研究对象,收集了每个品牌下的10辆汽车的价格数据。

采用单因素方差分析方法可以帮助我们确定品牌因素对汽车价格的影响是否显著。

三、结果经过单因素方差分析,我们得到如下结果:品牌平均价格方差 F值 p值---------------------------------------------------A 25万 1.2 15.23 0.001B 23万 1.5 13.52 0.001C 27万 1.1 17.84 0.001D 20万 1.8 11.47 0.001根据上述结果可知,不同品牌汽车的平均价格存在显著差异。

通过F检验,我们可以得到p值均小于0.05,说明这种差异不是由于抽样误差造成的。

同时,不同品牌汽车的方差也有所不同,这表明品牌因素在汽车价格的变异中起到了一定的作用。

四、讨论与分析品牌因素对汽车价格的影响是一个相对复杂的问题。

一方面,品牌在市场中的知名度和声誉对消费者购买决策有很大影响,知名品牌的汽车往往具有更高的价格。

另一方面,不同品牌的汽车在技术、配置以及服务等方面可能存在差异,也会造成价格的不同。

在本研究中,我们所选取的四个品牌的汽车,虽然价格存在显著差异,但这并不代表具体的品牌定位和市场策略。

有可能A品牌的汽车性能更好,配置更高,而D品牌的汽车定位为入门级,价格更为亲民。

因此,在选择汽车时,消费者需要综合考虑品牌声誉、性能配置以及价格等因素。

此外,本研究的样本数量有限,只选取了每个品牌下的10辆汽车。

若想得出更准确的结论,建议扩大样本数量,增加数据的可靠性。

单因素方差分析报告详解

单因素方差分析报告详解

单因素方差分析报告详解在统计学中,方差分析(Analysis of Variance,简称ANOVA)是一种用于比较两个或更多组之间平均值差异的方法。

它适用于连续型自变量和一个分类自变量的情况。

单因素方差分析是指只有一个分类自变量的情况下进行的方差分析。

本文将详解单因素方差分析的报告,包括报告的结构、信息内容以及如何解读报告结果。

一、报告结构1. 引言:在引言部分,需要说明分析的目的、研究问题以及所使用的数据。

2. 方法:在方法部分,需要详细描述方差分析的实施过程。

包括样本的选择与招募、研究设计、实验步骤等内容。

3. 结果:在结果部分,需要提供方差分析的统计结果。

包括均值、标准差、平方和、自由度、F值、P值等。

4. 讨论:在讨论部分,需要对结果进行解释和讨论。

包括对差异的原因进行分析、与已有研究结果进行比较、研究结果的启示以及局限性等内容。

5. 结论:在结论部分,需要对整个方差分析报告进行总结。

包括实验结果的可靠性、实际意义以及未来研究方向等。

二、信息内容1. 描述统计学:需要提供各组样本的均值和标准差。

这些数据可以反映出各组之间的差异程度。

2. 单因素方差分析表:需要提供各个统计指标的数值。

其中包括平方和(Sum of Squares)、均方(Mean Squares)、自由度(Degrees of Freedom)以及F值等。

这些数值是判断差异是否显著的依据。

3. 效应量和功效分析:需要计算效应量指标,如η²(部分η平方)和ω²(欧米伽平方)。

并进行功效分析,即估计检验的正确拒绝零假设的概率。

4. 后续分析:如果方差分析结果显著,进一步进行事后分析是必要的。

常用的方法有Tukey事后比较、Bonferroni校正、Scheffe校正等。

提供事后分析的结果,并进行解读。

三、报告结果解读1. 方差分析表:需要查看自由度和F值。

自由度是衡量样本数量的指标,F值是判断差异显著性的指标。

单因素试验的方差分析

单因素试验的方差分析

其中
r n i
2r
2
S S A X iX n i ii
i 1j 1
i 1
组间平方和(系
如果H0 成立,则SSA 较小。 统离差平方和)
反映的是各水平平均值偏离总平均值的偏离程度。
其中
1 r ni
ni1 j1
ij,
ni
i ij
j1
r ni
2 r ni
2
由P106定理5.1可推得:
S S 2 T~2 n 1 ,S S 2 A ~2 r 1 ,S S 2 E ~2 n r
将 分别SS记2T 作, SS2A
,
SSE
2
的自d由fT度,dfA,dfE
则 FSSA dfA~Fr1,nr
SSE dfE
(,称记作均S S 方A 和d f)A M S A ,S S Ed fE M S E
j1
i1
同一水平 下观测值 之和
所以观测 值之和
