3.第三章 双闭环直流调速系统
双闭环直流调速系统特性与原理
双闭环直流调速系统特性与原理双闭环直流调速系统是一种用于控制直流电动机转速的调速系统。
它由两个闭环控制回路组成,分别是转速外环和电流内环。
其中,转速外环控制直流电机的转速,通过调节电压来控制直流电机的转矩;而电流内环则控制直流电机的电流,通过调节电压来控制直流电机的转矩。
1.稳定性:双闭环控制系统能够有效地控制直流电动机的转速和电流,使其在运行过程中保持稳定的转矩输出。
通过转速外环对转速进行控制,可以实现精确的转速调节;而电流内环则能够控制电机的电流,防止过载和短路等故障。
2.响应速度:双闭环控制系统的转速外环具有较快的响应速度,能够实现快速的转速调节。
而电流内环的响应速度则相对较慢,主要起到电机保护的作用。
3.鲁棒性:双闭环控制系统具有较好的鲁棒性,能够对外部干扰和参数变化具有一定的抗干扰能力。
通过合理的控制策略和参数调整,可以提高系统的鲁棒性。
1.转速外环控制原理:转速外环将输出电压与给定的转速进行比较,得到转速误差,并通过调节电压反馈回内环控制器中。
转速外环控制器通常采用PI控制器,根据转速误差和积分项来控制输出电压。
通过不断调节输出电压,使得转速误差趋于零,从而实现对直流电机转速的调节。
2.电流内环控制原理:电流内环控制器将输出电压与给定的电流进行比较,得到电流误差,并通过调节输出电压来控制电流。
电流内环控制器通常也采用PI控制器,根据电流误差和积分项来控制输出电压。
通过不断调节输出电压,使得电流误差趋于零,从而实现对直流电机电流的调节。
3.反馈信号处理:双闭环直流调速系统中,转速和电流测量信号需要经过滤波和放大等处理,以便传递给控制器进行计算。
滤波器通常采用低通滤波器,用于去除高频噪声,放大器则用于放大信号强度。
4.控制指令处理:由上位机或人机界面输入的控制指令需要经过处理,包括限幅、线性化等,以确保输入信号符合控制系统的要求。
处理后的指令将送入控制器,进行计算和控制输出电压。
通过双闭环直流调速系统的控制,可以实现对直流电机的转速和电流的精确调节,并具有较好的稳定性、响应速度和鲁棒性,广泛应用于工业自动化领域。
运动控制_第3章____转速、电流双闭环直流调速系统
U
*
im
,转速外环呈开环状态,
转速的变化对系统不再产生影响。在这种情况下,电流负反
馈环起恒流调节作用,转速线性上升,从而获得极好的下垂
特性,如图 3-5中的AB段虚线所示。
第二十一页,编辑于星期三:九点 二十二分。
第 3章 转速、电流双闭环直流调速系统
此时,电流
I
d
U* im ?
?
I dm
,Idm 为最大电流,是由设
差调节。
第二十页,编辑于星期三:九点 二十二分。
第 3章 转速、电流双闭环直流调速系统
1) 转速调节器饱和
在电动机刚开始起动时,突加阶跃给定信号 U*n,由于
机械惯性,转速 n很小,转速负反馈信号 Un很小,则转速偏
差电压 ΔUn=U*n-Un>0很大,转速调节器 ASR 很快达到饱和
状态, ASR的输出维持在限幅值
图 3-5 双闭环直流调速系统的静特性
第二十三页,编辑于星期三:九点 二十二分。
第3章 转速、电流双闭环直流调速系统
2) 转速调节器不饱和
当转速n达到给定值且略有超调时 (即n>n0),ΔUn=
U*n-Un<0,则转速调节器 ASR的输入信号极性发生改变,
ASR 退出饱和状态,转速负反馈环节开始起转速调节作用,
用以调节起动电流并使之保持最大值,使得转速线性变化, 迅速上升到给定值; 在电动机稳定运行时,转速调节器退 出饱和状态,开始起主要调节作用,使转速随着转速给定信 号的变化而变化,电流环跟随转速环调节电动机的电枢电流 以平衡负载电流。
第六页,编辑于星期三:九点 二十二分。
第 3章 转速、电流双闭环直流调速系统
器ACR和转速调节器 ASR的输入电压偏差一定为零,因此,
晶闸管双闭环不可逆直流调速系统设计
目录第一章绪论 (2)第二章主电路结构选择 (3)2.1变压器参数计算 (4)第三章双闭环直流调速系统设计 (5)3.1电流调节器的设计 (7)3.2转速调节器的设计 (10)第四章触发电路的选择与原理图 (14)第五章直流调速系统MATLAB仿真 (16)第六章总结 (18)第七章参考文献 (18)第一章绪论转速负反馈控制直流调速系统(简称单闭环调速系统)PI调节器的单闭环转速系统可以实现转速调节无静差,消除负载转矩扰动对稳态转速的影响,并用电流截止负反馈限制电枢电流的冲击,避免出现过电流现象。
但转速单闭环系统并不能充分按照理想要求控制电流(或电磁转矩)的动态过程。
对于经常正、反转运行的调速系统,缩短起、制动过程的时间是提高生产率的重要因素。
在起动(或制动)过渡过程中,希望始终保持电流(电磁转矩)为允许的最大值,使调速系统以最大的加(减)速度运行。
当到达稳态转速时,最好使电流立即降下来,使电磁转矩与负载转矩相平衡,从而迅速转入稳态运行。
这类理想启动过程示意下图1所示。
图1 单闭环调速系统理想启动过程启动电流呈矩形波,转速按线性增长。
这是在最大电流(转矩)受限制时调速系统所能获得的最快的起动(制动)过程。
下面我们引入了一种双闭环系统来对控制系统进行优化。
