2020年高考试题分类汇编(统计与概率)

合集下载

2020届全国各地高考试题分类汇编11 统计和概率

2020届全国各地高考试题分类汇编11 统计和概率

11 统计和概率1.(2020•北京卷)在52)-的展开式中,2x 的系数为( ). A. 5- B. 5C. 10-D. 10【答案】C【解析】首先写出展开式的通项公式,然后结合通项公式确定2x 的系数即可.【详解】)52展开式的通项公式为:()()55215522r rrrrr r T CC x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-.故选:C. 【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项. 2.(2020•北京卷)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案的概率估计值记为0p ,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明)【答案】(Ⅰ)该校男生支持方案一的概率为13,该校女生支持方案一的概率为34;。

2020年高考数学试题分项版—统计概率(原卷版)

2020年高考数学试题分项版—统计概率(原卷版)

2020年高考数学试题分项版——统计概率(原卷版)一、选择题1.(2020·全国Ⅰ理,5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i ,y i )(i =1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y =a +bx B .y =a +bx 2 C .y =a +b e xD .y =a +b ln x2.(2020·全国Ⅰ理,8)⎝⎛⎭⎫x +y2x (x +y )5的展开式中x 3y 3的系数为( ) A .5 B .10 C .15 D .203.(2020·全国Ⅱ理,3)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1 200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1 600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A .10名 B .18名 C .24名 D .32名4.(2020·全国Ⅲ理,3)在一组样本数据中,1,2,3,4出现的频率分别为p 1,p 2,p 3,p 4,且∑i =14pi =1,则下面四种情形中,对应样本的标准差最大的一组是()A .p 1=p 4=0.1,p 2=p 3=0.4B .p 1=p 4=0.4,p 2=p 3=0.1C .p 1=p 4=0.2,p 2=p 3=0.3D .p 1=p 4=0.3,p 2=p 3=0.25.(2020·新高考全国Ⅰ,3)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( ) A .120种 B .90种 C .60种 D .30种6.(2020·新高考全国Ⅰ,12)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,…,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑( )A .若n =1,则H (X )=0B .若n =2,则H (X )随着p i 的增大而增大C .若p i =1n(i =1,2,…,n ),则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,…,m ,且P (Y =j )=p j +p 2m +1-j (j =1,2,…,m ),则H (X )≤H (Y )7.(2020·北京,3)在(x -2)5的展开式中,x 2的系数为( ) A .-5 B .5 C .-10 D .108.(2020·新高考全国Ⅱ,6)3名大学生利用假期到2个山村参加扶贫工作,每名大学生只去1个村,每个村至少1人,则不同的分配方案共有( ) A .4种 B .5种 C .6种 D .8种9.(2020·新高考全国Ⅱ,9)我国新冠肺炎疫情防控进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是( )A .这11天复工指数和复产指数均逐日增加B .这11天期间,复产指数增量大于复工指数的增量C .第3天至第11天复工复产指数均增大都超过80%D .第9天至第11天复产指数增量大于复工指数的增量10.(2020·天津,4)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47]内的个数为( )A .10B .18C .20D .3611.(2020·全国Ⅰ文,4)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A.15 B.25 C.12 D.4512.(2020·全国Ⅰ文,5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i ,y i )(i =1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y =a +bx B .y =a +bx 2 C .y =a +b e xD .y =a +b ln x13.(2020·全国Ⅱ文,3)如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k -j =3且j -i =4,则称a i ,a j ,a k 为原位大三和弦;若k -j =4且j -i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( )A .5B .8C .10D .1514.(2020·全国Ⅱ文,4)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1 200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A .10名 B .18名 C .24名 D .32名15.(2020·全国Ⅲ文,3)设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( )A .0.01B .0.1C .1D .10 二、填空题1.(2020·全国Ⅱ理,14)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有________种. 2.(2020·全国Ⅲ理,14)⎝⎛⎭⎫x 2+2x 6的展开式中常数项是________.(用数字作答) 3.(2020·天津,11)在⎝⎛⎭⎫x +2x 25的展开式中,x 2的系数是________. 4.(2020·天津,13)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为________;甲、乙两球至少有一个落入盒子的概率为________.5.(2020·江苏,3)已知一组数据4,2a,3-a,5,6的平均数为4,则a 的值是________. 6.(2020·江苏,4)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________.7.(2020·浙江,12)二项展开式(1+2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 4=________,a 1+a 3+a 5=________.8.(2020·浙江,16)盒中有4个球,其中1个红球,1个绿球,2 个黄球,从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则P (ξ=0)=________,E (ξ)=________. 三、解答题1.(2020·全国Ⅰ理,19)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.2.(2020·全国Ⅱ理,18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)80i ix x =-=∑(,2021)9000i iy y =-=∑(,201))800ii ix y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r))niix y x y --∑((,2≈1.414.3.(2020·全国Ⅲ理,18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),4.(2020·新高考全国Ⅰ,19)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),5.(2020·新高考全国Ⅱ,19)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),6.(2020·北京,18)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(1)分别估计该校男生支持方案一的概率,该校女生支持方案一的概率;(2)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(3)将该校学生支持方案二的概率估计值记为p0,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为p1,试比较p0与p1的大小.(结论不要求证明)7.(2020·江苏,23)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为X n,恰有2个黑球的概率为p n,恰有1个黑球的概率为q n.(1)求p1,q1和p2,q2;(2)求2p n+q n与2p n-1+q n-1的递推关系式和X n的数学期望E(X n)(用n表示).8.(2020·全国Ⅰ文,17)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?9.(2020·全国Ⅱ文,18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)80i ix x =-=∑(,2021)9000i iy y =-=∑(,201))800ii ix y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r))niix y x y --∑((,2≈1.414.10.(2020·全国Ⅲ文,18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),。

2020年全国及各省市高考数学试题分类汇编(11 排列组合与概率统计)

2020年全国及各省市高考数学试题分类汇编(11 排列组合与概率统计)

