概率论数学期望
概率论 数学期望
0 . 0779
E ( Y ) 2732 . 15 , 即平均一台收费
2732 . 15 .
13
例4 为普查某种疾病, n 个人需验血. 验血方 案有如下两种: (1) 分别化验每个人的血, 共需化验 n 次; (2) 分组化验, k 个人的血混在一起化验, 若 结果为阴性, 则只需化验一次; 若为阳性, 则 对 k 个人的血逐个化验, 找出有病者, 此时 k 个人的血需化验 k + 1 次. 设每人血液化验呈阳性的概率为 p, 且 每人化验结果是相互独立的.试说明选择哪 一方案较经济.
xf ( x)dx
绝对收敛, 则称此积分为 X 的数学期望
记作 E( X ), 即
E( X )
xf ( x)dx
数学期望的本质 —— 加权平均 它是一个数不再是随机变量
6
例1 甲、乙两选手进行打靶,击中环数 为X1,X2,它们的分布律为
X1 pk X2 pk 7 0.2 7 0.3 8 0.3 8 0.5 9 0.4 9 0.1 10 0.1 10 0.1
数学期望的概念源于此
4
数学期望的定义
设 X 为离散 随机变量. 其分布律为
P( X xk ) pk ,
k 1
k 1,2,
若无穷级数 xk pk 绝对收敛, 则称
其和为 X 的数学期望 记作 E( X ), 即
E ( X ) xk p k
k 1
5
定义
设连续型随机变量X 的密度为 f (x) 若广义积分
20
E 例9 设 X 服从参数为 的泊松分布,求 X 。
解:已知泊松分布律为:
PX k
数学期望的原理及应用
数学期望的原理及应用数学期望是概率论中的一个基本概念,它描述了一个随机变量的平均水平或预期值。
具体地说,数学期望通过将随机变量的可能取值与相应的概率加权求和来计算。
数学期望的原理可以简单地表示为:对于一个离散型随机变量X,它的数学期望E(X)等于X每个可能取值xi乘以对应的概率p(xi)的累加和。
数学期望的计算公式可以表示为:E(X) = x1*p(x1) + x2*p(x2) + ... + xn*p(xn)其中,x1, x2, ..., xn为随机变量X所有可能的取值,p(x1), p(x2), ..., p(xn)为对应的概率。
对于连续型随机变量,数学期望的计算方法类似,只是将求和换成了求积分。
具体地说,对于一个连续型随机变量X,它的数学期望E(X)等于X在整个取值范围上的每个取值x乘以对应的概率密度函数f(x)的乘积的积分。
数学期望的计算公式可以表示为:E(X) = ∫x*f(x)dx数学期望的应用非常广泛,以下列举了一些常见的应用场景:1. 风险评估:数学期望可以用于评估风险,通过计算损失的数学期望来衡量风险的大小。
例如,在金融领域中,投资者可以通过计算股票的预期收益来评估投资的风险和回报。
2. 制定决策:数学期望可以帮助人们在面临多个选择时做出决策。
通过计算不同选择的数学期望,可以找出最具有潜在利益的选择。
3. 设计优化:数学期望可以帮助优化设计过程。
例如,在工程领域中,可以通过计算产品的预期性能来指导设计参数的选择和调整。
4. 分析:数学期望被广泛应用于分析中。
游戏参与者可以通过计算不同下注策略的数学期望来制定最终的下注策略。
5. 统计推断:数学期望是许多重要的统计量的基础,如方差、标准差等。
通过计算数学期望,可以进行更深入的统计分析和推断。
6. 优化调度:在运输和调度问题中,数学期望可以用来优化资源的分配和调度。
通过计算任务完成时间的数学期望,可以制定最优的任务调度策略。
总之,数学期望是概率论中一个重要的工具和概念,它可以帮助我们理解和分析随机现象,并在很多实际问题中发挥重要作用。
《概率论与数理统计》数学期望
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
概率论与数理统计
§4.4 协方差和相关系数
协方差 相关系数 授课内容 例题
§4.4 协方差和相关系数 协方差
1. 定义
§4.4 协方差和相关系数 协方差
2. 协方差的计算公式
概率论与数理统计
§4.1 数学期望
离散型随机变量的数学期望
连续型随机变量的数学期望
授课内容
数学期望的性质
§4.1 数学期望 离散型随机变量的数学期望
1. 定义
§4.1 数学期望 离散型随机变量的数学期望
关于定义的几点说明
(2) 级数的绝对收敛性保证了级数的和不随级数各项次序的改变 而改变 , 之所以这样要求是因为数学期望是反映随机变量X 取可能值 的平均值,它不应随可能值的排列次序而改变.
