高一数学古典概型

合集下载

高一数学古典概型试题答案及解析

高一数学古典概型试题答案及解析

高一数学古典概型试题答案及解析1.某射手射击一次击中10环,9环,8环的概率分别为0.3,0.3,0.2,则他射击一次命中8环或9环的概率为.【答案】0.5【解析】射击一次命中8环或9环的概率为.【考点】(1)互斥事件的概率;(2)概率的加法公式.2.在某高校自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为五个等级.某考场考生的两科考试成绩数据统计如下图所示,其中“数学与逻辑”科目的成绩为的考生有人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为的人数;(Ⅱ)若等级分别对应分,分,分,分,分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为.在至少一科成绩为的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为的概率.【答案】(Ⅰ);(Ⅱ);(Ⅲ).【解析】(Ⅰ)先求考场人数,再由频率求“阅读与表达”科目中成绩为的人数,注意这里不是频率分布直方图,纵轴就表示频率;(Ⅱ)根据期望公式即可算得平均分;(Ⅲ)通过枚举法算得概率,注意有四名考生得到,得到的有个人次,注意这两者的区别,否则易犯错误.试题解析:(Ⅰ)设该考场有个考生,而“数学与逻辑”科目中成绩等级为的考生有人,频率由,得该考场有人 2分所以该考场考生中“阅读与表达”科目中成绩等级为的人数为4分(Ⅱ)该考场考生“数学与逻辑”科目的平均分为7分[(Ⅲ)“数学与逻辑”考试中得的有人,“阅读与表达”考试中得的也有人,因为两科考试中,又恰有两人的两科成绩等级均为,所以还有人只有一个科目得分为,设这四人为甲,乙,丙,丁,其中甲,乙是两科成绩都是的同学,则在至少一科成绩等级为的考生中,随机抽取两人进行访谈,基本事件空间为{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁},有个基本事件设“随机抽取两人进行访谈,这两人的两科成绩等级均为”为事件,所以事件中包含的基本事件有个,则. 12分【考点】统计中的分布及古典概型中的概率计算.3.在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是奇数的概率是_________(结果用数值表示).【答案】.【解析】列举出从已知五个数字中随机取出三数字后剩下的两个数字的所有可能情况:(1.2 )(1.3)(1.4)(1.5)(2.3)(2.4)(2.5)(3.4)(3.5)(4.5)一共有10种情况,剩下两个数为奇数有:(1.3)(1.5)(3.5)共3种情况,则概率为,故应填入: .【考点】古典概率.4.(原创)口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为()A.B.C.D.【答案】C【解析】从5个球中随机抽取两个球,共有种取法.满足两球编号之和大于5的情况有(2,4),(3,4)共2种取法.所以取出的两个球的编号之和大于5的概率为.【考点】1、古典概型及其概率计算公式;2、组合及组合数公式.5.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10.(1)求的值;(2)分别求出甲、乙两组数据的方差和,并由此分析两组技工的加工水平;(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率.(注:方差,为数据的平均数)【答案】(1);(2);(3).【解析】(1)由题意根据平均数的计算公式分别求出的值;(2)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差和,再根据它们的平均值相等,可得方差较小的发挥更稳定一些;(3)用列举法求得所有的基本事件的个数,找出其中满足该车间“质量合格”的基本事件的个数,即可求得该车间“质量合格”的概率.试题解析:解:(1)由题意得,解得,再由,解得;(2)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差:,,并由,可得两组技工水平基本相当,乙组更稳定些.(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检查,设两人加工的合格零件数分别为,则所有的有(7,8)、(7,9)、(7,10)、(7,11)、(7,12)、(8,8)、(8,9)、(8,10)、(8,11)、(8,12)、(10,8)、(10,9)、(10,10)、(10,11)、(10,12)、(12,8)、(12,9)、(12,10)、(12,11)、(12,12)、(13,8)、(13,9)、(13,10)、(13,11)、(13,12),共计25个,而满足的基本事件有(7,8)、(7,9)、(7,10)、(8,8)、(8,9),共计5个基本事件,故满足的基本事件个数为,所以该车间“质量合格”的概率为.【考点】1、古典概型及其概率计算公式;2、平均数与方差.6.有一个奇数列1,3,5,7,9,…,现在进行如下分组,第一组有1个数为1,第二组有2个数为3、5,第三组有3个数为7、9、11,…,依次类推,则从第十组中随机抽取一个数恰为3的倍数的概率为 .【答案】【解析】由题可知前9组数据共有,第10组共有10数,且第一个为46,其中为3的倍数的数为:48,51,54,故概率为.【考点】古典概型.7.记a,b分别是投掷两次骰子所得的数字,则方程有两个不同实根的概率为()A.B.C.D.【答案】B【解析】记分别是投掷两次骰子所得的数字,总事件一共种;方程有两个不同实根则,∴当时,;当时,;当时,;当时,,共9种情况,所以概率为.【考点】古典概型.8.连续抛掷2颗骰子,则出现朝上的点数之和等于6的概率为( ).A.B.C.D.【答案】A【解析】连续抛掷2棵骰子所有基本事件总数为36,其中朝上的点数之和等于6的基本事件有共5中,所以所求概率为。