例2 P195 2 以 A、B、C 三种饲料喂猪,得一个月后每猪 所增体重(单位:500g)于下表,试作方差分析。
饲料
增重
A
51
40
43
48
B
23
ቤተ መጻሕፍቲ ባይዱ25
26
C
23
28
解:T1 51404348182, T2 232526 74, T3 232851
F0.012,610.92
1 5 .0 3
总和 1024.89 8
不同的饲料对猪的体重的影响极有统计意义。
例2的上机实现步骤
输入原始数 据列,并存 到A,B,C 列;
各水平数据放同一列
各水平数据 放在不同列

单因素方差分析完整实例.doc

单因素方差分析完整实例.doc

单因素方差分析完整实例.doc单因素方差分析是统计学中常用的分析方法之一,用于比较结果在一个分类变量(即因素)的不同组别之间的差异。

下面将通过一个实例来介绍单因素方差分析的具体应用。

实例介绍:某公司招聘了25名新员工,并在这些员工入职一个月后进行了一次工作满意度调查。

调查结果显示,他们对公司的工作满意度总体得分为80分,但是有些员工对公司的工作并不满意。

公司希望了解员工的不满意来源,并查看不同部门、教育程度和薪水水平对工作满意度是否有影响。

公司收集了员工的部门、教育程度和薪水水平等信息,并对这些因素对工作满意度的影响进行了单因素方差分析。

实例步骤:1.数据整理首先,将员工的部门、教育程度和薪水水平等信息整理成表格形式。

随机抽取10名员工的数据如下:| 员工编号 | 部门 | 教育程度 | 薪水水平 | 工作满意度得分 || :------: | :--: | :------: | :------: | :------------: || 1 | A | 大学 | 高薪 | 85 || 2 | B | 高中 | 中薪 | 83 || 3 | C | 硕士 | 中薪 | 78 || 4 | A | 高中 | 低薪 | 77 || 5 | B | 大学 | 高薪 | 93 || 6 | C | 大学 | 中薪 | 80 || 7 | A | 高中 | 中薪 | 72 || 8 | B | 大学 | 中薪 | 85 || 9 | C | 硕士 | 高薪 | 89 || 10 | A | 高中 | 高薪 | 75 |2.数据分析进行单因素方差分析时需要分别计算各组数据的均值和方差。

2.1 计算各组均值首先,按照不同部门计算均值:| 部门 | 员工数 | 工作满意度均值 || :--: | :----: | :------------: || A | 4 | 77.25 || B | 3 | 87.00 || C | 3 | 82.33 || 总计 | 10 | 82.00 |由上述计算结果可得出不同因素组别的均值。

单因素试验的方差分析

单因素试验的方差分析
概率学与数理统计
单因素试验的方差分析
在方差分析中,我们将要考察的指标称为试验指标,影响 试验指标的条件称为因素(或因子),常用A、B、C, …来表示. 因 素可分为两类,一类是人们可以控制的;一类是人们不能控 制的。 例如,原料成分、反应温度、溶液浓度等是可以控制 的,而测量误差、气象条件等一般难以控制。 以下我们所说 的因素都是可控因素,因素所处的状态称为该因素的水平。 如果在一项试验中只有一个因素在改变,这样的试验称为单 因素试验,如果多于一个因素在改变,就称为多因素试验.
一、单因素试验方差分析的统计模型
例9.1 为求适应某地区的高产水稻的品种( 因素或因子) , 现选了 五个不同品种( 水平)的种子进行试验, 每一品种在四块试验田上进 行试种。假设这 20块土地的面积与其他条件基本相同, 观测到各块 土地上的产量( 单位: 千克) 见表9–1。
在这个问题目中, 要考察的指标是水稻的产量, 影响产量的因
分析的统计模型 .
方差分析的任务是对于模型(9. 1 ) , 检验 s 个总体 N ( 1 , 2) , …, N
( s , 2)的均值是否相等, 即检验假设
H0 : 1 2 s H1 : 1 , 2 , s , 不全相等。
(9.2)
为将问题( 9. 2 ) 写成便于讨论的形式, 采用记号
s nj
ST
(xij x)2
j1 i1
(9.3)
这里
x
1 n
s j 1
nj i1
xij ,
ST能反应全部试验数据之间的差异,又称
为总变差 Aj下的样本均值
x
j
1 n
nj i1
xij
(9.4)
注意到
(xij x )2 (xij x j x j x )2 =(xij x j )2 (x j x )2 2(xij x j )(x j x )

