信号与系统教学资料:例8-5-7
力学专业教学大纲《信号与系统》教学大纲2017版
《信号与系统》课程教学大纲课程代码:110031112课程英文名称:Signals and Systems课程总学时:48 讲课:40 实验:8 上机:0适用专业:探测制导与控制技术大纲编写(修订)时间:2017.10一、大纲使用说明(一)课程的地位及教学目标《信号与系统》是一门重要的学科基础课程,是联系基础理论与专业技术知识的重要专业技术基础课。
本课程是继电路理论基础课之后的深入研究线性非时变电路系统的课程,为探测制导与控制技术专业和信息对抗技术专业的学生提供信号与线性系统的基本概念,以及信号通过线性系统的一系列分析与计算方法,为该专业后续课程的学习建立必要的概念和理论基础。
(二)知识、能力及技能方面的基本要求通过本课程的学习使学生了解信号与系统的基本概念,掌握信号与线性系统在时域和变换域上分析的基本理论和基本方法,理解傅立叶变换、拉普拉斯变换及Z变换的基本内容、性质与应用,特别要建立信号与线性系统的频域分析的概念及系统函数的概念,并对这些理论与方法在工程中的某些应用有初步了解,为进一步学习研究信号处理与信号检测等学科内容打下必要的基础。
(三)实施说明理论性和系统性是《信号与系统》课程的两大特点。
该课程讲授过程中,需要把深奥的数学理论和应用信息技术进行深入融合,系统对比式的讲解将会提高学生对该课程的理解与掌握。
本课程着重讲授信号分析与线性时不变系统分析的基本概念和基本方法,以求系统响应为主要线索,按照先时域后变换域,先连续后离散的顺序进行,力求做到循序渐进。
讲授各种分析方法时,尽量避免枯燥繁琐的数学推导,着重阐明其包含的物理意义,注意多举具体应用的例子,提高学生的学习兴趣,增强学习效果。
(四)对先修课的要求本课程先修课程:高等数学、电路和复变函数与积分变换。
(五)对习题课、实践环节的要求1. 习题是帮助学生理解基本理论,掌握基本分析方法并学习运用理论处理实际问题的一个重要环节。
本课程理论性较强,课程的每一部分内容均安排一定数量的习题课与理论知识相配合。
信号与系统:第七章 离散信号与系统时域分析
k 0 k 0
推广: 1)
U (k
j)
0, k 1, k
j j
2) AU (k), AU (k j)
性质:
f
(k)U
(k)
f
(k) 0
k 0 k 0
可见,U(k)作用类似于U(t),
但二者有较大差别:
U(t) :奇异信号,数学抽象函数; U(k):非奇异信号,可实现信号。
(k)与U(k)关系: (k) U(k) U(k 1)
y(k+1)Ey(k)
y(k-N)E-N y(k) y(k+N)EN y(k)
E-1 : 单位延迟算子
17
(2)算子形式的差分方程
1) uk 2 2a 1uk 1 u(k) 0 (E2 2a 1 E 1)u(k) 0
a
a
2) y(k)-(1+a)y(k-1)=f(k)
[1-(1+a)E-1 ]y(k)=f(k)
周期:N 20 无周期
13
7-2 离散时间系统基本概念
一、定义: 二、分类:
激励、响应均为离散时间信号的系统。
线性系统 非线性系统
时不变系统 时变系统
因果系统 非因果系统
线性系统: f1(k) y1(k) f2 (k) y2 (k) af1(k) bf2(k) ay1(k) by2(k)
k
y(k) f (i) i
y(k)
k
f1(i)
i
0 k 0
1.5 2.5
k 0 k 1
2 k 2
5
5.差分: 序列与其移序序列的差而得到一个新序列。
y(k)=f(k)-f(k-1)
(后向差分)
郑君里版《信号系统》复习要点
《信号与系统》复习提要1.确定性信号与随机信号的不同点是什么?各举一例并说明。
2.连续信号、离散信号的特征是什么?3.模拟信号、采样信号、数字信号的联系和区别是什么?4.对周期信号、非周期信号、两个周期信号之和而成为非周期信号的三种情况各举一例并作图说明。