玩转古典概型 (学生版) --高一数学微专题

玩转古典概型 (学生版) --高一数学微专题

微专题玩转古典概型【题型归纳目录】题型一:“放回”与“不放回”问题题型二:概率模型的多角度构建题型三:“正难则反”思想,利用对立事件求概率题型四:古典概型的综合应用【方法技巧与总结】古典概型求概率问题在考试中经常出现,在解决这类问题时,首先要审题,正确理解样本点与事件的关系,求某个事件包含的样本点的常用方法是列举法(画树状图、列表).注意做到不重不漏,对于用直接方法难以解决的问题,可以先求其对立事件的概率,再求所求概率.【典型例题】题型一:“放回”与“不放回”问题1(2024·高二·广东佛山·期中)下面的三个游戏都是在袋子中装球,然后从袋子中不放回地取球,分别计算三个游戏中甲获胜的概率,其中游戏公平的是()游戏1游戏2游戏3袋子中球的数量和颜色1个红球和1个白球2个红球和2个白球3个红球和1个白球取球规则取1个球依次取出2个球依次取出2个球获胜规则取到红球→甲胜两个球同色→甲胜两个球同色→甲胜取到白球→乙胜两个球不同色→乙胜两个球不同色→乙胜A.游戏1和游戏3B.游戏2C.游戏1和游戏2D.游戏32(2024·高一·甘肃武威·阶段练习)一个盒子中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4,先从盒子中随机取出一个球,该球的编号记为m,将球放回盒子中,然后再从盒子中随机取出一个球,该球的编号记为n.(1)列出试验的样本空间;(2)求“mn>4”的概率.3(2024·高一·河南平顶山·期末)某商场为鼓励大家消费,举行摸奖活动,规则如下:凭购物小票一张,每满58元摸奖一次,从装有除颜色外完全相同的1个红球和4个白球的箱子中一次性随机摸出两个小球,若两球中含有红球,则为中奖,否则为不中奖.每次摸奖完毕后,把小球放回箱子中.甲、乙共有购物小票一张,购物金额为m元,两人商量,先由一人摸奖,若中奖,则继续摸奖,若不中奖,就由对方接着摸奖,并通过掷一枚质地均匀的硬币决定第一次由谁摸奖.(1)若m=60,求这两人中奖的概率;(2)若m=240,求第一次由甲摸奖,最后一次也是甲摸奖的概率.【方法技巧与总结】抽取问题是古典概型的常见问题,解决此类问题需要注意两点:一是所给问题是否需要将被抽取的个体进行区分才能满足古典概型的条件,二是看抽取的方式是有放回还是不放回,两种抽取方式对样本点的总数有影响.另外,不放回抽样看作无序或有序抽取均可,有放回抽样要看作有序抽取.题型二:概率模型的多角度构建1口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,4个人按顺序依次从中摸出一个球.试计算第二个人摸到白球的概率.2(2024·高三·天津南开·阶段练习)甲、乙二人做掷骰子游戏,两人掷同一枚骰子各一次,则至少出现一个5点或6点的概率是;如果谁掷的点数大谁就取胜,则甲取胜的概率为.3(2024·高一·辽宁·期末)一只口袋有形状大小质地都相同的4只小球,这4只小球上分别标记着数字1,2,3,4.甲乙丙三名学生约定:(i)每个不放回地随机摸取一个球;(ii)按照甲乙丙的次序一次摸取;(iii)谁摸取的球的数字最大,谁就获胜.用有序数组a,b,c表示在一次试验中,甲摸取的是数字1,乙摸 表示这个试验的基本事件,例如:1,4,3取的是数字4,丙摸取的是数字3;3,1,2表示在一次实验中,甲摸取的是数3,乙摸取的是数字1,丙摸取的是数字2.(Ⅰ)列出基本事件,并指出基本事件的总数;(Ⅱ)求甲获胜的概率;(Ⅲ)写出乙获胜的概率,并指出甲乙丙三名同学获胜的概率与其摸取的次序是否有关?4(2024·高一·河南商丘·期末)某班同学利用春节进行社会实践,对本地[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图.序号分组(岁)本组中“低碳族”人数“低碳族”人数在本组所占的比例1[25, 30)1200.62[30, 35)195p3[35, 40)1000.54[40, 45)a0.45[45, 50)300.36[55, 60)150.3(一)人数统计表 (二)各年龄段人数频率分布直方图(1)在答题卡给定的坐标系中补全频率分布直方图,并求出n、p、a的值;(2)从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动.若将这6个人通过抽签分成甲、乙两组,每组的人数相同,求[45,50)岁中被抽取的人恰好又分在同一组的概率.【方法技巧与总结】当事件个数没有很明显的规律,并且涉及的样本点又不是太多时,我们可借助树状图直观地将其表示出来,这是进行列举的常用方法.树状图可以清晰准确地列出所有的样本点,并且画出一个树枝之后可猜想其余的情况.另外,如果试验结果具有对称性,可简化结果以便于模型的建立与解答.题型三:“正难则反”思想,利用对立事件求概率1(2024·高一·山西·期末)已知不透明的袋中装有3个红球、2个白球,这些球除颜色外没有其他差异,从中不放回地依次随机摸出2个球.(1)求摸出的两球都是红球的概率;(2)求摸出的两球至少有一个红球的概率.2(2024·高一·全国·课后作业)现有7名学生,其中A1,A2,A3的数学成绩优秀,B1,B2的物理成绩优秀,C1,C2的化学成绩优秀.从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛.(1)求C1被选中的概率;(2)求A1和B1至多有一个被选中的概率.3(2024·高一·河南周口·期末)甲袋中有2个红球和1个白球,乙袋中有1个红球和2个白球,从甲、乙两袋中各摸出1个球.(1)求这两个球为1个红球和1个白球的概率;(2)求这两个球颜色相同的概率.4(2024·高一·全国·单元测试)将一枚均匀的骰子先后抛掷2次,观察向上的点数,求:(1)两数中至少有一个奇数的概率;(2)以第一次向上的点数为x ,第二次向上的点数为y ,求x 2+y 2≥15的概率.【方法技巧与总结】在求解较复杂事件的概率时,可将其分解为几个互斥的简单事件的和事件,由公式P (A 1∪A 2∪⋯∪A n )=P A 1 +P A 2 +⋯+P A n 求得或采用正难则反的原则,转化为其对立事件,再用公式P (A )=1-P (A)求得.题型四:古典概型的综合应用1(2024·高一·福建厦门·期末)为了建设书香校园,营造良好的读书氛围,学校开展“送书券”活动.该活动由三个游戏组成,每个游戏各玩一次且结果互不影响.连胜两个游戏可以获得一张书券,连胜三个游戏可以获得两张书券.游戏规则如下表:游戏一游戏二游戏三箱子中球的颜色和数量大小质地完全相同的红球3个,白球2个(红球编号为“1,2,3”,白球编号为“4,5”)取球规则取出一个球有放回地依次取出两个球不放回地依次取出两个球获胜规则取到白球获胜取到两个白球获胜编号之和为m 获胜(1)分别求出游戏一,游戏二的获胜概率;(2)一名同学先玩了游戏一,试问m 为何值时,接下来先玩游戏三比先玩游戏二获得书券的概率更大.2(2024·高一·宁夏石嘴山·期末)法国著名的数学家笛卡尔曾经说过:“阅读优秀的书籍,就是和过去时代中最杰出的人们(书籍的作者)一一进行交谈,也就是和他们传播的优秀思想进行交流,阅读会让精神世界闪光”.某研究机构为了解某地年轻人的阅读情况,通过随机抽样调查了100位年轻人,对这些人每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图,如图所示:(1)求频率分布直方图中a的值;(2)求样本每天阅读时间的第75百分位数;(3)为了进一步了解年轻人的阅读方式,研究机构采用分层抽样的方法从每天阅读时间位于分组[50,60),[70,80)和90,100的年轻人中抽取5人,再从中任选3人进行调查,求其中恰好有2人每天阅读时间位于[70,80)的概率.3(2024·高二·广东清远·期末)人类的四种血型与基因类型的对应为O型的基因类型为ii,A型的基因类型为ai或aa,B型的基因类型为bi或bb,AB型的基因类型为ab.其中a和b是显性基因,i是隐性基因,且各基因类型是等可能的.(1)若甲的父亲血型是A型,母亲的血型基因类型为bi,求甲血型是A型的概率;(2)若乙的血型基因类型为bi,其母亲血型是B型,求其父亲血型是B型的概率.4(2024·高一·河南南阳·期末)某学校开设了街舞、围棋、武术三个社团,三个社团参加的人数如下表所示:社团街舞围棋武术人数484230为调查社团活动开展情况,学校社团管理部采用分层随机抽样的方法从中抽取一个样本,已知从围棋社团抽取的同学比从街舞社团抽取的同学少1人.(1)求三个社团分别抽取了多少同学;(2)已知从围棋社团抽取的同学中有2名女生,若从围棋社团被抽取的同学中随机选出2人担任该社团活动监督的职务,求至少有1名女同学担任监督职务的概率.【方法技巧与总结】游戏公平性的标准及判断方法(1)游戏规则是否公平,要看对游戏的双方来说获胜的可能性或概率是否相同.若相同,则规则公平,否则就是不公平.(2)具体判断时,可以求出按所给规则双方的获胜概率,再进行比较.【过关测试】1某比赛为甲、乙两名运动员制定下列发球规则,规则一:投掷1枚质地均匀的硬币,出现正面向上,甲发球,否则乙发球;规则二:从装有质地均匀的2个红球与2个黑球的布袋中随机取出2个球,如果同色,甲发球,否则乙发球;规则三:从装有质地均匀的3个红球与1个黑球的布袋中随机取出2个球,如果同色,甲发球,否则乙发球.则对甲、乙公平的发球规则是()A.规则一和规则二B.规则二和规则三C.规则一和规则三D.只有规则一2(2024·高一·湖南·阶段练习)有编号互不相同的五个砝码,其中3克、1克的砝码各两个,2克的砝码一个,从中随机选取两个砝码,则这两个砝码的总重量超过4克的概率为()A.310B.15C.25D.123将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6),先后抛掷两次,将得到的点数分别记为m ,n ,记向量a=2m -3,n -1 ,b =1,-1 的夹角为θ,则θ为钝角的概率是()A.518B.13C.1336D.11364(多选题)(2024·高一·江西南昌·期末)某中学高二学生500人,首选科目为物理的300人,首选科目为历史的200人,现对高二年级全体学生进行数学学科质量检测,按照分层抽样的原则抽取了容量为50的样本,经计算得到首选科目为物理的学生该次质量检测的数学平均成绩为95分,方差为154,首选科目为历史的平均成绩为75分,所有样本的标准差为16,下列说法中正确的是()A.首选科目为历史的学生样本容量为20B.所有样本的均值为87分C.每个首选科目为历史的学生被抽入到样本的概率为25D.首选科目为历史的学生的成绩的标准差为135(多选题)(2024·高一·贵州遵义·期末)不透明盒子里装有除颜色外完全相同的3个红球,2个白球,现从盒子里随机取出2个小球,记事件M:取出的两个球是一个红球一个白球,事件N:两个球中至少一个白球,事件K:两个球均是红球,则下列结论正确的是()A.P M=35B.P MN=2150C.P M+K=910D.P M=P N +P K6(多选题)(2024·高二·新疆喀什·期末)在甲、乙两个盒子中分别装有标号为1,2,3的三个小球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.下列说法正确的是()A.取出的两个球上标号为不同数字的概率为49B.取出的两个球上标号之积能被3整除的概率为59C.取出的两个球上标号为相同数字的概率为13D.甲盒中取出的球上标号比乙盒中取出的球上标号大的概率为137(2024·高一·广东深圳·期末)某工厂引进了一条生产线,为了解产品的质量情况,现从生产线上随机抽取100件产品,测量其技术参数,得到如图所示的频率分布直方图.(1)由频率分布直方图,估计样本技术参数的平均数和75%分位数(精确到0.1);(2)现从技术参数位于区间[40,50),[50,60),[60,70)的三组中,采用分层抽样的方法抽取6件产品,再从这6件产品中任选3件产品,记事件A=“这3件产品中技术参数位于区间[40,50)内的产品至多1件”,事件B=“这3件产品中技术参数位于区间[50,60)内的产品至少1件”,求事件A∩B的概率.8(2024·全国·模拟预测)2023年11月10日,第六届中国国际进口博览会圆满闭幕,在各方的共同努力和大力支持下,本届进博会办成了一届高标准、高质量、高水平的全球经贸盛会,为世界经济复苏和全球发展繁荣做出积极贡献.本届进博会优化了志愿者服务,为展客商提供了更加准确、细致的服务.为了解参会的展客商对志愿者服务的满意度,组委会组织了所有的展客商对志愿者服务进行评分(满分100分),并从评分结果中随机抽取100份进行统计,按照50,60进行分组,,90,100,60,70,80,90,70,80得到如图所示的频率分布直方图:(1)求n的值,并以样本估计总体,求所有展客商对志愿者服务评分的平均值(同一组中的数据用该组区间的中点值为代表);(2)在这100份评分结果中按照分层抽样的方法随机抽取20份,再从其中评分在60,70的评和90,100分结果中随机抽取2份,求这2份评分结果均不低于90分的概率.9(2024·高二·宁夏·期中)某校为了解学生对食堂的满意程度,做了一次问卷调查,对三个年级进行分层抽样,共抽取40名同学进行询问打分,将最终得分按[60,65),[65,70),[70,75),[75,80),[80,85),[85,90],分成6段,并得到如图所示的频率分布直方图.(1)求频率分布直方图中a的值,以及此次问卷调查分数的中位数;(2)若从打分区间在[60,70)的同学中随机抽出两位同学,求抽出的两位同学中至少有一位同学来自打分区间[65,70)的概率.10(2024·高一·辽宁辽阳·阶段练习)辽宁省朝阳市妇联发挥阵地优势,在市妇女儿童活动中心开展了“萌童成长”寒假公益课堂,涵盖了创意美术、传统文化、科学小实验、“亲子阅读”等丰富的活动.公益课堂共开设24期,近200名少年儿童受益.从参加公益课堂的少年儿童中随机抽取50名少年儿童进行问卷调查(满分100分),将问卷调查结果按68,72,88,92,,84,88,72,76,76,80,80,8492,96,96,100分成八组,并绘制成频率分布直方图,如图所示.(1)求a的值,并估计被抽取的50名少年儿童问卷调查结果的平均数(同一组数据用该组区间的中点值作代表);(2)若从样本中问卷调查结果在88,92内的少年儿童中随机抽取2名少年儿童,求随机抽取的和96,100这2名少年儿童在同一组的概率.11(2024·全国·模拟预测)甲、乙两射击队(每队有7名队员)进行射击比赛,每名队员均射击20次且每次射击击中目标得1分,未击中目标得0分.假设所有队员的得分相互独立.现统计每队队员的得分情况如下:甲队:14,13,10,15,12,16,11.乙队:17,15,16,12,14,13,m.(1)现从甲、乙两队各随机选1人,甲队选出的队员记为A,乙队选出的队员记为B,若m=20,求队员A的得分不少于队员B的得分的概率.(2)是否存在m m∈N*使得甲、乙两队队员的得分的方差相等.若存在,请写出m的值,不用说明理由;若不存在,请说明理由.。