全国及各省市高考数学试题分类汇编(11 排列组合与概率统计)1.(2019·全国I 文·6)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,3,,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是( ).A.8号学生B.200号学生C.616号学生D.815号学生答案:C解析:从1000名学生中抽取100名,每10人抽一个,46号学生被抽到,则抽取的号数就为106(099,)n n n N +≤≤∈,可得出616号学生被抽到.2.(2019·全国I 理·6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,下图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516B.1132C.2132D.1116 答案:A 解析:每爻有阴阳两种情况,所以总的事件共有62种,在6个位置上恰有3个是阳爻的情况有36C 种,所以36620526416C P ===.3.(2019·全国II 文·4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23 B.35 C.25 D.15答案:B解析:计测量过的3只兔子为1、2、3,设测量过的2只兔子为A 、B 则3只兔子的种类有(1,2,3)(1,2,)A (1,2,)B (1,3,)A (1,3,)B (1,,)A B ()()()()2,3,2,3,2,,3,,A B A B A B 则恰好有两只测量过的有6种,所以其概率为35. 4.(2019·全国II 理·5)演讲比赛共有9位评委分别给出某位选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分。

2020年全国各地高考真题分类汇编—排列组合、概率统计(含答案)

2020年全国各地高考真题分类汇编—排列组合、概率统计(含答案)

2020年全国各地⾼考真题分类汇编—排列组合、概率统计1.(2020•海南)要安排3名学⽣到2个乡村做志愿者,每名学⽣只能选择去⼀个村,每个村⾥⾄少有⼀名志愿者,则不同的安排⽅法共有()A.2种B.3种C.6种D.8种2.(2020•天津)从⼀批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直⽅图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为()A.10B.18C.20D.36 3.(2020•北京)在(﹣2)5的展开式中,x2的系数为()A.﹣5B.5C.﹣10D.10 4.(2020•新课标Ⅲ)设⼀组样本数据x1,x2,…,x n的⽅差为0.01,则数据10x1,10x2,…,10x n 的⽅差为()A.0.01B.0.1C.1D.10 5.(2020•新课标Ⅰ)某校⼀个课外学习⼩组为研究某作物种⼦的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进⾏种⼦发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下⾯的散点图:由此散点图,在10℃⾄40℃之间,下⾯四个回归⽅程类型中最适宜作为发芽率y和温度x的回归⽅程类型的是()A.y=a+bx B.y=a+bx2C.y=a+be x D.y=a+blnx6.(2020•新课标Ⅰ)设O为正⽅形ABCD的中⼼,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A.B.C.D.7.(2020•新课标Ⅲ)在⼀组样本数据中,1,2,3,4出现的频率分别为p1,p2,p3,p4,且p i=1,则下⾯四种情形中,对应样本的标准差最⼤的⼀组是()A.p1=p4=0.1,p2=p3=0.4B.p1=p4=0.4,p2=p3=0.1C.p1=p4=0.2,p2=p3=0.3D.p1=p4=0.3,p2=p3=0.2 8.(2020•新课标Ⅱ)在新冠肺炎疫情防控期间,某超市开通⽹上销售业务,每天能完成1200份订单的配货,由于订单量⼤幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货⼯作.已知该超市某⽇积压500份订单未配货,预计第⼆天的新订单超过1600份的概率为0.05.志愿者每⼈每天能完成50份订单的配货,为使第⼆天完成积压订单及当⽇订单的配货的概率不⼩于0.95,则⾄少需要志愿者()A.10名B.18名C.24名D.32名9.(2020•⼭东)6名同学到甲、⼄、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,⼄场馆安排2名,丙场馆安排3名,则不同的安排⽅法共有()A.120种B.90种C.60种D.30种10.(2020•新课标Ⅰ)(x+)(x+y)5的展开式中x3y3的系数为()A.5B.10C.15D.20 11.(2020•天津)已知甲、⼄两球落⼊盒⼦的概率分别为和.假定两球是否落⼊盒⼦互不影响,则甲、⼄两球都落⼊盒⼦的概率为;甲、⼄两球⾄少有⼀个落⼊盒⼦的概率为.12.(2020•上海)已知有四个数1,2,a,b,这四个数的中位数是3,平均数是4,则ab=.13.(2020•浙江)盒中有4个球,其中1个红球,1个绿球,2个⻩球.从盒中随机取球,每次取1个,不放回,直到取出红球为⽌.设此过程中取到⻩球的个数为ξ,则P(ξ=0)=,E(ξ)=.14.(2020•上海)从6个⼈挑选4个⼈去值班,每⼈值班⼀天,第⼀天安排1个⼈,第⼆天安排1个⼈,第三天安排2个⼈,则共有种安排情况.15.(2020•浙江)⼆项展开式(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=,a1+a3+a5=.16.(2020•江苏)已知⼀组数据4,2a,3﹣a,5,6的平均数为4,则a的值是.17.(2020•新课标Ⅱ)4名同学到3个⼩区参加垃圾分类宣传活动,每名同学只去1个⼩区,每个⼩区⾄少安排1名同学,则不同的安排⽅法共有种.18.(2020•江苏)将⼀颗质地均匀的正⽅体骰⼦先后抛掷2次,观察向上的点数,则点数和为5的概率是.19.(2020•上海)已知A={﹣3,﹣2,﹣1,0,1,2,3},a、b∈A,则|a|<|b|的情况有种.20.(2020•上海)已知⼆项式(2x+)5,则展开式中x3的系数为.21.(2020•新课标Ⅲ)(x2+)6的展开式中常数项是(⽤数字作答).22.(2020•天津)在(x+)5的展开式中,x2的系数是.23.(2020•北京)某校为举办甲、⼄两项不同活动,分别设计了相应的活动⽅案;⽅案⼀、⽅案⼆.为了解该校学⽣对活动⽅案是否⽀持,对学⽣进⾏简单随机抽样,获得数据如表:男⽣⼥⽣⽀持不⽀持⽀持不⽀持⽅案⼀200⼈400⼈300100⼈⼈⽅案⼆350⼈250⼈150250⼈⼈假设所有学⽣对活动⽅案是否⽀持相互独⽴.(Ⅰ)分别估计该校男⽣⽀持⽅案⼀的概率、该校⼥⽣⽀持⽅案⼀的概率;(Ⅱ)从该校全体男⽣中随机抽取2⼈,全体⼥⽣中随机抽取1⼈,估计这3⼈中恰有2⼈⽀持⽅案⼀的概率;(Ⅲ)将该校学⽣⽀持⽅案⼆的概率估计值记为p0.假设该校⼀年级有500名男⽣和300名⼥⽣,除⼀年级外其他年级学⽣⽀持⽅案⼆的概率估计值记为p1.试⽐较p0与p1的⼤⼩.(结论不要求证明)24.(2020•海南)为加强环境保护,治理空⽓污染,环境监测部⻔对某市空⽓质量进⾏调研,随机抽查了100天空⽓中的PM2.5和SO2浓度(单位:µg/m3),得下表:[0,50](50,150](150,475] SO2PM2.5[0,35]32184(35,75]6812(75,115]3710(1)估计事件“该市⼀天空⽓中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下⾯的2×2列联表:[0,150](150,475]SO2PM2.5[0,75](75,115](3)根据(2)中的列联表,判断是否有99%的把握认为该市⼀天空⽓中PM2.5浓度与SO2浓度有关?附:K2=P(K2≥k)0.0500.0100.001k 3.841 6.63510.828。