第二章 主电路结构选择目前具有多种整流电路,但从有效降低脉动电流保证电流连续和电动机额定参数的情况出发本设计选用三相桥式全控整流电路,其原理如图2-1所示,习惯将其中阴极连接在一起到3个晶闸管(531,,VT VT VT )称为共阴极;阳极连接在一起的3个晶闸管(642,,VT VT VT )称为共阳极,另外通常习惯晶闸管从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a,b,c 三相电源相接的3个晶体管分别是531,,VT VT VT ,共阳极组中与a,b,c 三相电源相接的3个晶闸管分别是642,,VT VT VT 。
图2-1 三相桥式全控整流电路原理图其工作特点为:1)每个时刻均需2个晶闸管同时导通,形成向负载供电的回路,其中1个晶闸管是共阴极组的,1个是共阳极组的,且不能为同一相的晶闸管。
双闭环直流调速系统ppt课件
△U因Uout的迅速增长而急剧下降,Ucp衰减很快。Uci仍使Uc增长,但△U衰减 过快, △U下降至零时Uc未达限幅值精U选cpmpt。此时调节器不饱和,Uc=Uci<Ucm1。7
结论
• PI调节器一旦饱和,只有当△U 极性变反,才有可能使 调节器退出饱和而进人线性工作状态。因此,只要调节 器饱和,系统的输出Uout就必然超调。
• 此后,电动机开始在负载的阻力下减 速,Id<IdL,直到稳定。
• ASR、ACR都不饱和,同时起调节作
用。ASR处于主导地位,它使转速迅
速趋于给定值,并使系统稳定;ACR
的作用是使Id尽快地跟随ASR的输出
由静止状态开始启动时,转速和电流
Ui变化,是一个电流随动子系统。
随时间变化的波形
精选ppt
• 电机的反电动势E也按线性增长, 对电流调节系统来说,E是一个线 性渐增的扰动量,为了克服它的 扰动,Udo和Uc也必须基本上按 线性增长,才能保持恒定。ACR 采用PI调节器,Id应略低于Idm。
• ASR饱和,转速环相当于开环。
• ACR不能饱和,保证电流环的恒
由静止状态开始启动时,转速和电流
• 若被控对象W(s)中含有积分环节,则不论调节器是否饱 和,系统输出Uout也一定会超调。由于W(s)中含有积分 环节,若Uc不等于零,则Uout将一直积累下去,只有当 Uc=0时,Uout才可能达稳态值。△U改变极性,才能把调 节器输出Uc拉回到零,因此,即使调节器不饱和,系统 输出Uout也会超调。
– 在外环转速的调节过程中,它的作用是使电流紧紧跟随其给定电压 变化。
– 对电网电压的波动起及时抗扰的作用。
– 在转速动态过程中,保证获得电机允许的最大电流,从而加快动态 过程。
双闭环直流调速系统
南京化工职业技术学院毕业设计(论文)南京化工职业技术学院毕业论文设计题目:双闭环直流调速系统目录摘要 ................................................................................................................................................. I I 前言 (Ⅱ)第1章绪论 (1)1.设计目的及意义 (1)2. 设计说明书 (1)第2章直流调速系统的组成与原理 (1)1. 双闭环调速系统的动态数学模型 (1)2. 直流电机数学模型 (1)3. 整流装置的传递函数 (3)4. 调速系统总计 (3)5. 直流调速系统的组成 (5)第3章双闭环调速系统的组成与原理 (6)第4章晶闸管—电动机主电路的设计 (8)1.1 主电路设计 (8)1.2 主电路参数计算 (8)2. 转速、电流调节器的设计 (9)2.1 电流调节器设计 (9)2.2 转速调节器参数选择 (12)3. 启动过程 (16)4. 电动机堵转过程 (17)5. 双闭环调速系统特点 (17)第5章双闭环直流调速系统仿真 (19)第6章带转速、电流负反馈的双闭环直流调速装置调试步骤 (22)附录 (24)总结 (25)参考文献 (26)摘要本文主要针对《交直流调速系统》这门课程中关于双闭环直流调速系统的特点,结构和动态过程的分析,对该系统进一步了解与学习。
从直流电动机的工作原理入手,建立双闭环直流调速系统的数学模型,并详细分析系统的原理及其静态和动态性能,且利用Simulink对系统进行各种参数给定下的仿真。
关键词:双闭环;直流调速系统;Simulink仿真前言在工业生产中,需要高性能速度控制的电力拖动场合,直流调速系统,特别是双闭环直流调速系统发挥着极为重要的作用。
转速、电流双闭环调速系统是20世纪60年代在国外出现的一种新型调速系统。
双闭环直流调速系统特性与原理
双闭环直流调速系统特性与原理1.双闭环直流调速系统的特性:(1)调速性能优良:双闭环控制可以提高调速性能,使得速度响应更加迅速、稳定。
由于速度闭环控制,系统可以实时检测速度偏差,并根据偏差调整电机的控制信号,从而使电机转速保持恒定。
(2)载荷抗扰性好:双闭环直流调速系统具有良好的抗负载扰动能力。
通过电流闭环控制器对电流进行反馈控制,一旦发生负载变动,系统可以根据反馈信号快速调整电流,以保持电机输出功率稳定。
(3)适应性强:双闭环直流调速系统适应性强,可以适应各种负载条件下的调速要求。
通过速度闭环控制器可以实时检测速度偏差,并根据偏差调整电机的控制信号,以适应不同的负载要求。
(4)技术难度较高:双闭环直流调速系统需要同时进行速度闭环控制和电流闭环控制,涉及到多个反馈环节和控制算法的设计与调试,技术难度相对较高。
2.双闭环直流调速系统的原理:(1)速度闭环控制原理:速度闭环控制器测量电机的速度,并将测量值与期望速度信号进行比较,得到速度偏差。