§4.4 协方差和相关系数 相关系数
3. 不相关的定义
§4.4 协方差和相关系数 相关系数
4. 不相关性的判定
以下四个条件等价 (1) ρ 0; (2)Cov( X ,Y ) 0; (3) D( X Y ) DX DY;
(4)3 随机变量函数的数学期望 二维随机变量函数的数学期望
§4.3 随机变量函数的数学期望 二维随机变量函数的数学期望
一维随机变量函数的数学期望 二维随机变量函数的数学期望 授课内容 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
5 .不相关与相互独立的关系
协方差 相关系数 授课内容 例题
§4.4 协方差和相关系数 例题
概率论第三章
一、数学期望的概念 二、数学期望的性质 三、应用实例
回
停 下
§3.1
数学期望
一、数学期望的概念
1. 问题的提出 1654年, 一个名叫梅累的骑士就“两个赌徒 约定赌若干局, 且谁先赢 c 局便算赢家, 若在一 赌徒胜a局 (a<c), 另一赌徒胜b局(b<c)时便终止 赌博, 问应如何分赌本” 为题求教于帕斯卡, 帕 斯卡与费马通信讨论这一问题, 于1654 年共同 建立了概率论的第一个基本概念 — 数学期望
因而其数学期望E(X)不存在.
§3.2 数学期望的性质 一、性质
性质3.1 设C是常数, 则有ECC. 证
E X E C 1 C C . E CX CE X .
性质3.2 设 X 是一个随机变量, C 是常数, 则有 证 E CX Cxk pk C xk pk CE X .
数学期望, 记为EX, 即
E X
xp x dx .
4. 数学期望不存在的实例
例3
设随机变量X的分布律为 1 PX n , n 1,2,, nn 1
求证: 随机变量X没有数学期望.
证 由定义, 数学期望应为
1 E X npn . n1 n 1 n 1
求EX, EY, E (Y / X ), E[( X Y )2 ]. 思考: X2的分布律?
例7 设随机变量X ~ N0,1, Y ~U0,1, Z~B5,0.5, 且X, Y, Z相互独立, 求随机变量W 2X+3Y4Z1
的数学期望.
《数学期望》课件
在计算过程中需要注意积分的上下 限以及概率密度函数的取值范围。
连续型随机变量的数学期望的性质
01
02
03
非负性
E(X) ≥ 0,即数学期望的 值总是非负的。
可加性
如果X和Y是两个独立的随 机变量,那么E(X+Y) = E(X) + E(Y)。
线性性质
如果a和b是常数,那么 E(aX+b) = aE(X)+b。
方差是数学期望的度量,表示随机变量取值 与数学期望的偏离程度。
04
CATALOGUE
连续型随机变量的数学期望
连续型随机变量的定义
连续型随机变量
如果一个随机变量X的所有可能 取值是实数轴上的一个区间变量。
概率密度函数
描述连续型随机变量X在各个点 上取值的概率分布情况,其数学
《数学期望》PPT课件
CATALOGUE
目 录
• 引言 • 数学期望的基本性质 • 离散型随机变量的数学期望 • 连续型随机变量的数学期望 • 数学期望的应用 • 总结与展望
01
CATALOGUE
引言
数学期望的定义
数学期望是概率论和统计学中的 一个重要概念,它表示随机变量
取值的平均数或加权平均数。
数学期望的定义基于概率论的基 本原理,通过将每个可能的结果 与其对应的概率相乘,然后将这
些乘积相加得到。
数学期望具有一些重要的性质, 如线性性质、期望值不变性质等 ,这些性质在概率论和统计学中
有着广泛的应用。
数学期望的起源和历史
数学期望的起源可以追溯到17世纪,当时的一些数学家开始研究概率论和统计学中 的一些基本概念。
通过计算投资组合的数学期望, 我们可以了解投资组合的预期收 益,从而制定更加合理的投资策
概率论与数理统计公式
概率论与数理统计公式概率论是一门研究随机现象规律的数学学科,是现代数学的基础之一、而数理统计则是利用概率论的工具和方法,分析和处理统计数据,从而得出推断、估计、决策等信息的科学。
在概率论与数理统计的学习过程中,掌握一些重要的公式是非常关键的。