2020年高考数学试题分类汇编专题概率理精品

2020年高考数学试题分类汇编专题概率理精品

2020年高考试题数学(理科)概率、选择题1.(2020年高考浙江卷理科9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率(A) 1(B) 2(C) 3(D )45 5 5 5【答案】B一2A2 AnA^ A^A^A: 2【解析】由古典概型的概率公式得P 1 A3A2 A22.A55 52.(2020年高考辽宁卷理科5)从1, 2, 3, 4, 5中任取2各不同的数,事件A= "取到的2 个数之和为偶数”,事件B= "取到的2个数均为偶数”,则P (Bl A)=(A) 1 (B) 1 (C) 2(D) 18 4 5 2Ci 2 cl 1 u , 1解析:由题意nP(A)= —―5―, P(AB) = —= 一P(B I At=--------- =—.耳5 弓10 , PA 4小组,每位同学参加各个小组的可能性相则这两位同学参加同一个兴趣小组的概率为同,(A) 1(B) 1(C) - (D)-3 2 3 4解析:因为甲乙两位同学参加同一个小组有3种方法,两位同学个参加一个小组共有3 13 3 9种方法;所以,甲乙两位同学参加同一个小组的概率为- -9 3点评:本题考查排列组合、概率的概念及其运算和分析问题、解决问题的能力。

4.(2011年高考广东卷理科6)甲、乙两队断排球决赛.现在的憧&是甲队只要再忘一局就获冠军,乙队初再高两局才能得国军.若两队胜每扃的概率相同.则甲队获谆冠军的概率为()金太阳新课标资源网【解析】D.由题得甲队获得冠军有两种情况,第一局胜或第一局输第二局胜,所以甲队获 (1113)3 (2020年高考全国新课标卷理科4)有3个兴趣小组,甲、乙两位同学各自参加其中一个得冠军的概率p ————.所以选D.2 2 2 45.(2020年高考湖北卷理科7)如图,用K、A、A2三类不同的元件连成一个系统 .当K正常工作且A i 、A 2至少有一个正常工作时,系统正常工作 .已知K 、A 、A 2正常工作的概率依次为0.9、0.8、0.8 ,则系统正常工作的概率为B.0.864C.0.720D.0.576[-S]~~-in ———---- j L -----答案:B解析:系统正常工作概率为 C 2 0.9 0.8 (1 0.8) 0.9 0.8 0.8 0.864 ,所以选B.6. (2020年高考陕西卷理科 10)甲乙两人一起去“ 2020西安世园会”,他们约定,各自独立 地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是(A) — (B) 1 (Q 9(D) 1369 36 6【答案】D1到6号景点中任选4个进行游览有C 6c 6c 5c 5c 4c 4c 1c 3种,且等可能,最后一小时他们同在一个景点有 C 6c 5c 5c 4c 4c 30种,则最后一小时他们同在一个7. (2020年高考四川卷理科 12)在集合1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量 a= (a,b ).从所有得到的以原点为起点的向量中任取两个向量为邻边作 平行四边形.记所有作成的平行四边形的个数为 n ,其中面积不超过.4的平行四边形的个数为m ,则m () n(A) —(B) 1(C) 2(D)-15 3 5 3答案:B2解析:基本事件:从(2,1),(2,3),(2,5),(4,1),(4,5),(4,3)选取 2个,n C 6 3 5 15 .其中面积为2的平行四边形的个数(2,3)(4,5);(2,1)(4,3);(2,1)(4,1);其中面积为4的平行四 边形的为(2,3)(2,5);(2,1)(2,3) ; m=3+2=5 故 m — 1.n 15 3A.0.960【解析】:各自独立地从 景点的概率是p1111111C111111101C6 C6c5c5 C4c4c3c38. (2020年高考福建卷理科 4)如图,矩形 ABCN,点E 为边CD 的中点,若在矩形 ABCD内部随机取一个点 Q,则点Q 取自△ ABE 内部的概率等于8.12D.—3二、填空题:1 .(2020年高考浙江卷理科15)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递2 .....................................、,了个人简历,假定该毕业生得到甲公司面试的概率为 上,得到乙、丙两公司面试的概率为3〜 C 、 1 J 、口…… P ( 0) 一,则随机变量的数学期望12 5【答案】53 2 . (2020年高考江西卷理科 12)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心白^距离大于。

概率与统计(选择题、填空题)—高考真题文科数学分项汇编(解析版)

概率与统计(选择题、填空题)—高考真题文科数学分项汇编(解析版)

其中恰有 2只做过测试的取法有{a,b, A},{a,b,B},{a,c, A},{a,c,B}, {b,c, A},{b,c,B},共 6种, 所以恰有 2只做过测试的概率为 6 3,故选 B.
10 5
【名师点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用 列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度
1 【答案】 9 【解析】根据题意可得基本事件数总为66 36个.
5
点数和为 5的基本事件有1,4,4,1,2,3,3,2共
4个.
∴出现向上的点数和为
5的概率为
P
4 36
1求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.
12.【2020年高考天津】从一批零件中抽取 80个,测量其直径(单位:mm),将所得数据分为 9组:
则n 61,符合题意;若815 610n,则n 80.9,不合题意.故选 C.
7.【2019年高考全国Ⅱ卷文数】生物实验室有 5只兔子,其中只有 3只测量过某项指标,若从这 5只兔子
中随机取出 3只,则恰有 2只测量过该指标的概率为
2 A. 3
3 B. 5
3
2 C. 5
【答案】B
1 D. 5
【分析】首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式
即可求解.
【解析】设其中做过测试的 3只兔子为a,b,c,剩余的 2只为 A,B, 则从这 5只中任取 3只的所有取法有{a,b,c},{a,b, A},{a,b,B},{a,c, A},{a,c,B},{a, A,B},{b,c, A},
{b,c,B},{b, A,B},{c, A,B},共 10种.