单因素方差分析报告

单因素方差分析报告

单因素方差分析报告概述本报告旨在分析单因素方差分析的结果。

单因素方差分析是一种用于比较三个或以上样本均值是否存在统计显著差异的统计方法。

本报告将就实验设计、数据处理、方差分析结果和结论进行详细阐述。

实验设计本次实验采用了完全随机设计,共设置了3个水平,每个水平下有10个样本。

每个水平下的样本分别代表了不同的处理条件。

本实验的目的是比较不同处理条件对于实验结果的影响。

数据处理在进行方差分析之前,首先对数据进行了基本的描述统计分析,包括计算平均值、标准差和样本数。

然后使用方差分析方法进行数据处理。

方差分析结果经过方差分析,我们得到了以下结果:F值 = 4.521,自由度(组间) = 2,自由度(组内) = 27,P值 = 0.021根据F值和P值可以判断,不同处理条件对实验结果产生了显著影响。

P值小于显著性水平(通常为0.05),表明我们可以拒绝原假设,即不同处理条件下样本均值相等的假设。

结论根据方差分析的结果,我们可以得出以下结论:不同处理条件对实验结果产生了统计显著影响。

通过比较各处理条件下的样本均值,我们发现处理条件1和2之间存在显著差异,而处理条件3与前两个处理条件之间没有显著差异。

进一步分析显示,处理条件1的均值显著高于处理条件2,而处理条件3的均值与前两个处理条件相比较低。

这可能意味着在未来的实践中,处理条件1可以被优先选择,以获得更好的实验结果。

此外,我们还注意到组内方差明显大于组间方差,这可能是由于实验中存在其他未考虑的因素导致的。

在进一步的研究中,我们可以探索这些未考虑因素对实验结果的影响,并将其纳入到更全面的分析中。

总结本报告通过单因素方差分析方法对不同处理条件下的实验结果进行了比较。

通过分析结果,我们得出了处理条件对实验结果的显著影响,并通过比较各处理条件下的均值提出了相应的建议。

单因素方差分析是一种常用的统计方法,可以应用于各种实验和研究中。

然而,需要注意的是,方差分析只能判断均值之间是否存在统计显著差异,并不能确定具体的差异大小。

SPSS——单因素方差分析报告详解

SPSS——单因素方差分析报告详解

SPSS——单因素方差分析来源:李大伟的日志单因素方差分析单因素方差分析也称作一维方差分析。

它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。

还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。

One-Way ANOVA过程要求因变量属于正态分布总体。

如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。

如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。

[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。

表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数数据保存在“data1.sav”文件中,变量格式如图1-1。

图1-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图1-1所示。

或者打开已存在的数据文件“data1.sav”。

2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1-2。

图1-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。

本例选择“幼虫”。

因素变量:选择一个因素变量进入“Factor”框中。

本例选择“品种”。

4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框。

该对话框用于设置均值的多项式比较。

图1-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。

例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。

单因素方差分析范文

单因素方差分析范文

单因素方差分析范文单因素方差分析(One-way Analysis of Variance,简称ANOVA)是统计学中一种常用的方法,用于比较三个或三个以上的组的均值是否存在显著差异。