高一数学必修3课件:3-2-1古典概型

高一数学必修3课件:3-2-1古典概型

①本摸球事件中共有5个球,其中3个白球,2个黑球. ②题目中摸球的方式为一次摸出两个球,每个球被摸取 是等可能的. 解答本题可先列出摸出两球的所有基本事件,再数出均 为白球的基本事件数.
第三章 3.2
3.2.1
成才之路 ·数学 ·人教A版 · 必修3
[解析]
(1)方法一:采用列举法:分别记白球为1,2,3
3.树形图法 树形图法是进行列举的一种常用方法,适合较复杂问题 中基本事件数的探究.
第三章 3.2
3.2.1
成才之路 ·数学 ·人教A版 · 必修3
[例1]
将一枚骰子先后抛掷两次,则:
(1)一共有几个基本事件? (2)“出现的点数之和大于8”包含几个基本事件?
第三章 3.2
3.2.1
成才之路 ·数学 ·人教A版 · 必修3
第三章 3.2
3.2.1
成才之路 ·数学 ·人教A版 · 必修3
第三章 3.2
3.2.1
成才之路 ·数学 ·人教A版 · 必修3
(1)由图知,共36个基本事件. (2)点数之和大于8包含10个基本事件(已用“√”标出).
第三章 3.2
3.2.1
成才之路 ·数学 ·人教A版 · 必修3
规律总结:要写出所有的基本事件可采用的方法较 多.例如,列举法、列表法、树形图法,但不论采用哪种方 法,都要按一定的顺序进行,做到不重漏.
第三章 3.2
3.2.1
成才之路 ·数学 ·人教A版 · 必修3
2.列表法 对于试验结果不是太多的情况,可以采用列表法.通常 把对问题的思考分析归结为“有序实数对”,以便更直接地 找出基本事件个数.列表法的优点是准确、全面、不易遗 漏.
第三章 3.2
3.2.1

1.3古典概型 一等奖创新教学设计-高一下学期数学人教A版(2019)必修第二册

1.3古典概型  一等奖创新教学设计-高一下学期数学人教A版(2019)必修第二册

1.3古典概型一等奖创新教学设计-高一下学期数学人教A版(2019)必修第二册古典概型教学设计一教学内容分析1.本节内容在高中教材中的地位和作用《古典概型》是高中数学人教A版必修2第十章第一大节的第三课时的内容,教学安排是2课时,本节课是第一课时。

古典概型是在学生初中阶段学习了概率初步,在高中阶段学习了随机事件的概率(随着试验次数的增加,频率稳定于概率),初步了解了概率的意义之后学习的内容。

古典概型是一种特殊的数学模型,它承接着前面学过的随机事件的概率及其性质,它的引入能使概率值的存在性易于被学生理解,也能使学生认识到重复实验在有些时候并不是获取概率值的唯一方法。

同时古典概型也是后面学习条件概率的基础,起到承前启后的作用,在概率论中占有相当重要的地位。

教学目标分析1.知识与技能目标:会判断古典概型,会用列举法计算一些随机事件所含的样本点个数和试验中样本空间;能够利用概率公式求解一些简单的古典概型的概率。

2.过程与方法目标:教学生掌握列举法,学会处理概率计算类问题。

通过从实际问题中抽象出数学模型的过程,提升从具体到抽象,从特殊到一般的分析问题的方法,理解、掌握古典概型的基本特点。

3.情感态度与价值观目标:通过各种有趣的、贴近学生生活的素材(生活中的猜拳游戏、掷骰子游戏等),激发学生学习数学的热情和兴趣,培育学生的探索精神,促使学生自觉培养创新意识。

在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神。

三、教学重难点1.重点:古典概型定义的理解与掌握,能以古典概型为基础展开随机事件的概率计算。

2.难点:如何判断一个试验是否是古典概型;分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

四、教法与学法分析1.教法分析:教学方法为引导发现、归纳概括,基于提出问题、分析问题、解决问题的思路,对古典概型的定义与概率公式进行归纳概括、观察比较,而后通过实际问题的提出与处理,激发学生的学习兴趣,提升学生的学习主动性。