下面是一些概率论与数理统计中常用的公式:1.概率公式:-加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-乘法公式:P(A∩B)=P(A)*P(B,A)-条件概率公式:P(A,B)=P(A∩B)/P(B)2.期望与方差公式:-期望:E(X)=∑(x*P(X=x))- 方差:Var(X) = E((X-μ)^2) = ∑((x-μ)^2 * P(X=x))3.常用概率分布及其特征:-二项分布:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)-泊松分布:P(X=k)=(λ^k*e^(-λ))/k!-正态分布:f(x)=(1/(σ*√(2π)))*e^(-((x-μ)^2)/(2*σ^2))4.样本与总体统计量公式:-样本均值:x̄=(∑x)/n-样本方差:s^2=(∑(x-x̄)^2)/(n-1)-样本标准差:s=√(s^2)5.参数估计公式:-点估计:-总体均值估计:μ的点估计为x̄-总体方差估计:σ^2的点估计为s^2-区间估计:-总体均值的置信区间:x̄±Z*(σ/√n)-总体比例的置信区间:p±Z*√((p*(1-p))/n)6.假设检验公式:-均值检验:-单样本均值检验:t=(x̄-μ0)/(s/√n)-双样本均值检验:t=(x̄1-x̄2)/√((s1^2/n1)+(s2^2/n2))-比例检验:-单样本比例检验:z=(p-p0)/√((p0*(1-p0))/n)-双样本比例检验:z=(p1-p2)/√((p*(1-p))*((1/n1)+(1/n2)))以上是概率论与数理统计中一些常用的公式,这些公式为解决问题提供了有力的工具和方法。
概率论课件--3-1 数学期望17p
若
g ( x , y ) f ( x , y ) dxdy
绝对收敛,
则 Z g ( X , Y ) 的数学期望存在, 且有
E ( Z ) E ( g ( X , Y ))
g ( x , y ) f ( x , y ) dxdy
(6)
特例 E ( X )
定义1 设离散型随机变量 X 的分布律为
P{ X = x i } = p i , i = 1, 2,...
NORTH UNIVERSITY OF CHINA
若级数 xi p i 绝对收敛, 则称级数 xi p i 的和
i i
为 X 的数学期望, 简称期望或均值. 记为: E ( X ) = xi p i
的数学期望存在, 且有
E ( Z ) E ( g ( X , Y ))
g(x , y
i i j
j
) p ij
(5)
NORTH UNIVERSITY OF CHINA
2. 二维连续型随机变量函数的数学期望 设二维连续型随机变量 ( X , Y ) 的联合概率密度函数为
f ( x , y ),
NORTH UNIVERSITY OF CHINA
1. 二维离散型随机变量函数的数学期望 设二维离散型随机变量( X , Y ) 的联合分布律为
P X x i , Y y i p ij
( i , j 1, 2, )
若
g(x , y
i i j
j
) p ij 绝对收敛, 则 Z g ( X , Y )
NORTH UNIVERSITY OF CHINA
概率论第四章总结-精品文档
XY
=
数.
Cov ( X ,Y ) D( X ) D(Y)
称为随机变量X与Y的相关系
2.基本性质
7)| |=1的充要条件是,存在常数 a,b使得 P{Y=a+bX}=1
XY
1)Cov(X,Y)=Cov(Y,X) , Cov(X,X)=D(X).
5)Cov(X1+X2,Y)=Cov(X1,Y)+Cov (X2,Y). 6)| |≤1. *当=0时,称X与Y不 相关.
XY
2)D(X+Y)=D(X)+D(Y)+2Cov(X,Y) 3)Cov(X+Y)=E(XY)-E(X)E(Y).
4)Cov(aX,bY)=abCov(X,Y),a,b是常数.
3.例题 • 设随机变量X ~ N( , ),Y ~ N( , ),且设X,Y相互独立,试求 • Z1=aX+bY和Z2=aX-bY的相关系数(其中a,b是不为零的常数).
The key
解:E[(X-C)2]=E(X2-2CX+C2)=E(X2)-2CE(X)+C2=E(X2) -[E(X)]2+{[E(X)]2-2CE(X)+C2}=D(X)-[E(X)-C]2 ≥ D(X),等 号当且仅当C=E(X)时成立.