5.能量信号、功率信号的定义是什么?各举一例。
6.信号的时间特性(变化快慢)包含周期大小及该周期里波形形状两个方面,画图说明它们的含义?7.周期信号的(频谱函数)及非周期信号的频率特性(频谱密度函数)的定义,信号的频带概念与定义是说明什么?8.系统的因果性、线性系统的比例性(齐次性)和叠加性定义和判别。
9.系统的非时变性定义,举一个时变系统的例子。
10.有始信号,因果信号,激励,零状态响应,零输入响应的含义。
11.系统的起始状态与时域解的初始条件的区别。
12.L TI系统的输入输出微分方程时域一般表达式。
何谓自然(由)响应与受(强)迫响应?何谓稳态响应(包括直流或等幅振荡)与瞬态响应?(零状态响应包括了一部分的自然响应和全部的受迫响应。
(零输入响应分量是自然响应的另一部分))。
例2-8。
13.分析线性系统时,指数信号e at是个非常有用的典型的激励信号,对a的所有可能取值情况,一一画出其波形图,标注数值。
14.系统的传递函数H(s)及系统阶次的定义,系统的零、极点定义与零极点绘图表达,举例。
15.L TI系统的特征方程与特征根、自然频率定义。
方程的“自由项”是指什么?特解以及通解的待定常数如何设置?16.阶跃函数、单位阶跃函数、冲激函数、单位冲激函数各自的物理含义。
17.阶跃函数的“截断性质”、冲激函数的“抽样性质”和冲激偶是如何用式子表达的?18.任意(矩形、锯齿、三角、或其他函数)的周期脉冲信号用(奇异)函数u(t)或δ(t)的和的表达式。
19.任意形状的信号分解为冲激函数δ(t)的叠加。
20.信号的直流分量与交流分量,偶分量与奇分量定义及求解。
信号与系统-第8章
1/T2称为交接频率(断点)。
G2 ( )
40
20 1 -20 -40 10 102 103
1.系统函数的极点与时域特性的关系 (1) 若一阶极点位于s平面的坐标原点
(2) 若一阶极点位于s平面的实轴上 , 且极点为负实数,p=-a<0
(3) 若一阶极点位于s平面的实轴, 且极点为正实数,p1=a>0
(4) 若有一对共轭极点位于虚轴, p1=jω0及p2=-jω0
(5) 若有一对共轭极点位于s左半平 面,即p1=-a+jω0,p2=-a-jω0,-a<0
应用拉普拉斯变换求解微分方程
• 当电路或系统的输入输出微分方程 已知时,可直接对微分方程应用单边拉 普拉斯变换,利用时域微分性质求出s域 输出 Y(s) ,对其取逆变换得到时域解 y(t) 。
从该例可看出,用拉普拉斯变换法求 解微分方程不需要专门求解t=0+时刻的输 出及其导数,并且可直接得到全响应。 通过上例可以看到,利用拉普拉斯变换 可以避开烦琐的求解微分方程的过程。 特别是对于高阶微分方程,拉氏变换法 可以使计算量大大减小。
1 2 2 H ( ) 2 1 T2 j 2T2 T2
1 2 2 H ( ) 2 1 T2 j 2T2 T2
二次因式的幅频特性的对数增益为
1 2 2 2 2 G 20lg 2 20lg 1 T2 2T2 T2
1 1 G 20lg j 20lg 1 2T12 T1 T1
1 2 2 20lg 10lg(1 T1 ) T1
1 G( ) 20 lg 10 lg(1 2T12 ) T1
《信号与系统》课程教学大纲
《信号与系统》课程教学大纲一、课程基本信息1、课程编号:14L181Q2、课程体系/类别:大类专业基础/主干课程3、学时/学分:48/34、先修课程:高等数学、工程数学、电路分析5、适用专业:通信工程、自动化、铁道信号、电子科学与技术二、课程教学目标及学生应达到的能力本课程是大学本科二年级电子信息类本科生必选的技术基础课程。