根据速度偏差,通过控制器计算得到电机的控制信号,调整电机的输入电压或者电流,使得速度偏差减小,并最终稳定在期望速度值上。
(2)电流闭环控制原理:电流闭环控制器测量电机的电流输出值,并将测量值与期望电流信号进行比较,得到电流偏差。
根据电流偏差,通过控制器计算得到电机的控制信号,调整电机的输入电压或者电流,使得电流偏差减小,并最终稳定在期望电流值上。
(3)内环逆变器控制:双闭环直流调速系统通常采用内环逆变器控制方式。
内环逆变器控制主要是通过改变电机的输入电压或者电流来控制其输出转矩和速度。
内环逆变器可以调整直流电动机的极性和大小,以实现对电机力矩和速度的精确控制。
(4)反馈和调节:双闭环直流调速系统中的反馈环节起到了至关重要的作用。
通过测量电机的速度和电流输出值,并与期望值进行比较,得到偏差信号,通过控制器计算得到控制信号,对电机输入电压或者电流进行调节,以实现对速度和电流的闭环控制。
双闭环直流调速系统工作原理
双闭环直流调速系统工作原理1.系统结构:双闭环直流调速系统主要由两个闭环控制组成,即速度内环和电流外环。
速度内环控制器接收速度设定值和速度反馈信号,通过计算得到电流设定值,并发送给电流外环控制器。
电流外环控制器接收电流设定值和电流反馈信号,通过计算得到电压设定值,并输出给电源控制器。
电源控制器接收电压设定值和电源反馈信号,通过调节电源输出电压,以确保电机输出的电压和电流符合控制要求。
2.速度内环控制:速度内环控制器是实现速度调节的关键部分。
它通过比较速度设定值和速度反馈信号,得到速度差,然后根据速度差来调节电流设定值。
控制器根据速度差的大小来调整电流设定值的大小,如果速度差较大,则增大电流设定值;如果速度差较小,则减小电流设定值。
通过不断调整电流设定值,使得速度差逐渐减小,最终达到设定的速度。
3.电流外环控制:电流外环控制器是为了保证电流的稳定性而设置的闭环控制。
它接收电流设定值和电流反馈信号,通过比较二者的差异,计算得到电压设定值。
控制器根据电流设定值和电流反馈信号的差异来调整电压设定值的大小,如果电流差较大,则增大电压设定值;如果电流差较小,则减小电压设定值。
通过不断调整电压设定值,使得电流差逐渐减小,最终达到设定的电流。
4.电源控制:电源控制器是为了保证电机输出的电压和电流符合控制要求而设置的。
它接收电压设定值和电源反馈信号,通过调节电源输出电压来实现电机的调速。
当电压设定值与电源反馈信号存在差异时,控制器会相应地改变电源输出电压,使得电机的电压和电源设定值尽可能接近。
通过不断调整电压输出,最终使得电机的电压和电流稳定在设定值。
5.系统优点:双闭环直流调速系统能够实现对电机的精确调节,具有较高的速度和电流控制精度。
通过速度内环和电流外环的联合控制,可以准确地调节电机的转速,并且能够自动调整输出电流,适应不同负载。
此外,该系统还具有较好的稳定性和抗干扰能力,在外界干扰较大时仍能保持较高的控制精度。
双闭环直流调速系统
引言在工业生产中,许多生产机械为了满足生产工艺要求,需要改变工作速度:例如,金属切削机床,由于工件的材料、被加工的尺寸和精度的要求不同,速度就不同。
另外轧钢机,因为轧制品种和材料厚度的不同,也要求采用不同的速度。
生产机械的调速方法可以采用机械的方法取得,但是机械设备的变速机构较复杂,所以在现代电力拖动中,大多数采用电气调速方法。
电气调速就是对机械的电动机进行转速调节,在某一负载下人为地改变电动机的转速。
直流电动机具有良好的起动、制动性能,适宜在较大范围内调速.在许多需要高性能可控电力拖动领域中得到广泛的应用。
近年来交流调速系统发展很快,然而直流拖动系统在理论上和实践上都比较成熟,而且从反馈闭环控制的角度来看,它是交流拖动控制系统的基础,所以应该很好地掌握直流调速系统。
目前,转速﹑电流双闭环控制直流调速系统是性能很好﹑应用最广泛的直流调速系统。
我们知道采用转速负反馈和PI调节器的单闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。
但是,如果对系统的动态性能要求较高,单闭环系统就难以满足需要。
所以需要引入转速﹑电流双闭环控制直流调速系统,本文着重研究其控制规律﹑性能特点和设计方法。
首先介绍转速﹑电流双闭环调速系统的组成,接着说明该系统的静特性和动态特性,最后用工程方法设计转速与电流两个调节器。
在实际应用中,电动机作为把电能转换为机械能的主要设备,首先要具有较高的机电能量转换效率;其次应能根据生产机械的工艺要求控制和调节电动机的旋转速度。
电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。
因此,调速技术一直是研究的热点。
一 双闭环直流调速系统介绍1.1闭环调速系统的组成根据自动控制原理,反馈控制的闭环系统是按被调量的偏差进行控制的系统,只要被调量出现偏差,它就会自动产生纠正偏差的作用。
调速系统的转速降落正是由负载引起的转速偏差,显然,引入转速闭环将使调速系统可以大大减少转速降落。
双闭环直流调速系统工作原理
双闭环直流调速系统工作原理双闭环直流调速系统是一种常用的控制系统,用于调节和控制直流电动机的速度。
该系统通过两个闭环来实现目标速度的精确控制,其中一个闭环负责速度检测与控制,另一个闭环负责电流检测与控制。
下面将详细介绍双闭环直流调速系统的工作原理。
1.电机:用于产生机械功的装置,是整个系统的核心部分。
2.传感器:用于检测电机的速度和电流。
3.控制器:根据传感器的反馈信号,计算并控制电机的输入电压和输出扭矩。