三、协方差及相关系数
1.定义
量E{(X-E(X))(Y-E(Y))}称为随机变量X与Y的协方差. 记为Cov(X,Y),即 Cov(X,Y)=E{(X-E(X))(Y-E(Y))}
,
j=1,2,····,说明X的 数学期望不存在. 例2.将n只球(1—n号)随 机的放进n个盒子(1—n号) 中,一个盒子装一只球.若
3j j
概率论——数学期望
概率论——数学期望
数学期望是概率论中一个重要的概念,用于描述随机变量的平均值。
在数学上,数学期望可以定义为随机变量的每个可能取值乘以其对应的概率,并将这些乘积相加。
设随机变量X的取值有n个,分别记为x1, x2, …, xn,对应的概率为p1, p2, …, pn。
则X的数学期望E(X)可以表示为:
E(X) = x1*p1 + x2*p2 + … + xn*pn
数学期望可以理解为随机变量所取得值的加权平均。
每个取值乘以其概率,再将所有乘积相加,就得到了数学期望。
数学期望在实际应用中有着广泛的应用,例如在赌博中,可以用数学期望来计算每次下注的预期收益;在保险业中,可以用数学期望来评估保险责任的大小;在金融学中,可以用数学期望来衡量金融产品的风险与回报等。
需要注意的是,数学期望不一定是随机变量取值的实际可能值,而是其平均值。
因此,即使随机变量的可能值与数学期望相差较大,在大量重复实验中,随机变量的平均取值仍然趋近于数学期望。
这正是数学期望的统计意义所在。
数学期望是概率论中用于描述随机变量的平均值的概念。
它可以通过将随机变量的可能取值与对应的概率相乘,再将所有乘积相加得到。
数学期望在实际应用中有着广泛的应用,可以用于预测和评估各种概率事件的平均效果。
概率论数学期望
x
k 1
k
pk 不绝对收敛,则称 E ( X ) 不存在
概率统计
例4.1 某商店在年末大甩卖中进行有奖销售,摇奖时 从摇箱摇出的球的可能颜色为:红、黄、蓝、白、黑 五种,其对应的奖金额分别为:10000元、1000元、 100元、10元、1元.假定摇箱内装有很多球,其中红、 黄、蓝、白、黑的比例分别为: 0.01%,0.15%,1.34%,10%,88.5%,求每次摇奖摇出的 奖金额X的数学期望.
n 1
(n 1) t t p q
n1 t t (n 1) t np ( p q ) np C k p q 1
n 1
np[ p (1 p)] np
概率统计
k 0
n1
即: E ( X ) np
(3) 泊松分布
若随机变量X 的所有可能取值为: 0,1, 2, 而它的分布律(它所取值的各个概率)为:
e
( x )2 2 2
dx
y2 2
令:y
x
ye
y 2
2
2
概率统计
dy 2
2
1
( y )e
dy
e
y2 2
dy
2 0 2 即: E ( X )
结论:正态分布中密度函数的参数 恰好就是 随机变量X的数学期望.
P( X k )
k e
k!
k 0,1, 2, 即: X~P ( )
概率论课件-3-1数学期望17p
在未来,概率论将会与更多的学科领域进行交叉 融合,如物理学、生物学、计算机科学等,从而 产生更加丰富的研究成果和应用价值。
同时,概率论本身也还有很多未解决的问题和需 要进一步研究的方向,如高维随机变量的性质、 复杂系统的概率模型等,这些问题的解决将会推 动概率论的进一步发展。
THANKS FOR WATCHING
数学期望在统计学、金融学、决策理论等领域中有着广泛的应用,是这些领域中重 要的数学工具之一。
数学期望的概念可以帮助我们理解随机变量的本质和特性,从而更好地应用概率论 解决实际问题。
未来研究方向和展望