本课程教学目标是使学生牢固掌握信号与系统的基本原理和基本分析方法,掌握信号与系统的时域、变换域分析方法,理解各种变换(傅里叶变换、拉普拉斯变换、z变换)的基本内容、性质与应用。
特别要建立信号与系统的频域分析的概念以及系统函数的概念,为学生进一步学习后续课程打下坚实的基础。
通过本课程的学习,使学生在分析问题和解决问题的能力上有所提高,并能够自主性学习,具有一定的创造性工作能力。
本课程主要支撑以下毕业要求指标点:1.2 将具体工程问题抽象为数学、物理问题,选择适当的模型进行描述,并理解其局限性本课程核心内容是信号的表示和系统的描述,包括利用数学的方法将信号从不同角度进行表示;根据实际系统建立描述系统的数学模型,并从不同的域对系统进行描述;理解信号与系统时域、频域和复频域的特点及适用情况,从而根据具体问题选择合适的域进行分析。
1.3 对模型进行推理求解和必要的修正改进本课程在讲授信号的表示和系统的描述的基础上,介绍根据系统的描述,利用信号的表示和线性非时变系统的特性从不同域求解系统模型,即求解系统的响应。
2.2 运用专业基础理论与方法,进行通信信号分析和通信系统设计实现本课程讲授了从时域、频域和复频域进行信号分析,从时域、频域和复频域进行系统描述及系统响应求解,为通信工程、铁道信号、自动化、电子技术等电子信息类专业奠定基础。
三、课程教学内容和要求(一)课程主要知识点、要求及课时分配(二)课程重点、难点1.信号与系统分析导论(2学时)重点:确定信号及线性非时变系统的特性。
难点:线性非时变系统的判断。
信号与系统简单课程设计
信号与系统简单课程设计一、课程目标知识目标:1. 理解信号与系统的基本概念,掌握信号的分类及性质;2. 掌握线性时不变系统的定义,了解其数学模型;3. 学会分析连续信号与离散信号的时域特性,以及它们之间的转换关系;4. 了解系统响应的分类,掌握因果性与稳定性的基本判断方法。
技能目标:1. 能够运用数学工具对信号与系统进行描述和分析;2. 掌握信号的基本运算,如信号的叠加、延迟、尺度变换等;3. 能够设计简单的线性时不变系统,并分析其性能;4. 学会对实际信号进行处理,提取其特征信息。
情感态度价值观目标:1. 培养学生对信号与系统学科的兴趣,激发他们的求知欲;2. 培养学生的团队协作意识,让他们在讨论、交流中共同提高;3. 增强学生的实践操作能力,培养他们解决实际问题的信心;4. 使学生认识到信号与系统在工程应用中的重要性,提高他们的专业认同感。
本课程针对高中年级学生,结合学科特点,注重理论与实践相结合,以培养学生的基本分析、设计能力为目标。
课程内容紧密联系教材,充分考虑学生已有的数学基础和认知水平,通过具体实例和实际操作,使学生在掌握基本知识的基础上,提高解决实际问题的能力。
教学过程中,注重启发式教学,鼓励学生积极参与,充分调动他们的学习积极性,从而实现课程目标。
二、教学内容1. 信号的基本概念:信号的分类(连续信号、离散信号)、信号的能量与功率、信号的时域与频域分析;2. 线性时不变系统:线性时不变系统的定义、数学模型、系统性质(线性、时不变性)、系统响应的分类(因果性、稳定性);3. 连续信号与离散信号的时域分析:信号的运算(叠加、延迟、尺度变换)、信号的卷积运算、常用信号及其特性(正弦信号、指数信号、单位阶跃信号等);4. 系统的频率响应:频率响应的定义、傅里叶变换及其性质、频率响应的求解方法、滤波器的概念与设计;5. 信号与系统的应用实例:信号的采样与重建、信号的调制与解调、通信系统中的信号与系统分析。
《信号与系统(A)》教学大纲
《信号与系统(A)》教学大纲课程名称:信号与系统(A)/Signal and System (A)学时/学分:64/4(含实验8学时)先修课程:高等数学、积分变换、线性代数、电路分析适用专业:通信工程、电子信息工程、信息工程、电子科学与技术、电子信息科学与技术、光信息科学与技术开课学院(部)、系(教研室):信息工程学院通信工程系一、课程的性质与任务本门课程是信号处理、网络理论、通信理论、控制理论等课程的先修课程,它是通信与电子信息类专业的一门重要学科基础课程。