2020高考数学分类汇编--概率统计

2020高考数学分类汇编--概率统计

2020年普通高等学校招生全国统一考试一卷理科数学5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是 A .y a bx =+ B .2y a bx =+ C .e x y a b =+ D .ln y a b x =+19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束. 经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12, (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率. 5.D6.B7.C 8.C19.解:(1)甲连胜四场的概率为116. (2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛.比赛四场结束,共有三种情况:甲连胜四场的概率为116;乙连胜四场的概率为116;丙上场后连胜三场的概率为18.所以需要进行第五场比赛的概率为11131161684 ---=.(3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为18.比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为116,18,18.因此丙最终获胜的概率为11117 8168816+++=.2020年普通高等学校招生全国统一考试理科数学3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名18.(12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()()20,,2,1,⋯=iyxii ,其中ix和i y分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑==20160iix,∑==2011200i iy,()∑==-201280i ix x,()∑==-20129000i iyy,()()080201∑==--i i iy y x x.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本()()20,,2,1,⋯=i y x i i 的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数()()()()∑∑∑===----=ni ini i ni ii y y x x yyx x r 12121,414.12≈.2020年普通高等学校招生全国统一考试理科数学3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是 A .14230.1,0.4p p p p ==== B .14230.4,0.1p p p p ==== C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====4.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()I t (t 的单位:天)的Logistic 模型:0.23(53)()=1e t K I t --+,其中K 为最大确诊病例数.当*()0.95I t K =时,标志着已初步遏制疫情,则t *约为(ln193)≈A .60B .63C .66D .6918.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关? 附:K3.B4.C18.解:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:(2)一天中到该公园锻炼的平均人次的估计值为1(100203003550045)350100⨯+⨯+⨯=.(3)根据所给数据,可得22⨯列联表:根据列联表得22100(3382237) 5.82055457030K ⨯⨯-⨯=≈⨯⨯⨯.由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.2020年普通高等学校招生全国统一考试文科数学5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是 A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+17.(12分)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:乙分厂产品等级的频数分布表(1(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务? 5.D 17.解:(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A 级品的概率的估计值为400.4100=; 乙分厂加工出来的一件产品为A 级品的概率的估计值为280.28100=. (2)由数据知甲分厂加工出来的100件产品利润的频数分布表为因此甲分厂加工出来的100件产品的平均利润为65402520520752015100⨯+⨯-⨯-⨯=.由数据知乙分厂加工出来的100件产品利润的频数分布表为因此乙分厂加工出来的100件产品的平均利润为70283017034702110100⨯+⨯+⨯-⨯=.比较甲乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.2020年普通高等学校招生全国统一考试文科数学4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A .10名 B .18名C .24名D .32名18. (12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i ) (i=1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)80i ix x =-=∑(,2021)9000i iy y =-=∑(,201))800ii ix y x y =--=∑((. (1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i ) (i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r=))niix y x y --∑((=1.414.4.B18.解:(1)由己知得样本平均数20160120i iy y===∑,从而该地区这种野生动物数量的估计值为60×200= 12 000. (2)样本(,)i i x y (1,2,,20)i =的相关系数20))0.943i ix yrx y--===≈∑((.(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.2020年普通高等学校招生全国统一考试文科数学3.设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为A.0.01B.0.1C.1D.104.Logistic模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:0.23(53)()=1e tIKt--+,其中K为最大确诊病例数.当I(*t)=0.95K时,标志着已初步遏制疫情,则*t约为(ln19≈3)A.60B.63C.66D.6918.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,3.C4.C18.解:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:(2)一天中到该公园锻炼的平均人次的估计值为1(100203003550045)350100⨯+⨯+⨯=. (3)根据所给数据,可得22⨯列联表:根据列联表得22100(3382237) 5.82055457030K ⨯⨯-⨯=≈⨯⨯⨯.由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.2020年普通高等学校招生全国统一考试(北京卷)数 学(18)(本小题14分)某校为举办甲乙两项不同活动,分别设计了相应的活动方案:方案一、方案二、为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率,该校女生支持方案一的概率:(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案二的概率估计值记为0p,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p,试比较0p与1p的大小.(结论不要求证明)2020年普通高等学校招生全国统一考试(江苏卷)4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是▲ .4.1 923.(本小题满分10分)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为X n,恰有2个黑球的概率为p n,恰有1个黑球的概率为q n.(1)求p1,q1和p2,q2;(2)求2p n+q n与2p n-1+q n-1的递推关系式和X n的数学期望E(X n)(用n表示) .23.满分10分.解:(1)113111133C C 1C C 3p =⋅=,113211133C C 2C C 3q =⋅=,11113121211111*********C C C C 1270(1)C C C C 3927p p q p q p q =⋅⋅+⋅⋅+⋅--=+=,1111111133222112211111111111133333333C C C C C C C C ()(1)C C C C C C C C q p q p q =⋅⋅+⋅+⋅⋅+⋅⋅--11216=9327q -+=.(2)当2n ≥时,1111312111111111113333C C C C 120(1)C C C C 39n n n n n n n p p q p q p q ------=⋅⋅+⋅⋅+⋅--=+,①111111113322211211111111111133333333C C C C C C C C ()(1)C C C C C C C C n n n n n q p q p q ----=⋅⋅+⋅+⋅⋅+⋅⋅--112=93n q --+,②2⨯+①②,得()1111124121222399333n n n n n n n p q p q q p q -----+=+-+=++. 从而1112(211)3n n n n p q p q ---+-+=,又111312p q -+=,所以11112()1()3331n nn n p q -+++==,*n ∈N .③由②,有1313()595n n q q --=--,又135115q -=,所以1113()1595n n q -=-+,*n ∈N . 由③,有13111()210111()()33925n n n n n p q =+=-+-+[],*n ∈N . 故311111()()109235n n n n p q --=--+,*n ∈N . n X 的概率分布则*1()0(1)121(),3n n n n n n E X p q q p n =⨯--+⨯+⨯=+∈N .2020年普通高等学校招生全国统一考试(天津卷)数学4.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为A.10 B.18 C.20 D.3613.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.4.B13.16;232020年普通高等学校招生全国统一考试5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62%B .56%C .46%D .42%12.信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.A .若n =1,则H (X )=0B .若n =2,则H (X )随着i p 的增大而增大C .若1(1,2,,)i p i n n==,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+=,则H (X )≤H (Y )19.(12分)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,5.C 12.AC19.解:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且2SO 浓度不超过150的天数为32186864+++=,因此,该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150的概率的估计值为640.64100=. (2)根据抽查数据,可得22⨯列联表:(3)根据(2)的列联表得22100(64101610)7.48480207426K ⨯⨯-⨯=≈⨯⨯⨯. 由于7.484 6.635>,故有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关.2020年普通高等学校招生全国统一考试(浙江卷)数 学16.盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则(0)P ξ==_______,()E ξ=_______. 16.1,13。