随着科技的发展和实际应用的需要,概率论将会 得到更加广泛的应用和发展。
随着大数据和人工智能的兴起,概率论将会在数 据分析和机器学习等领域中发挥更加重要的作用 ,为这些领域的发展提供更加有力的支持。
应用
可以利用极限性质来研究随机变量的期望在极限情况下的 性质。
04 数学期望的应用
在统计推断中的应用
参数估计
数学期望可以用来估计未知参数,例如使用样本 均值来估计总体均值。
假设检验
通过比较样本均值与预期值,可以检验关于总体 分布的假设。
回归分析
在回归分析中,数学期望可以用来预测因变量的 值,基于自变量的值。
定义
对于随机变量X的函数f(X),其数 学期望E[f(X)]定义为
E[f(X)]=∫f(X)p(X)dX。
性质
如果函数f(X)是线性函数aX+b, 则E[f(X)]=aE(X)+b;如果函数f(X) 是非线性函数,则需要进行相应的 变换和计算。
计算方法
根据定义,对概率密度函数进行积 分并应用相应的变换即可得到随机 变量的函数的数学期望。
概率论期望价值计算公式
概率论期望价值计算公式概率论是数学中的一个重要分支,它研究的是随机事件的规律性和概率分布。
在概率论中,期望值是一个非常重要的概念,它是对随机变量的平均值的一个度量,也可以理解为随机变量的加权平均值。
在实际应用中,期望值可以帮助我们对随机事件的结果进行预测和分析,因此期望值的计算公式是非常重要的。
期望值的计算公式可以用来计算随机事件的平均值。
在概率论中,随机事件的结果通常是不确定的,但是通过大量的实验或观察,我们可以得到这些结果的概率分布。
期望值的计算公式可以帮助我们根据这些概率分布来计算随机事件的平均值,从而对随机事件的结果进行预测和分析。
期望值的计算公式可以表示为:E(X) = Σ(x P(X = x))。
其中,E(X)表示随机变量X的期望值,x表示随机变量X的取值,P(X = x)表示随机变量X取值为x的概率。
这个公式的意义是,将随机变量X的每个取值与其对应的概率相乘,然后将所有的乘积相加,就得到了随机变量X的期望值。
期望值的计算公式可以应用于各种不同的随机变量,比如离散型随机变量和连续型随机变量。
对于离散型随机变量,期望值的计算公式可以表示为:E(X) = Σ(x P(X = x))。
对于连续型随机变量,期望值的计算公式可以表示为:E(X) = ∫(x f(x))dx。
其中,f(x)表示随机变量X的概率密度函数。
这两个公式的意义和计算方法与上面的离散型随机变量的公式相似,只是对连续型随机变量进行了适当的调整。
期望值的计算公式在实际应用中有着广泛的应用。
比如在金融领域,期望值的计算公式可以帮助我们对股票、证券等金融产品的风险和收益进行评估和分析。
在工程领域,期望值的计算公式可以帮助我们对工程项目的成本和效益进行评估和分析。
在生物学领域,期望值的计算公式可以帮助我们对生物实验的结果进行预测和分析。
总之,期望值的计算公式可以帮助我们对各种随机事件的结果进行预测和分析,从而为决策提供参考依据。
除了期望值的计算公式之外,还有一些与期望值相关的重要概念和定理,比如条件期望值、独立随机变量的期望值等。
概率论与数理统计-数学期望_图文
因每个球落入每个盒子是等可能的均为1/M, 所以,对第i 个盒子,一个球不落入这个盒子 内的概率为(1-1/M)。故N个球都不落入这个 盒子内的概率为(1-1/M)n ,即
最常用的数字特征是:期望和方差。
第四章 数字特征
§4.1 数学期望
4.1.1 离散型随机变量的数学期望 概念引入:
某车间对工人生产情况进行考察,车工 小张每天生产的废品数 X 是一个随机变量 。如何定义 X 的平均值?