通过本门课程的学习,使学生掌握信号分析的基本理论和方法,掌握线性非时变系统的各种描述方法,掌握线性非时变系统的时域和频域分析方法,掌握有关系统的稳定性、频响、因果性等工程应用中的一些重要结论。
同时,通过这门课程的学习,提高学生的分析问题和利用所学的知识解决问题的能力。
本门课程有着很强的数学背景,介绍的内容涉及到线性微分方程、复变函数、积分变换、离散数学等多门数学课程的知识,本课程的主要任务也是结合线性系统分析这一个主线,对这些数学方法进行详细的介绍。
可以认为,这是一门结合实际工程应用进行的数学课程。
课程中各个理论的系统性较强,数学推导比较严密,但是在内容中不苛求数学上的系统和严密。
通过实际系统分析,可以使学生更好地掌握相关的数学知识。
二、课程的教学内容、基本要求及学时分配(一)教学内容1. 信号与系统的基本概念本章主要内容:信号的描述与分类、信号的基本运算与波形变换、系统的描述与分类、系统的性质。
2. 连续时间信号与系统的时域分析本章主要内容:常用典型信号、连续时间信号的分解、连续时间系统的数学模型、连续时间系统的响应、连续时间系统的零输入响应、冲激响应与阶跃响应、卷积及其性质、连续时间系统的零状态响应、连续时间系统的时域模拟。
3. 连续时间信号与系统的频域分析本章主要内容:周期信号的傅里叶级数、周期信号的频谱、非周期信号的傅里叶变换、常用信号的傅里叶变换、傅里叶变换的性质、连续时间系统的频域分析、理想低通滤波器的冲激响应与阶跃响应、系统无失真传输的条件、调制与解调。
《信号与系统》第二版第七章:离散信号、离散系统
第七章:离散信号、离散系统
第七章:离散信号、离散系统
§7.1 基本概念(《信号与系统》第二版(郑君里)7.1,7.2,7.3,7.5)
离散时间信号——序列:
9 定义:自变量(宗量)为离散点的信号(函数),记为 f (n), n ∈ Z 。
f
(i)
⎧⎪(离散)
⎨ ⎪⎩
信号或采样或采后信号(取值无限精确)
图 7-5
2
《信号与系统》
9 求和:
第七章:离散信号、离散系统
9 相乘: 9 分支:
图 7-6 图 7-7
图 7-8 9 一步延迟(一步右移)算子: z−1
图 7-9
z−1x (n) = x (n −1)
图 7-10
3
(7-9)
《信号与系统》
第七章:离散信号、离散系统
z−mx(n) = x(n − m)
pN
(n)
=
⎧⎪1 , ⎨⎪⎩0 ,
n n
≤ >
N N
(7-2) (7-3)
图 7-4
pN (n) = u (n + N ) − u ⎡⎣n − ( N +1)⎤⎦
9 正弦序列:
x(n)
=
sin
nω0
=
sin
nT
2π T0
9 复指数序列:
( ) ( ) x n = e jnω0 = x n ejarg⎡⎣x(n)⎤⎦
h(n) = h(n)u(n)
因果信号:
f (n) = f (n)u(n)
BIBO 稳定:
5
(7-16) (7-17) (7-18) (7-19)
(7-20) (7-21)
《信号与系统》课程教学大纲——工程认证全文
精选全文完整版(可编辑修改)《信号与系统》课程教学大纲课程名称:信号与系统课程代码:TELE1006英文名称:Signal and Linear System课程性质:专业必修课程学分/学时:3.0开课学期:第3学期适用专业:通信工程、信息工程、电子信息工程、电子科学与技术等专业先修课程:高等数学,线性代数,电路分析后续课程:数字信号处理,通信原理,通信系统设计与实践等开课单位:电子信息学院课程负责人:王家俊大纲执笔人:侯嘉大纲审核人:一、课程性质和教学目标课程性质:本课程是通信工程、信息工程、电子信息工程等电子信息类专业的一门重要专业基础课,是通信工程专业的必修主干课。