4.功率放大器:将控制器输出的电压信号放大后,传递给电机。
5.脉宽调制(PWM)驱动器:将控制器输出的模拟信号转换为数字信号,用于驱动功率放大器。
下面是双闭环直流调速系统的工作过程:1.速度检测与控制环路:该环路用于检测和控制电机的速度,通过传感器测量电机的速度,并将该速度信号反馈给控制器。
控制器根据目标速度和反馈速度之间的误差,计算出控制电压,并将该控制电压传递给功率放大器。
功率放大器将控制电压放大后,通过PWM驱动器将控制信号传递给电机。
电机根据控制信号的大小和频率,调整自身的旋转速度,使得反馈速度与目标速度尽可能接近。
2.电流检测与控制环路:该环路用于检测和控制电机的电流,通过传感器测量电机的电流,并将该电流信号反馈给控制器。
控制器根据反馈电流和目标电流之间的误差,计算出控制电压,并将该控制电压传递给功率放大器。
功率放大器将控制电压放大后,通过PWM驱动器将控制信号传递给电机。
电机根据控制信号的大小和频率,调整自身的输出扭矩,使得反馈电流与目标电流尽可能接近。
通过双闭环控制,系统可以实现对电机速度和电流的高精度控制。
速度检测与控制环路可以保证电机的速度稳定在设定值附近,并可根据需求进行调整。
电流检测与控制环路可以保证电机输出扭矩的精确控制,从而满足不同工作负载下的要求。
总结起来,双闭环直流调速系统通过速度检测与控制环路和电流检测与控制环路,实现了对直流电动机速度和电流的精确控制。
该系统在工业自动化领域具有广泛的应用,可以确保电机在不同工作条件下的稳定运行,并满足不同任务的要求。
直流双闭环调速系统设计说明
第1章设计任务说明书某晶闸管供电的转速电流双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为:直流电动机:V U N 750=,A I N 780=,min 375r n N =,04.0=a R ,电枢电路总电阻R=0.1Ω,电枢电路总电感mH L 0.3=,电流允许过载倍数5.1=λ,折算到电动机轴的飞轮惯量224.11094Nm GD =。
晶闸管整流装置放大倍数75=s K ,滞后时间常数s T s 0017.0= 电流反馈系数⎪⎭⎫ ⎝⎛≈=N I V A V 5.11201.0β 电压反馈系数⎪⎭⎫ ⎝⎛=N n V r V 12min 032.0α 滤波时间常数.02.0,002.0s T s T on oi ==V U U U cm im nm 12===**;调节器输入电阻Ω=K R O 40。
设计要求:稳态指标:无静差 动态指标:电流超调量005≤i σ;空载起动到额定转速时的转速超调量0010≤n σ。
第2章调速系统总体设计为实现转速和电流两种负反馈分别作用,直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流, 即分别引入转速负反馈和电流负反馈。
两者之间实行嵌套连接,且都带有输出限幅电路。
转速调节器ASR的输出限幅电压*U决定了电流给定电压的最大值;电流imU限制了电力电子变换器的最大输调节器ACR的输出限幅电压cmU。
出电压dm由于调速系统的主要被控量是转速, 故把转速负反馈组成的环作为外环, 以保证电动机的转速准确跟随给定电压, 把由电流负反馈组成的环作为环, 把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE,这就形成了转速、电流双闭环调速系统。
如图2-1所示:图2-1 直流双闭环调速系统为了获得良好的静、动态性能,转速和电流两个调节器一般都采用PI调节器。
这样构成双闭环直流调速系统。
双闭环直流调速系统原理介绍
双闭环直流调速系统原理介绍双闭环直流调速系统由两个环路组成,速度环和电流环。
速度环控制电机的速度,使其始终保持在设定值附近,而电流环控制电机的电流,保证电机的负载特性和响应速度。
速度环和电流环是相互独立的控制过程,通过串联连接实现整体调速控制。
速度环负责对电机转速进行调节,基本原理是将实际转速与设定转速进行比较,然后根据差值计算出调节量,最后通过调节电机的输入电压实现转速调节。
速度环的核心是比例-积分(PI)控制器,通过设定合适的比例系数和积分时间,可以实现对转速的精确调节。
速度环还可以加入速度前馈器,将速度设定值的变化率作为额外输入信号,进一步提高系统的响应速度和稳定性。
电流环负责对电机的电流进行调节,保证电机的负载特性和响应速度。
电流环的基本原理是将实际电流与设定电流进行比较,然后根据差值计算出调节量,最后通过调节电机的输入电压或电流实现电流调节。
电流环的核心也是比例-积分(PI)控制器,通过设定合适的比例系数和积分时间,可以实现对电流的精确调节。
电流环还可以加入电流前馈器,将电流设定值的变化率作为额外输入信号,进一步提高系统的响应速度和稳定性。
双闭环直流调速系统中,速度环和电流环之间通过串联连接的方式进行控制。
速度环输出电压指令作为电流环的输入电流设定值,电流环通过调节电机的输入电流实现电流调节。
而电流环输出电压指令作为速度环的输入电压设定值,速度环通过调节电机的输入电压实现转速调节。
通过这种双重反馈的控制方式,可以实现对电机转速和电流的精确控制。
1.精确控制:通过精确的调节速度环和电流环的参数,可以实现对电机转速和电流的精确控制,满足不同工况下的要求。
2.快速响应:双闭环结构可以利用速度环和电流环的双重反馈信息,在系统受到外部扰动时,能够快速调节输出,保持稳定的运行状态。