本篇文章将从原理、假设、步骤和应用等方面进行介绍。

一、原理二、假设在进行单因素方差分析时,需要假设组间均值是否存在显著差异。

具体的假设如下:H0:各组均值相等(即组间均值差异不显著)H1:至少有两组均值不相等(即组间均值差异显著)三、步骤进行单因素方差分析的步骤如下:1.根据研究目的和问题选择合适的统计方法;2.收集数据,涉及到多个组的测量值;3. 计算总平方和(SS_total),表示总变异性大小;4. 计算组间平方和(SS_between),表示组间变异性大小;5. 计算组内平方和(SS_within),表示组内变异性大小;6. 根据以上计算结果,计算组间均方(MS_between)和组内均方(MS_within);7. 计算F值,即F=MS_between/MS_within;8.根据设定的显著性水平(通常为0.05),查表或计算得到临界值;9.比较计算得到的F值与临界值,判断是否达到显著性水平。

四、应用1.医学研究:比较不同药物对疾病治疗效果的影响;2.教育研究:比较不同教学方法对学生学习成绩的影响;3.市场调查:比较不同广告对产品销量的影响;4.农业实验:比较不同施肥方式对作物产量的影响。

五、总结单因素方差分析是一种常用的统计方法,通过比较三个或三个以上组的均值差异来判断各组之间是否存在显著差异。

它的优点是可以同时比较多个组均值的差异,从而提高实验效率和减少误判,应用广泛且实用。

因此,研究者在进行多组均值比较时,可以选择单因素方差分析方法进行分析。

数据分析第七篇:方差分析(单因素方差分析)

数据分析第七篇:方差分析(单因素方差分析)

数据分析第七篇:⽅差分析(单因素⽅差分析)在试验中,把考察的指标称为试验指标,影响试验指标的条件称为因素。

因素可分为两类,⼀类是⼈为可控的测量数据,⽐如温度、⾝⾼等;⼀类是不可控的随机因素,例如,测量误差,⽓象条件等。

因素所处的状态称为因素的⽔平。

如果在试验过程中,只有⼀个因素在改变,称为单因素试验。

⽅差分析(Analysis of Variance,简称ANOVA)主要⽤于验证两组样本,或者两组以上的样本均值是否有显著性差异(是否⼀致)。

举个例⼦,有三台机器⽤来⽣产规格相同的铝合⾦薄板,试验的指标是铝合⾦薄板的厚度,机器是因素,不同的三台机器是因素的三个⽔平。

试验的⽬的是为了考察每台机器所⽣产的薄板的厚度是否有显著的差异,即考察机器这⼀因素对薄板厚度有⽆显著的影响,如果厚度有显著差异,就表明机器对厚度的影响是显著的。

⼀,单因素⽅差分析对多个总体均值进⾏检验,需要⽤到⽅差分析⽅法,例如,某⼯⼚有A、B、C三台轧制板材的设备,如果想知道这三台设备轧制板材的厚度是否⼀致,就可以转化为检验来⾃三个总体的均值是否相同的问题。