教学目标:本课程主要讲授信号与线性系统的分析和处理方法的基本原理。
通过理论教学,使学生能建立系统分析的总体概念,掌握信号处理、信号特征分析、线性系统分析等基本概念和基本方法以及若干典型的电路系统分析应用,该课程是从电路分析的知识领域引入信号处理与传输领域的关键性课程,在教学环节中起着承上启下的作用。
能培养学生的电路设计与特征分析能力,思维推理和分析运算的能力,为进一步学习数字信号处理、通信原理等后续课程打下理论和技术基础。
本课程的具体教学目标如下:1、掌握信号与线性系统理论和知识体系所需的基本数理知识,并能用于专业知识与实际系统分析的能力学习中。
【1.1】2、具备信号与线性系统分析与理解的基础知识,能使用数学、自然科学、工程基础和专业知识分析实际工程中结构、电路、信号等相关具体问题。
【1.3】3、具备对常用信号、线性系统的特性、功能及应用进行分析和理解的基础能力,能够理解典型线性电路系统、滤波器、调制解调系统以及信号的时频特性和基本构成原理,能够针对实际工程问题和应用对象进行方案分析。
【1.4】4、具备对线性系统与信号的基本设计与分析能力,能运用基本原理、数理工具和工程方法,完成电子通信领域相关的复杂工程问题与系统设计中单元与环节的正确表达。
信号与系统绪论
定义在等间隔离散时刻点上的离散信号也称为序列, 通
常记为f(n),其中n称为序号。与序号n相应的序列值f(n)称为
信号的第n个样值。序列f(n)的数学表示式可以写成闭式,也
可以直接列出序列值或者写成序列值的集合。下图(a)所示的
正弦序列可表示为
f1 (n)
A s in
4
n
上午10时9分
0
t
0
t
t f6 (t) sin(8t)
上午10时9分
-1
f7 (t) sin(t) sin(8t)
29
2. 信号相乘
(2)相乘:f1(t)、f2 (t) 相乘 f4 (t) f1(t) f2 (t)
例子:
f1(t)
1
-1 0 1 t -1
f2(t)
1
-1 0 1 t -1
上午10时9分
11
二、系统的概念
信号的产生、传输和处理都需要一定的物理装 置——系统(system)。一般而言,系统是指若干相互 关联的事物组合而成的具有特定功能的整体。
如手机、电视机、通信网、计算机网络等都可 以看成系统。它们所传送的语音、音乐、图像、文 字等都可以看成信号。信号的概念与系统的概念常 常紧密联系在一起。
- 0 2
t , , n时,Sa(t) 0;
Sa(0) 1; lim Sa(t) 0
t
t
Sa(t)dt ;
Sa(t)dt
0
2
与Sa(t)函数类似的有sinc(t) 函数:sin c(t) sin(t) t
此时 t 与 Sa(t) 中差一个,两符号通用。
第1章信号与系统的基本概念
(1)了解信号的定义、分类和基本运算。熟悉信号的波形变换;翻转、 平移和展缩。
(2)掌握信号 (t ) 、 (t ) 、 ( k ) 和 (k )的定义和性质,以及它们之间 的关系。
(3)了解系统、系统的状态和状态变量、系统输入输出模型和状态 空间模型的定义。
(4)熟悉系统的基本特性(线性、时不变性和因果性)和分类。
析中卷积积分法和变换域分析法中的傅立叶变换法、拉普拉斯
变换法和z变换法。 (3)理解系统函数的性质,特别要充分理解系统函数极点和
零点与系统的时域特性和频域特性的关系,并掌握系统稳定性
的一般判别方法。 (4)了解系统的状态空间描述方法和了解状态方程的解法。
8
2013年8月13日8时11分
第 1 章 信号与系统的基本概念
如果包含有n个不同频率正弦(余弦)分量信号的复合信号是周 期为T的周期信号,则其周期T必为各分量周期 Ti (i 1, 2,3,, n) 的整