北师大版高中数学高一必修3学案古典概型的特征和概率计算公式

北师大版高中数学高一必修3学案古典概型的特征和概率计算公式

2.1古典概型的特征和概率计算公式预习课本P130~133,思考并完成以下问题(1)古典概型的定义是什么?(2)古典概型的概率公式是什么?[新知初探]1.古典概型的定义如果一个试验满足:(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果;(2)每一个试验结果出现的可能性相同.我们把具有这样两个特征的随机试验的数学模型称为古典概型(古典的概率模型).2.古典概型的概率公式对于古典概型,如果试验的所有可能结果(基本事件数)为n,随机事件A包含的基本事件数为m,那么事件A的概率规定为P(A)=m n.[点睛]在一次试验中可能出现的每一个结果称为基本事件,它们是试验中不能再分的最简单的随机事件.例如,掷一枚骰子,出现“1点”“2点”“3点”“4点”“5点”“6点”共6个结果,就是该随机试验的6个基本事件.[小试身手]1.一个家庭有两个小孩,则所有的基本事件是()A.(男,女),(男,男),(女,女)B.(男,女),(女,男)C.(男,男),(男,女),(女,男),(女,女)D.(男,男),(女,女)解析:选C用坐标法表示:将第一个小孩的性别放在横坐标位置,第二个小孩的性别放在纵坐标位置,可得4个基本事件(男,男),(男,女),(女,男),(女,女).2.下列试验是古典概型的为()①从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小;②同时掷两颗骰子,点数和为7的概率; ③近三天中有一天降雨的概率;④10人站成一排,其中甲、乙相邻的概率; A .①② B .②④ C .①②④D .③④解析:选C ①②④是古典概型,因为符合古典概型的定义和特点.③不是古典概型,因为不符合等可能性,受多方面因素影响.3.从100台电脑中任抽5台进行质量检测,每台电脑被抽到的概率是( ) A.1100 B.15 C.16D.120解析:选D 每台电脑被抽到的概率为5100=120.4.从1,2,3,4中随机取出两个数,则其和为奇数的概率为________.解析:不同的取法包括(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个基本事件,每个基本事件发生的可能性相同,因此是古典概型.和为奇数包括(1,2),(1,4),(2,3),(3,4),共4个基本事件,故所求概率为46=23.答案:23古典概型的判定[典例] (1)从区间[1,10]内任意取出一个实数,求取到实数2的概率; (2)向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;(3)从1,2,3,…,100这100个整数中任意取出一个整数,求取到偶数的概率. [解] (1)不是古典概型,因为区间[1,10]中有无限多个实数,取出的那个实数有无限多种结果,与古典概型定义中“所有可能结果只有有限个”矛盾.(2)不是古典概型,因为硬币不均匀导致“正面向上”与“反面向上”的概率不相等,与古典概型定义中“每一个试验结果出现的可能性相同”矛盾.(3)是古典概型,因为在试验中所有可能出现的结果是有限的,而且每个整数被抽到的可能性相等.只有同时满足有限性和等可能性这两个条件的试验才是古典概型,两个条件只要有一个不满足就不是古典概型.[活学活用]下列随机事件:①某射手射击一次,可能命中0环,1环,2环,…,10环;②一个小组有男生5人,女生3人,从中任选1人进行活动汇报;③一只使用中的灯泡寿命长短;④抛出一枚质地均匀的硬币,观察其出现正面或反面的情况;⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.这些事件中,属于古典概型的有________.解析:题号判断原因分析①不属于命中0环,1环,2环,…,10环的概率不一定相同②属于任选1人与学生的性别无关,仍是等可能的③不属于灯泡的寿命是任何一个非负实数,有无限多种可能④属于该试验结果只有“正”“反”两种,且机会均等⑤不属于该品牌月饼评“优”与“差”的概率不一定相同古典概型的概率计算[典例](1)点数之和为5的概率;(2)点数之和为7的概率;(3)出现两个4点的概率.[解]在抛掷两粒均匀的骰子的试验中,每粒骰子均可出现1点,2点,…,6点,共6种结果.两粒骰子出现的点数可以用有序实数对(x,y)来表示,它与直角坐标系内的一个点对应,则所有的基本事件包括:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36个.(1)记“点数之和为5”为事件A,从图中可以看到事件A包含的基本事件数共有4个:(1,4),(2,3),(3,2),(4,1),所以P(A)=436=19.(2)记“点数之和为7”为事件B,从图中可以看到事件B包含的基本事件数共有6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6),所以P(B)=636=16.(3)记“出现两个4点”为事件C,则从图中可以看到事件C包含的基本事件数只有1个:(4,4),所以P(C)=1 36.求解古典概型的概率“四步”法[活学活用]先后抛掷均匀的壹分、贰分、伍分硬币各一次.(1)一共可能出现多少种结果?(2)出现“2枚正面朝上,1枚反面朝上”的结果有多少种?(3)出现“2枚正面朝上,1枚反面朝上”的概率是多少?解:(1)先后抛掷壹分、贰分、伍分硬币时,可能出现的结果共有8种,即(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反).(2)用A 表示事件“2枚正面朝上,1枚反面朝上”,所有结果有3种,即(正,正,反),(正,反,正),(反,正,正).(3)因为每种结果出现的可能性相等,所以事件A 的概率P (A )=38.[层级一 学业水平达标]1.某部三册的小说,任意排放在书架的同一层上,则各册从左到右或从右到左恰好为第1,2,3册的概率为( )A.16 B.13 C.12D.23解析:选B 所有基本事件为:123,132,213,231,312,321.其中从左到右或从右到左恰好为第1,2,3册包含2个基本事件,∴P =26=13.故选B.2.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ) A.49 B.13 C.29D.19解析:选D 个位数与十位数之和为奇数的两位数一共有45个,其中个位数为0的有5个,概率为19.3.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( )A.12B.13C.14D.15解析:选A 从1,2,3,4这四个数字中,任取两个不同的数字,可构成12个两位数:12,13,14,21,23,24,31,32,34,41,42,43,其中大于30的有:31,32,34,41,42,43共6个,所以所得两位数大于30的概率为P =612=12. 4.从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于________.解析:从3男3女中选出2名同学,共有以下15种情况:(男1,男2),(男1,男3),(男2,男3),(男1,女1),(男1,女2),(男1,女3),(男2,女1),(男2,女2),(男2,女3),(男3,女1),(男3,女2),(男3,女3),(女1,女2),(女1,女3),(女2,女3),其中2名都是女同学的有3种情况,故所求的概率P =15.答案:15[层级二 应试能力达标]1.两个骰子的点数分别为b ,c ,则方程x 2+bx +c =0有两个实根的概率为( ) A.12 B.1536 C.1936D.56解析:选C (b ,c )共有36个结果,方程有解,则Δ=b 2-4c ≥0,∴b 2≥4c ,满足条件的数记为(b 2,4c ),共有(4,4),(9,4),(9,8),(16,4),(16,8),(16,12),(16,16),(25,4),(25,8),(25,12),(25,16),(25,20),(25,24),(36,4),(36,8),(36,12),(36,16),(36,20),(36,24),19个结果,P =1936.2.将一个各个面上涂有颜色的正方体锯成27个同样大小的小正方体,从中任取一个小正方体,其中恰有3面涂有颜色的概率为( )A.427B.827C.18D.14解析:选B 在这27个小正方体中,只有原正方体的8个顶点所对应的小正方体的3面是涂色的,故概率P =827.3.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为( )A.310B.25C.12D.35解析:选C 从五种不同属性的物质中随机抽取两种,出现的情况有:(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木,土),(水,火),(水,土),(火,土)共10种等可能情况,其中金克木,木克土,土克水,水克火,火克金,即相克的有5种,则不相克的也是5种,所以抽取的两种物质不相克的概率为12.4.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于( )A.15B.25C.35D.45解析:选B 袋中的1个红球、2个白球和3个黑球分别记为a ,b 1,b 2,c 1,c 2,c 3. 从袋中任取两球有{a ,b 1},{a ,b 2},{a ,c 1},{a ,c 2},{a ,c 3},{b 1,b 2},{b 1,c 1},{b 1,c 2},{b 1,c 3},{b 2,c 1},{b 2,c 2},{b 2,c 3},{c 1,c 2},{c 1,c 3},{c 2,c 3},共15个基本事件.其中满足两球颜色为一白一黑的有{b 1,c 1},{b 1,c 2},{b 1,c 3},{b 2,c 1},{b 2,c 2},{b 2,c 3},共6个基本事件.所以所求事件的概率为615=25.5.设a ,b 随机取自集合{1,2,3},则直线ax +by +3=0与圆x 2+y 2=1有公共点的概率是________.解析:将a ,b 的取值记为(a ,b ),则有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共9种可能.当直线与圆有公共点时,可得3a 2+b 2≤1,从而符合条件的有(1,3),(2,3),(3,1),(3,2),(3,3),共5种可能,故所求概率为59.答案:596.在5瓶饮料中,有2瓶已过了保质期,从中任取2瓶,取到的全是已过保质期的饮料的概率为________.解析:设过保质期的2瓶记为a ,b ,没过保质期的3瓶用1,2,3表示,试验的结果为: (1,2),(1,3),(1,a ),(1,b ),(2,3),(2,a ),(2,b ),(3,a ),(3,b ),(a ,b )共10种结果,2瓶都过保质期的结果只有1个,∴P =110.答案:1107.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.解析:从四条线段中任取三条有4种取法:(2,3,4),(2,3,5),(2,4,5),(3,4,5).其中能构成三角形的取法有3种:(2,3,4),(2,4,5),(3,4,5),故所求概率为34.答案:348.为迎接2016奥运会,某班开展了一次“体育知识竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,分数均为整数)进行统计,制成如下的频率分布表:(1)求a ,b (2)若得分在[90,100]之间的有机会进入决赛,已知其中男女比例为2∶3,如果一等奖只有两名,求获得一等奖的全部为女生的概率.解:(1)a =50×0.1=5,b =2550=0.5,c =50-5-15-25=5,d =1-0.1-0.3-0.5=0.1. (2)把得分在[90,100]之间的五名学生分别记为男1,男2,女1,女2,女3.事件“一等奖只有两名”包含的所有事件为(男1,男2),(男1,女1),(男1,女2),(男1,女3),(男2,女1),(男2,女2),(男2,女3),(女1,女2),(女1,女3),(女2,女3),共10个基本事件;事件“获得一等奖的全部为女生”包含(女1,女2),(女1,女3),(女2,女3),共3个基本事件.所以,获得一等奖的全部为女生的概率为P =310.9.甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数则甲赢,否则乙赢.(1)若以A 表示事件“和为6”,求P (A );(2)若以B 表示事件“和大于4而小于9”,求P (B ); (3)这种游戏公平吗?试说明理由. 解:将所有可能情况列表如下:甲乙 123451 (1,1) (1,2) (1,3) (1,4) (1,5)2 (2,1) (2,2) (2,3) (2,4) (2,5)3 (3,1) (3,2) (3,3) (3,4) (3,5)4 (4,1) (4,2) (4,3) (4,4) (4,5) 5(5,1)(5,2)(5,3)(5,4)(5,5)由上表可知,该试验共包括25个等可能发生的基本事件,属于古典概型.(1)“和为6”的结果有:(1,5),(2,4),(3,3),(4,2),(5,1),共5种结果,故所求的概率为525=15. (2)“和大于4而小于9”包含了(1,4),(1,5),(2,3),(2,4),(2,5),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),共16个基本事件,所以P (B )=1625.(3)这种游戏不公平.因为“和为偶数”包括13个基本事件,即甲赢的概率为1325,乙赢的概率为25-1325=1225,所以它不公平.。