若统计了100天小张生产产品的情况,发现 : 32天没有出废品;30天每天出一件废品; 17天每天出两件废品;21天每天出三件废品。
可以得到这n天中,每天的平均废品数为
这是以频率为 权的加权平均
由频率与概率的关系,
不难想到:求废品数X的平 均值时,用概率替代频率, 得平均值为:
这样,就得到一个确定的数
这是以概率为 权的加权平均
——随机变量X的期望(均值) 。
定义1: 设X是离散型随机变量, 概率分布为 P{X=xk}=pk , k=1,2, …。
解:设组织货源 t 吨。显然,应要求
2000≤t ≤4000。国家收益Y(单位:万元)是X
的函数Y=g(X)。表达式为
由已知条件, 知X的概率密度函为
可算得当 t = 3500 时, E(Y)=-2t2 + 14000t-8000000
达到最大值 1.55×106。 因此,应组织3500吨货源。
概率论与数理统计-数学期望_图文.ppt
前面讨论了随机变量及其分布。 如果我 们知道了随机变量 X 的概率分布,那么,关 于 X 的全部概率特征也就知道了。
然而,在实际问题中,概率分布是较难 确定的。且有时在实际应用中,我们并不需 要知道随机变量的所有性质,只要知道其一 些数字特征就够了。
数学期望公式3篇
数学期望公式第一篇:基础概念与定义数学期望是概率论中的一个重要概念,它可以用于描述随机变量的平均值,也可以用于评价随机事件的平均结果。
在现代数学、统计学以及应用科学等领域,数学期望被广泛应用。
本文将介绍数学期望的基础概念与定义。
数学期望,又称为期望值或期望数,是指对于一组数据,分别乘以它们出现的概率后再相加得到的结果。
从数学上来说,对于一个离散型随机变量X,它的数学期望E(X)可以用下面的公式来表示:E(X) = Σ(x*p(x))其中,x为X的可能取值,p(x)为X取值为x的概率,Σ表示对所有可能取值x的求和操作。
同样的,对于一个连续型随机变量X,它的数学期望E(X)可以用下面的积分形式来表示:E(X) = ∫x*f(x)dx其中,f(x)为X的概率密度函数。
在实际应用中,数学期望可以用来解决很多问题。
例如,对于平均身高为175cm的人群,如果我们想知道某一个个体身高与平均身高的差距有多大,我们可以计算出这个人的身高与平均身高的差值,并将其除以人群总数。
这样,得到的结果就是所有个体身高与平均身高之差的平均值,即身高的数学期望。
通过比较这个差值与标准差,我们可以了解这个人的身材是否比较健康和匀称。
另外,数学期望还可以用于描述随机事件的效果。
例如,当我们掷骰子时,我们可以计算出每个点数和其对应的概率,然后将它们相乘再相加,得到的结果就是掷骰子的数学期望。
如果我们掷了十次骰子,我们可以将每次掷骰子得到的点数的平均值与掷骰子的数学期望相比较,了解我们掷骰子的效果如何。
总之,数学期望是衡量随机变量的均值的一种方法,它可以用于处理多种实际问题。
在实际应用中,要根据实际情况选择相应的数学期望公式进行计算和分析。
在下一篇文章中,我们将继续介绍数学期望的一些重要性质和应用。
第二篇:数学期望的性质和应用数学期望作为概率论中的一个重要概念,其具有多种性质和应用。
通过了解这些性质和应用,我们可以更深入地了解数学期望的本质。
概率论笔记(四)概率分布的下期望和方差的公式总结
概率论笔记(四)概率分布的下期望和方差的公式总结一:期望引入:1.1离散型随机变量的期望注:其实是在等概率的基础上引申来的,等概率下的权重都是1/N。
1.2连续型随机变量的期望注意:因为连续随机变量的一个点的概率是没有意义的,所以我们需要借用密度函数,如所示,这实际上是一个期望积累的过程。
1.3期望的性质注:其中第三个性质,可以把所有的X+Y的各种情况展开,最后得出的结果就是这样的。
二:随机变量函数(复合随机)的数学期望1.理解注:其实就是复合随机变量的期望,对于离散型,其主要是每个值增加了多少倍/减少了多少倍,但是概率不变,所以公式见上面;对于连续性随机变量,其实是一样的,每个点的概率没有变,所以就是变量本身的值发货所能了改变。
三:方差引入的意义:求每次相对于均值的波动:求波动的平方和:定义:注:其实就是对X-E(X)方,求均值其实就是方差,注意这里的均值也是加权平均,所以方差其实就是一种特殊的期望。
3.1离散型随机变量的方差3.2连续性随机变量的方差3.3方差的性质注:3)4)5)等性质可以套入定义中就可以得到,这里不多说;对于独立以及协方差见后;8)的证明如下四:协方差4.1定义注:与上一个变量相比,之前是一个变量移位平方,但这里是两个变量移位相乘。
4.2离散型二维随机变量的协方差4.3连续型二维随机变量的协方差4.4二维随机变量的协方差性质注:了解即可…4.5协方差矩阵五:相关系数所以:独立必不相关,但不相关不一定独立,因为这里的不相关指的是线性不相关,可能会有其他非线性关系,具体例子找到再补充-------。
参考链接:。
概率论数学期望