周期信号均可以 表示成正弦(余 弦)信号的叠加 (以后证明)
数倍,即有 T miTi 或 i 2 Ti 。式中
为复合信号的基波频率, 2 T 数公因子的正整数
13
2013年8月13日8时11分
1.1 信号的描述与分类 1.1.2 信号的分类及表示方法
2、连续信号与离散信号 连续信号:在规定的时间内,除若干不连续点 之外,任意确定时刻都有确定的函数值。 离散信号:只在某些不连续的规定瞬间给出函 数值,其他时间未定义。 数字信号:离散信号的幅度也被限制为离散值。
(1) cos( t ) cos(30t ) 10
(2) e j10t
(3) [5sin(8t)] 2
(5)
信号与系统教案(吴大正第四版西电PPT)第8章
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
8.2
连续系统状态方程的建立
2013-7-12
例1 某系统的微分方程为 y(t) + 3 y (t) + 2y(t) = 2 f (t) +8 f (t) 试求该系统的状态方程和输出方程。
方法一:画出直接形式的信号流图
2( s 4) 解由微分方程不难写出其系统函数 H ( s ) 2 s 3s 2
R1 x1 (t ) L x (t ) 1 2 C
■
1 1 L x1 (t ) L 1 x (t ) 2 0 R2 C
0 u (t ) s1 1 u (t ) s2 R2 C
通常将状态方程和输出方程总称为动态方程或系统方程。
第8-6页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
8.1
状态变量与状态方程
2013-7-12
对于一般的n阶多输入-多 ff1(t) 2(t) 输出LTI连续系统,如图 。 其状态方程和输出方程为
fp(t)
┇
{xi(t0)}
y1(t) y2(t) ┇
首先选择状态变量 。 通常选电容电压和电 感电流为状态变量。 必须保证所选状态变 量为独立的电容电压 和独立的电感电流。
uC1 uC1 uC2 uC3 us uC2
(a) 任选两个电容电压 独立
(b) 任选一个电容电压 独立 iL1
iL1
iL3
iL2
is
iL2
四种非独立的电路结构
(c) 任选两个电感电流 独立 (d) 任选一个电感电流 独立
信号与系统教案第7章2
cn1
1 an1
an an1
an2 an3
cn3
1
an1
an an1
an4 an5
…
第4行由2,3行同样方法得到。一直排到第n+1行。
罗斯准则指出:若第一列元素具有相同的符号,则 A(s)=0所有的根均在左半开平面。若第一列元素出现符 号改变,则符号改变的总次数就是右半平面根的个数。
第7-17页
解:设加法器的输出信号X(s)
∑ X(s) G(s)
F(s)
Y(s)
X(s)=KY(s)= G(s)X(s)=K G(s)Y(s)+ G(s)F(s)
H(s)=Y(s)/F(s)=G(s)/[1-KG(s)]=1/(s2+3s+2-k)
H(s)的极点为
p1,2
3 2
3 2 2 k 2
第7-9页
■
信号与系统
7.2 系统的稳定性
7.2 系统的稳定性
一、因果系统
因果系统是指,系统的零状态响应yf(.)不会出现 于f(.)之前的系统。
连续因果系统的充分必要条件是:冲激响应 h(t)=0,t<0 或者,系统函数H(s)的收敛域为:Re[s]>σ0
离散因果系统的充分必要条件是:单位响应 h(k)=0, k<0 或者,系统函数H(z)的收敛域为:|z|>ρ0
凡极点位于左半开平面,零点位于右半开平面, 并且所有零点与极点对于虚轴为一一镜像对称的系统 函数即为全通函数。
第7-8页
■
信号与系统
7.1 系统函数与系统特性
(2)最小相移函数
右半开平面没有零点的系统函数称为最小相移函数。 解释见p336 2、离散因果系统