高一数学《古典概型(2课时)》(课件)

高一数学《古典概型(2课时)》(课件)

2014年下学期
练习4. [2013湖南文]某人在如图3所示的 直角边长为4米的三角形地块的每个格 点(指纵、横直线的交叉点以及三角形 的顶点)处都种了一株相同品种的作物, 根据历年的种植经验, 一株该种作物的 年收获量Y(单位:kg)与它的“相近”作 物株数X之间的关系如下表所示:这里, 两株作物“相
3. 在一个盒中有6枝圆珠笔,其中3 枝一等品,2枝二等品和1枝三等品,从 中任取3枝,问下列事件的概率有多大: (1)恰有一枝一等品; (2)恰有两枝一等品; (3)没有三等品.
湖南长郡卫星远程学校 2014年下学期
4. 某人有4把钥匙,其中2把能打开门, 现随机地取1把钥匙试着开门,不能开门 的就扔掉,问:第二次才能打开门的概率 是多少?如果试过的钥匙不扔掉,这个概
(a , b), (a , b), (a , b), (a , b), (a , b), (a , b), (a , b), (a , b), (a , b), (a , b), (a , b), (a , b), (a , b), (a , b), (a , b)
其中a, a分别表示甲组研发成功和失败, b, b分别 表示乙组研发成功和失败. (Ⅰ)若某组成功研发一种新产品, 则给该组记1分, 否则记0分, 试计算甲、乙两组研发新产品的成绩的 平均数和方差, 并比较甲、乙两组的研发水平; (Ⅱ)若该企业安排甲、乙两组各自研发一样的产 品,试估计恰有一组研发成功的概率.
3. 对于古典概型,随机事件出现的
概率如何计算?
湖南长郡卫星远程学校
2014年下学期
3. 对于古典概型,随机事件出现的
概率如何计算?
A包含的基本事件的个数 P ( A) 基本事件的总数
湖南长郡卫星远程学校

高一数学古典概型

高一数学古典概型

A a, c, b, c, c, a , c, b 4 2 m 4 ,所以 PA 6 3
记“恰有一件次品”为事件 A
从含有两件正品 a , b和一件次品 的3件产品中 (1)任取两件;(2)每次取1件,取后不放回,连续 取两次;(3)每次取1件,取后放回,连续取两次,分 别求取出的两件产品中恰有一件次品的概率.
1.互斥事件: 2.事件的并:
3、如果事件A与事件B互斥,则 P(A∪B)= P(A)+P(B) 4、若件A与事件B互为对立事件,则 P(A)= 1- P(B)
思考:
用实验的方法来求某一随机事件的概率好不好? 为什么?
答:不好,因为需要大量的试验才能得出 较准确的概率,在现实生活中操作起来不 方便。
取法是否有序,有放回还是无放回.
A 记“恰有一件次品”为事件

例4(掷骰子问题):将一个骰子先后抛掷2次,观察向上的点数. 问:⑴两数之和是3的倍数的结果有多少种?
两数之和是3的倍数的概率是多少? ⑵两数之和不低于10的结果有多少种? 两数之和不低于10的的概率是多少?
第 二 次 抛 掷 后 建立模 向 上 型 的 解:由表可 点 数 知,等可能基 本事件总数为 36种。
例:先后抛掷两颗骰子,求:(1)点数之 和为6的概率;(2)出现两个4点的概率
解:用有序数对 x , y 表示掷得的结果,
则基本事件总数
n 36
(1)记“点数之和为6 “为事件A 则 A 1,5, 2,4, 3,3, 4,2, 5,1, m 5
(2)记“出现两个4点”为事件 B
将具有这两个特点的概率模型称为
古典概率模型,简称古典概型.
问题:向一个圆面内随机地投射一个点,如果 该点落在圆内任意一点都是等可能的,你认为 这是古典概型吗?为什么?

古典概型高一上学期数学人教B版(2019)必修第二册

古典概型高一上学期数学人教B版(2019)必修第二册
1
个基本事件发生的概率均为
.此时,如果事件C包含有m个样本点,则再由
互斥事件的概率加法公式可知P(C)=


.
名师点睛
古典概型的概率求解步骤
过关自诊
[北师大版教材习题]从一副扑克牌(去掉大、小王,共52张)中随机选取1张,
试求下列事件的概率:
(1)这张牌是A;
(2)这张牌是红色A;
(3)这张牌是K,Q或J;
列表法和树形图法,具体应用时可根据需要灵活选择,在列出样本点后最好
检验一下各样本点出现的概率是否相同.根据事件C包含的样本点个数m
及试验的样本点总个数n,利用公式P(C)

= 求出事件C发生的概率.
【例3】 袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两
张,标号分别为1,2;现从袋中任取两张卡片.
因此该试验的样本空间Ω={(m,n)|m,n∈{1,2,3,4,5,6}},其中共有3样本点出现的可能性相等,因此这个试验是
古典概型.
(2)因为 A={(1,4),(2,3),(3,2),(4,1)},共包含 4 个样本点,所以
4
P(A)=
36
=
1
.
9
因为 B={(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)},共包含 6 个样本点,所以
(红1,蓝2),(红2,蓝1),(蓝1,蓝2)},共包含5个样本点,由古典概型概率公式得,
5
P(A)=10
=
1
.
2
规律方法
解决古典概型综合问题的两个关键点
(1)审读题干:对于实际问题要认真读题,深入理解题意,计算样本点总数要
做到不重不漏,这是解决古典概型问题的关键.

高一数学古典概型课件

高一数学古典概型课件
大沥高级中学
周艳芬
1、掷一枚质地均匀的硬币的试验, (1)可能出现几种不同的结果?
A {正面向上 }, B {反面向上 }
(2)哪一个面朝上的可能性较大? 一样大!概率都等于0.5
抛掷一只均匀的骰子一次。 (1)点数朝上的试验结果是有限的还是无限的? 如果是有限的共有几种?
A {出现1点}, B {出现2点},C= {出现3点} D {出现4点}, E {出现5点},F= {出现6点}
我们将具有这两个特点的概率模型 成为古典概率模型,简称古典概型
在古典概型下,如何计算随机事件出 现的概率?
例如:在情景(二)中,如何计算“出现偶数点” 的概率呢? 一般地,对于古典概型,如果试验的基本事件总数为 m n, 随机事件A所包含的基本事件数为m,我们就用 n 来描述事件A出现的可能性大小,称它为事件A的概
1号骰子 2号骰子
3
1
2
3
4
5
6
1 2 3 4 5
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
1 ( 2) P 6
5 (3) P 6
北京网站制作 北京网站制作
马上就要别保/那可如何是好?竹墨被那各突如其来の/小四嫂/吓得面如土色/所以连想也没想/当即就直挺挺地跪在咯十六小格の面前/体如筛糠/别住地央告求饶:/求爷咯/求求爷咯/