3.负载适应性:通过电流环的控制,可以根据电机所承受的外部负载变化,自动调整输出电压或电流,保持电机的运行稳定性和性能。
双闭环直流调速系统
双闭环直流调速系统双闭环直流调速系统是一种电力电子变换器设计用于控制直流电机转速的重要方法。
它使用两个控制循环,内环控制电机转速,外环控制负载的速度变化。
其中一般采用PI控制器,理论上能够在滞后角度及相位裕量方面提供相应的保障。
本文将对双闭环直流调速系统进行详细讲解。
系统结构双闭环直流调速系统包含两个主要部分:电机和电力电子变换器。
电机是系统的执行部分,它将电能转化为机械能。
电力电子变换器则是将电源接通到电机的途径。
其包含整流器/变频器、PWM控制器和功率放大器等组成部分。
在系统中,电力电子变换器通过对电流、电压和功率方面的控制,实现对电机的控制。
双闭环直流调速系统包含两个控制环路,内环和外环。
内环用于控制电机的转速,外环用于控制负载的变化速度。
内环控制器与电机直接耦合,接受电机转速控制信号,并控制电机驱动电压或电流。
外环控制器将负载反馈信号与期望速度信号进行比较,并计算出负载期望机械功率。
内环控制器为外环控制器提供实时电机转速,以便自动调整期望速度。
内部控制环路内环是双闭环直流调速系统的核心部分,它使用反馈控制技术控制电机转速。
内环控制器接受来自电机的反馈信号,并根据电机实际转速和期望转速之间的差异来控制驱动电压或电流。
转速反馈可以使用反电动势(EMF)或霍尔传感器来实现。
最常用的电机控制器是基于PI型控制器。
此控制器将PID控制(比例、积分、微分控制)的K值设定为0(因为在直流电机控制中微分控制几乎不可行),并针对不同比例和积分控制来为电机控制提供所需的响应特性。
反馈中的延迟和其他因素会导致偏差,因此比例控制器通常用于加速响应。
积分控制器用于使系统更加稳定,以响应慢速变化。
这些控制器参数通常是根据预期转速、电压和电流范围进行调整。
系统优缺点优点1.与传统的直流调速系统相比,双闭环直流调速系统能够更好地控制直流电机的转速。
内外环的设计使得控制速度响应更快,同时提高了系统的稳定性。
2.内环和外环控制器,使用的是速度反馈,可实时监测直流电机的转速,以控制电压和电流从而实现所需功率/MN的输出。
双闭环直流调速系统特性与原理
双闭环直流调速系统特性与原理双闭环直流调速系统是一种常见的电机调速系统,通过两个闭环控制来实现对电机转速的精确控制。
在双闭环直流调速系统中,第一个闭环控制回路称为速度环,用来控制电机转速;第二个闭环控制回路称为电流环,用来控制电机电流。
下面将详细介绍双闭环直流调速系统的特性与原理。
1.转速稳定性好:由于双闭环控制系统可以将负载变化的影响控制在较小的范围内,所以电机的转速可以保持在给定值附近稳定运行。
2.转速快速响应:双闭环控制系统可以通过调节速度环和电流环的参数来实现转速的快速响应,使得电机在变化负载下能够迅速调整转速。
3.调节范围广:双闭环直流调速系统可以通过改变速度环和电流环的控制策略来调节电机的转速范围。
可以实现低转速和高转速的调节。
4.可靠性高:双闭环直流调速系统采用两个闭环控制回路,其中速度环和电流环可以相互独立地控制电机的转速和电流,从而提高系统的可靠性。
速度环:速度环的目标是实现对电机转速的精确控制。
速度环根据给定的转速信号与实际转速信号之间的误差,通过PID控制器计算出控制电压,然后将控制电压输出给电流环。
电流环:电流环的目标是控制电机的电流,保持电机的转速稳定。
电流环通过反馈电流信号与速度环输出的控制电压之间的误差,通过PID控制器计算出电压调节量,然后将调节量输出给电机驱动器。
1.给定一个转速信号,如旋钮或数字输入。
2.速度环将给定转速信号与实际转速信号之间的误差传递给PID控制器。
3.PID控制器计算出控制电压,并将其传递给电流环。
4.电流环将反馈电流信号与PID控制器输出的控制电压之间的误差传递给PID控制器。
5.PID控制器计算出电压调节量,并将其传递给电机驱动器。
6.电机驱动器根据PID控制器输出的电压调节量,控制电机的电流,从而控制电机的转速。
总之,双闭环直流调速系统通过速度环和电流环两个闭环控制回路的相互作用,可以实现对电机转速的精确控制。
通过调节速度环和电流环的参数,可以调节电机的转速范围和响应速度,从而满足不同应用场景的需求。
双闭环直流调速系统介绍
双闭环直流调速系统介绍
系统由两个主要的闭环控制回路组成:速度环和电流环。
速度环是系统的外环控制回路,其作用是根据用户对电机转速的需求进行反馈控制。
速度传感器测量电机的转速,并将测量值与设定值进行比较,产生差值作为输入信号。
这个差值通过控制器(通常为PID控制器)进行处理,并输出一个调节信号。
调节信号通过控制执行器(如PWM控制器)调节电机的输入电压或电流,从而控制电机的转速。
速度环的目标是使电机的转速稳定在用户设定的值附近。
电流环是系统的内环控制回路,其作用是根据速度环的输出信号来补偿负载扰动和电机参数变化所引起的转矩变化。
电流环的输入信号为速度环的输出调节信号,通过控制器处理后,输出一个电流指令。
这个电流指令通过控制执行器调节电机的输入电压或电流,从而控制电机的转矩。
电流环的目标是使电机的转矩稳定在速度环要求的范围内。
1.高精度:通过使用两个闭环控制回路,系统能够实现高精度的电机转速调节,并具备对负载扰动和电机参数变化的补偿能力。
2.快速响应:系统使用PID控制器作为控制算法,能够快速响应用户对电机转速的需求。