以上⾯所说轧制板材为例,检验A、B、C三台设备轧制的板材厚度是否⼀致,可以建⽴如下假设:H0: µ1=µ2=…=µr;H1: µ1,µ2,…,µr不全相等。

三个总体均值是否相等⽆从知道,但是可以通过样本均值是否有显著差异来检验总体均值是否相等。

因为,如果H0为真时,则可以期望样本均值很接近,如果样本均值很接近,则推断总体均值相等的证据很充分,就可以接受H0。

否则,当样本均值相距较远,就认为总体均值相等的证据不充分,从⽽拒绝H0,接受H1。

样本均值之间距离的所谓远近是相对的,是通过假定的共同⽅差的两个点估计值⽐较得出的。

第⼀个点估计是组内⽅差,⽤各个样本⽅差估计得到的,只与每个样本内部的⽅差有关,反映各个⽔平内部随机性的变动。

实验四 单因素方差分析

实验四 单因素方差分析

(三)数据转换时用到的函数套用
• 百分数的转换函数
Degrees(asin(sqrt(p/100))) • 反转换为百分数时的函数套用 2 100*(sin(radians(数据)))
三 练习 P149 9 P150 13
实验四 单因素试验析,掌握方 差分析的三个基本步骤和数据转换的方法。
二 实验内容 (一)利用函数进行分析
本方法用到的函数有sum(), sumsq(), devsq(), fdist(), finv()等;
(二) 利用工具进行分析 在excel中有三种方差分析的工具1、单因素方 差分析:它只适用于单因素完全随机试验的统 计分析,包括观察值不等的试验;2、无重复双 因素:适用于单因素随机区组和二因素无重复 试验的统计分析;3、可重复双因素方差分析: 直接适用于二因素有重复的完全随机;但是通 过适当的改动后,可适用于二因素随机区组、 二因素裂区试验、二因素条区试验、单因素拉 丁方试验的方差分析。

方差分析单因素方差分析3篇

方差分析单因素方差分析3篇

方差分析单因素方差分析第一篇:方差分析基础知识什么是方差分析?方差分析(ANOVA)是一种常用的数据分析方法,用于确定多个组或处理之间差异的检验方法。

方差分析的目的是比较各组之间的均值是否有显著差异,从而确定某种变量是否能够对观测结果产生统计显著影响。

方差分析的原理方差分析的基本原理是将总差异拆分为各个来源的差异,比较相对大小,进而确定各组均值之间是否存在显著差异。

方差分析原理中的总差异由于组内差异和组间差异组成,在计算统计检验时,需要根据样本数据计算出相应的方差分量。

方差分析的应用范围方差分析适用于多组数据的比较分析,通常用于以下场景:1. 不同处理方式对结果的影响是否显著;2. 产品的性能比较;3. 不同采样机构采样结果的差异性比较;4. 不同肥料对植物生长的影响比较等。

在研究中,方差分析也被广泛应用于实验设计和因子分析中,通过分析方差来确定影响观察结果的因素,以减少实验的时间和成本。

第二篇:单因素方差分析的步骤单因素方差分析是指数据来自同一总体下的不同组或处理之间的差异,其中只有一个因素起到决定性作用的方差分析。

对于一般的数据处理,单因素方差分析一般包括以下步骤。

1. 设定假设并确定显著性水平假设总体均值相等,等价于各组均值相等。

如果拒绝了该假设,则表明不同组之间均值存在显著差异。

同时,还需要确定显著性水平,通常为α=0.05或α=0.01。

2. 构建方差分析表构建方差分析表,并计算相关的方差分量,包括组内偏差平方和、组间偏差平方和、总偏差平方和和平均平方值。

3. 计算F值通过总偏差平方和、组内偏差平方和,以及各组样本容量计算F值。

4. 进行假设检验通过比较计算出的F值与参考F分布表中的临界值,以判断不同组之间差异是否显著。

5. 发现组之间差异的原因如果不同组之间均值存在显著差异,则需要通过多重比较或方差分析的分解来确定差异来源,以便进一步研究各组之间差异的原因。

第三篇:常用的单因素方差分析方法1. 单因素方差分析(One-way ANOVA)单因素方差分析是一种常见的数据分析方法,通常用于比较三个或三个以上组之间的差异。

单因素方差分析完整实例

单因素方差分析完整实例

单因素方差分析完整实例假设有一家医院的研究人员想要比较三种不同药物对高血压患者的降压效果。

为了进行实验,他们随机选择了60名患有高血压的病人,并将他们随机分成三组。

第一组患者接受药物A的治疗,第二组患者接受药物B的治疗,第三组患者接受药物C的治疗。

在治疗开始前,研究人员记录了每个患者的收缩压数据。

第一步是对数据进行描述性统计分析。

研究人员计算了每一组的平均值、标准差和样本量。

结果如下:药物A组:平均收缩压150,标准差10,样本量20药物B组:平均收缩压145,标准差12,样本量20药物C组:平均收缩压155,标准差15,样本量20第二步是进行假设检验。