例析古典概型中的几种经典问题

例析古典概型中的几种经典问题

ʏ查 霖在日常工作和现实生活中,有大量的随机事件的概率并不一定要通过大量的试验来得到,只要掌握了一些基本情况,就可以知道它们相应的概率,这就是最常见的古典概型㊂古典概型中主要有几种经典的实例:骰子(硬币)问题㊁摸球问题㊁抽数问题㊁格子问题等㊂下面就此举例分析,供大家学习与参考㊂一㊁骰子(或硬币)问题抛掷骰子问题和抛掷硬币问题一样,是古典概型中一种重要的模型㊂它的实质就是抛掷骰子(或硬币)n 次,那么对应的基本事件总数为6n (或2n),根据相应事件所对应的基本事件的个数,结合古典概型的计算公式求得对应的概率㊂例1 将一颗质地均匀的骰子(一种六个面分别标有1,2,3,4,5,6的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率为㊂思路导引:根据抛掷骰子的总数确定古典概型中的基本事件总数,再结合抛掷2次出现向上的点数之和为4的事件的个数,进而利用古典概型的概率公式求解㊂基本事件的总数为6ˑ6=36,点数之和为4的可能结果为(1,3),(2,2),(3,1),共3种情况,所以所求概率P =336=112㊂答案为112㊂解法反思:抛掷骰子或抛掷硬币问题,关键是确定相关事件的个数㊂容易出错的地方是计算遗漏,如本题中的(1,3)和(3,1)是两种不同的结果,不能认为是一种结果㊂二㊁摸球问题摸球问题等同于抽签问题,关键是确定每次所摸的符合题目要求的球的可能结果㊂要注意所摸球的先后顺序和球的颜色与题目条件之间的关系,否则容易出错㊂例2 袋中有4个白球,3个黑球,从中连续任意取出2个球,且每次取出的球不再放回,求第2次取出的球是白球的概率㊂思路导引:本题的基本事件总数是从7个球中有次序地取出2个球的不同取法,即7ˑ6种取法㊂第2次取出的球是白球的可能结果是:若第一次取的是白球,那么第2次是从3个白球中再取出一球,若第一次取的是黑球,那么第2次是从4个白球中再取出一球㊂由题意可得,所求概率P ( 第2次取出的球是白球 )=4ˑ37ˑ6+3ˑ47ˑ6=47㊂解法反思:本题实质上也是抽签问题,按上述规则抽签,每人抽中白球的机会相等,且与抽签次序无关㊂在涉及与抽签及其相关事件时,都可以采用摸球问题的数学模型所对应的古典概型问题来分析与处理㊂三㊁抽数问题抽数问题可以根据条件加以分析,也可以结合排列与组合加以综合分析㊂解答这类问题,关键是确定所有的数的总个数,以及所满足条件的数的个数㊂如果利用排列与组合分析时,一定要注意两者分析时的一致性㊂例3 从1,2, ,9这9个数字中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )A.59 B .49C .1121D .1021思路导引:本题基本事件的总数是从9个数中有次序地取出3个数的不同取法,即基本事件总数是9ˑ8ˑ7=504㊂分析3个数的和为偶数的不同情况,确定所包含的基本事件个数,从而得到所求概率㊂基本事件的总数是9ˑ8ˑ7=504㊂这3个数的和为偶数33经典题突破方法高一数学 2023年5月Copyright ©博看网. All Rights Reserved.的可能结果有四种情况:偶奇奇,共有4ˑ5ˑ4=80(种);奇偶奇,共有5ˑ4ˑ4=80(种);奇奇偶,共有5ˑ4ˑ4=80(种);偶偶偶,共有4ˑ3ˑ2=24(种)㊂所以所求概率P =80+80+80+24504=1121㊂应选C ㊂解法反思:本题实质上就是数的一种排列问题,抽出来的2个数所组成的两位数有次序关系,通过计算基本事件的总数以及所求事件的个数,从而得到所求的概率㊂四㊁格子问题格子问题也是一种常见的古典概型问题㊂解答这类问题,关键是确定对应的格子与相应的元素之间的填充关系,有时可以结合树状图㊁列举法加以分析与处理㊂例4 把3个不同的球投入3个不同的盒子内(每盒球数可以不限),计算:(1)无空盒的概率㊂(2)恰有一个空盒的概率㊂思路导引:本题的基本事件总数是把3个不同的球投入3个不同的盒子内的不同放法,题设条件是每盒的球数可以不限,即最多可以投入3个,最少可以投入0个,然后按要求计算出所求事件的个数,从而得到所求概率㊂基本事件的总数是把3个不同的球投入3个不同的盒子内的不同放法,第一个球的放法有3种可能,第二个球的放法也有3种可能,第三个球的放法还是有3种可能,则基本事件总数是3ˑ3ˑ3=27㊂设事件A = 无空盒 ,事件B = 恰有一个空盒 ,3个不同的球分别记为a ,b ,c ㊂(1)事件A 包含的可能结果为a b c ,a c b ,b ac ,b c a ,c a b ,c b a ,共有6种情况,所以P (A )=627=29㊂(2)第一个盒子是空盒的可能结果为( )(a )(b c ),( )(b )(a c ),( )(c )(a b ),( )(b c )(a ),( )(a c )(b ),( )(a b )(c ),共有6种情况,其他两个盒子是空盒的情况与第一个盒子一样,所以事件B 包含的基本事件个数是6ˑ3=18,所以P (B )=1827=23㊂解法反思:本题通过分析3个不同的球与3个不同的盒子之间的关系,计算出基本事件的总数,再根据题设条件,正确分析并列举出所求事件的个数,最后结合古典概型的概率公式求得结果㊂编者的话:在解答古典概型问题时,有时会直接涉及骰子(硬币)问题㊁摸球问题㊁抽数问题㊁格子问题等,有时会涉及与之相关的问题,解题的关键是合理构建对应的古典概率模型,借助古典概型的概率公式来分析与处理,从而实现问题的解决㊂1.连掷两次骰子分别得到点数m ,n ,则向量a =(m ,n )与向量b =(-1,1)的夹角θ>90ʎ的概率是( )㊂A.512 B .712 C .13 D .12提示:连掷两次骰子得到的点数(m ,n )的所有基本事件为(1,1),(1,2), ,(6,6),共36个㊂因为(m ,n )㊃(-1,1)=-m +n <0,所以m >n ,可知符合要求的事件为(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1), ,(5,4),(6,1), ,(6,5),共15个㊂故所求概率P =1536=512㊂应选A ㊂2.已知集合A ={2,3,4,5,6,7},B ={2,3,6,9},在集合A ɣB 中任取一个元素,则它是集合A ɘB 中的元素的概率为( )㊂A.23 B .35 C .37 D .25提示:依题意得A ɣB ={2,3,4,5,6,7,9},即这个试验的样本空间Ω中有7个元素㊂由A ɘB ={2,3,6},可知这个试验包含3个样本点㊂由古典概型的概率公式得所求概率为37㊂应选C ㊂作者单位:江苏省高邮市临泽中学(责任编辑 郭正华)43 经典题突破方法 高一数学 2023年5月Copyright ©博看网. All Rights Reserved.。

高一数学人教A版必修3课件:3.2.1 古典概型(1)

高一数学人教A版必修3课件:3.2.1 古典概型(1)

观察类比、推导公式
实验一中,出现正面朝上的概率与反面朝上的概率相等, P(“正面朝上”)=P(“反面朝上”) 由概率的加法公式,得 P(“正面朝上”)+P(“反面朝上”)=P(必然事件)= 因此
1 2 P(“正面朝上”)=P(“反面朝上”)=
1

1 “出现正面朝上”所包含的基本事件的个数 P (“出现正面朝上”)= = 2 基本事件的总数
1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
解:(1)把两个骰子标上记号1、2以便区分,可能结果有:
1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
6
进一步地,利用加法公式还可以计算这个试验 中任何一个事件的概率,例如, P(“出现偶数点”)=P(“2点”)+P(“4 点”) 3 1 +P(“6点”) 1 1 1 = 6 + 6 + 6 = 6 = 6
3 P (“出现偶数点”)= 即 6 “出现偶数点”所包含的基本事件的个数 = 基本事件的总数
基本事件的特点:
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表 示成基本事件的和。
例1 从字母a、b、c、d任意取出两个不 同字母的试验中,有哪些基本事件? 解:所求的基本事件共有6个: A={a, b} B={a, c} C={a, d} D={b, c} E={b, d} F={c, d}

古典概型及其应用习题课课件-2023-2024学年高一下学期数学人教A版(2019)必修第二册

古典概型及其应用习题课课件-2023-2024学年高一下学期数学人教A版(2019)必修第二册
(2)将质量在区间 x − s, x + s 内的零件定为一等品.
①估计这台机器生产的零件的一等品率;
②从样本中的一等品中随机抽取2件,求这2件产品质量之差的绝对值不超过0.3克的概率P.
【解析】 (2) ① x − s, x + s = 9.5,10.5 ,质量在区间 9.5,10.5 内的零件定为一等品,样本中一等品
5
反思感悟
方法总结
“有放回”的抽取,是相当于在相同的条件下把一个实验重复地进行多次,解决这
类复杂事件的古典概型问题,要将事件一一列清,再根据公式求解.“无放回”的抽取,
是抽取后不放回,前面的抽取结果会影响后面的抽取结果,一定要注意两者的区别.
新知运用
跟踪训练1 已知袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标
{A2 B1 } , {A2 B2 } , {A3 B1 } , {A3 B2 } , {B1 B2 } ,共10个基本事件.
(2)在方案二中,设两次抽取的球所标的数字分别为 , ,
则所有可能的基本事件对应的二元有序数组 (,) 表示如下表,共25个基本事件.
一、复杂事件的古典概型问题
则 B 包含 1,5 , 2,4 , 2,5 , 3,3 , 3,4 , 3,5 , 4,2 , 4,3 , 4,4 ,
15
3
4,5 , 5,1 , 5,2 , 5,3 , 5,4 , 5,5 ,共15个基本事件,故 P B = = .
25
因为 P A < P B ,所以选择方案二获得奖品的可能性更大.
12
3
二、古典概型与数字特征的综合
例题2 从某台机器一天产出的零件中,随机抽取10件作为样本,测得其质量如下(单位:

5.3.3古典概型教学设计-2024-2025学年高一上学期数学人教B版

5.3.3古典概型教学设计-2024-2025学年高一上学期数学人教B版

教学设计古典概型一、主题内容概率是一个事件发生、一种情况出现的可能性大小的数量指标,介于 0与1之间,这个概念萌芽于16世纪,与掷骰子进行赌博的活动密切相关。

对概率是否存在始终是概率论争论的哲学问题。

古典概型表明定义古老的、经典的概率模型,古典概型讨论的对象局限于随机试验所有可能结果为有限个等可能的情形。

古典概型是《高中数学》人教B版(必修2)第五章的内容,教学安排是2课时,本节是第一课时。

本节教学是在还没有学习排列组合的情况下(随机事件概率后,频率与概率前)展开的。

主题内容主要涉及以下几个方面:样本空间与样本点:样本空间是随机试验所有所有可能的集合,样本点则是这个集合中的元素。

古典概型:样本空间是有限可数的,每个基本事件发生的可能性是相等的。

等可能性:古典概型基于的基本假设是每一个基本事件(即样本空间中的每一个样本点)发生的可能性是相同的。

概率计算:P(A) = 事件A包含的样本点个数 / 样本空间中所有的样本点总数。

二、背景分析《普通高中数学课程标准 (2017年版2020年修订)》对古典概型的内容要求是:结合具体实例,理解古典概型,能计算古典概型中简单随机事件的概率。

教学提示:应引导学生通过古典概型,认识样本空间、样本点,理解随机事件发生的含义。

学业要求:能够掌握古典概型的基本特征,根据实际问题构建概率模型,解决实际问题。

从课标中可以看出主要发展学生的数学建模、数学抽象、数学运算。

数学建模借助具体例子得到古典概率模型,利用样本空间、样本点来描述古典概型,能够计算古典概型中简单随机事件的概率。

三、教材分析关于古典概型的内容,在人教A版和人教B版教材中都被列为重要内容,但呈现的方式和侧重点有所不同。

以下是对两个版本教材的详细分析:人教A版教材下图展示了对人教A版教材古典概型内容顺序分析以下展示了对人教A版教材的古典概型的教学路线分析:教学可以分4活动:1.建立古典概率模型过程:根据试验归纳出共同特征有限性、等可能性抽象出古典概型2.古典概型计算3.巩固提升:通过两个例子归纳求解的一般思路4.例子分析:利用所学知识对样本代表性影响进行分析人教B版教材下图展示了对人教B版教材古典概型内容顺序分析下面展示了对人教B版教材的古典概型的教学路线分析:1.建立古典概率模型过程:借助具体例子的计算抽象出古典概率模型计算2.古典概型计算:从特殊到一般进行推理3.巩固提升:借助瓶盖例子再次理解古典概型4.例子分析:例1:利用定义解决问题;例2利用概率性质解决问题;例3关注题目条件不同;例3、4、5用不同的表示方法表示样本空间有树状图、矩阵、坐标系;例6强调等可能性。

古典概型课件-2022-2023学年高一上学期数学北师大版(2019)必修第一册

古典概型课件-2022-2023学年高一上学期数学北师大版(2019)必修第一册
情境适合用古典概型来描述吗?为什么?
(3)有人认为,抛掷两枚均匀的骰子,掷出的点数之和可能
为2,3,4,…,12,共有11种可能的情形,因此,“掷出的点数之
1
11
和是5”的可能性是 .这种说法对吗?
➢ 样本空间有36个样本点
➢ “点数和是5”包含4个样本点
试验的所有可能结果是
无限的
每种结果的可能性不相等
课堂练习
梳理小结
布置作业
试着再举出一些古典概型的例子吧.
单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答
案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随
机地选择一个答案,所以他选择A,B,C,D哪一个选项都有可能.
因此样本点总数为4,设答对为随机事件A,由于正确答案是唯一的,所以事件A只包含
1
4
一个样本点,所以P(A)= .
某班级男生30人,女生20人,随机地抽取一位学生代表,会出现50个不同的结果.
因此样本空间共有50个样本点,设选中的代表是女生为随机事件B,则事件B包含20个样
本点,所以 =
20
50
2
5
= .
说明:在现实中不存在绝对均匀的硬币,也没有绝对均匀的骰
子,古典概率模型是从现实中抽象出来的一个数学模型,它有
8
2
共含有8个样本点,所以P(B)= = .
20
5
情境引入
新知探究
应用举例
课堂练习
梳理小结
布置作业
在试验E6“袋中有白球3个(编号为1,2,3)、黑球2个(编号为1,2),这5个球除颜色
外完全相同,从中不放回地依次摸取2个,每次摸1个,观察摸出球的情况”中,摸

古典概型的概率计算公式 高一数学(北师大版2019必修第一册)

古典概型的概率计算公式 高一数学(北师大版2019必修第一册)
分析:为了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都 列出来。
b
c
a
cb
c
d
d
d
树状图
解:所求的基本事件共有6个:
A {a,b} B {a,c} C {a, d} D {b,c} E {b, d} F {c, d}
我们一般用列举法列出所有 基本事件的结果,画树状图是 列举法的基本方法。
分布完成的结果(两步以上) 可以用树状图进行列举。
例:
同时抛掷两枚质地均匀的硬币的试验中,
有哪些基本事件?
A={正,正 }, B={正,反} 正 C={反,正} , D={反,反}





同时抛掷三枚质地均匀的硬币呢?
解:所有的基本事件共有8个:
A={正,正,正}, B={正,正,反},
C={正,反,正}, D={正,反,反},
成的结
5 6 7 8 9 10 11 果的列
6 7 8 9 10 11 12 举。
A表示事件“点数之和为7”, 则由表得n=36,m=6.
P( A)
m n
6 36
1 6
例2 . 同时掷两个骰子,计算: (1)一共有多少种不同的结果? (2)其中向上的点数之和是5的结果有 多少种? (3)向上的点数之和是5的概率是多少?
数的都有m=3个,并且每个结果的
2 出现机会是相等的,故
4 P(A) m 3 1 ; p(B) m 3 1
6
n 62
n 62
同时掷两粒均匀的骰子,落地时向上的点数 之和有几种可能?点数之和为7的概率是多少?
123456
1234567
2 3 4 5 6 7 8 列表法