3.稳定性好:速度环和电流环形成了互补的控制关系,能够保持电机转速和转矩的稳定性。
4.可靠性高:双闭环直流调速系统结构简单,组件少,可靠性较高。
综上所述,双闭环直流调速系统通过使用速度环和电流环两个闭环控制回路,实现对电机转速的高精度控制和负载扰动补偿。
该系统具备精度
高、响应快、稳定性好、可靠性高等优点,广泛应用于各种需要精确电机调速的领域。
第三章双闭环调速系统
第三章 双闭环无静差调速系统第一节 转速、电流双闭环直流调速系统的组成及其特性【教学目标】1.知识目标:了解双闭环系统的组成,掌握系统静特性。
2.能力目标:学会分析问题查资料。
3.情感目标:激发学生浓厚的学习兴趣,培养学生严谨的科学态度,锻炼实际分析能力。
【教学重点】系统静特性【教学难点】系统静特性【教学方法】读书指导法、分析法、演示法、练习法。
【教学过程】问题的提出:第二章中表明,采用转速负反馈和PI调节器的单闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。
但是,如果对系统的动态性能要求较高,例如:要求快速起制动,突加负载动态速降小等等,单闭环系统就难以满足需要。
1. 主要原因是因为在单闭环系统中不能随心所欲地控制电流和转矩的动态过程。
在单闭环直流调速系统中,电流截止负反馈环节是专门用来控制电流的,但它只能在超过临界电流值I dcr以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想地控制电流的动态波形。
2. 理想的起动过程性能比较⏹带电流截止负反馈的单闭环直流调速系统起动过程如图所示,起动电流达到最大值I dm后,受电流负反馈的作用降低下来,电机的电磁转矩也随之减小,加速过程延长。
理想起动过程波形如图,这时,起动电流呈方形波,转速按线性增长。
这是在最大电流(转矩)受限制时调速系统所能获得的最快的起动过程3. 解决思路为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值I dm的恒流过程。
按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。
现在的问题是,我们希望能实现控制:起动过程,只有电流负反馈,没有转速负反馈;稳态时,只有转速负反馈,没有电流负反馈。
怎样才能做到这种既存在转速和电流两种负反馈,又使它们只能分别在不同的阶段里起作用呢?一。
转速、电流双闭环直流调速系统的组成为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。
最新双闭环直流电动机调速系统ppt课件
脉宽调制器的基本原理是将直流信号和一个调制 信号比较,调制信号可以是三角波,也可以是锯 齿波。锯齿波脉宽调制器电路如图4-42所示, 由锯齿波发生器和电压比较器组成。锯齿波发生 器采用最简单的单结晶体管多谐振荡器4-42a), 为了控制锯齿波的线性度,使电容器C充电电流 恒定,由晶体管VT1和稳压管VST构成恒流源。
图4-35所示的简单不可逆变换器中, 电流ia不能反向,因此不能产生制动作用, 只能作单象限运行。需要制动时必须具有 反向电流—ia的通路,因此应该设置控制 反向通路的第二个IGBT,如图 4-36a)所 示。这种电路组成的PWM伺服系统可在一、 二两个象限运行。
可逆PWM变换器
可逆PWM变换器电路的结构形式有H 型和T型等类,这里主要讨论常用的H型变 换器,它是由四个功率管和四个续流二极 管组成的桥式电路。如图4-38a)所示,图 中功率管选用IGBT。H型电路在控制方式 上分双极式、单极式两种工作制。下面着 重分析双极式工作制,然后再简述单极式 工作制的特点。
变化的)
Uct (s) U(s)
Kp
4、测速发电机传函(输出响应可认为是瞬时 变化的)
Un(s)
n(s)
将上述四个环节按系统中的相互关系连接在 一起,便得到单闭环调速系统动态结构图。
IL(s)
R(TLs1)
U
* n
U K P
Un
Uct
K s Ud0(s) -
1 Tss
1
Ce
n(s)
Tm s(TL s 1) 1
转速、电流双闭环调速系统的组成 转速、电流双闭环调速系统的工作原理
双闭环直流调速系统介绍
09
显示与操作界面: 用于显示系统状 态和进行参数设
置
10
通信接口:用于 与其他设备进行 通信和信息交换
双闭环调速系统的工作原理
双闭环调速系 统由两个闭环 组成:速度闭 环和电流闭环
速度闭环控制 电机的转速, 使其达到设定 值
电流闭环控制 电机的电流, 使其保持在安 全范围内
两个闭环相互 协调,共同实 现对电机的精 确控制和保护
速
2
交流电机调速:通过双闭环调 速系统实现交流电机的精确调
速
3
4
电力电子变换器:双闭环调速 系统在电力电子变换器中的应用,
如整流器、逆变器等
电力系统稳定控制:双闭环调速 系统在电力系统稳定控制中的应 用,如电压稳定、频率稳定等
双闭环调速系统在节能环保中的应用
节能:双闭环调速系统可以精确控制电机的转 制。
双闭环调速系统的参数整定:根据系统特性和实际需求,对 速度环和电流环的参数进行整定,以实现最佳的调速性能。
3
双闭环直流调速 系统的应用
双闭环调速系统在工业控制中的应用
01 电机控制:用于控制电 机的转速、 位 置 和 扭 矩 等 参数, 实 现 精 确 控 制
双闭环直流调速系统介 绍
演讲人
目录
01. 2. 3.