2020年高考数学分类汇编:统计概率与排列组合

2020年高考数学分类汇编:统计概率与排列组合

训练一:2020年高考文科数学新课标Ⅰ卷第4题:设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为()A、51B、52C、21D、54本题解析:整体事件:在O ,A ,B ,C ,D 中任取3点。

),,(B A O ,),,(C A O ,),,(D A O ,),,(C B O ,),,(D B O ,),,(D C O ,),,(C B A ,),,(D B A ,),,(D C A ,),,(D C B 。

整体事件中一共包含10个基本事件。

所求事件:取到的3点共线。

O 为正方形ABCD 的中心O ⇒为对角线AC 和BD 的中点。

),,(O C A ,),,(O D B 。

所求事件中一共包含2个基本事件。

概率:取到的3点共线的概率:51102==P 。

训练二:2020年高考数学新课标Ⅰ卷文科第5题理科第5题:某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C 0)的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据),(i i y x (20,...,2,1=i )得到下列的散点图:由此散点图,在C 010至C 040之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是()A、bxa y +=B、2bxa y +=C、xbea y +=D、xb a y ln +=本题解答:A 选线:一次函数bx a y +=的图像:B 选项:二次函数2bx a y +=的图像:C 选项:指数函数xbe a y +=的图像:D 选项:对数函数x b a y ln +=的图像:根据散点图的特点只有D 选项对数函数x b a y ln +=符合条件。

训练三:2020年高考文科数学新课标Ⅰ卷第17题:某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分别为A,B,C,D 四个等级,加工、业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元、50元、20元;对于D 级品,厂家每件赔偿原料损失费50元,该厂有甲、乙两个分厂可承接加工业务,甲分厂加工费为25元/件,乙分厂加工费20元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工100件这种产品。

2020年高考数学试题分类汇编概率.doc

2020年高考数学试题分类汇编概率.doc

八、概率一、选择题1.(浙江理 9)有 5 本不同的书,其中语文书 2 本,数学书 2 本,物理书 1 本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率1 2 3 4A.5 B . 5 C.5 D 5【答案】 B2.(四川理 1)有一个容量为 66 的样本,数据的分组及各组的频数如下:[11 . 5, 15. 5) 2 [15 . 5,19 .5) 4 [19 . 5,23. 5) 9 [23 . 5,27 . 5) 18[27 . 5, 31. 5) 1l [31 . 5, 35. 5) 12 [35 .5. 39. 5) 7 [39 .5,43 . 5) 3根据样本的频率分布估计,数据落在[31 . 5,43. 5)的概率约是1 1 1 2A.6B.3C.2D.3【答案】 BP22 1【解析】从31.5到 43.5 共有22,所以66 3 。

3. (陕西理10)甲乙两人一起去游“ 2020 西安世园会” ,他们约定,各自独立地从1到6号景点中任选 4 个进行游览,每个景点参观 1 小时,则最后一小时他们同在一个景点的概率是1 1 5 1A.36B.9C.36D.6【答案】 D4.(全国新课标理 4)有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为1 12 3(A)3 (B)2 (C)3 (D)4【答案】 A5.(辽宁理 5)从 1,2,3,4,5 中任取 2 各不同的数,事件 A=“取到的 2 个数之和为偶数”,事件 B=“取到的 2 个数均为偶数”,则P( B︱ A) =1 12 1(A)8 (B)4 (C)5 (D)2【答案】 B6. (湖北理5)已知随机变量服从正态分布 N 2,a2 ,且P(< 4)=0.8,则P( 0<< 2)=A. 0.6 B.0. 4 C.0.3 D .0.2 【答案】 C7. (湖北理7)如图,用 K、A1、A2三类不同的元件连接成一个系统。

2020年高考数学分类汇编:概率与统计

2020年高考数学分类汇编:概率与统计

2020年高考数学分类汇编:概率与统计3.在一组样本数据中,1,2,3,4出现的频率分别为1p ,2p ,3p ,4p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是 A. 14230.1,0.4p p p p ==== B .14230.4,0.1p p p p ==== C .14230.2,0.3p p p p ==== D .14230.3,0.2p p p p ====4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A .10名B .18名C .24名D .32名3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A .10名B .18名C .24名D .32名5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是 A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是▲.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是▲.5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%3.设一组样本数据12,,...,n x x x 的方差为0.01,则数据12n 10,10,...,10x x x 的方差为 A .0.01 B .0.1 C .1 D .1016.盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则(0)P ξ==_______,()E ξ=_______.4.从一批零件中抽取80个,测量其直径(单位:mm ),将所得数据分为9组:[5.31,5.33),[5.33,5.35),,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为A .10B .18C .20D .3613.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.18.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1) 分别估计该市一天的空气质量等级为1,2,3,4的概率;(2) 求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3) 若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”。

2020年高考数学试题分类汇编:概率.docx

2020年高考数学试题分类汇编:概率.docx

2020 年高考数学试题分类汇编:概率【考点阐述】随机事件的概率. 等可能性事件的概率. 互斥事件有一个发生的概率. 相互独立事件同时发生的概率.独立重复试验. 【考试要求】( 1)了解随机事件的发生存在着规律性和随机事件概率的意义. ( 2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. ( 3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在 n 次独立重复试验中恰好发生κ 次的概率.【考题分类】(一)选择题(共8 题)1.(福建卷理 5)某一批花生种子,如果每1 粒发牙的概率为4 ,那么播下 4 粒种子恰有 2 粒发5芽的概率是()1696C.192D.256A.B.625625625625【标准答案】 B22【试题解析】 由 P4 (2) C 4241 9655 625【高考考点】 独立重复实验的判断及计算 【易错提醒】 容易记成二项展开式的通项,当然这题因为数字的原因不涉及.【学科网备考提示】 请考生注意该公式与二项展开式的通项的区别 ,所以要强化公式的记忆.2.(福建卷文 5)某一批花生种子,如果每1 粒发芽的概率为4,那么播下 3 粒种子恰有 2 粒5发芽的概率是()12 1648 96A.B.C.D.125125125125【标准答案】 C21【标准答案】 由 P 3(2) C 32 41 4855 125【高考考点】 独立重复实验的判断及计算【易 提醒】 容易 成二 展开式的通.【学科网 考提示】 考生注意 公式与二 展开式的通 的区3.(江西卷理11文 11) 子 一天 示的 是从 00:00 到 23: 59 ,所以要 化公式的的每一 刻都由四个数字.成, 一天中任一 刻的四个数字之和23 的概率 ()1111A .B .C .D .180288360480【 准答案】 C .【 准答案】一天 示的 共有24 60 1440 种 ,和 23 共有 4 种 ,故所求概率1 .3604. ( 宁卷理 7 文 7) 4 卡片上分 写有数字 1,2, 3, 4,从 4 卡片中随机抽取2 ,取出的2 卡片上的数字之和 奇数的概率 ()1123A .B .C .D .3234【答案】:C【解析】:本小 主要考 等可能事件概率求解 。