高一数学古典概型

高一数学古典概型
我们将具有这两个特点的概率模型 称为古典概率模型,简称古典概率。
思考?
在古典概型下,基本事件出现 的概率是多少?随机事件出现 的概率如何计算?
例6 天气预报说,在今后的三天中,每 一天下雨的概率均为40%,这三天中恰 有两天下雨的概率是多少?
解:我们通过设计模拟试验的方法来解决问题,利用计 算器或计算机可以产生0到9之间去整数值的随机数, 我们用1,2,3,4表示下雨,用5,6,7,8,9,0 表示不下雨,这样可以体现下雨的概率是40%。因 为是3天,所以每三天随机数作为一组。例如,产生 20组随机数
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
就相当于作了20次试验。在这组数中,如果恰有两 个数在1,2,3,4中,则表示恰有两天下雨,他们 分别是191,271,932,612,393,即共有5个数。 我们得到三天中恰有两天下雨的概率近似为 5/20=25%
任意取出 两个不同字母的试验中,有哪些基本 事件?
解:所求的基本事件共有6个: A={a,b},B={a,c}, C={a,d},D={b,c}, E={b,d},F={c,d},
上述试验和例1的共同特点是: (1) 试验总所有可能出现的基本事件只 有有限个; (2) 每个基本事件出现的可能性相等
色的万须海滩虾般的一闪,怪异的好似小天神般的手掌瞬间伸长了九倍,显赫醒目的、如天神铠甲一样的金红色宝石马甲也忽然膨胀了二十倍。接着顽皮灵活的脖子瞬 间闪烁抽动起来……充满活力的幼狮肩膀穿出米黄色的朦胧地云……青春光洁的手掌露出钢灰色的隐隐奇臭。紧接着像水蓝色的十血牧场鳄一样怪呜了一声,突然整出 一个侧卧闪烁的特技神功,身上突然生出了二十只酷似黄瓜模样的淡灰色尾巴!最后摇起充满活力的幼狮肩膀一晃,轻飘地从里面滚出一道余辉,他抓住余辉悠闲地一 晃,一组亮晶晶、绿莹莹的功夫∈万变飞影森林掌←便显露出来,只见这个这件东西儿,一边摇晃,一边发出“喇喇”的幽响。!骤然间蘑菇王子高速地让自己灵快如 风的神脚鸣出水绿色的驴肾声,只见他好似小天神般的手掌中,酷酷地飞出九簇摆舞着∈神音蘑菇咒←的手掌状的油花,随着蘑菇王子的扭动,手掌状的油花像谷粒一 样在双脚上猛爆地玩出丝丝光墙……紧接着蘑菇王子又连续使出九千九百九十九门美鸭羽毛摇,只见他显赫醒目的、如天神铠甲一样的金红色宝石马甲中,威猛地滚出 八道耍舞着∈神音蘑菇咒←的项链状的手掌,随着蘑菇王子的耍动,项链状的手掌像纸花一样,朝着女参谋H.琦叶娆仙女威猛的脸直掏过去。紧跟着蘑菇王子也蹦耍 着功夫像铅笔般的怪影一样朝女参谋H.琦叶娆仙女直掏过去随着两条怪异光影的瞬间碰撞,半空顿时出现一道浅绿色的闪光,地面变成了灰蓝色、景物变成了纯白色 、天空变成了纯蓝色、四周发出了优美的巨响……蘑菇王子永远不知疲倦和危险的脸受到震颤,但精神感觉很爽!再看女参谋H.琦叶娆仙女脏脏的手掌,此时正惨碎 成龟壳样的深橙色飞灰,高速射向远方,女参谋H.琦叶娆仙女狂骂着狂魔般地跳出界外,加速将脏脏的手掌复原,但元气和体力已经大伤同学蘑菇王子:“你的业务 怎么越来越差,还是先回去修炼几千年再出来混吧……”女参谋H.琦叶娆仙女:“这次让你看看我的真功夫。”蘑菇王子:“你的假功夫都不怎么样,真功夫也好不 到哪去!你的科目实在太垃圾了!”女参谋H.琦叶娆仙女:“等你体验一下我的『金雾惊仙锄头脚』就知道谁是真拉极了……”女参谋H.琦叶娆仙女猛然像暗黄色 的四骨平原凤一样乱骂了一声,突然忽悠了一个滚地收缩的特技神功,身上立刻生出了三十只极似包子造型的紫葡萄色犄角……接着整出一个,飘凤烤鸭滚两千八百八 十度外加象喊车窗转十七周半的招数,接着又弄了一个,仙体鼠爬望月翻三百六十度外加猛转一千周的和谐招式。紧接着把美如麦穗一般的手臂旋了旋,只见五道新鲜 的很像花苞般的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盛大棋牌游戏大厅
[单选,A3型题]3岁小儿,请判断其各种能力的正常状态。有关记忆能力的发展,正常的是()A.记忆能力比较差B.能回忆起数天前发生的事C.能再认3个月以前的人和物D.能回忆起1年前的人和物E.重现仅限于1周前的事 [单选,A2型题,A1/A2型题]紫外线杀菌的主要机制是()A.损伤细胞壁B.破坏酶系统C.干扰DNA的复制D.干扰蛋白质的合成E.损伤细胞膜 [多选]下列表述正确的是:()。A.货主或其代理人在办理进境动物、动物产品报检时,还需按检疫要求出具,输出国家或地区政府出具的检疫证书(正本);《中华人民共和国进境动植物检疫许可证》。B.输入活动物的报检时,还应提供隔离场审批证明。C.输入动物产品的报检时,应提供加工 [名词解释](水泥的)抗压强度 [单选]()是一门新兴的管理学科。它以观察实验、经验积累为基础,以科学分析为手段。A.风险管理B.防范管理C.风险防范管理D.物业风险管理 [判断题]经外汇管理部门批准,储蓄机构可以办理活期储蓄存款、整存整取定期、零存整取储蓄存款等外币储蓄业务。()A.正确B.错误 [单选]冠状动脉瘤表现为管腔的局限性扩张,其管径超过该血管最大径线的()A.1倍B.1.2倍C.1.5倍D.1.6倍E.1.8倍 [单选]几种不同形式的平衡增长理论共同强调的是()A.经济增长率是第一位的B.大规模投资的重要性和全面平衡的增长C.不采取国家干预D.通过引致投资最大化项目带动其它项目 [名词解释]半卫 [单选,A1型题]婴儿,8个月。单纯以母乳喂养,从未添加任何辅食。近2个月来面色苍白,体检除贫血外,其他均正常。外周血:红细胞数312×10/L,血红蛋白86g/L,白细胞数8.0×109/L,血小板计数104×10/L。最合适的处理是()A.输血B.输浓缩红细胞C.肌内注射铁剂D.告诉家长,给患 [单选,A2型题,A1/A2型题]关于上运动神经元瘫和下运动神经元瘫的区别以下表述错误的是()。A.上运动神经元瘫为痉挛性瘫,下运动神经元瘫为弛缓性瘫B.上运动神经元瘫肌张力升高,下运动神经元瘫肌张力减低C.下运动神经元瘫肌萎缩显著,且早期出现D.上运动神经元瘫有肌束颤动E.上运 [单选]企业对信用风险进行控制首先必须解决()。A.弄清企业信用风险的内部原因B.制定科学的信用决策C.应收账款的管理和监控D.拖欠账款的追收 [填空题]依据支路电流法解得的电流为负值时,说明电流()方向与()方向相反。 [单选]从法学视角来说,()是指人们围绕社会物质财富的生产、交换、分配和消费过程所进行的各种社会关系的总和。A.社会B.生产力C.经济D.生产关系 [单选]近视度数较高者常伴有多种眼底病变,但不包括()A.视网膜周边部骨细胞样色素沉着B.黄斑出血C.玻璃体后脱离D.豹纹状眼底E.视网膜下新生血管膜 [单选]施工合同规定,由甲方承担的保险义务是()。A.机器设备损坏险B.建筑工程一切险C.人身意外险D.勘察设计一切险 [单选]下列有关行政机关公务员决定机关负责人的回避,由机关集体讨论决定C.除案情复杂或有特殊情形外,给予行政机关公务员处分,应自批准立案之日起6个月作出决定D.如被撤销处分的行政机关公务员的工资福利受到损 [单选]下列属于行政处罚的是()。A.没收财产B.罚金C.撤职D.责令停产停业 [判断题]出口电池产品的制造商在电池产品出口前,应向国家质检总局申请备案。()A.正确B.错误 [单选,A2型题,A1/A2型题]实验室管理者的最主要职责是()。A.决策与筹划,技术与业务B.组织和控制,处理与协调C.技术与业务,影响与号召D.决策与筹划,组织和控制E.影响与号召,处理与协调 [填空题]交流双速电梯当电梯制动减速时,则自动切断高速绕组电源,并将三相()绕组接到电源上,电动机转入低速运行状态. [单选,A2型题,A1/A2型题]口腔的后界为()A.腭垂B.舌腭弓C.咽腭弓D.咽门E.舌根 [单选]眶内异物定位方法很多,常用的定位方法为()A.几何定位法B.超声定位法C.手术中定位法D.普通头颅侧位片定位法E.头颅正位片定位法 [单选]下列关于会计报表的编制要求,表述不正确的是()。A.在编制报表时,应保证内容完整,不得漏填B.会计报表之间,本期报表与上期报表之间的数字应允许不一致C.账簿记录是编制会计报表的主要依据,在编制会计报表前,要做好对账和结账工作,在保证账证、账账、账实相符的前提下 [单选]在中医脏腑学说中,主藏神志脏器为()。A、脾B、肝C、心D、肾 [单选]单位时间内无线电波传播的距离称为()。A.频率B.周期C.速度D.波长 [单选]产后72小时内血容量增加()A.1%~5%B.5%~10%C.10%~15%D.15%~25%E.25%~30% [单选]关于书刊装订样式的说法,错误的是()。A.平装也称简装,分普通平装和勒口平装两种B.精装的封面质地较硬,包括软精装和半精装C.按照成品的书脊形状,精装还可分为圆脊精装和平脊精装D.勒口平装的勒口宽度一般不少于30毫米,且可增大变为"拉页" [名词解释]乡村家庭的发展趋势 [填空题]汽油的抗爆性可用()来表示。 [配伍题,B型题]出自《希波克拉底誓言》的内容是()。</br>出自《迈蒙尼提斯祷文》的内容是()。A.&quot;启我爱医术,复爱世间人,愿绝名利心,尽力为病人。&quot;B.&quot;医本活人,学之不精,反为夭折。&quot;C.&quot;先知儒理,然后方知医理&hellip;&hellip;。&quot;D.&quot; [单选]减少用电容量的期限,最短期限不得少于()。A.4个月B.5个月C.6个月D.7个月 [多选]中医诊察疾病的四种方法是()A.寒、热B.闻、同C.表、里D.虚、实E.望、切 [单选,B1型题]肾源性水肿常先出现的部位是()A.身体低垂部位B.颜面、眼睑C.全身D.胸腔E.腹腔 [单选]Web服务器建设方式不包括()A.整机托管B.租用网页空间C.委托IAPD.租用网页空间 [问答题,简答题]再生气出蒸汽加热器的温度低的原因及解决措施? [多选]先天性巨结肠的辅助检查包括A.钡灌肠B.直肠肛管测压C.直肠指诊D.直肠活检神经节细胞减少或缺如E.直肠肛管肌电图检查 [单选]规范性保护性加工工艺包括()。A、洗涤B、挂糊C、消毒D、加热 [单选]以下应用中,必须采用栈结构的是()。A.使一个整数序列逆转B.递归函数的调用和返回C.申请和释放单链表中的节点D.装入和卸载可执行程序 [单选]具有解表清热,宣肺化痰,用于小儿外感风寒、肺胃蕴热证的药物是()A.小儿热速清口服液B.健脾康儿片C.儿感清口服液D.肥儿宝颗粒E.解肌宁嗽丸
相关文档
最新文档