双闭环直流调速系统的基本 概念 双闭环直流调速系统的设计 双闭环直流调速系统的应用
04. 双闭环直流调速系统的发展 趋势
1
双闭环直流调速 系统的基本概念
双闭环调速系统的组成
01
速度环:用于控 制电机转速,实
现速度调节
02
电流环:用于控 制电机电流,实
04
节能环保:采 用节能技术和 环保材料,降 低系统的能耗 和污染排放
双闭环直流调速系统(精)
双闭环直流调速系统(精)前言双闭环直流调速系统是一种常见的电机调速系统,通过控制直流电动机的电压和电流来实现电机转速的控制。
本文将介绍双闭环直流调速系统的工作原理和应用场景,并讨论其在工业控制中的优势和局限性。
工作原理双闭环直流调速系统由速度环和电流环组成。
其中,速度环用于测量电机转速,电流环用于测量电机电流。
系统的控制器通过比较输出信号和目标值来控制电压和电流的大小,从而实现电机的调速。
具体来说,当电机转速低于设定值时,速度环会向控制器发出信号,控制器会增加电机的电压和电流来提高转速;当电机转速高于设定值时,速度环会发送信号告诉控制器减小电机的电压和电流。
另一方面,电流环负责调节电机的电流,以确保电机能够稳定地运行。
应用场景双闭环直流调速系统在工业控制中广泛应用,其主要优势在于能够实现精确的速度控制和较大的负载能力。
因此,它常用于要求高速度精度的场合,如纺织、印刷、食品加工等行业中的转子式机械设备。
此外,双闭环直流调速系统还常用于需要频繁启停或需要反向运转的设备中,如工厂输送带、电梯、卷扬机、空调等设备。
它能够更加精细地控制电机的转速和运行过程,从而提高设备的使用寿命和运行效率。
优势和局限性在工业控制中,双闭环直流调速系统具有以下优势:•稳定性好:双闭环控制能够准确地控制电机的转速和电流,从而保持电机的稳定性。
•精度高:系统能够实现高精度的速度控制和电流控制,可以满足高精度的控制需求。
•可靠性高:系统能够减小电机的损耗和轴承磨损,从而提高设备的可靠性。
但是,双闭环直流调速系统也存在一定的局限性:•成本较高:相对于其他调速系统,双闭环直流调速系统的成本较高,需要较高的技术成本和维护成本。
•系统响应较慢:由于双闭环控制需要进行多次计算和处理,系统响应速度较慢,可能对一些对速度响应时间要求较高的应用不够适合。
双闭环直流调速系统是一种精密、稳定、可靠的电机调速系统,广泛应用于工业控制中。
虽然该系统具有一定的局限性,但在要求高精度、高负载、操作频繁的场合中,仍然是一种值得推荐的方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.双闭环系统的稳态结构
输入偏差为零; 输出不一定为零; 输出与输入没关系。
思考2:稳态时PI调节器输入-输出有什么特点? 思考3:上图中各量之间有什么关系?
2.参数之间的关系
(1) Un 0
U
* n
Un
n
n
U
* n
反馈系数一定的情况下,转速由转速给定唯一决定。
转 电(电流速流2)电流调调在内压互节节交环,感器器流U:器可的的测ct电输输、作检流出出二为测环限限极电:,幅幅管流UU交i对值值i正反*流电((流馈侧电控枢器电电流制电可压流给电UU流得,大定压nn* 起到只小最最调与反与大大节交映电值值控流电枢))决决制侧枢电定定作电电流了了用流流成。正的正比大比例小,的。利;。直用
(以DJK04挂件调节器I为例)
A
B
(5)限幅电路:VD3-RP1构成正向输出限幅电路,VD4-RP2构成负向输出 限幅电路。RP1调节正向限幅值,RP2调节负向限幅值。 工作原理:当输出电压为正时,输出最大值不会超出A点电位,否则 VD4导通,输出被嵌位(等于A点电位)。同理,输出负电压不超过UB
6.具有限幅电路的PI调节器
(以DJK04挂件调节器I为例)
A
B
(4)调零电路:正常状态下,调节器接成比例调节器时,若所有输入端都 接地,则调节器的输出电压应为零,否则应进行调零。 调零方法:①调节器接成比例调节器;②三个输入端都接地;③调节 调零电位器RP3使7端输出电压尽量接近于零。
6.具有限幅电路的PI调节器
ASR退出饱和的条件:出现转速超调,ASR输入偏差为负
转速超调:阶段II结束时,电枢电流仍大于负载电流,电机 仍在升速,所以出现转速超调。
ASR退饱和,电流下降:转速超调后,ASR输入偏差为, 其输出从最大值 下降。电流给定减小,电枢电流也减小, 当与负载电流相等时,电机转速达到最大值。当电流小于负 载电流时,电机减速。最终,转速降到给定值,电流与负载 电流相等,系统进入正常运行,起动过程结束。
②电机过载或堵转时,起限电流保护。
二、双闭环调速系统的构成
4.两3.电调2.给流节1.双定反器闭电馈的环压特的:、点实反:现馈方电法压:的极性分析: (1)(阻均1)判同上在采外断一的直用环依调压流PI:据节降调侧转:器能节检速调反同器测环节馈时;:,器与反(在2对有给映)电都转反定电机设速相极枢主有起作性电回输调用相流路出节;反的中限控触。大串幅制发小入值作电和一用路方取;控向样制。电电阻压,为取正样;电
U
* im
Ui
随着转速的上升,E增大,要保持电流恒定,Ud和Uct也要 线性增长,要使ACR的输出Uct线性增长,ACR的输入偏差 应大于零,即电枢电流要略小于最大允许值Idm。
双闭环原理图
电流转速波形图
阶段III---转速调节阶段分析
该阶段的主要任务是:(1)ASR退饱和;(2)降低电流
(2) Ui 0
U
* i
Ui
Id
ASR的输出取决于负载(电流)的大小。
(3)
U ct
Ud0 Ks
Cen Id R Ks
CeU
* n
/
I dL R
Ks
ACR的输出取决 于转速给定和负 载电流的大小。