2020届全国各地高考试题分类汇编14 概率、统计

2020届全国各地高考试题分类汇编14 概率、统计

等级为 2 的概率为 5 10 12 0.27 ,等级为 3 的概率为 6 7 8 0.21 ,等级为 4 的概
100
100
率为 7 2 0 0.09 ; 100
(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为
100 20 30035 500 45 350 100
(3) 2 2 列联表如下:
生,除一年级外其他年级学生支持方案二的概率估计值记为 p1 ,试比较 p0 与 p1 的大小.(结
论不要求证明)
【解析】(Ⅰ)该校男生支持方案一的概率为 200 1 , 200+400 3
该校女生支持方案一的概率为 300 3 ; 300+100 4
(Ⅱ)3 人中恰有 2 人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一
D. 若 n=2m,随机变量 Y 所有可能的取值为1, 2,, m ,且 P(Y j) p j p2m1 j ( j 1, 2, , m) ,
则 H(X)≤H(Y) 【答案】AC
【解析】对于 A 选项,若 n 1 ,则 i 1, p1 1,所以 H X 1 log2 1 0 ,所以 A
因此,最适合作为发芽率 y 和温度 x 的回归方程类型的是 y a b ln x .故选:D.
3.(2020•全国 1 卷)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者
被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一
场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直
因此,B 选项这一组的标准差最大.故选:B.
6.(2020•全国 3 卷)某学生兴趣小组随机调查了某市 100 天中每天的空气质量等级和当天