研究人员的零假设是所有药物的降压效果相同,即三组的平均收缩压相等。

备择假设是至少有一组的平均收缩压不同。

为了进行单因素方差分析,我们需要计算组内方差和组间方差,然后进行F检验。

组内方差反映了每一组内部数据的离散程度,组间方差反映了不同组之间平均值的差异程度。

组内方差的计算方法是对每一组的方差进行平均,然后再对所有组的方差进行加权平均。

组间方差的计算方法是对所有组的平均值进行方差分析。

我们通过公式计算出组内方差为10.08,组间方差为58.67、接下来我们计算F值,F值是组间方差除以组内方差的比值。

F=组间方差/组内方差=58.67/10.08=5.81第三步是通过查找F分布表来计算p值。

根据自由度为2(组数-1)和df = 57(总样本量-组数)的F分布表,我们可以找到在F = 5.81条件下的p值。

假设我们选择显著性水平为0.05,我们发现在F分布表上,F=5.81对应的p值小于0.05、因此,我们拒绝零假设,接受备择假设。

这意味着至少有一组的平均收缩压与其他组有显著差异。

最后一步是进行事后检验。

由于我们有三组进行比较,我们可以使用事后检验方法来确定哪两组之间存在显著差异。

常用的事后检验方法包括Tukey HSD检验、Duncan检验等。

综上所述,单因素方差分析可以帮助我们判断不同组之间是否存在显著差异。

单因素方差分析完整实例

单因素方差分析完整实例

什么是单因素方差分析单因素方差分析是指对单因素实验结果进展分析,查验因素对实验结果有无显著性阻碍的方式。

单因素方差分析是两个比拟的引伸,它是用来查验多个平均数之间的不同,从而确信因素对实验结果有无显著性阻碍的一种。

单因素方差分析相关概念●因素:阻碍研究对象的某一、。

●水平:因素转变的各类状态或因素转变所分的品级或组别。

●单因素实验:考虑的因素只有一个的实验叫单因素实验。

单因素方差分析例如例如,将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。

下表列出了5种经常使用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。

现需要在下查验这些百分比的均值有无显著的不同。

设各服从,且一样。

在那个地址,实验的指标是抗生素与血浆蛋白质结合的百分比,抗生素为因素,不同的5种抗生素确实是那个因素的五个不同的水平。

假定除抗生素这一因素外,其余的一切条件都一样。

这确实是单因素实验。

实验的目的是要考察这些抗生素与血浆蛋白质结合的百分比的均值有无显著的不同。

即考察抗生素这一因素对这些百分比有无显著阻碍。

这确实是一个典型的单因素实验的问题。

单因素方差分析的全然理论与通常的问题一样,方差分析的任务也是先依如实际情形提出原假设H0与备择假设H1,然后寻觅适当的查验统计量进展。

本节将借用上面的实例来讨论单因素实验的方差分析问题。

在上例中,因素A〔即抗生素〕有s〔=5〕个水平,在每一个水平下进展了n j = 4次独立实验,取得如上表所示的结果。

这些结果是一个。

表中的数据能够看成来自s个不同整体〔每一个水平对应一个整体〕的样本值,将各个整体的均值依次记为,那么按题意需查验假设不全相等为了便于讨论,此刻引入总平均μ其中:再引入水平A j的效应δj显然有,δj表示水平A j下的整体平均值与总平均的不同。

利用这些记号,本例的假设就等价于假设不全为零因此,单因素方差分析的任务确实是查验s个整体的均值μj是不是相等,也就等价于查验各水平A j的效应δj是不是都等于零。

单因素实验设计报告

单因素实验设计报告

单因素实验设计报告:因素实验报告设计单因素实验设计举例正交实验单因素实验设计方案篇一:实验报告单因素方差分析5.1、实验步骤: 1(建立数据文件。

定义2个变量:PWK和DCGJSL,分别表示排污口和大肠杆菌数量。

2. 选择菜单“分析?比较均值?单因素”,弹出“单因素方差分析”对话框。

在对话框左侧的变量列表中,选择变量“DCGJSL”进入“因变量”列表框,选择变量“PWK”进入“因子”列表框。

3(单击“确定”按钮,得到输出结果。

结果解读:由以上结果可以看到,观测变量大肠杆菌数量的总离差平方和为460.438;如果仅考虑“排污口”单个因素的影响,则大肠杆菌数量总变差中,排污口可解释的变差为308.188,抽样误差引起的变差为152.250,它们的方差(平均变差)分别为102.729和12.688,相除所得的F统计量的观测值为8.097,对应的概率P值为0.003。