3.双闭环系统的静特性
思考4:什么是闭环系统的静特性? n f Id
§3 双闭环直流调速系统
学习目标: 1. 理解单闭环直流调速系统的局限性及其改进方法。 2. 掌握双闭环直流调速系统的组成及其特点,能画出其原理
图。 3. 掌握双闭环直流调速系统静特性分析方法,能进行相关静
态计算。 4. 理解电流调节器的作用。 6. 能在实验室熟练完成双闭环调速系统的接线和基本单元的
电流。
二、双闭环系统起动过程的三个特点
(1)饱和非线性 指转速调节器有不饱和、饱和、退饱和3种工作状态 。
(2)准时间最优控制 双闭环系统启动过程充分发挥系统的电流过载能力,基本 上实现最大允许电流启动,启动过程最快。 (3)转速超调 只有转速超调,ASR才能使ASR退饱和。
小结
双闭环调速系统的构成具有如下特点:
① 转速调节器ASR与电流调节器ACR为串联关系,转速调节器的输出作为 电流调节器的给定。
② 系统有2个闭环回路,内环是电流环,外环是转速环。转速环对电动机 的转速实现调节,是主要调节;电流环对电动机的电枢电流实现调节,是 辅助调节。 ③ 为了使系统获得较好的动态和稳态性能,2个调节器均采用PI调节器。
5.具有PI调节器的双闭环调速系统 转速调节器ASR、电流调节器ACR结构相同。
6.具有限幅电路的PI调节器
(以DJK04挂件调节器I为例)
A
B
(1)输入端:三个输入端用其中两个。一般选用两个对称输入端,即2接给 定、3接反馈。 R1-C2;R2-C3为输入端滤波电路。 ***若2接给定、1接反馈,则R3-C1构成微分反馈环节。
双闭环原理图
电流转速波形图
起动过程总结 阶段I---电流上升阶段 特点:(1)电流从零升到最大允许值;(2)ASR达到饱和状态
阶段II---恒流升速阶段 特点:(1)电流不变,转速直线上升;(2)ASR维持饱和状态
阶段III---转速调整阶段。 特点:(1)转速超调,ASR退饱和;(2)电枢电流下降到负载
Idm 40
Ud0 E IdmR IdmR 401 40V
Ui* Ui*m 10
Un n 0
Uct
Ud0 Ks
40 20
2
Ui Ui*m 10
思考题:
1.系统设计时如何整定转速反馈系数 和电流反馈系数 ?
2.已知条件如例3-1,若电动机转速 n 800 r/min,电动机电流
恒转速调节----水平段① :电流 增加,但转速不变。
因为转速由转速给定值决定,转速 给定没变,所以转速不变。
恒电流调节----竖直段②:该段可 看作电机的起动和堵转过程。
起动时,转速从零升到给定值;堵转时,转速从给定值降为零。
恒流调节阶段,ASR饱和,电流给定和电枢电流均达到最大值,电流调 节器起主要调节作用,系统主要表现为恒电流调节,起到自动过电流保 护作用。
特例:堵转情况 ASR输出达到限幅值,即 Ui* Ui*m Uim Idm
n Ud 0 Idm R 0 Ce
Ud 0 Idm R
U ct 0
Ud0 Ks
解:(1)
U
* nm
10
0.01
nmax 1 000
(2)堵转时 n 0 E 0
Ui*m 10 0.25
(1)不能全压起动,否则电流过大。
(2)当电机过载或堵转时,没有过电流保护作用。
一、问题的提出----双闭环调速系统产生的背景 改进措施:
再引一个电流调节环,对电枢电流起调节作用,构成双 闭环调速系统。 预期目标
① 使电动机能在给定电压下直接启动,启动电流不超过最 大允许值,既保证电动机有较大的启动转矩,启动过程较 快,又能保障系统安全 。
二、稳态参数计算
稳态参数关系回顾:
Un Ui 0
U
* n
Un
n
Ui* Ui Id IdL
Ui*m Idm
U
* im
I dm
U
* nm
nN
(反馈系数的整定方法)
U ct
Ud0 Ks
Cen IdR Ks
CeU
* n
/
I dL R
Ks
Id 18 A。试求
U
* n
,
Un ,
U
* i
和
U。i
3.双闭环调速系统,2个调节器均为PI调节器,当 Id 100A时, Ui 10 V。当负载电流由20A增加到30A时,试问:
(1)
U
* i
如何变化?
(2) Uct 如何变化?
(3) Uct 值由哪些条件决定?
§3.3 双闭环调速系统的起动过程分析
回顾:
引入电流环的目的是解决单闭环调速系统直接起动电流过大的问题。 那么双闭环调速系统能不能直接起动呢? 双闭环调速系统的起动过程分析,是其工作原理分析的主要内容 起动过程分析研究的主要内容:
(1)电枢电流和电机转速的变化; (2)ASR和ACR的工作状态。
一、起动过程的三个阶段
系统从静止突加给定起动, 起动过程中电流、转速波 形图如右图示。过程分为 三个阶段:
调试,会测试双闭环调速系统的静特性。
第五周第2次课 任务一:双闭环调速系统产生的背景是什么?
从调速系统的设计角度讲,单闭环调速系统: 1.解决了什么问题? 2.还存在哪些局限性? 3.如何解决?预期效果是什么?
第五周第2次课 任务二:双闭环调速系统的构成是怎样的?
1.画出双闭环调速系的原理图 (图3-3) 说明:默画的画一 次,不能默画的画2次 2.说出双闭环调速系由哪几部分构成。
6.具有限幅电路的PI调节器
(以DJK04挂件调节器I为例)
A
B
(2)输入端保护电路:防止同相与反相输入端有较大电压差。 运算放大器的两个输入端在理论上相当于虚短路,电位相同。
6.具有限幅电路的PI调节器
(以DJK04挂件调节器I为例)
A
B
(3)反馈支路:PI调节器反馈支路需接入电阻和电容。 DJK4挂件上,若4—5—6之间呈虚线图,说明R7、C5需要从DJK08中 接入;若是实线图,说明挂件内部已有此电阻电容,不虚外接。