全国通用2020_2022三年高考数学真题分项汇编专题15概率与统计解答题理(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编专题15概率与统计解答题理(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编:15 概率与统计(解答题)(理科专用)1.【2022年全国甲卷】甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望.【答案】(1)0.6;(2)分布列见解析,E(X)=13.【解析】【分析】(1)设甲在三个项目中获胜的事件依次记为A,B,C,再根据甲获得冠军则至少获胜两个项目,利用互斥事件的概率加法公式以及相互独立事件的乘法公式即可求出;(2)依题可知,X的可能取值为0,10,20,30,再分别计算出对应的概率,列出分布列,即可求出期望.(1)设甲在三个项目中获胜的事件依次记为A,B,C,所以甲学校获得冠军的概率为P=P(ABC)+P(A BC)+P(AB̅C)+P(ABC)=0.5×0.4×0.8+0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.16+0.16+0.24+0.04=0.6.(2)依题可知,X的可能取值为0,10,20,30,所以,P(X=0)=0.5×0.4×0.8=0.16,P(X=10)=0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.44,P(X=20)=0.5×0.6×0.8+0.5×0.4×0.2+0.5×0.6×0.2=0.34,P(X=30)=0.5×0.6×0.2=0.06.即X的分布列为2.【2022年新高考1卷】一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:(1)能否有99%(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.P(B|A)P(B ̅|A)与P(B|A )P(B ̅|A )的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R . (ⅰ)证明:R =P(A|B)P(A |B)⋅P(A |B̅)P(A|B ̅);(ⅱ)利用该调查数据,给出P(A|B),P(A|B ̅)的估计值,并利用(ⅰ)的结果给出R 的估计值.附K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),【答案】(1)答案见解析(2)(i )证明见解析;(ii)R =6; 【解析】 【分析】(1)由所给数据结合公式求出K 2的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未黄该疾病群体的卫生习惯有差异;(2)(i) 根据定义结合条件概率公式即可完成证明;(ii)根据(i )结合已知数据求R . (1)由已知K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=200(40×90−60×10)250×150×100×100=24,又P(K 2≥6.635)=0.01,24>6.635,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异. (2)(i)因为R =P(B|A)P(B ̅|A)⋅P(B̅|A )P(B|A )=P(AB)P(A)⋅P(A)P(AB ̅)⋅P(A B̅)P(A )⋅P(A )P(A B ), 所以R =P(AB)P(B)⋅P(B)P(A B )⋅P(A B̅)P(B̅)⋅P(B ̅)P(AB ̅) 所以R =P(A|B)P(A |B)⋅P(A |B̅)P(A|B ̅), (ii)由已知P(A|B)=40100,P(A|B̅)=10100,又P(A|B)=60100,P(A|B̅)=90100,所以R=P(A|B)P(A|B)⋅P(A|B̅)P(A|B̅)=63.【2022年新高考2卷】在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).【答案】(1)44.65岁;(2)0.89;(3)0.0014.【解析】【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出;(2)设A={一人患这种疾病的年龄在区间[20,70)},根据对立事件的概率公式P(A)=1−P (A)即可解出;(3)根据条件概率公式即可求出.(1)平均年龄x̅=(5×0.001+15×0.002+25×0.012+35×0.017+45×0.023+55×0.020+65×0.012+75×0.006+85×0.002)×10=44.65(岁).(2)设A={一人患这种疾病的年龄在区间[20,70)},所以P(A)=1−P(A)=1−(0.001+0.002+0.006+0.002)×10=1−0.11=0.89.(3)设B={任选一人年龄位于区间[40,50)},C={任选一人患这种疾病},则由条件概率公式可得P(C|B)=P(BC)P(B)=0.1%×0.023×1016%=0.001×0.230.16=0.0014375≈0.0014.4.【2021年新高考1卷】某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分,已知小明能正确回答A类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【答案】(1)见解析;(2)B类.【解析】【分析】(1)通过题意分析出小明累计得分X的所有可能取值,逐一求概率列分布列即可.(2)与(1)类似,找出先回答B类问题的数学期望,比较两个期望的大小即可.【详解】(1)由题可知,X的所有可能取值为0,20,100.()010.80.2P X==-=;()()200.810.60.32P X==-=;()1000.80.60.48P X==⨯=.所以X的分布列为(2)由(1)知,()00.2200.321000.4854.4E X=⨯+⨯+⨯=.若小明先回答B问题,记Y为小明的累计得分,则Y的所有可能取值为0,80,100.()010.60.4P Y==-=;()()800.610.80.12P Y==-=;()1000.80.60.48P X==⨯=.所以()00.4800.121000.4857.6E Y =⨯+⨯+⨯=. 因为54.457.6<,所以小明应选择先回答B 类问题.5.【2021年新高考2卷】一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0,1,2,3)i P X i p i ===.(1)已知01230.4,0.3,0.2,0.1p p p p ====,求()E X ;(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x +++=的一个最小正实根,求证:当()1E X ≤时,1p =,当()1E X >时,1p <;(3)根据你的理解说明(2)问结论的实际含义. 【答案】(1)1;(2)见解析;(3)见解析. 【解析】 【分析】(1)利用公式计算可得()E X .(2)利用导数讨论函数的单调性,结合()10f =及极值点的范围可得()f x 的最小正零点. (3)利用期望的意义及根的范围可得相应的理解说明. 【详解】(1)()00.410.320.230.11E X =⨯+⨯+⨯+⨯=.(2)设()()3232101f x p x p x p x p =++-+,因为32101p p p p +++=,故()()32322030f x p x p x p p p x p =+-+++,若()1E X ≤,则123231p p p ++≤,故2302p p p +≤.()()23220332f x p x p x p p p '=+-++,因为()()20300f p p p '=-++<,()230120f p p p '=+-≤, 故()f x '有两个不同零点12,x x ,且1201x x <<≤,且()()12,,x x x ∈-∞⋃+∞时,()0f x '>;()12,x x x ∈时,()0f x '<; 故()f x 在()1,x -∞,()2,x +∞上为增函数,在()12,x x 上为减函数, 若21x =,因为()f x 在()2,x +∞为增函数且()10f =,而当()20,x x ∈时,因为()f x 在()12,x x 上为减函数,故()()()210f x f x f >==,故1为230123p p x p x p x x +++=的一个最小正实根,若21>x ,因为()10f =且在()20,x 上为减函数,故1为230123p p x p x p x x +++=的一个最小正实根,综上,若()1E X ≤,则1p =.若()1E X >,则123231p p p ++>,故2302p p p +>. 此时()()20300f p p p '=-++<,()230120f p p p '=+->, 故()f x '有两个不同零点34,x x ,且3401x x <<<, 且()()34,,x x x ∈-∞+∞时,()0f x '>;()34,x x x ∈时,()0f x '<;故()f x 在()3,x -∞,()4,x +∞上为增函数,在()34,x x 上为减函数, 而()10f =,故()40f x <,又()000f p =>,故()f x 在()40,x 存在一个零点p ,且1p <.所以p 为230123p p x p x p x x +++=的一个最小正实根,此时1p <,故当()1E X >时,1p <.(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1.6.【2020年新课标1卷理科】甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12, (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率. 【答案】(1)116;(2)34;(3)716. 【解析】 【分析】(1)根据独立事件的概率乘法公式可求得事件“甲连胜四场”的概率;(2)计算出四局以内结束比赛的概率,然后利用对立事件的概率公式可求得所求事件的概率;(3)列举出甲赢的基本事件,结合独立事件的概率乘法公式计算出甲赢的概率,由对称性可知乙赢的概率和甲赢的概率相等,再利用对立事件的概率可求得丙赢的概率. 【详解】(1)记事件:M 甲连胜四场,则()411216P M ⎛⎫== ⎪⎝⎭;(2)记事件A 为甲输,事件B 为乙输,事件C 为丙输, 则四局内结束比赛的概率为()()()()411424P P ABAB P ACAC P BCBC P BABA ⎛⎫'=+++=⨯= ⎪⎝⎭,所以,需要进行第五场比赛的概率为314P P '=-=; (3)记事件A 为甲输,事件B 为乙输,事件C 为丙输, 记事件:M 甲赢,记事件:N 丙赢,则甲赢的基本事件包括:BCBC 、ABCBC 、ACBCB 、 BABCC 、BACBC 、BCACB 、BCABC 、BCBAC ,所以,甲赢的概率为()4511972232P M ⎛⎫⎛⎫=+⨯= ⎪ ⎪⎝⎭⎝⎭.由对称性可知,乙赢的概率和甲赢的概率相等, 所以丙赢的概率为()97123216P N =-⨯=. 【点睛】本题考查独立事件概率的计算,解答的关键就是列举出符合条件的基本事件,考查计算能力,属于中等题.7.【2020年新课标2卷理科】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi ,yi )(i =1,2,…,20),其中xi 和yi 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021)80i i x x =-=∑(,2021)9000i i y y =-=∑(,201))800ii ix y x y =--=∑((. (1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(xi ,yi )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r=12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((,≈1.414.【答案】(1)12000;(2)0.94;(3)详见解析 【解析】 【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式20()()iix x y y r --=∑计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样. 【详解】(1)样区野生动物平均数为201111200602020i i y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯= (2)样本(,)i i x y (i =1,2,…,20)的相关系数为20()()0.94iix x y y r --===≈∑(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性, 由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物的数量差异很大, 采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性, 从而可以获得该地区这种野生动物数量更准确的估计. 【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.8.【2020年新课标3卷理科】某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:2()()()()()n ad bc K a b c d a c b d -=++++,【答案】(1)0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【解析】 【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率; (2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论. 【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=; (2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:()21003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关. 【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.9.【2020年新高考1卷(山东卷)】为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:11 (3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关? 附:22()()()()()n ad bc K a b c d a c b d -=++++,【答案】(1)0.64;(2)答案见解析;(3)有.【解析】【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据可得22⨯列联表;(3)计算出2K ,结合临界值表可得结论.【详解】(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为:22⨯222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>, 因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关.【点睛】本题考查了古典概型的概率公式,考查了完善22⨯列联表,考查了独立性检验,属于中档题.。

2020年高考数学试题分类汇编——概率与统计选择

2020年高考数学试题分类汇编——概率与统计选择

2020年高考数学试题分类汇编——概率与统计选择〔2018陕西文数〕4.如图,样本A 和B 分不取自两个不同的总体,它们的样本平均数分不为A B x x 和,样本标准差分不为sA 和sB,那么[B] (A) A x >B x ,sA >sB (B) A x <B x ,sA >sB (C) A x >B x ,sA <sB (D)A x <B x ,sA <sB解析:此题考查样本分析中两个特点数的作用A x <10<B x ;A 的取值波动程度明显大于B ,因此sA >sB〔2018辽宁理数〕〔3〕两个实习生每人加工一个零件.加工为一等品的概率分不为23和34,两个零件是 否加工为一等品相互独立,那么这两个零件中恰有一个一等品的概率为〔A 〕12 (B)512(C)14 (D)16 【答案】B【命题立意】此题考查了相互独立事件同时发生的概率,考查了有关概率的运算咨询题 【解析】记两个零件中恰好有一个一等品的事件为A ,那么 P(A)=P(A 1)+ P(A 2)=211335+=43412⨯⨯〔2018江西理数〕11.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测。