《信号与系统》课程设计
《信号与系统》课程设计一、课程目标知识目标:1. 理解并掌握信号与系统的基本概念,包括连续信号与离散信号、线性时不变系统等;2. 学会运用数学工具描述和分析信号与系统的性质,如傅里叶变换、拉普拉斯变换和z变换等;3. 掌握信号与系统中的典型应用,如信号的采样与恢复、通信系统中的调制与解调等。
技能目标:1. 能够运用所学的理论知识分析实际信号与系统的性能,并解决相关问题;2. 熟练运用数学软件(如MATLAB)进行信号与系统的仿真实验,提高实际操作能力;3. 培养学生的团队协作和沟通能力,通过小组讨论、报告等形式,提高学生的学术交流能力。
情感态度价值观目标:1. 培养学生对信号与系统领域的兴趣,激发学生的学习热情和求知欲;2. 增强学生的社会责任感,使学生认识到信号与系统在通信、电子等领域的广泛应用,为国家和社会发展做出贡献;3. 培养学生严谨、务实的学术态度,提高学生的自主学习能力和终身学习能力。
本课程针对高年级本科生,具有较强的理论性和实践性。
在课程设计中,将充分考虑学生的特点和教学要求,结合信号与系统领域的最新发展,注重理论与实践相结合,培养学生的创新能力和实践能力。
通过本课程的学习,使学生具备扎实的信号与系统理论基础,为后续相关课程和未来职业生涯打下坚实基础。
二、教学内容1. 信号与系统基本概念:连续信号与离散信号、线性时不变系统等;- 教材章节:第1章 信号与系统概述2. 数学工具描述与分析:- 傅里叶变换、拉普拉斯变换、z变换;- 教材章节:第2章 信号的傅里叶分析,第3章 系统的s域分析,第4章 离散时间信号与系统分析3. 信号与系统的典型应用:- 信号的采样与恢复;- 通信系统中的调制与解调;- 教材章节:第5章 信号的采样与恢复,第6章 通信系统4. 信号与系统仿真实验:- 使用MATLAB进行信号与系统仿真实验;- 教材章节:第7章 信号与系统仿真5. 团队协作与学术交流:- 小组讨论、报告等形式,进行案例分析和学术交流。
信号与系统教案(吴大正)第7章
l
2s + 4 H 例: ( s ) = 3 s + 3s 2 + 5s + 3
用级联型, 用级联型,并联型实现
1 .级联型实现 级联型实现
2( s + 2 ) H( s ) = ( s + 1 )( s 2 + 2 s + 3 )
2 (s+2) . 2 = ( s + 1 ) ( s + 2s + 3 )
连续因果系统稳定性判断准则 ——罗斯-霍尔维兹准则 罗斯罗斯
对因果系统,只要判断 的极点, 对因果系统,只要判断H(s)的极点,即A(s)=0的根 的极点 的根 称为系统特征根)是否都在左半平面上, (称为系统特征根)是否都在左半平面上,即可判定系统 是否稳定,不必知道极点的确切值. 是否稳定,不必知道极点的确切值. 所有的根均在左半平面的多项式称为霍尔维兹多项式. 所有的根均在左半平面的多项式称为霍尔维兹多项式. 1,必要条件—简单方法 必要条件— 一实系数多项式A(s)=a =0的所有根位于左半开 一实系数多项式A(s)=ansn+…+a0=0的所有根位于左半开 平面的必要条件是: 平面的必要条件是:
c n 1 = 1 a n 1 an a n 1 an 2 an 3
cn 3 = 1 an an 4 an 5
…
a n 1 a n 1
行由2, 行同样方法得到 一直排到第n+1行. 行同样方法得到. 第4行由 ,3行同样方法得到.一直排到第 行由 行 罗斯准则指出:若第一列元素大于零,则A(s)=0所有的 罗斯准则指出:若第一列元素大于零, A(s)=0所有的 根均在左半开平面.若第一列元素出现符号改变, 根均在左半开平面.若第一列元素出现符号改变,则符 号改变的总次数就是右半平面根的个数. 号改变的总次数就是右半平面根的个数.