在显著性水平α为0.05的情况下。

由于概率P值小于显著性水平α,则应拒绝零假设,认为不同的排污口对大肠杆菌数量产生了显著影响,它对大肠杆菌数量的影响效应不全为0。

因此,可判断各个排污口的大肠杆菌数量是有差别的。

5.2、实验步骤: 1(建立数据文件。

定义2个变量:Branch和Turnover,分别表示分店和日营业额。

将Branch的值定义为1=第一分店,2=第二分店,3=第三分店,4=第四分店,5=第五分店。

2. 选择菜单“分析?比较均值?单因素”,弹出“单因素方差分析”对话框。

在对话框左侧的变量列表中,选择变量“Turnover”进入“因变量”列表框,选择变量“Branch”进入“因子”列表框。

3(单击“确定”按钮,得到输出结果。

结果解读:由以上结果可以看到,观测变量日营业额的总离差平方和为1187668.733;如果仅考虑“分店”单个因素的影响,则日营业额总变差中,分店可解释的变差为366120.900,抽样误差引起的变差为821547.833,它们的方差(平均变差)分别为91530.225和14937.233,相除所得的F统计量的观测值为6.128,对应的概率P 值近似为0。

SPSS实验单因素方差分析7

SPSS实验单因素方差分析7
2
23.7
2
23.8
2
37.2
2
33
2
21.9
2
36.1
2
31.7
2
27.6
2
26
2
20.3
2
32.6
2
25.8
2
21.2
2
36.3
2
34.2
2
17.7
3
34.3
3
25.1
3
27
3
29.1
3
33.3
3
38.4
3
14.9
3
38.7
3
32.7
3
34
3
23.8
3
13.3
3
32.4
3
36.2
3
33.7
3
29.2
-1.899
3
-7.6100*
2.2824
.002
-12.181
-3.039
2
1
6.4700*
2.2824
.006
1.899
11.041
3
-1.1400
2.2824
.619
-5.711
3.431
3
1
7.6100*
2.2824
.002
3.039
12.181
2
1.1400
2.2824
.619
-3.431
有第二张表可得即单因素方差分析表中F值为6.467,对应的P值为0.003<0.05,可以认为不同的方案对语言能力的提升有显著性影响。该结果虽然说明了三种方案对语言能力的影响是显著性的,但是不能给出各种方案两两之间的差异情况,这就需要多重比较。

实习报告五(单因素方差分析)

实习报告五(单因素方差分析)

实习报告五(单因素方差分析)
一、问题:某高原研究组将籍贯相同、年龄相同、身高体重接近的30名新战士随机分为三组,甲组为对照组,按常规训练,乙组为锻炼组,每天除常规训练外,接受中速长跑与健身操锻炼,丙组为药物组,除常规训练外,服用抗疲劳药物,一月后测定第一秒用力肺活量(L),结果见表。

试比较三组第一秒用力肺活量有无差别。

二、数据:
三组战士的第一秒用力肺活量(L)
三、统计处理:该实际问题涉及“处理方式”一个因素,为单因素实验,对照组、锻炼组、药物组为该因素的三个水平,所考察的随机变量,即实验指标是第一秒肺活量,为连续性随机变量,目的是考察三个水平下指标间是否具有显著差异,以此判断高原地区不同的处理方式对肺功能对作用是否有显著差别,所进行对分析为单因素方差分析。

四、结果及分析:
表1
表3
表4
分析:从表1中可以得到三个不同分组的一些相关描述统计量:平均值、标准差、样本容量等。

表2为方差齐性检验,由于Sig>0.05,接受原假设,认为方差具有齐性。

可以运用Tukey法进行多重比较。

从表3中可以看出,F = 3.729 ,P=0.037<0.05,拒绝原假设(三个分组的高原战士第一秒用力肺活量总体均数相等),结论: 三个分组的高原战士第一秒用力肺活量总体均数至少有部分不相等。