概率论数学期望数学期望公式是:e(x) = x1*p(x1) + x2*p(x2)+ …… + xn*p(xn) = x1*f1(x1)+ x2*f2(x2)+ …… + xn*fn(xn)在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)的意思是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。
它反映随机变量平均取值的大小。
须要特别注意的就是,期望值并不一定等同于常识中的“希望”——“期望值”也许与每一个结果都不成正比。
期望值就是该变量输入值的平均数。
期望值并不一定涵盖于变量的输入值子集里。
大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。
历史故事在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,一共进行五局,赢家可以获得法郎的奖励。
当比赛进行到第四局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这法郎才比较公平?用概率论的科学知识,不难获知,甲获得胜利的可能性小,乙获得胜利的可能性大。
因为甲输掉后两局的可能性只有(1/2)×(1/2)=1/4,也就是说甲赢得后两局或后两局中任意赢一局的概率为1-(1/4)=3/4,甲有75%的期望获得法郎;而乙期望赢得法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(1/2)*(1/2)=1/4,即乙有25%的期望获得法郎奖金。
可知,虽然无法再展开比赛,但依据上述可能性推测,甲乙双方最终胜利的客观希望分别为75%和25%,因此甲应分得奖金的*75%=75(法郎),乙应分得奖金的的×25%=25(法郎)。
这个故事里发生了“希望”这个词,数学希望由此而来。
概率论第一节 数学期望
i 1 i 1 n n
请注意: 由E(XY)=E(X)E(Y) 不一定能推出X,Y 独立
4. 设X、Y 相互独立,则 E(XY)=E(X)E(Y);
E[ X i ] E ( X i ) (诸Xi相互独立时)
i 1 i 1
n
n
三、数学期望的性质
计算t的值使得EY 达到最大 t ( EY ) 7 0 t 3500 t 500 即组织货源3500吨为宜.
二、连续型随机变量的数学期望
综上:
xi pi , X 离散型 i 1 EX xf ( x )dx , X 连续型
发散,则称X的数学
二、连续型随机变量的数学期望
关于定义的两点说明 (1)连续型随机变量X的数学期望为实数域R上 对取值与密度值乘积的广义积分. (2)注意区分: xf ( x)dx E ( X )
f ( x)dx 1
二、连续型随机变量的数学期望
x2 0 x1 f ( x ) 2 x 1 x 2,求EX . 0 其它
15 40 30 10 5 18 19 20 21 22 100 100 100 100 100
18 15% 19 40% 20 30% 2110% 22 5%
—各年龄出现的频率 将此种方法下计算的平均年龄称为依频率的加权平均。
例如:评价地区粮食水平,只需了解粮食的平 均产量;评价棉花质量,既要注意纤维的平均长度, 又要注意个体真实长度与平均长度的总体偏差程度, 一般认为,平均长度越长,整体偏差越小,质量就 越好。 因此,在对随机变量的研究中,确定某些数字 特征是重要的 . 常用的数字特征:数学期望,方差.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章数字特征4.1 数学期望
4.2 方差
4.3 协方差与相关系数
4.4 矩与协方差矩阵
P85例4.1.2:某种产品次品率为 0.1。
检验员每天检验 4 次,每次随机抽取10件产品进行检验,如发现次品数大于 1, 就调整设备。
若各件产品是否为次品相互独立, 求一天中调整设备次数的期望。
用X 表示检验抽取10件产品中的次品数,则=}{备每次检验后需要调整设P X ~B (10, 0.1),
{1}P X >=}
1{}0{1=−=−=X P X P 9.01.0109.019
10
××−−=. 2639.0 =则Y ~B (4, 0.2639),
=)(Y E =np .
1.0556 2639.0 4=×1{1}P X −≤9
11101000109
.01.09.01.01C C −−=解:用 Y 表示一天中调整设备的次数,
检验员每天检验 4 次,用p 表示每次检验后需要调整设备的概率,
则Y ~B(4, p ),现在求p .{1}
P 每次检验发现的次品数大于p =1(;10,0.1)(;100,0.1)1b b =−−E(E(Y
Y )=np=4 p ,
的概率密度函数为⎪⎩
⎪⎨
⎧∉∈=].4000 2000[ 0 ]4000 2000[ 20001)(,,,,,x x x f 4000
2000
1
()2000
g x dx ∫)]=()()g x f x dx ∞
−∞
=∫4000)3t dx tdx ⎤+⎥⎦∫261(214000810)2000t t =−+−×4X t
=−4140000,t −+=有:可算得当 t = 3500 时,多余的库存
1。