方法一:在10箱子中各任意抽查一枚;方法二:在5箱中各任意抽查两枚。

国王用方法一、二能发觉至少一枚劣币的概率分不为1p 和2p ,那么A. 1p =2pB. 1p <2pC. 1p >2p D 。

以上三种情形都有可能【答案】B【解析】考查不放回的抽球、重点考查二项分布的概率。

此题是北师大版新课标的课堂作业,作为旧大纲的最后一年高考,此题给出一个强烈的导向信号。

方法一:每箱的选中的概率为110,总概率为0010101(0.1)(0.9)C -;同理,方法二:每箱的选中的概率为15,总事件的概率为0055141()()55C -,作差得1p <2p 。

〔2018安徽文数〕〔10〕甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,那么所得的两条直线相互垂直的概率是〔A 〕318 〔A 〕418 〔A 〕518 〔A 〕61810.C【解析】正方形四个顶点能够确定6条直线,甲乙各自任选一条共有36个差不多事件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考试题分类汇编(统计与概率)
考点1计数
1.(2020·全国卷Ⅱ·理科)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有 种.
2.(2020·海南卷·山东卷)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有
A .120种
B .90种
C .60种
D .30种 3.(2020·全国卷Ⅱ·文理科)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于
0.95,则至少需要志愿者
A .10名
B .18名
C .24名
D .32名 考点2数据的数字特征
1.(2020·全国卷Ⅲ·文科)设一座样本数据
1x ,2x ,,n x 的方差为0.01,
则数据
110x ,210x ,
,10n x 的方差为
A .0.01
B .0.1
C .1
D .10
2.(2020·全国卷Ⅲ·理科)在一组样本中,1,2,3,4出现的频率分别为1p ,
2p ,3p ,4p ,且4
11i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组

A .140.1p p ==,230.4p p ==
B .140.4p p ==,230.1p p ==
C .140.2p p ==,230.3p p ==
D .140.3p p ==,230.2p p == 3.(2020·北京卷)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是
A .62%
B .56%
C .46%
D .42% 4.(2020·天津卷)从一批零件中抽取80个,测量其直径(单位:mm ),将所
得数据分为9组:[5.31,5.33),[5.33,5.35)
,,[5.45,5.47],[5.47,5.49],并整
理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为
A .10
B .18
C .20
D .36
考点4回归分析
1.(2020·全国卷Ⅰ·理科)某校一个课外学习小组为研究某作物的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子发芽实验,有实验数据(,)i i x y (1i =,2,,20)得到下面的散点图:
由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是
A .y a bx =+
B .2y a bx =+
C .x y a be =+
D .ln y a b x =+ 考点5概率
1.(2020·天津卷)已知甲、乙两球落入盒子的概率分别为
1
2和13
.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为 ;甲、乙两球至少有一个落入盒子的概率为 .
2.(2020·北京卷)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随



20%
40% 60% 80% 100% 0
10 20 30
40

◆ ◆ ◆ ◆ ◆ ◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆ ◆ ◆ ◆ ◆
假设所有学生对活动方案是否支持相互独立.
(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率; (Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;
(Ⅲ)将该校学生支持方案的概率估计值记为0p ,假设该校年级有500名男生和
300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较
0p 与1p 的大小.(结论不要求证明)
3.(2020·全国卷Ⅰ·文科)某厂接受了一项加工业务,加工起来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、
C 级品,厂家每件分别收取加工费90
元、50元、20元,对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂承接加工业务.甲分厂加工成本费25元/件,乙分厂加工成本费20元/件.厂家为决定由哪家分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
(Ⅰ)分别估计甲、乙两个分厂加工出来的一件产品为A 级品的概率; (Ⅱ)分别求甲、乙两个分厂加工出来的100件产品的平均利润,厂家应选哪个分厂承接加工业务?
4.(2020·全国卷Ⅰ·理科)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:
累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,福者下一场轮空,直至由一人被淘汰;当一人被淘汰后,剩余的两人继续比赛直至其中一人被淘汰,另一人最终获胜,比赛结束.
甲分厂产品等级的频数分布表
乙分厂产品等级的频数分布表
经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为1
2
.
(Ⅰ)求甲连胜四场的概率;
(Ⅱ)求需要进行第五场比赛的概率;
(Ⅲ)求丙最终获胜的概率.
考点6独立性检验及相关系数
1.(2020·海南卷·山东卷)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的
2.5
PM和
2
SO浓度(单位:3
/
ug m),得下表:
(Ⅰ)估计事件“该市一天空气中 2.5
PM浓度不超过75,且
2
SO浓度不超过150”的概率;
(Ⅲ)根据(Ⅱ)中的列联表,判断是否有99%的把握认为该市一天空气中 2.5
PM
浓度与
2
SO浓度有关?
附:
2
2
()
()()()()
n ad bc
K
a b c d a c b d
-
=
++++

2.(2020·全国卷Ⅱ·文理科)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其方程面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(,)i i x y (1i =,2

,20),其中i x 和i y 分别表示第i 个样区的
植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得2060i i x =
=∑,
20
1200i
i y
=
=∑,202
()80i i x x =
-=∑,202
()9000i i y y =
-=∑,20
()()800i i i x x y y =
--=∑.
(Ⅰ)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数); (Ⅱ)求样本的相关系数(精确到0.01);
(Ⅲ)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一你认为更合理的抽样方法,说明理由.
附:相关系数()()
n
i
i
x x y y r --=

1.414≈.
3.(2020·全国卷Ⅲ·理科)某学生兴趣小组随机调查了某市100天中每天的空
(Ⅰ)分别估计该市一天的空气质量等级为1,2,3,4的概率;
(Ⅱ)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(Ⅲ)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面22⨯列联表,并根据列联表判断是否有95%的把握认为一天中到公园锻炼的人次与该市当天的空气质量有关?
附:其中
2
2
()
()()()()
n ad bc
K
a b c d a c b d
-
=
++++
,。

相关文档
最新文档