表4为多重比较,Tukey和Scheffe法,本题中例数相等,应运用Tukey法进行多重比较。

可以从表4中看出,对照组和药物组之间、药物组和锻炼组之间没有显著差异;对照组和锻炼组之间具有显著差异,且锻炼组的第一秒用力肺活量比对照组高。

单因素方差分析实验报告

单因素方差分析实验报告

单因素方差分析实验报告实验目的:通过单因素(变量)方差分析,比较不同温度下一种化学试剂的反应速度是否显著不同。

实验步骤:选取三个不同的温度(20℃,30℃,40℃)下,分别进行九次实验,每个实验用的试剂量、试剂浓度、搅拌时间、pH值等都保持不变。

记录每次反应的时间。

实验结果:| 温度/℃ | 时间1/s | 时间2/s | 时间3/s | 时间4/s | 时间5/s | 时间6/s | 时间7/s | 时间8/s | 时间9/s | 平均时间/s | 方差 || ------- | ------- | ------- | ------- | ------- | ------- | ------- | -------| ------- | ------- | --------- | ---- || 20 | 23 | 21 | 25 | 22 | 24 | 25 | 23 | 20 | 22 | 22.5 | 2.25 || 30 | 18 | 19 | 21 | 20 | 22 | 20 | 19 | 21 | 20 | 19.9 | 0.81 || 40 | 16 | 17 | 18 | 17 | 17 | 16 | 18 | 18 | 15 | 16.8 | 1.36 |分析:计算平方和总平方和SST=ΣΣ(xi-x¯)²=83.65组内平方和SSE=2.41计算自由度总自由度n-1=26计算平均方差组内平均方差MSE=SSE/(n-k)=0.2计算F值F=MSB/MSE=203.1查表得:F(2,6)=5.14由于F值大于5.14,因此我们拒绝原假设,即不同温度下反应速度没有显著差异的假设。

也就是说,我们认为不同温度下反应速度确实存在显著差异。

讨论:本实验结果表明,不同温度下化学反应速度的平均值确实存在显著差异,且温度越高反应速度越快。

这个结论和我们的常识和经验是一致的,因为温度升高可以加快分子运动速度,从而增加反应概率,提高反应速率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单因素方差分析调查报告
问题提出:对学院三个年级进行抽样,调查不同年级的同学的恋爱次数,样本均是独立的,试根据这些数据分析年级的不同对恋爱次数是否有影响?
一、样本数据及P-P图
由P-P图我们可以看出样本近似认为服从正态分布的。

二、提出假设
原假设:H0:μ1=μ2=μ3 ,即年级对恋爱次数影响不显著;备择假设:H0:μ1,μ2,μ3不全等,即年级对恋爱次数有显著影响。

三、SPSS输出结果分析
1、单因素方差分析
描述
恋爱次数
上表说明,不同年级的同学的恋爱次数的方差齐性检验值为1.419,概率p值为0.244,p>0.05,无法拒绝原假设,说明各组的方差在a=0.05水平上没有显著性差异,即方差具有齐次性。

由此表可得即单因素方差分析表中F值为3.982,对应的P值为0.020 <0.05,所以应拒绝原假设,可以认为不同的年级对恋爱次数有显著性影响。

该结果虽然说明了三个年级对恋爱次数影响是显著性的,但是不能给出各年级两两之间的差异情况,要进一步了解各年级之间恋爱次数的差异情况,就需要进行多重比较:
2、进行多重比较
提出假设:H0:μi=μj H0:μi μj
观察表中数据显著性可得结论:
(1):显著性0.624>0.05,所以接受原假设,即大一与大二的同学恋爱次数没有显著性差异;
(2):显著性0.031<0.05,所以拒绝原假设,即大一与大三的同学恋爱次数有显著性差异;
(3):显著性0.008<0.05,所以拒绝原假设,即大二与大三的同学恋爱次数有显著性差异。

四、统计决策
由结论更进一步说明,大学生随着年级数的增加也是年龄的增加,恋爱次数也随之增加,希望同学们谨慎交友谨慎恋爱,在抓好学习的同时收获美满爱情。

相关文档
最新文档